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Abstract: Lubricants have played important roles in friction and wear reduction and increasing efficiency of 

mechanical systems. To optimize tribological performance, chemical reactions between a lubricant and a substrate 

must be designed strategically. Tribochemical reactions are chemical reactions enabled or accelerated by 

mechanical stimuli. Tribochemically activated lubricant additives play important roles in these reactions. In this 

review, current understanding in mechanisms of chemical reactions under shear has been discussed. Additives 

such as oil-soluble organics, ionic liquids (ILs), and nanoparticles (NPs) were analyzed in relation to the 

tribochemical reaction routes with elements in metallic substrates. The results indicated that phosphorus, 

sulfur, fluorine, and nitrogen are key elements for tribochemical reactions. The resulting tribofilms from zinc 

dithiophosphates (ZDDP) and molybdenum dithiocarbamate (MoDTC) have been widely reported, yet that  

from ILs and NPs need to investigate further. This review serves as a reference for researchers to design and 

optimize new lubricants. 
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1  Introduction 

Additives are essential components in high- 

performance lubricants [1–3]. The best way to prevent 

wear and reduce friction is to separate the contacting 

surfaces in moving parts. Fluidic forces can carry 

out this separation at sufficiently high speeds and 

low loads, or with a tribochemically formed film [4]. 

The tribochemically active additives can separate the 

surfaces in the boundary lubrication regime by forming 

solid or viscous thin films [4, 5]. These tribochemical 

reactions can significantly improve the overall 

performance of a lubricant. In some conditions, it can 

even make macroscale superlubricity possible [6, 7]. 

Products induced by tribochemical reactions due to 

additives develop a thin film called the tribofilm [4, 8]. 

This tribofilm was first found in zinc dithiophosphates 

(ZDDP) [8]. Initially, ZDDP was used as an anti- 

corrosion additive in lubricating oil [9]. It was later 

found that lubricant with ZDDP added produced a 

thin film on the lubricated surfaces. This thin film 

increased the wear resistance of the lubricated surfaces 

despite its mediocre friction behavior [10]. Later, 

other additives that could also tribochemically form 

thin films with different tribological behaviors were 

found [3, 11–13]. In Fig. 1, the development of a few 

widely reported additives was shown chronically. 

Understanding tribochemical reactions has evolved 

since the 1980s (Fig. 1). ZDDP was the first lubricant 

additive whose tribochemical process was studied. 

The importance of tribological conditions was also 

discovered in the early reports. From the late 1980s to 

1990s, new surface characterization methods greatly 

improved the understanding of tribochemical reaction  
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Fig. 1 Development of tribochemically active lubricant additives, 
their reaction mechanisms, and underlying thermal dynamic 
principles. 

mechanisms. This also improved the understanding 

of other tribochemically active lubricant additives 

such as molybdenum dithiocarbamate (MoDTC). In 

the 2000s, the popularization of molecular dynamics 

methods further improved the elucidation of 

tribochemical reaction mechanisms. The development 

of two novel lubricant additives, ionic liquids (ILs) 

and nanoparticles (NPs), also occurred in this decade, 

although their reaction mechanisms were not studied 

until the 2010s. During this time, the kinetics of 

tribochemical reactions also started development. 

However, that research mostly focused on the reactions 

of ZDDP. Tribochemical reactions of lubricant additives 

were also studied in a case-by-case manner. To date, 

no universal principles or reaction routes have been 

proposed for all the tribochemically active lubricant 

additives. By reviewing the tribochemical process 

of these lubricant additives, their common features  

can be summarized. The result of this review will 

help the development of more effective lubricant 

additives. 

In this paper, the thermodynamics and kinetics of 

tribochemistry are focused. Three different kinds of 

tribochemically active lubricant additives are discussed: 

ZDDP and similar metal organic lubricant additives, 

tribochemically active room-temperature ILs, and the 

most recent development in this field, NPs and their 

tribochemical reactions. 

2 Some basic concepts of tribochemistry 

2.1 Thermodynamic aspects of tribochemistry 

Thermodynamic principles have been used to analyze 

the tribochemical reactions of lubricant additives since 

they are under a controlled contact pressure. When 

the Gibbs free energy change of a reaction is negative, 

the reaction is considered spontaneous. The analyzation 

of the Gibbs free energy (Δ )G  often breaks it down 

to two parts: the change of entropy (Δ )S , and the 

change of enthalpy (ΔH ) [14]: 

Δ Δ ΔG H T S                (1) 

where T is the temperature. Here, the change of 

enthalpy can be interpreted as the energy change 

due to the alteration of chemical bonds or material 

structures. The change of entropy represents the 

energy penalty for making the system more ordered 

under a certain thermal agitation (a more detailed 

and physically strict interpretation can be found in 

many thermal dynamic textbooks). Equation (1) states 

that at a fixed pressure, a reaction is possible when 

the thermal energy released by changing the chemical 

structures and atomic orders exceed the energy of 

thermal agitation. The Gibbs free energy has been 

used to explain the formation of ZDDP-involved 

tribofilms [15]. 

The chemical reactions during tribological contact 

cannot be fully described by thermodynamics theory 

in equilibrium or reversible state. These tribochemical 

reactions of lubricant additives have three unique 

conditions that demand modification of the Gibbs 

free energy: the surface energy from the interface of 

lubricant and lubricated materials, the thermal and 

mechanical agitation from the friction force, and the 

change of free energy induced by shear strain. Here, 

the influences of these three factors are discussed. 

2.1.1 Surface energy 

Surface energy must be considered in tribochemical 

reactions because these reactions are confined to a 

small space. The tribological lubricant film has a 

thickness of a few microns, and the boundary films 

are on the submicron scale. The contact between 

asperities allows the reactions to happen in a space 

only a few atomic layers thick. In all the three 

conditions, the surface-to-volume ratio is too high to 

be not considered. To account for the surface energy, 

Eq. (1) needs to be modified to Eq. (2): 

Δ Δ ΔG H T S A              (2) 

where A is the contact area, and   is the surface 

tension between lubricant and contacting surfaces. 
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Surface energy is the cause of the adsorption of 

lubricant additives. In the tribochemical reactions, 

the surface (interface between oil and metal solid) 

area is a constant. Hence, we only need to consider 

the change of .  The adsorption of lubricant additives 

occurs because it lowers the surface tension on   

the lubricated surfaces. All tribochemical reactions 

reviewed in this paper started with the adsorption 

process. For example, ZDDP can be chemically 

adsorbed on metal and metal oxide surfaces through 

the ion exchange process. The room-temperature ILs 

can be adsorbed on the metal surface via electrostatic 

forces. Water molecules adsorbed on a silica surface 

can even lead to ultra-low friction through tribochemical 

reactions [16]. 

Another less frequently discussed effect of surface 

energy on tribochemical reactions is its effect on 

lubricant and lubricant additives. When confined 

between two nascent metal surfaces, ILs can transform 

from fluid to viscous solid. The solid phase of IL has 

lower metal–IL interface energy compared to the liquid 

phase, promoting this transformation. 

2.1.2 Frictional heating 

The friction force is dissipative, meaning that the 

energy created by distancef   ( f is the friction force) 

is dissipated from the contact to the surrounding 

materials. This can create a large thermal gradient 

[17–19]. Under dry sliding, this thermal energy can 

even change the microstructure of the contacting metal 

[18]. In the case of boundary lubrication or single 

asperity contact, this thermal gradient is considerable 

[17]. This friction energy can increase the local 

temperature at the contact region, which can change 

the fluid film thickness in the elastohydrodynamic 

(EHD) lubrication regime [20]. For tribochemically 

active lubricant additives, the localized temperature 

can increase its reaction rate. The very localized high 

temperature also creates a large thermal gradient. This 

can cause the diffusion of molecules along this thermal 

gradient or polarization of some molecules [21]. 

2.1.3 Energy due to fluidic shear 

To analyze the influence of shear stress, extended 

irreversible thermodynamics can be used. The major 

“extension” that these thermodynamics make is the 

re-introduction of the concept of “space”. In equilibrium 

thermodynamics, the systems that we analyzed were 

all ambiguous entities without a clear shape or position. 

The extended irreversible thermodynamics studies  

a “space” that has positions. Assigning external 

quantities such as entropy, free energy, volume, and 

chemical compositions to a “position” creates two 

new things. One is the “flux” such as energy flux  

and diffusion flux of matter. The entropy, being a 

non-conservative quantity, has an explicit “rate of 

production” and entropy flux (heat flux). Similar  

to the extensive quantities turned into fluxes, the 

introduction of positions makes intensive quantities 

turn into “forces”. The second equation of 

thermodynamics was reinterpreted here as “the fluxes 

and the forces must make the entropy production be 

positive”. The flow of liquid under shear stress inside 

the tribological contact creates an open system. This 

open system can be analyzed in the same way as the 

thermal gradient by creating a “flux” term. 

The shear stress can increase the free energy. A 

rough analysis can lead to Eq. (3) of the Gibbs free 

energy: 

2

flow visco
Δ Δ Δ ΔG H T S V J            (3) 

where V is the volume, 
visco
  is the shear stress in  

fluid, and 
flow

J  is the steady flow compliance defined  

as 
flow 2

G
J

G





 when the frequency is 0 Hz [22]. G  and  

G are the storage and loss components of the shear 

modulus G, respectively. Equation (3) tells us the 

creation of a matter with a higher storage modulus is 

favored under a high shear stress. 

2.2 Kinetics of tribochemical reactions 

Tribochemical reactions can be triggered by frictional 

heat and/or triboemission. When there is sliding 

between two contacting surfaces, the frictional 

force can generate a significant concentrated force, 

which creates a phenomenon called frictional heat. 

Triboemission is the emission of electrons, charged 

particles, and photons caused by abrasion [23]. These 

emitted particles can promote electrochemical reactions 
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and act as catalysts [24–26]. The effect of triboemission, 

typically the triboemission of charged particles, is 

essential to the tribochemical reactions in the boundary 

lubrication regime [24]. 

Without triboemission, the shear force can change 

the kinetics of tribochemistry as well. Experiments 

conducted with the atomic force microscopy (AFM) 

show that the simple pulling force is sufficient to 

trigger the disulfide bond reduction [27]. The force 

applied to the molecules deforms the molecular 

structures, thus changing the reaction characteristics. 

This can be modeled as the change of activation energy. 

In the tribochemical reactions, this mechanochemical 

process occurs on the molecules adsorbed on the 

contacting surfaces that are distorted by the shear 

stress between two contacting surfaces [28]. 

Strain on the molecule can directly change the 

kinetics of reactions. Thiol/disulfide exchange reaction’s 

reaction rate can be controlled by stretching the 

disulfide bond with the AFM [27]. It was found that 

the reaction rate of this reaction increases exponentially 

with the applied force. Activation energy was shown 

experimentally to reduce by 8.2 kJ/mol under 400 pN 

force on the S–S bond [27]. In addition, the effect of 

force and temperature also indicated that the force 

applied on the S–S bond changes its activation 

energy [29]. The reaction rate r can be expressed as 

the Arrhenius equation [29]: 

a r

B

Δ

e

E F x

k Tr C



                (4) 

where C is the pre-factor, F is the force applied on the 

bond, 
a

E  is the activation energy, 
B

k  is the Boltzmann’s 

constant, and 
r

Δx  is a factor with a dimension of 

length. A direct result of this relation is that pulling 

of the molecule increases the reaction rate in a 

similar manner to increasing temperature, as shown 

in Fig. 2 [29]. 

Mechanochemical effects on reaction rates not 

only applied to the molecules directly pulled by AFM 

but also on the surface adsorbed molecules under 

shear [28]. Similar to the direct pulling of the 

molecules, the reaction rate increased with the 

increase of applied shear force. In the studies of 

methyl thiolate decomposition activated by shear 

force [28], molecular dynamics simulation shows that  

 

Fig. 2 Reaction rate of S–S bond reduction under the influence 
of force and thermal energy. Redraw using data in Ref. [29], 
© American Chemical Society 2011. 

the adsorbed molecules experienced a normal force 

under constant shear. This normal force was 

distributed on the surface molecules, changing their 

chemical reactivities. 

The microscopic origin of this activation energy 

function shift under shear is the change of bond 

length distribution. Figure 3 displays the calculated 

bond length distribution of a surface-adsorbed allyl 

alcohol molecule [30]. This shows that the bond 

length distribution “flatten” during sliding, decreasing 

the energy required for bond breakage. The change 

of molecular configuration under shear force can 

also transfer the atoms on the contacting surfaces and 

make it react with the adsorbed molecules [31]. 

The kinetics of tribofilm growth can also be 

modeled as Eq. (5) [32–34]: 

 

Fig. 3 Bond length distributions of a C1–OA bond in the adsorbed 
allyl alcohol under room temperature, 2 GPa shear stress at room 
temperature, and high temperature. Replotted using data from 
Ref. [30], © American Chemical Society 2016. 
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a act

B

Δ

0

g

e

E V

k Th

t


  

   
             (5) 

where h is the thickness of the tribofilm, 
0

  is a 

pre-factor,   is the shear stress defined by p   

(   is the coefficient of friction (COF), and p is the 

contact pressure), and 
a

E  is the activation energy. 

This shear stress is a function of load, entrapment 

speed, and oil properties, which indicates that the 

test and operate conditions affect the tribochemical 

reactions. This will be further discussed in Section 3 

on ZDDP and other additives. In order to make the 

grouping 
act

ΔV  have the same dimension as energy, 

act
ΔV  has the same unit as a volume. It was called 

“activation volume” in some reports relating the 

dimensional factor being activated. 

In Ref. [35], Eq. (5) takes another form: 

act

B

Δ Δ

0

g

e

U E

k Th

t


  

   
             (6) 

In Ref. [35], a term called mechanical energy input 

E  is defined. Since this “mechanical energy” term  

is linearly proportional to the shear stress defined    

in Eq. (5), these two definitions are mathematically 

identical. 

This simplistic model cannot explain some phenomena 

in tribofilm growth. The Arrhenius equation will 

always produce a positive growth rate, which is not 

true. For example, the growth of ZDDP tribofilm  

can be described with three phases: growth, slight 

decrease, and then stabilized at a certain thickness. 

Even in the stable growth phase, the growth rate of 

tribofilm is not constant [36]. For the mechanisms 

which limit the thickness of tribofilm such as wear, 

consumption of iron must be considered. 

The deviation from the simple Arrhenius behavior 

can be explained by three factors. First, shear stress 

or mechanical energy input is not a constant factor 

during the growth of tribofilm due to the evolution 

of contact pressure [32, 37]. Second, the growth of 

tribofilm may require multiple steps; each has a 

different activation energy and activation volume 

[15]. Third, tribological forces also cause the wear  

of the generated tribofilm. The balance of these  

three mechanisms have made the modeling of the 

tribochemical process difficult [32]. 

3 Tribochemical reactions involved with 

lubricant additives 

3.1 Reactions with ZDDP 

The characteristics of tribochemically formed thin films 

are essential to anti-wear and friction modifying 

lubricant additives. These additives include organo- 

sulfurs, organo-chlorine, and organo-phosphorus [38]. 

Among these, the most adapted ones are three 

chemical groups, ZDDP, MoDTC, and molybdenum 

dithiophosphate (MoDTP). 

The phosphorus and sulfur-based anti-wear and 

friction modifying chemicals are widely used as 

lubricant additives. One of the most important anti-wear 

additives, ZDDP, was introduced in the 1930s, first as 

corrosion and oxidation inhibitors in lubricant oil   

[2, 39–42]. At that time, the idea of using phosphorus 

and sulfur-based corrosion inhibitors was quite 

popular; many similar chemicals were developed 

[43, 44]. ZDDP’s anti-wear property was unnoticed for 

20 years before it became the most popular anti-wear 

additive [2, 45]. 

The chemical structure of ZDDP is important for 

the formation of its tribofilm. In Fig. 4(a), the most 

widely used ZDDP structure is shown [46]. Here, the 

Zn represents zinc, and the R represents the alkyl 

chain [46, 47]. The ZDDP in lubricant oil can form a 

chelate with a structure shown in Fig. 4(b) [46, 47].  

In lubricant oil, the two forms of ZDDP are in 

equilibrium. The decomposition of this dithiophosphate 

structure enabled its formation of the tribofilm. Other 

metal ions can also form dithiophosphate, but none 

of them have better anti-wear properties than ZDDP 

[48]. The alkyl chain composition and configuration 

of ZDDP have little to no influence on its anti-wear  

 

Fig. 4 Possible structures of ZDDP in lubricant oil. Reproduced 
with permission from Ref. [46], © Elsevier Science S.A. 1997. 
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performance [48, 49], even though it can influence its 

other functions like dispersant or detergent [49]. 

ZDDP can form tribofilms quite easily. It can form 

tribofilms when fully decomposed [50], under room 

temperature [51], from pure EHD contact [51], and 

from single asperity contact [34, 37], even when Zn is 

replaced with other metal ions [49]. The final product 

can also vary based on the conditions and R groups 

in ZDDP. It can be long-chain polyphosphate [52] or 

short-chain polyphosphate [53], containing Zn or Fe, 

or only containing Zn [50, 54, 55]. These different 

applicable conditions render the reaction mechanism 

rather complex and can happen concurrently. 

Surface chemistry also plays an essential role    

in tribochemical reactions. Tribochemical reactions  

of lubricant additives cannot take place without 

adsorption. ZDDP decomposes on the surface at a 

lower temperature compared to its decomposition in 

bulk fluid [50] even without rubbing. 

Multiple tribochemical reaction routes have been 

proposed. Table 1 lists four proposed mechanisms  

of ZDDP tribochemical decomposition and film 

formations. There are three major differences between 

these chemical reaction routes. First, the reactant 

adsorbed on the surface of the metal. Early studies all 

assumed ZDDP directly adsorbed on the surface and 

decomposed. However, X-ray absorption near-edge 

structure (XANS) experiments found out that the 

linkage isomer of ZDDP (LI-ZDDP, which has a 

formula of Zn[O2P(SR)2]2) is formed [50] or adsorbed 

[56, 57] on the metal surface before the tribochemical 

reactions. ZDDP tribofilm contains a certain amount 

of iron, but only some tribochemical reaction routes 

involve the metallic oxide [54, 58]. In addition to this, 

the final product is different. Some proposed the 

formation of long-chain polyphosphate, and others 

proposed the formation of short-chain polyphosphate. 

One study points out that ZDDP decomposed in 

solution always forms a colloidal short-chain 

polyphosphate, and the short-chain polyphosphate 

was the product of the colloidal adsorption [50]. 

To analyze these reaction routes, the reacting steps 

are classified based on the change in molecular 

structures. Based on this, some common features 

appeared in these proposed chemical routes. In Table 1, 

all the chemical routes are classified into four steps.  

 
Table 1 Reported chemical reaction routes of ZDDP under 
tribological forces. 

Year
# of 

steps

Adsorbed 

reactant

Metallic

oxide
Intermediate 

Final  

product 

Data 

source
Ref.

1995 4 ZDDP No 
(RO)2P(S)OH, 

(RO)2P(S)OR 

ZnS, 

(HO)3P(O)

[56, 

59–61]
[58]

1997 3 ZDDP Yes

Zinc 

metaphosphate, 

Zn(PO3)2 

FeZnP2O7, 

Fe2Zn(PO4)2

[4, 58,

62] 
[63]

1998 5 

ZDDP, 

LI-ZDDP, 

colloidal 

polypho-

sphates

No 

LI-ZDDP, 

Zn(PO3)2 

(polyphosphate) 

Zn7(P5O16)2, 

Zn2PO7, 

Zn3(PO4)2

[56, 57,

63, 64]
[50]

1999 2 ZDDP Yes — 

Polyphosphate

modified with 

zinc and 

iron(II) 

[50, 65]
[66, 

67]

 
 
First, the adsorption of ZDDP. The sulfur atom on the 

P–S bond can be adsorbed on the metal surface via 

electron exchange or ligand exchange [68]. Second, 

the migration of an alkyl chain from an oxygen atom 

to a sulfur atom (from –S–O–R to S–R). Third, the  

S–R detaches from the adsorbed molecule. Last, the 

polymerization of the remaining molecules occurs by 

the detachment of sulfur-bonded phosphorus chemicals. 

In other words, these four chemical processes are 

essential to forming polyphosphate from ZDDP. A 

detailed analysis of the free energy of various 

intermediates in ZDDP decomposition can be found 

in Ref. [15]. 

3.1.1 Decomposition of ZDDP 

ZDDP is not a thermally stable chemical and can easily 

decompose at elevated temperatures [50]. The ZDDP 

tribochemical or thermal decomposition is often called 

a “self-reacting” process. ZDDP can decompose in 

non-polar solutions at 100 °C, and when rubbed, it can 

decompose at room temperature [51]. The quantum 

chemical calculation shows that the Gibbs free energy 

of zinc polyphosphate is 10.7 kcal/mol lower than that 

of the ZDDP at 500 K [15]. Thus, it can decompose 

freely. 

One chemical principle called “hard” and “soft” 

acid and base has been used to explain why ZDDP 

tends to decompose and form phosphate compounds 

[56, 69]. The concept was supported by experiments 
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and the first principles calculations [70]. In this theory, 

the reactive nucleophiles (base) and electrophiles 

(acid) can be split into “hard” and “soft” categories 

according to their charge and polarizability. In the 

context of ZDDP tribochemical decomposition, there 

are four chemical groups involved, which are carbon, 

phosphorus, thiophosphoryl (P=S), and phosphoryl 

(P=O). The categorization is listed in Table 2. The 

“hard” and “soft” acid and base theory states that 

“hard acid” tends to react with “hard base”, and 

“soft acid” tends to react with “soft base”. Thus, the 

alkyl chain (tetravalent carbon) tends to attach to the 

sulfur in thiophosphoryl instead of oxygen. In the 

same principle, the phosphorus joins to the oxygen 

in the phosphoryl group, forming the final product 

polyphosphate. This “hard” and “soft” base and  

acid theory explained why the final product was 

predominately polyphosphate. 

3.1.2 Composition of ZDDP tribofilm 

Much of the early debate over the ZDDP tribochemical 

mechanism has resulted from the lack of knowledge 

of the tribofilm’s microstructure and composition. 

Early research only considered the final product to be 

a “phosphorus glass”. The studies conducted from 

the late 1990s to 2000s show a tribofilm with a 

complex microstructure, which had a high degree of 

heterogeneity. It turns out that the reactions proposed 

by different studies (Table 1) are not mutually exclusive. 

They in fact happened more or less concurrently, 

leading to the final composition. 

The fully-formed ZDDP tribofilm has four regions. 

At the very top of the tribofilm are the adsorbed  

alkyl chains [62]. Underneath this adsorption layer  

is a thin layer (about 10 nm) of long-chain zinc 

poly(thio)phosphate. The bulk of the tribofilm, what 

the older literatures refers as “phosphorus glass”, is 

short-chain polyphosphate containing metal oxide/ 

sulfide (about 100 nm). The tribofilm displays alteration 

in the topography of contact area by increasing   

Table 2 Hard–soft acid–base categorization of moieties in ZDDP. 

 Acid Base 

Hard Tetravalent phosphorus Phosphoryl (P=O) 

Soft Tetravalent carbon Thiophosphoryl (P=S) 

its roughness [71]. In Fig. 5, the cross-section of a  

ZDDP tribofilm is shown [2]. It should be noted that 

the thermofilm does not contain this oxide layer [50]. 

This, combined with the fact that there is more long- 

chain polyphosphate in tribofilm [50], may explain 

some mechanical behavior differences between the 

two. Tribofilm has better wear resistance compared 

to the thermofilm [65]. The nanoindentation hardness 

of ZDDP reaction films formed tribochemically was 

two times stronger than that of a thermally formed 

one [72]. Moreover, the tribofilm formed at lower 

temperatures contained longer polyphosphate chains, 

resulting in a stronger film [73]. 

Although the decomposition of ZDDP does not 

require the assistance of ferrous wear debris [74], the 

substrate influences its decomposition process. The 

substrate can affect the absorption process of ZDDP. 

The substrate with better ZDDP absorption, such as 

steel, has a thicker tribofilm formed compared to SiC 

or DLC in the same tribological conditions [75]. 

3.1.3 Kinetics of ZDDP tribofilm growth 

Among different lubricant additives, the tribochemical 

kinetics of ZDDP decomposition is the only well- 

studied one. Aside from its importance in lubricant 

engineering, several factors render the feasibility of the 

kinetics study. ZDDP tribochemical decomposition 

forms a stable tribofilm with a relatively uniformed 

thickness. The thickness of ZDDP tribofilms is in the 

range of 100 nm. It can be measured with the optical 

or AFM methods with ease. 

The growth rate of ZDDP tribofilm is a function of 

the concentration of ZDDP, temperature, ZDDP alkyl 

chain, and the shear stress in the contacted region 

[32–34, 36, 51, 76–78]. The concentration of ZDDP can 

change both the ZDDP tribochemical reaction rate 

and the equilibrium tribofilm thickness [76]. It was 

found that at low concentrations (<0.2 wt%), the 

growth rate is proportional to the square root of  

 

Fig. 5 Cross-section image of ZDDP tribofilms. Reproduced with 
permission from Ref. [2], © Springer Science+Business Media, Inc. 
2004. 
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ZDDP concentration [76]. Like many other chemical 

reactions, the ZDDP tribochemical reaction follows 

the Arrhenius equation, e.g., the logarithm of growth 

rate is inversely proportional to the temperature   

[34, 76]. The ZDDP alkyl chain type can change the 

reaction rate. Secondary ZDDP can form a thicker 

film more rapidly compared to primary ZDDP [76]. 

The quantum chemical study shows that the type of 

alkyl chain determines the reaction routes [15]. 

Tribochemical kinetics of ZDDP is also controlled by 

the shear stress on the contacting surface. This stress 

is defined by multiplying the contact stress with the 

COF [33, 79]. Several molecular dynamics studies have 

revealed that the shear stress on rubbing surfaces 

stretches sulfur and phosphorous covalent bonds  

[80, 81]. This stretching lowers the thermal energy 

required for bond cleavage, thus accelerating the 

ZDDP tribochemical reaction speed. 

The wear or removal speed of ZDDP tribofilm is 

generally considered a function of both ZDDP tribofilm 

thickness and contact pressure [32, 37]. Other lubricant 

additives such as dispersant and detergent and 

humidity in lubricant increase the wear rate of ZDDP 

tribofilm [51, 82]. This wear or removal process is 

also present in the EHD lubrication regime where no 

real contact occurs, indicating that the wear of the 

ZDDP tribofilm may be a tribochemical decomposition 

process. Different ZDDP tribochemical reaction models 

are listed in Table 3. 

The ZDDP tribochemical kinetics studies are also 

valuable to the additive tribochemical reactions in 

general. First, these studies indicate which parameters 

are important in a study of tribochemical reactions. 

Some early research [34, 76] for ZDDP omitted the 

friction force, which was later proven to be critical to 

the kinetics of tribochemical reactions. The critical 

parameters for an additive tribochemical kinetics study 

are the concentration of the additive, shear stress   

in the contacted area, and temperature. Second, the 

thickness of a tribofilm is determined by a chemically  

Table 3 Tribochemical kinetics models for ZDDP growth. 

Model Parameter Equationing Lubrication 
regime 

Ref. 
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controlled tribofilm growth process and a tribologically 

controlled wear process. Third, the tribochemical 

reaction may be triggered by both asperity contact and 

high fluid shear stress. The tribochemical reaction of 

a certain lubricant additive should be investigated 

on different lubrication regimes. 

3.2 Reactions with MoDTC 

Similarly structured Molybdenum sulfur-based 

compounds were introduced in the 1970s such as 

MoDTC and MoDTP [87]. These compounds can 

form tribofilms containing MoS2 solid lubricant, making 

it also a friction modifier [11, 87–89]. Other metal ion 

sulfides/phosphates with similar structures can also 

be used as an anti-wear additive with worse anti-wear 

effectiveness [49]. Interestingly, such chemicals can 

also be synthesized in-situ through the tribochemical 

process [90]. Unlike ZDDP, the tribofilm formed by 

MoDTC and MoDTP contains solid lubricant MoS2. 

However, the low shear strength of MoS2 makes the 

MoDTC and MoDTP tribofilm prone to wearing out. 

Without constant resupply of MoDTC, the low friction 

cannot be maintained. Compared to ZDDP, MoDTC 

also has a “fast” tribochemical reaction. The friction 

modifying effect was almost immediate when MoDTC 

was added to the lubricating oil [91]. 

MoDTC, MoDTP, and similar compounds (sulphurized 

oxymolybdenum organophosphorodithiolate) were 

developed in an effort to create an “oil soluble”  

MoS2 in the 1970s [92, 93]. The additional friction 

modifying effect of these compounds combining  

with the “solubility” made it quite desirable at that 

time [93]. Not until nearly a decade later did people 

realize that their friction modifying property was not 

because they are a “soluble” MoS2, but because they 

can tribochemically generate MoS2 on the surface of 

the rubbed surfaces [11, 94]. 

MoDTC decomposition without rubbing requires  

a high temperature of 300 °C [92], while under 

tribological conditions, it can be decomposed even 

under room temperature [95]. Under a higher 

temperature of 100 °C, the decomposition of MoDTC/ 

MoDTP can form MoS2 single sheets that greatly 

reduce the COF (Fig. 6) [94, 96]. It was also found 

that MoDTC has better performance compared to 

MoDTP [11]. This paper will focus more on MoDTC  

 
Fig. 6 Cross-section image of MoDTC tribofilm under TEM. The 
close-up image shows the two-dimensional (2D) MoS2. Reproduced 
with permission from Ref. [96], © Elsevier Science Ltd. 1999. 

tribochemical reactions because it is a more researched 

topic. This crystalized tribofilm is diametrically different 

compared to the amorphous phosphate film generated 

by metal thiophosphates. 

Here, a new phenomenon that did not occur in  

the case of ZDDP is present. It is the transferring   

of 2D MoS2 particles to the rubbed surfaces. In the 

fully formed MoDTC tribofilm, MoS2 was nearly all 

present on the surface of the tribofilm. In ideal 

conditions, this transferring can create an ultralow 

COF < 0.01 [94]. 

In contrary to the tribochemical product of ZDDP, 

there has been little debate on the final product of 

MoDTC. This lack of controversy was also a result of 

the similarity between the reactant and the product. 

The MoDTC already has a sulfur atom attached to the 

molybdenum atom. Thus, the focus of the previous 

research was on how the oxygen attached on the 

molybdenum atom was replaced by the sulfur atom. 

The research in the late 1990s proposed the route 

of MoDTC tribochemical decomposition [96]. It was 

proposed that MoDTC on the rubbed surface first 

decomposed into two free radicals. The growth of 

MoS2 2D particles was the result of oxidation of the 

Mo-containing free radical [96]. This reaction is shown 

in Fig. 7. This route, however, cannot explain why 

MoDTC performed better under vacuum with metals 

stripped of an oxide layer [94]. Also, later research 

[97] using a newly sputtered iron surface under ultra 

high vacuum (UHV) proved that the decomposition 
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Fig. 7 Mechanism of MoDTC tribochemical reaction by oxidation. 
Reproduced with permission from Ref. [96], © Elsevier Science 
Ltd. 1999. 

of MoDTC does not need the involvement of oxygen. 

In addition to that, the presence of oxygen can 

greatly hinder the formation of MoDTC tribofilm [98]. 

Thiuram disulfide was also not present in the final 

product, as the final MoDTC tribofilm was more of a 

“carbon matrix” [11]. 

The molecular dynamics simulation of MoDTC 

tribochemical reaction proposed another route. It was 

concluded that the MoDTC first became a linked 

isomer (LI-MoDTC), because its Gibbs free energy 

and the transitional state’s Gibbs free energy is lower 

than that of the intermediate Mo free radical proposed 

by the previous reaction [99]. The adsorbed LI-MoDTC 

is shown in Fig. 8. The simulated result shows    

that this chemically adsorbed molecule will further 

decompose under tribological forces. The first bond 

to break was the Mo–O bond; this directly forms an 

MoS2 along with thiocarbamic acid [100]. This route 

explains why MoDTC can tribochemically react with 

the nascent iron surface in a vacuum because it does 

not require the involvement of oxygen. 

The mechanism of the “transferring” of MoS2 single 

sheets was later elucidated with molecular dynamics 

simulation [101]. This simulation started with the 

randomly arranged MoS2 molecules pressed down 

on the surface of iron (no oxides). After the shear 

force was applied, the 2D-ordered MoS2 single sheets 

formed in only 0.1 ns [101]. Another reason for this 

“transfer” to happen is the MoS2 single layer can 

bond to the iron surface via electron exchange [102]. 

This result shows that the single sheet MoS2 was more  

 

Fig. 8 Mechanism of MoDTC tribochemical reaction by 
decomposing to LI. Reproduced with permission from Ref. [99], 
© Japanese Society of Tribologists 2008. 

stable under tribological conditions. The amorphous 

phase can also be present in other organo-molybdenum 

compounds. In the tribochemical reaction of amide 

molybdate, MoS2 amorphous phase can form under 

low contact pressures [103]. 

3.3 ILs 

Room-temperature ILs are a type of ionic salt in the 

liquid phase under room temperature. The ions of 

ILs are mostly large organic molecules. Due to their 

molecular size and chemical properties, the electrostatic 

force between their cation and anions is low, thus 

being a liquid at room temperature. 

ILs have many favorable properties such as high 

thermal stability [104, 105], low volatility, and high 

miscibility with an organic solvent [106, 107], making 

them good choices for both lubricants and lubricant 

additives [108, 109]. In addition, the ILs also present 

some physical properties, which enable them to 

“separate” the contacting surfaces when used as a 

lubricant or lubricant additive. ILs can solidify when 

confined by metal to a nanometer scale [110]; they 

also introduce the double layer force when adsorbed 

on the metal surfaces, and most importantly, they are 

tribochemically active, readily decompose, and form a 

tribofilm when rubbed on metal or metal oxide surfaces. 
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The chemical structures of ILs determine their 

tribological behavior and physical characteristics [109]. 

Unlike the metal phosphate/sulfide additives discussed 

in Section 3.1, the chemical structure of IL has two 

parts: cations, which are positively charged; and 

anions, which are negatively charged. Both the cations 

and anions have a structure, which consists of a 

charged “head” and an alkyl chain or fluorocarbon 

chain, as illustrated in Fig. 9. The most important 

aspect of ILs in the context of its tribochemical 

behavior is their charge-carrying atoms. As shown in 

Table 4, the typical cations in IL lubricant additives’ 

ions can be categorized by their tribochemically active 

elements. 

Like the phosphate/sulfate tribofilm-forming anti- 

wear additives, IL molecules absorbed on the metal 

surface decompose and form a tribofilm under 

tribological forces. The ions in the ILs can be adsorbed 

on the metal surface with the ionic “head” attached 

to the surface [106, 112]. This alone can reduce the 

COF under moderate load [113]. 

Both anions and cations of the ILs participated in 

the tribochemical reactions on the metal surface  

[112, 114]. In contrast to the adsorption-dominated- 

low-load-friction reduction, the tribochemical reactions 

dominated the friction reduction at a high load range 

[112, 115]. The composition of the tribochemical 

reaction product was directly related to the element 

carrying the charge. Unlike MoDTC and ZDDP, the 

alkyl chain had little influence on the composition of 

tribofilm and did not participate in the tribochemical 

reaction. The only exception was the fluorinated cations, 

which produced the metal fluoride in tribochemical 

reactions [116]. The nitrogen-containing ILs produced 

metal nitrides [117], the phosphorus-containing ILs 

produced metal polyphosphates, and the sulfur- 

containing ILs produced metal sulfides [115]. 

IL-containing ions such as phosphonium or 

phosphate can tribochemically react to form a tribofilm, 

much like the ZDDP tribofilm [116, 118]. Like ZDDP, 

the phosphate in the IL reacts with ions to form iron 

phosphate. Phosphorus-containing ILs cannot self-react 

and form a film like ZDDP [116]. The tribofilm 

reaction of a typical phosphate-containing IL requires 

the involvement of iron oxide and wear debris. The 

growth of the film can also encapsulate the wear 

debris into the formed tribofilm [116]. This also 

resulted in the thickness of the IL tribofilm being 

about 50 nm, thinner than that of the ZDDP [116]. 

When both fluoride and phosphorus were present in 

an IL, it seemed that both metal fluoride and metal 

phosphate appeared in the tribofilm at low loads, but 

only metal fluoride appeared in the tribofilm at higher 

loads [117, 119]. 

The carboxyl anions, while not tribochemically 

active, can influence the tribochemical reaction of the 

cation [116]. The phosphonium carboxylate IL can 

form a thicker phosphate tribofilm compared to the 

phosphonium organophosphate tribofilm, despite 

the latter containing more P in its structure [116].    

 

Fig. 9 ILs commonly used as lubricant additives. Reproduced with permission from Ref. [111], © the authors 2013. 
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Table 4 ILs commonly used as lubricant additives and their 
tribochemically active elements. 

IL cation Tribochemically active element

Imidazolium N 

Phosphonium P 

Ammonium N 

Pyrrolidini um N 

IL anions — 

Fluoroborate B, F 

Fluorophosphate P, F 

Phosphate P, 

Borate B 

Fluorosulfonylamide N, S 

Carboxylate — 

 

In contrast, the carboxylate anions prevented the 

tribochemical reaction of imidazolium cations to form 

a metal nitride tribofilm, which had a high COF [120]. 

Unlike ZDDP or MoDTC, most ILs used as additives 

or lubricants have excellent thermal stability [121]. 

They decompose at a higher temperature than 

polyalphaolefin (PAO) [118, 121]. Because of this 

stability, the self-reaction is unlikely to occur even 

with the help of tribological forces. In addition, nitrogen, 

phosphorus, and sulfur carry the ionic charge. When 

adsorption occurs, they will directly attach to the 

metal or oxide surface. 

The tribochemical reaction of the IL also requires 

the metal or oxide surface. The product of the 

tribochemical reaction of ILs is metal polyphosphate. 

Most ILs do not contain any metallic elements. They 

must react with metal surfaces or wear debris. This 

also causes the tribofilm formed by ILs to contain a 

metallic core. 

Although the alkyl chain does not directly participate 

in the tribochemical reactions and does not appear in 

the tribofilm, the length of it can affect the IL’s 

adsorption behavior and the tribochemical reaction 

rate. In the research on alkylimidazolium IL [122], it 

was found that the ILs with longer alkyl chains can 

better adsorb on the contacting surfaces and formed 

a tribofilm more effectively. However, another article 

[114] using similar alkylimodazolium IL on nascent 

steel surface found the opposite result: the longer the 

alkyl chain, the slower the tribochemical reactions. 

This seemingly contradictory result may indicate that 

the IL’s adsorption behavior on metal and metal 

oxides is different. 

The COFs of IL tribofilms were 0.1–0.2, similar to 

that of the lubricant with ZDDP as additive. When ILs 

with P were used, their tribofilm compositions were 

also similar. Both contain polyphosphate. The only 

difference is that ZDDP tribofilm contains zinc, and IL 

tribofilm encapsulates some wear debris. 

Because of its solubility in water, ILs can be used 

as additives in aqueous lubricants [6, 123, 124]. 

Phosphate IL tribochemical reactions can induce 

ultralow friction, even superlubricity when used as an 

aqueous lubricant on ceramic surfaces [6, 123, 124]. 

The molecular study revealed that under shear, the 

phosphate could form polyphosphate, which connects 

with contacting surfaces through a water layer [16]. 

This water layer separated the polyphosphate trilayer 

and the contacting surfaces while lubricating the 

interface (Fig. 10). A similar effect can also be found 

 

Fig. 10 Water molecules separate the tribochemically formed polyphosphate layer and the silica in molecular dynamics simulation.
Reproduced with permission from Ref. [16], © American Chemical Society 2013. 
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in phosphoric acid, along with boric acid-lubricated 

silica surfaces [7, 125]. 

The product of IL tribofilm reaction is closely 

related to the tribochemically active elements that it 

contains. Table 5 lists the commonly used IL lubricant 

additives and the properties of the formed tribofilms. 

The phosphorus-containing IL forms phosphate, 

sulfur-containing IL forms sulfide, and nitrogen- 

containing IL forms nitride. The tribochemical reactions 

of ILs further prove the importance of P and S 

elements in such reactions. Even though there are ILs 

that do not contain P and S such as [C4C1Pyrr][B(CN)4], 

the Fe2B tribofilm it forms has a high COF in the 

boundary lubrication regime and cannot effectively 

protect the surface from wear [117]. The lack of 

carbon in almost all IL tribofilms listed in Table 5 also 

indicates that the general rules for ILs’ tribochemical 

decomposition exist. It is observed that the bond 

between the alkyl chain and charge center cleaves 

under tribological shear. This cleavage of bonds in 

imidazolium was observed by the IL gas emission 

spectrometry [126, 127]. 

Table 5 ILs and the resulting tribofilms. 

IL COF and boundary 
lubrication 

Miscible with 
lubricating oil

Tribochemical product Ref. 

[(C12H25)3NC3H6PO3(C2H5)2]
+ 

[DOSS]− 
0.12 Miscible Inorganic phosphates 

and nitrides 
[112]

[(C12H25)3NC3H6PO(OC2H5)2]
+ 

[CH3(CH2)10COO]− 
0.12 Miscible Inorganic phosphates 

and nitrides 
[112]

POPA 0.07 Miscible Polyphosphate [106]

PTPA 0.065 Miscible Polyphosphate [106]

1-ethyl-3-methylimidazolium diyanamide 0.2 Not miscible Nitrides [128]

1-ethyl-3-methylimidazolium tetracyanoborate 0.2 Not miscible Nitrides [128]

1-n-butyl-1-methylpyrrolidinium tetracyanoborate 0.2 Not miscible Nitrides [128]

[BMIM] [NTf2] 0.26 Not miscible Nitrides [126]

1-ethyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl) imide 

0.11 Not miscible FeF2 and FeS [114]

1-dodecyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl) imide 

0.12 Not miscible FeF2 and FeS [114]

Choline bis(2-ethylhexyl) phosphate 0.16 Miscible FePO4 and FeS [129]

Choline dibutyl dithiophosphate 0.16 Miscible FePO4, FeSO4, and FeS [129]

trihexyltetradecylphosphonium  
bis(2-ethylhexyl) phosphate 

0.08 Miscible Polyphosphate and FeS [116, 
130]

[P66614][DEHP] 0.1 Miscible FePO4 [131]

Choline bis(2-ethylhexyl)-phosphate 0.09 Not miscible Polyphosphate [132]

Tetradecyl-trihexyl-phosphonium 
bis(2,4,4-trimethylpentyl)-phosphinate 

0.1 Not miscible Polyphosphate [132]

Tetradecyl-trihexyl-phosphonium 
bis(trifluoromethylsulfonyl)-imide 

0.1 Not miscible Polyphosphate [132]

Tetraoctylphosphonium bis(2-ethylhexyl)phosphate 0.1 Miscible FePO4 and FeOx [133]

PAPN 0.06 Miscible Iron phosphates [134]

LAPN 0.08 Miscible Iron phosphates [134]

Tributylmethylphosphonium dimethylphosphate Not reported Miscible Iron phosphates [135]

1-ethyl-3-methylimidazolium trifluoromethanesulfonate 0.003 (Si3N4/SiO2) — Ammonia salts and 
sulfides 

[136]

[C8H17]3NH·Tf2N 0.07 Neat Iron sulfides [137]
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3.4 NPs 

NPs have been used as additives in lubricants to 

enhance their tribologial performance [3, 138]. Stable 

dispersion has been achieved in nanolubricants [138]. 

Like other additives, the NPs can be adsorbed on the 

contacting surfaces. This adsorption is driven by the 

van der Waals interactions between the NPs and the 

surfaces [3, 139]. In some cases, the adsorption of 

NPs can directly reduce the friction in the boundary 

lubrication regime and protect the surfaces from 

contacting [140, 141]. However, with the tribochemical 

reactions, the NP additive can have better tribological 

performance. 

For some NPs such as metal oxide NPs, there are 

no tribochemical “reactions” because the composition 

of the tribofilm they form has the same composition 

as the NPs. They are essentially sintered to the 

contacting surfaces by the tribological process [82, 

142–148]. There is also a report on tribochemically 

active oxide NPs such as Fe3O4. The metal elements 

can be reduced and/or oxidized via tribochemical 

reactions [71, 149]. This oxidation reaction promoted 

by the oxide NPs is essential to the chemical– 

mechanical polishing process [35, 150–153]. In these 

reactions, the NP tribochemical reactions chemically 

wears the surface instead of protecting it. The 

overbased detergents are NP lubricant additives that 

can effectively reduce wear by forming a tribofilm 

[12, 154]. This NP is also tribochemically inactive. 

The formation of its tribofilm is mechanical rather 

than chemical [12]. The capped metal NPs can reduce 

wear and friction without tribofilm formation [155]. 

In some cases such as copper NPs [156] and silver NPs 

[157], the tribofilm can form directly by mechanical 

cold welding. One exception to the capped metallic 

NPs is the dodecanethiol-modified palladium NPs. 

The dodecanethiol-capped palladium forms palladium 

sulfide on the contacted surface when used as a 

lubricant additive [158]. The rare earth-containing NPs 

can form iron oxide tribofilms through the oxidation- 

catalysis effect [159]. 

One of the most successful NP friction modifying 

additives, inorganic fullerene molybdenum disulfide 

(IF-MoS2), has its friction modifying ability due to  

its tribochemical reactions. MoS2 is known to be a 

solid lubricant as a powder or additive [160]. Under 

tribological forces, IF-MoS2 forms a tribofilm comprised 

of 2H-MoS2 and chemically bonds to the iron oxide 

on the steel surface [161]. The mechanism of this 

reaction was proposed that the mechanical breakdown 

of IF-MoS2 nanosheets can tribochemically bond to 

the iron/iron oxide [161]. The iron sulfide can also be 

found in the tribofilm formed by MoS2 and WS2 NPs 

[162, 163]. The MoO3 NPs can tribochemically react 

with olefin polysulphide to form MoS2 [164, 165]. 

The molecular dynamics simulation also shows that 

MoS2 nanosheets were more stable between contacting 

surfaces compared to the amorphous phase (Fig. 11) 

[101]. 

The WS2 tribochemical process creates a film with a 

layered structure. The top layer of WS2 tribofilm is a 

mixture of WS2, WO3, and Fe oxides (Fig. 12) [166]. 

The bottom layer is comprised of the reduced W and 

Fe. Unlike oxide NPs, WS2 can actively react with Fe 

and Fe oxides, forming oxides and even W metal. 

Here, the similar “surface concentration” phenomenon 

observed in MoDTC is found. The formed metal 

disulfide seemingly gravitates towards the contacting 

surface. 

The surface-adsorbed NPs, when mechanically 

broken by the tribological processes, can produce 

some active materials due to the resultant high surface 

area. This can explain why the sulfur or phosphorus- 

containing NPs, while having low hardness, can 

greatly improve the boundary lubrication performance 

of a lubricant [3]. The nanosheet of MoS2 can readily 

react with iron and iron oxide [161]. 

Similar to ZDDP and ILs, different elements act 

differently in NP tribochemical reactions. When the 

NPs contain nitrogen or phosphorus, the product   

of the tribochemical reaction is mainly nitrides and 

phosphides [167, 168]. Similarly, CaF2 NP and ZnB 

NP form FeF2 and Fe2B when tribochemically reacting 

with a steel substrate [169, 170]. The α-ZrP NPs, which 

contain phosphorus, form iron phosphate, which 

protects the surface from wear [171–173]. Carbon in 

NPs stays tribochemically inactive to metal surfaces. 

When graphene quantum dots were used as an additive, 

they tribochemically formed a fullerene structure 

instead of reacting with the contacting surfaces [174]. 

The CaCO3 formed a tribofilm comprised of CaCO3 and  
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Fig. 12 Cross-section image of tribofilm formed by WS2 
NPs. Reproduced with permission from Ref. [166], © Springer 
Science+Business Media New York 2013. 

CaO, and the carbon was removed from the NPs 

during the tribochemical process [175]. Interestingly, 

the DDP-coated ZnS NPs tribochemically formed a 

film similar to ZDDP [176]. 

With a proper catalyst, the normally tribochemically 

inactive carbon can tribochemically form carbon 

nanostructures. Carbon-based NPs under tribological 

force can form a glass phase with an amorphization 

process when mixed with iron NPs [177]. The 

tribological forces also reduced the Gibbs free energy of 

structurally more complex phases. This led to a phase 

transformation from the amorphized phase to onion- 

like carbon [177, 178] or carbon nanotubes [179]. This 

process started with reactions between iron NP and 

graphite [177], which formed an amorphous carbon- 

containing iron carbide. The amorphous phase under 

tribological forces then transformed into onion-like  

carbon with superior tribological properties. It appears 

that the reason behind the inactivity of the alkyl chain 

in all the lubricant additives is caused by the strong 

carbon–carbon bond. The addition of iron disrupted 

this bond and made carbon tribochemically active. 

3.5 Interactions between additives 

It is known that the formulation of lubricants usually 

contains more than one additive. The tribochemically 

active additives sometimes display a “synergistic” 

effect. Most prominently, the ZDDP has been found 

to have such effect with MoDTC, IL, and NPs. 

Adding MoDTC into the lubricant oil containing 

ZDDP would increase its friction reduction ability 

but harm its anti-wear effect slightly [180, 181]. The 

zinc ion in ZDDP increased the reactivity of MoDTC 

while enhancing the friction reduction [182]. 

The lubricant containing both phosphonium– 

alkylphosphate IL and ZDDP has an improved 

anti-wear and friction reduction performance than 

that only contains one additive [183]. Other studies on 

different ILs and ZDDPs were observed with similar 

effect [184, 185]. The synergistic/antagonistic effect 

between ZDDP and IL is related to the anion exchange 

of ZDDP [183], which could change the sulfur content 

 

Fig. 11 Simulated tribochemical reaction of MoS2. It shows that the MoS2 NPs can form 2D MoS2 under shear force. Reproduced with 
permission from Ref. [101], © Elsevier B.V. 2008. 
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of the tribofilm [185]. However, the synergy between 

IL and ZDDP is not guaranteed, and the ILs can have 

no synergy effect or even antagonistic one with ZDDP 

[185, 186]. 

Adding NPs to ZDDP- or MoDTC-formulated oil 

can improve its performance. The calcium carbonate 

NPs can strengthen the tribofilm by incorporating 

ZDDP and MoDTC [187, 188]. The presence of ZDDP 

can also improve the anti-wear and friction-reduction 

behavior of WS2 NPs [189, 190]. 

4 Summary and prospects 

The tribochemical process is essential to the lubricant 

additive functions, especially its anti-wear and friction 

modifying properties. This work reviewed the kinetics 

of the tribochemical processes involving lubricant 

additives with elements in metallic substrates. Focusing 

on additives, we discussed organic phosphates’, ILs’, 

and NPs’ tribochemical reactions and concluded as 

follows. 

1) The occurrence of the tribochemical reactions 

requires chemical or physical adsorption of lubricant 

additive to the contacting surfaces. 

2) Phosphorus, sulfur, fluorine, and nitrogen are 

active in those reactions. They can react with the 

metal surface regardless of the additive type. 

3) Most reaction products are amorphous in 

nature. The only exception is transitional metal 

sulfide. This forms a 2D nanosheet, which gravitates 

to the contacting surface. 

4) The ZDDP and MoDTC can thermally be 

decomposed under elevated temperatures, while IL 

and NP additives are thermodynamically stable. 

5) A tribochemical reaction is thermodynamically 

controlled by a force applied to the additive covalent 

bond. Such a force changes the free energy of the 

reactant and the product. 

6) The kinetics of tribochemical reactions are affected 

by the temperature, shear stress, and the wear of the 

tribofilm.  

Among the literature collected, the majority reports 

were about ZDDP and MoDTC additives. Those about 

ILs and NPs have been focused on various additives. 

Comprehensive understanding in tribochemical 

reactions is expected to be obtained in close future. 

Furthermore, it remains to be a challenge to find  

a “green” lubricant additive, which has favorable 

performance due to the essentiality of the phosphorus 

and sulfur in tribochemical reactions. The metal 

nitride, which has good performance as a coating,  

is unable to outperform phosphate or sulfide as a 

tribofilm. A low friction tribofilm generated from protic 

ILs may lead to a phosphor- and sulfur-free lubricant. 

Under vacuum, the graphene, which is normally 

inactive in a tribochemical process, forms inorganic 

fullerene when iron oxide is used as a catalyst. Finding 

an equivalent tribochemical process in lubricating  

oil may help the development of effective “green” 

lubricants. 

Achieving superlubricity with tribochemical 

reactions has attracted attention in recent decades. 

The tribochemically formed polyphosphate under 

aqueous solution and onion-like carbon under dry 

nitrogen both displayed superlubricity. If those 

reactions can be replicated under non-polar lubricant, 

the performance of lubricant under mixed and 

boundary lubrication regime can be greatly enhanced. 
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