
International Journal of Computer Applications Technology and Research

Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 395

A Review of Constraint Programming

Poonam Dabas

Department of CSE

U.I.E.T, Kurukshetra University

Kurukshetra, India

Vaishali Cooner

Department of CSE

U.I.E.T, Kurukshetra University

Kurukshetra, India

Abstract: A constraint is defined as a logical relation among several unknown quantities or variables, each taking a value in a given

domain. Constraint Programming (CP) is an emergent field in operations research. Constraint programming is based on feasibility

which means finding a feasible solution rather than optimization which means finding an optimal solution and focuses on the
constraints and variables domain rather than the objective functions. While defining a set of constraints, this may seem a simple way to

model a real-world problem but finding a good model that works well with a chosen solver is not that easy. A model could be very
hard to solve if it is poorly chosen.

Keywords: Constraint Programming; Optimization; feasibility; problems; relations

1. INTRODUCTION

The development of high-tech systems is very difficult

without mathematical modeling and analysis of the system

behavior. For this, mathematical models are revealed in order

to solve the tasks in many areas like in the modern

engineering sciences like control engineering,

communications engineering, and robotics. Therefore, the

main focus is that without neglecting mathematical accuracy

on comprehensibility and real-world applicability.

Mathematical engineering has various methods to find the

optimal and feasible solution like: Linear programming, Non-

Linear programming, stochastic programming and Constraint

programming.

Linear programming is effective only if the real world is

reflected in the model used. They also sometimes give results

that don’t make sense in the real world. Even some situations

have many possibilities to fit into linear programming. A

constraint is a logical relation among several unknown

quantities (or variables), each taking a value in a given

domain.

2. CONSTRAINT PROGRAMMING

A logical relation among several unknown variables is known

as a constraint, where each variable takes a value in a given

domain. The basic idea behind constraint programming

framework is to model the problem as a set of variables with

domains and a set of constraints [16]. The possible values that

the variables can take are restricted by the constraints.

In operations research constraint programming (CP) is an

emergent field. It is based on finding a feasible solution i.e.

feasibility rather than finding an optimal solution i.e.

optimization. Basic CP constructs, the interface for advanced

scheduling applications, and search specification are provided

which are essential to a language supporting constraint

programming and are represented as discrete variables [1].

The focus is not done on objective function rather than the

constraints and variables domain. It possesses a strong

theoretical foundation though it is quite new, a widespread

and very active community around the world and an arsenal of

different solving techniques. In problems with heterogeneous

constraints CP has been successfully applied in planning and

scheduling.

A programming paradigm where relations between variables

are stated in the form of constraints is known as constraint

programming. In other programming languages step or

sequence of steps is not specified to execute. Because of this

constraint programming a known as a form of declarative

programming.

Various kinds of constraints are used in constraint

programming: one is those used in constraint satisfaction

problems for example- A or B is true, other one is those

solved by the simplex algorithm for example- x ≤ 5, and
others.

To solve scheduling problems constraint programming is an

interesting approach. Activities are defined by their starting

date in cumulative scheduling; their duration and the amount

of resource necessary are also defined for their execution.

Constraints are defined as just relations and which relation

should hold among the given decision variables is stated by a

constraint satisfaction problem (CSP). It may seem a simple

while defining a set of constraints as a way to model a real-

world problem but it is not easy to find a model that works

well with a chosen solver. It is really hard to solve a poorly

designed model. To take advantage of the features of the

model such as symmetry solvers can be designed to save time

in finding a solution. As many are over constrained this may

exist as another problem with modeling real-world problems.

Any language can be used to implement constraint solver.

For all the constraints to be satisfied there must exist an

assignment of values to variables. To reduce the

computational effort this technique is used which is needed to

International Journal of Computer Applications Technology and Research

Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 396

solve combinatorial problems. Constraints are used in a

constructive mode to deduce new constraints, not only to test

the validity of a solution. Constraints also detect

inconsistencies rapidly.

 Figure. 1 Behavior of a Constraint Programming system

Constraint propagation is usually incomplete for complexity

reasons. So, not all but some of the consequences of

constraints are deduced. All inconsistencies cannot be

detected by constraint propagation.

To determine if the CSP instance is consistent or not tree

search algorithms must be implemented. The figure depicts

the overall behavior of a constraint-based system.

First, variables and constraints are defined as terms of the

problem

Then, constraint propagation algorithms are specified. Some

pre-defined constraints can be used by the constraint

programming tool like scheduling constraints for which the

corresponding propagation algorithms have been pre-

implemented.

Finally, at last the decision-making processes. It is the way the

search tree is built, and is specified. How new constraints are

added to the system are shown in it like ordering a pair of

activities.

3. REVIEW ANALYSIS
Over the past few years, there has been lot of research going

on in the field of mathematical engineering to find the optimal

solutions for the problems. Researchers have done a lot in this

field which is discussed below:

 Willem-Jan van Hoeve[1] has presented the

modeling language for basic constraint programming and

advanced scheduling constructs and specify how search can

be controlled. It provides easy development of hybrid

approaches such as CP based column generation. Focus here

is done on the constraint programming interface of AIMMS

which is based on an algebraic syntax and offers access to

integer linear programming, quadratic programming (QP) and

nonlinear programming (NLP).

 Arnaud Lallouet, M. lopez, L. Martin, C. Vrain [2]

have made an algorithm which is designed combining the

major qualities of traditional top-down search and bottom-up

search techniques. The contributions of this paper are setting

the framework of learning CSP specifications, then the choice

of the rule language, and it’s rewriting into CSP and the

learning algorithm which allows guiding search when

traditional method fails. In this the activity of finding the

constraints that are to be stated is considered as a crucial part

and a lot of work has been spent on the understanding and

automation of modeling tasks for the novice users who have a

limited knowledge regarding how to choose the variables. A

framework is designed to bridge the gap between constraint

programming modeling language and ILP (Inductive Logic

Programming). The very first step of the framework consists

in learning a CPS (Constraint Problem Specification)

describing the target problem. ILP framework and its

applications to learning problems are presented.

 Barry O’Sullivan [3] has presented technical

challenges in the area of constraint model acquisition,

formulation and reformulation algorithms for global

constraints and automated solving and it also presents the

metrics by which success and progress can be measured. The

motivation here is to reduce the burden on constraint

programmers and to increase the scope of problems that can

be handled alone by domain experts. Modeling defines the

problem, in terms of variables that can take different values.

Progress is evaluated empirically in constraint programming.

A model for practical problem as a constraint satisfaction

problem (CSP) is preferred and available constraint

programming tools are used to solve it. Generic methods from

the machine learning field can be applied to learn an

appropriate formulation of the target problem as a CSP. The

filtering algorithm is difficult to design and this is considered

the major challenge that one faces when designing a new

global constraint.

 Christian Bessiere, R. Coletta, T. petit [4] have

presented a framework for learning implied global constraints

which is presented in a constraint network assumed to be

provided by a non-expert user. As global constraints are key

feature of constraint programming learning global constraints

is important. A motivation example is considered and it is

shown that if it is required that the model is to be solved with

more tasks then the need to improve model is needed.

Constraint network is defined by a set of variables and a set of

domains of values for the variables. The tighter the learned

constraint is, the more promising its filtering power is. A

general process to learn the parameters of implied global

constraints is given. The focus is made on global constraints

and set of parameters. Efficient algorithm exists to propagate

when the cardinalities of the value are parameters that take

values in a range. A model was generated to minimize the

sum of preference variables. This was considered the first

approach that derives implied global constraints according to

the actual domains. Experiments show that a very small effort

International Journal of Computer Applications Technology and Research

Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 397

spent learning implied constraints with this technique can

improve the solving time.

 Steven J. Miller [5] has described linear

programming as an important generalization of linear algebra.

Various real world situations are modeled successfully using

programming. The problems that can be solved by linear

programming are discussed. Binary integer linear

programming is also discussed which is an example of a more

general problem is called Integer Linear Programming. The

difficulty here due to the fact that a problem may have

optimal real solutions and optimal integer solutions but both

the solutions need not be closed to each other. The simplex

method is used for solving the linear problems to find the

optimal solutions. It has two phases, one is to find a basic

feasible solution and other one is to find a basic optimal

solution, given a basic feasible solution. If no optimal solution

exists this phase produces a sequence of solutions that are

feasible with their cost tending to minus infinity. Algorithms

are defined for them. The time for finding the optimal solution

is also considered as a major factor here.

 Nicholas Nethercte, P J. Stukcey, R. Becket, S.

Brand, G J. Duck and Guido Tack [6] have presented

MiniZinc as a simple and expressive CP modeling language.

It is known that there is no standard modeling language for

constraint programming problems so most solvers have their

own language for modeling. The experimentation and

comparison between different solvers is encouraged with a

standard language for modeling CP. This MiniZinc problem

has two parts- model and data which may be in separate files.

The assignments to parameters declared in the model are

contained in the data file. The model file is not attached to any

particular data file. Boolean, integers, and floats are the three

scalar types provided and sets and arrays are two compound

types provided. The MiniZinc is translated to FlatZinc in two

parts as flattening and the rest. Flattening is done in a number

of steps to reduce the model and data as much as possible.

The order of the steps is not fixed. After flattening, post

flattening steps are applied. Different MiniZinc to FlatZinc

converters are used. The main goal here was to define a

language which is not too big but expressive.

 Alan M. Frisch, M. Grum, C. Jefferson, B.M.

Hernandez, Ian Miguel [7] have discussed a new formal

language ESSENCE for specifying combinatorial problems

which provides a high level of abstraction. This language was

a result of attempt to design a formal language that enables

abstract problem. For this language no expertise in CP should

be needed, it is accessible to anyone with knowledge of

discrete mathematics as it is based on the notation and

concepts of discrete mathematics. It provides high level of

abstraction stating that the language should not force a

specification to provide unnecessary information. This

language provides an exceptionally rich set of constructs for

expressing quantification. It also supports complex, nested

types and also its result can be specified without modeling

them.

Adrian Petcu [8] has discussed in brief about efficient

optimization techniques that are essential to coordinate to

business companies and distributed solution processes are

desirable as they allow the participating actors to keep control

on their data and also offer privacy.

Many key issues are presented that are present in this domain

like the actors involved in the distributed decision processes

do not have the global knowledge and overview. The goal of

constraint optimization is to find the best assignment of values

to the variables so that utilities are maximized and cost is

minimized. A new technique based on dynamic programming

was developed for distributed optimization which was a utility

propagation mechanism and works on constraint problems.

It requires only a linear number of messages for finding the

optimal solution. These algorithms for distributed constraint

optimization have not been applied to large scale due to

complexity reason.

 Brahim Hnich, S.D. Prestwich, E. Selensky, B.M.

Smith[9] have developed models for constraint programming

for finding an optimal covering array. It is shown that the

compound variables that represent tuples of variables in the

original model, allow the constraints of the problem to be

represented more easily, propagating better. The optimality of

existing bounds is proved for finding the optimal solutions for

moderate size array. In covering test problems instances are

used with coverage strengths. Number of parameters here is

varied. It has shown that for moderate problem size one can

find provably optima solution using CP approach. One of the

advantages of CP is easy handling of side constraints i.e.

simply by adding them to the model.

 C. Bessiere, J. Quinqueton, G. Raymond [10] have

proposed an automated model to generate different viewpoints

for the problem we are to model. The main idea here is to

build a viewpoint enough to describe many different solutions

of problems also describes a solution of the target problem.

Historical data is with which it is started and historical data is

used as solutions to problems close to the target problems.

From this data candidate variables are extracted. So this can

be seen that these viewpoints are capable of describing the

historical solutions and also the solutions of our target

problem. The goal here is to build viewpoints which match

the given historical data. For this candidate variables are

determined according to the history. A set of potential

viewpoints are obtained out of which more relevant is selected

to build constraint models efficiently.

 P.E. Hladik. A.M. Deplanche, N. Jussien, H.

Cambazard [11] has presented an approach to solve hard real

time allocation problem i.e. to assign periodic tasks to

processors in context of fixed priority preemptive scheduling.

Bendors decomposition is also used as a way of learning when

the allocation yields a valid solution. The problem is

distributed in systems that belongs to a class. The authors

International Journal of Computer Applications Technology and Research

Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 398

presents a decomposition based method which separates the

allocation problem from the scheduling one. The three classes

that the constraint allocation problem must respect are timing,

resource, and allocation constraints. For solving a master

problem using constraint programming, the problem needs to

be translated into CSP. The subproblem is considered as to

check whether a valid solution produced by master problem is

schedulable or not. If no data is sent then deadlines can

correspond to non-communicating tasks. The overall problem

is split into a master problem for allocation and resource

constraints and a subproblem for timing constraints. The

learning technique is used in an effort to combine the various

issues into a solution that satisfies all constraints.

 Julia L.Higle [12] has presented an introduction to

stochastic programming models. Stochastic linear

programming is resulted when some of the data elements in a

linear program are appropriately described using some

random variables. An example is illustrated giving the reason

why SP model is preferred and some essential features of a

stochastic program are identified. Stochastic programs are

difficult to solve and formulate. When the size of the problem

increases we can easily see that the solution difficulties

increase as well. Sensitivity analysis is done which provides a

sense of security and is important. It is used to study the

robustness of the solution to a linear programming model. It is

done for the accuracy of the data to check whether the

solution changes or not on changing the data. If the solution

remains same it is believed that the solution is appropriate and

vice versa. All the uncertainties should be included in the

model.

Philippe Refalo [13] has presented a new general purpose

strategy for constraint programming which is inspired from

integer programming technique. The importance of a variable

for the reduction of the search space is measured by the

impact. Designing the search strategy is difficult in integer

programming whereas the concept of domain reduction is

easier to understand and the use design of a search strategy is

easier in constraint programming. In the impact based search

strategy, by storing the observed importance of variables

impacts permit us to benefit from the search effort made up to

a certain node. With some standard strategies some instances

remain unsolved which are solved by this technique. Certain

principles are defined here for reducing the search effort.

When a value is assigned to a variable in constraint

programming, constraint propagation reduces the domains of

other variables defined.

Y.C Law, J.H.M. Lee [14] has introduced model induction

which is a systematic transformation of constraints in an

existing model to constraints in another viewpoint. Three

ways of combining redundant models are proposed using

model induction, another way is model channeling, and the

last is model intersection. It is also investigated how the

problem formulation and reformulation affect execution

efficiency of constraint solving algorithms. For the

formulation process the variables and the domain of the

variables is to be determined. The induced model is result of

the model induction. The three ways of combining the

redundant models are proposed so as to utilize the redundant

information in enhancing constraint propagation. Alternate

ways of generating models in a different viewpoint from

existing model are made.

 H.Y. Benson, D.F. Shanno, R.J. Vanderbei [15]

have analyzed the performance of several optimization codes

on large-scale nonlinear optimization problems. The size of

problem is defined to the number of variables and the number

off constraints. Some of the codes are tested and presented

available for solving large scale NLP’s. To identify the

features of these codes that are efficient is the goal.

Infeasibilities and unboundedness are detected in the problem

as early as possible. Performance of the algorithms running on

the same set of problems is compared to simple compute an

estimate of the probability that an algorithm performs. A

number of conclusions concerning specific algorithm details

exits if various algorithms are compared. Numerical result for

solving large scale nonlinear optimization problems is

presented. The performance of each solver is explained easily

and predicted based on the characteristics.

4. CONCLUSION

There are many challenges faced by mathematical engineering

approaches to find the optimal solution. The common

weakness to all of the approaches is the assumption that the

input data are perfectly accurate. Many benefits of using this

approach are discussed as visualization of results using

activities and resources. From an existing model another

model of a different viewpoint can be generated in a

systematic way. Experiments show that we can improve the

solving time by very small effort is spent in learning. But at

the same time it is too expensive. There are many challenges

as: these rely heavily on supervision of an expert and also

they are not capable of acquiring a description of the problem

class.

5. REFERENCES

[1] Willem-Jan van Hoeve, “Developing Constraint

Programming Applications with AIMMS,” in CP,2013.

[2] Arnaud Lallouet, Matthieu Lopez, Lionel Martin, Christel

Vrain, “On Learning Constraint Problems,” in ICTAI, 2010.

[3] Barry O’Sullivan, “Automated Modelling and Solving in

Constraint Programming,” in proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence(AAAI-

10), 2010.

[4] C. Bessi`ere, R. Coletta, and T. Petit, “Learning implied

global constraints,” in IJCAI, 2007, pp. 44–49.

[5] Steven J. Miller,” An Introduction to Linear

Programming,” in mathematics,2007.

International Journal of Computer Applications Technology and Research

Volume 3– Issue 7, 395 - 399, 2014, ISSN: 2319–8656

www.ijcat.com 399

[6] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J.

Duck, and G. Tack, “Minizinc: Towards a standard cp

modelling language,” in CP, 2007, pp. 529–543.

[7] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hern´andez,

and I. Miguel,“The design of essence: A constraint language

for specifying combinatorial problems,” in IJCAI, M. M.

Veloso, Ed., 2007, pp. 80–87.

[8] Adrian Petcu,” Recent Advances in Dynamic, Distributed

Constraint Optimization,” in infoscience, 2006.

[9] Brahim Hnich, Steven D. Prestwich, Evgeny Selensky,

Barbara M. Smith, “Constraint Models for the Covering Test

Problem,” in CP, 2006, pp. 199-219.

[10] C. Bessiere, J. Quinqueton, and G. Raymond, “Mining

historical data to build constraint viewpoints,” in Proceedings

CP’06 Workshop on Modelling and Reformulation, 2006, pp.

1–16.

[11] Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-

Marie Deplanche, Narendra Jussien,” in ECRTS, 2005.

[12] Julia L. Higle,” Stochastic Programming: Optimization

When Uncertainty Matters,” in operations research informs-

New Orleans 2005, 2005.

[13] Philippe Refalo,” Impact-Based Search Strategies for

Constraint Programming,” in peasant IBS, 2004.

[14] Y.C. Law, J.H.M. Lee,” Model Induction: a New Source

of CSP Model Redundancy,” in AAAI, 2002.

[15] Hande Y. Benson, David F. Shanno, Robert J.

Vanderbei,” A Comparative Study of Large-Scale Nonlinear

Optimization Algorithms,” in NLP, 2002.

[16] Roman Bartak,” Constraint-Based Scheduling: An

Introduction for Newcomers,” in SOFSEM, 2002.

[17] R. Bart´ak. Constraint programming: In pursuit of the

holygrail. In Proc. of WDS99, 1999.

[18] J. Charnley, S. Colton, and I. Miguel, “Automatic

generation of implied constraints,” in ECAI, 2006, pp. 73–77.

[19] J.-F. Puget, “Constraint programming next challenge :

Simplicity of use,” in International Conference on Constraint

Programming, ser. LNCS, M. Wallace, Ed., vol. 3258.

Toronto, CA: Springer, 2004, pp. 5–8, invited paper.

[20] A. M. Frisch, M. Grum, C. Jefferson, B. M. Hern´andez,

and I. Miguel, “The design of essence: A constraint language

for specifying combinatorial problems,” in IJCAI, M. M.

Veloso, Ed., 2007, pp. 80–87.

