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Abstract: A constraint is defined as a logical relation among several unknown quantities or variables, each taking a value in a given 

domain. Constraint Programming (CP) is an emergent field in operations research. Constraint programming is based on feasibility 

which means finding a feasible solution rather than optimization which means finding an optimal solution and focuses on the 
constraints and variables domain rather than the objective functions. While defining a set of constraints, this may seem a simple way to 

model a real-world problem but finding a good model that works well with a chosen solver is not that easy. A model could be very 
hard to solve if it is poorly chosen. 
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1. INTRODUCTION 

The development of high-tech systems is very difficult 

without mathematical modeling and analysis of the system 

behavior.  For this, mathematical models are revealed in order 

to solve the tasks in many areas like in the modern 

engineering sciences like control engineering, 

communications engineering, and robotics. Therefore, the 

main focus is that without neglecting mathematical accuracy 

on comprehensibility and real-world applicability. 

Mathematical engineering has various methods to find the 

optimal and feasible solution like: Linear programming, Non- 

Linear programming, stochastic programming and Constraint 

programming. 

Linear programming is effective only if the real world is 

reflected in the model used. They also sometimes give results 

that don’t make sense in the real world. Even some situations 

have many possibilities to fit into linear programming. A 

constraint is a logical relation among several unknown 

quantities (or variables), each taking a value in a given 

domain.  

2. CONSTRAINT PROGRAMMING 

A logical relation among several unknown variables is known 

as a constraint, where each variable takes a value in a given 

domain. The basic idea behind constraint programming 

framework is to model the problem as a set of variables with 

domains and a set of constraints [16]. The possible values that 

the variables can take are restricted by the constraints. 

In operations research constraint programming (CP) is an 

emergent field. It is based on finding a feasible solution i.e. 

feasibility rather than finding an optimal solution i.e. 

optimization. Basic CP constructs, the interface for advanced 

scheduling applications, and search specification are provided 

which are essential to a language supporting constraint 

programming and are represented as discrete variables [1].  

The focus is not done on objective function rather than the 

constraints and variables domain. It possesses a strong 

theoretical foundation though it is quite new, a widespread 

and very active community around the world and an arsenal of 

different solving techniques. In problems with heterogeneous 

constraints CP has been successfully applied in planning and 

scheduling. 

A programming paradigm where relations between variables 

are stated in the form of constraints is known as constraint 

programming. In other programming languages step or 

sequence of steps is not specified to execute. Because of this 

constraint programming a known as a form of declarative 

programming.  

Various kinds of constraints are used in constraint 

programming: one is those used in constraint satisfaction 

problems for example- A or B is true, other one is those 

solved by the simplex algorithm for example- x ≤ 5, and 
others.  

To solve scheduling problems constraint programming is an 

interesting approach. Activities are defined by their starting 

date in cumulative scheduling; their duration and the amount 

of resource necessary are also defined for their execution.  

Constraints are defined as just relations and which relation 

should hold among the given decision variables is stated by a 

constraint satisfaction problem (CSP). It may seem a simple 

while defining a set of constraints as a way to model a real- 

world problem but it is not easy to find a model that works 

well with a chosen solver. It is really hard to solve a poorly 

designed model. To take advantage of the features of the 

model such as symmetry solvers can be designed to save time 

in finding a solution. As many are over constrained this may 

exist as another problem with modeling real-world problems.  

Any language can be used to implement constraint solver. 

For all the constraints to be satisfied there must exist an 

assignment of values to variables. To reduce the 

computational effort this technique is used which is needed to 
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solve combinatorial problems. Constraints are used in a 

constructive mode to deduce new constraints, not only to test 

the validity of a solution. Constraints also detect 

inconsistencies rapidly. 

 

  Figure. 1 Behavior of a Constraint Programming system 

Constraint propagation is usually incomplete for complexity 

reasons. So, not all but some of the consequences of 

constraints are deduced. All inconsistencies cannot be 

detected by constraint propagation.  

To determine if the CSP instance is consistent or not tree 

search algorithms must be implemented. The figure depicts 

the overall behavior of a constraint-based system.  

First, variables and  constraints are defined as terms of the 

problem 

Then, constraint propagation algorithms are specified. Some 

pre-defined constraints can be used by the constraint 

programming tool like scheduling constraints for which the 

corresponding propagation algorithms have been pre-

implemented. 

Finally, at last the decision-making processes. It is the way the 

search tree is built, and is specified. How new constraints are 

added to the system are shown in it like ordering a pair of 

activities. 

 

3. REVIEW ANALYSIS 
Over the past few years, there has been lot of research going 

on in the field of mathematical engineering to find the optimal 

solutions for the problems. Researchers have done a lot in this 

field which is discussed below: 

 Willem-Jan van Hoeve[1] has presented the 

modeling language for basic constraint programming and 

advanced scheduling constructs and specify how search can 

be controlled. It provides easy development of hybrid 

approaches such as CP based column generation. Focus here 

is done on the constraint programming interface of AIMMS 

which is based on an algebraic syntax and offers access to 

integer linear programming, quadratic programming (QP) and 

nonlinear programming (NLP).  

 Arnaud Lallouet, M. lopez, L. Martin, C. Vrain [2] 

have made an algorithm which is designed combining the 

major qualities of traditional top-down search and bottom-up 

search techniques. The contributions of this paper are setting 

the framework of learning CSP specifications, then the choice 

of the rule language, and it’s rewriting into CSP and the 

learning algorithm which allows guiding search when 

traditional method fails. In this the activity of finding the 

constraints that are to be stated is considered as a crucial part 

and a lot of work has been spent on the understanding and 

automation of modeling tasks for the novice users who have a 

limited knowledge regarding how to choose the variables. A 

framework is designed to bridge the gap between constraint 

programming modeling language and ILP (Inductive Logic 

Programming). The very first step of the framework consists 

in learning a CPS (Constraint Problem Specification) 

describing the target problem. ILP framework and its 

applications to learning problems are presented. 

 Barry O’Sullivan [3] has presented technical 

challenges in the area of constraint model acquisition, 

formulation and reformulation algorithms for global 

constraints and automated solving and it also presents the 

metrics by which success and progress can be measured. The 

motivation here is to reduce the burden on constraint 

programmers and to increase the scope of problems that can 

be handled alone by domain experts. Modeling defines the 

problem, in terms of variables that can take different values. 

Progress is evaluated empirically in constraint programming. 

A model for practical problem as a constraint satisfaction 

problem (CSP) is preferred and available constraint 

programming tools are used to solve it. Generic methods from 

the machine learning field can be applied to learn an 

appropriate formulation of the target problem as a CSP. The 

filtering algorithm is difficult to design and this is considered 

the major challenge that one faces when designing a new 

global constraint. 

 Christian Bessiere, R. Coletta, T. petit [4] have 

presented a framework for learning implied global constraints 

which is presented in a constraint network assumed to be 

provided by a non-expert user. As global constraints are key 

feature of constraint programming learning global constraints 

is important. A motivation example is considered and it is 

shown that if it is required that the model is to be solved with 

more tasks then the need to improve model is needed. 

Constraint network is defined by a set of variables and a set of 

domains of values for the variables. The tighter the learned 

constraint is, the more promising its filtering power is. A 

general process to learn the parameters of implied global 

constraints is given. The focus is made on global constraints 

and set of parameters. Efficient algorithm exists to propagate 

when the cardinalities of the value are parameters that take 

values in a range. A model was generated to minimize the 

sum of preference variables. This was considered the first 

approach that derives implied global constraints according to 

the actual domains. Experiments show that a very small effort 
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spent learning implied constraints with this technique can 

improve the solving time. 

 Steven J. Miller [5] has described linear 

programming as an important generalization of linear algebra. 

Various real world situations are modeled successfully using 

programming. The problems that can be solved by linear 

programming are discussed. Binary integer linear 

programming is also discussed which is an example of a more 

general problem is called Integer Linear Programming. The 

difficulty here due to the fact that a problem may have 

optimal real solutions and optimal integer solutions but both 

the solutions need not be closed to each other. The simplex 

method is used for solving the linear problems to find the 

optimal solutions. It has two phases, one is to find a basic 

feasible solution and other one is to find a basic optimal 

solution, given a basic feasible solution. If no optimal solution 

exists this phase produces a sequence of solutions that are 

feasible with their cost tending to minus infinity. Algorithms 

are defined for them. The time for finding the optimal solution 

is also considered as a major factor here. 

 Nicholas Nethercte, P J. Stukcey, R. Becket, S. 

Brand, G J. Duck and Guido Tack [6] have presented 

MiniZinc as a simple and expressive CP modeling language. 

It is known that there is no standard modeling language for 

constraint programming problems so most solvers have their 

own language for modeling. The experimentation and 

comparison between different solvers is encouraged with a 

standard language for modeling CP. This MiniZinc problem 

has two parts- model and data which may be in separate files. 

The assignments to parameters declared in the model are 

contained in the data file. The model file is not attached to any 

particular data file. Boolean, integers, and floats are the three 

scalar types provided and sets and arrays are two compound 

types provided. The MiniZinc is translated to FlatZinc in two 

parts as flattening and the rest. Flattening is done in a number 

of steps to reduce the model and data as much as possible. 

The order of the steps is not fixed. After flattening, post 

flattening steps are applied. Different MiniZinc to FlatZinc 

converters are used. The main goal here was to define a 

language which is not too big but expressive. 

 Alan M. Frisch, M. Grum, C. Jefferson, B.M. 

Hernandez, Ian Miguel [7] have discussed a new formal 

language ESSENCE for specifying combinatorial problems 

which provides a high level of abstraction. This language was 

a result of attempt to design a formal language that enables 

abstract problem. For this language no expertise in CP should 

be needed, it is accessible to anyone with knowledge of 

discrete mathematics as it is based on the notation and 

concepts of discrete mathematics. It provides high level of 

abstraction stating that the language should not force a 

specification to provide unnecessary information. This 

language provides an exceptionally rich set of constructs for 

expressing quantification. It also supports complex, nested 

types and also its result can be specified without modeling 

them. 

Adrian Petcu [8] has discussed in brief about efficient 

optimization techniques that are essential to coordinate to 

business companies and distributed solution processes are 

desirable as they allow the participating actors to keep control 

on their data and also offer privacy.  

Many key issues are presented that are present in this domain 

like the actors involved in the distributed decision processes 

do not have the global knowledge and overview. The goal of 

constraint optimization is to find the best assignment of values 

to the variables so that utilities are maximized and cost is 

minimized. A new technique based on dynamic programming 

was developed for distributed optimization which was a utility 

propagation mechanism and works on constraint problems.  

It requires only a linear number of messages for finding the 

optimal solution. These algorithms for distributed constraint 

optimization have not been applied to large scale due to 

complexity reason. 

 Brahim Hnich, S.D. Prestwich, E. Selensky, B.M. 

Smith[9] have developed models for constraint programming 

for finding an optimal covering array. It is shown that the 

compound variables that represent tuples of variables in the 

original model, allow the constraints of the problem to be 

represented more easily, propagating better. The optimality of 

existing bounds is proved for finding the optimal solutions for 

moderate size array. In covering test problems instances are 

used with coverage strengths. Number of parameters here is 

varied. It has shown that for moderate problem size one can 

find provably optima solution using CP approach. One of the 

advantages of CP is easy handling of side constraints i.e. 

simply by adding them to the model. 

 C. Bessiere, J. Quinqueton, G. Raymond [10] have 

proposed an automated model to generate different viewpoints 

for the problem we are to model. The main idea here is to 

build a viewpoint enough to describe many different solutions 

of problems also describes a solution of the target problem. 

Historical data is with which it is started and historical data is 

used as solutions to problems close to the target problems. 

From this data candidate variables are extracted. So this can 

be seen that these viewpoints are capable of describing the 

historical solutions and also the solutions of our target 

problem. The goal here is to build viewpoints which match 

the given historical data. For this candidate variables are 

determined according to the history. A set of potential 

viewpoints are obtained out of which more relevant is selected 

to build constraint models efficiently. 

 P.E. Hladik. A.M. Deplanche, N. Jussien, H. 

Cambazard [11] has presented an approach to solve hard real 

time allocation problem i.e. to assign periodic tasks to 

processors in context of fixed priority preemptive scheduling. 

Bendors decomposition is also used as a way of learning when 

the allocation yields a valid solution. The problem is 

distributed in systems that belongs to a class. The authors 



International Journal of Computer Applications Technology and Research 

Volume 3– Issue 7, 395 - 399, 2014, ISSN:  2319–8656 

www.ijcat.com  398 

presents a decomposition based method which separates the 

allocation problem from the scheduling one. The three classes 

that the constraint allocation problem must respect are timing, 

resource, and allocation constraints. For solving a master 

problem using constraint programming, the problem needs to 

be translated into CSP. The subproblem is considered as to 

check whether a valid solution produced by master problem is 

schedulable or not. If no data is sent then deadlines can 

correspond to non-communicating tasks. The overall problem 

is split into a master problem for allocation and resource 

constraints and a subproblem for timing constraints. The 

learning technique is used in an effort to combine the various 

issues into a solution that satisfies all constraints. 

 Julia L.Higle [12] has presented an introduction to 

stochastic programming models. Stochastic linear 

programming is resulted when some of the data elements in a 

linear program are appropriately described using some 

random variables. An example is illustrated giving the reason 

why SP model is preferred and some essential features of a 

stochastic program are identified. Stochastic programs are 

difficult to solve and formulate. When the size of the problem 

increases we can easily see that the solution difficulties 

increase as well. Sensitivity analysis is done which provides a 

sense of security and is important. It is used to study the 

robustness of the solution to a linear programming model. It is 

done for the accuracy of the data to check whether the 

solution changes or not on changing the data. If the solution 

remains same it is believed that the solution is appropriate and 

vice versa. All the uncertainties should be included in the 

model. 

Philippe Refalo [13] has presented a new general purpose 

strategy for constraint programming which is inspired from 

integer programming technique. The importance of a variable 

for the reduction of the search space is measured by the 

impact. Designing the search strategy is difficult in integer 

programming whereas the concept of domain reduction is 

easier to understand and the use design of a search strategy is 

easier in constraint programming. In the impact based search 

strategy, by storing the observed importance of variables 

impacts permit us to benefit from the search effort made up to 

a certain node. With some standard strategies some instances 

remain unsolved which are solved by this technique. Certain 

principles are defined here for reducing the search effort. 

When a value is assigned to a variable in constraint 

programming, constraint propagation reduces the domains of 

other variables defined. 

Y.C Law, J.H.M. Lee [14] has introduced model induction 

which is a systematic transformation of constraints in an 

existing model to constraints in another viewpoint. Three 

ways of combining redundant models are proposed using 

model induction, another way is model channeling, and the 

last is model intersection. It is also investigated how the 

problem formulation and reformulation affect execution 

efficiency of constraint solving algorithms. For the 

formulation process the variables and the domain of the 

variables is to be determined. The induced model is result of 

the model induction. The three ways of combining the 

redundant models are proposed so as to utilize the redundant 

information in enhancing constraint propagation. Alternate 

ways of generating models in a different viewpoint from 

existing model are made. 

 H.Y. Benson, D.F. Shanno, R.J. Vanderbei [15] 

have analyzed the performance of several optimization codes 

on large-scale nonlinear optimization problems. The size of 

problem is defined to the number of variables and the number 

off constraints. Some of the codes are tested and presented 

available for solving large scale NLP’s. To identify the 

features of these codes that are efficient is the goal. 

Infeasibilities and unboundedness are detected in the problem 

as early as possible. Performance of the algorithms running on 

the same set of problems is compared to simple compute an 

estimate of the probability that an algorithm performs. A 

number of conclusions concerning specific algorithm details 

exits if various algorithms are compared. Numerical result for 

solving large scale nonlinear optimization problems is 

presented. The performance of each solver is explained easily 

and predicted based on the characteristics. 

4. CONCLUSION 

There are many challenges faced by mathematical engineering 

approaches to find the optimal solution. The common 

weakness to all of the approaches is the assumption that the 

input data are perfectly accurate. Many benefits of using this 

approach are discussed as visualization of results using 

activities and resources. From an existing model another 

model of a different viewpoint can be generated in a 

systematic way. Experiments show that we can improve the 

solving time by very small effort is spent in learning. But at 

the same time it is too expensive. There are many challenges 

as: these rely heavily on supervision of an expert and also 

they are not capable of acquiring a description of the problem 

class. 
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