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Abstract: COVID-19 (coronavirus disease 2019) is a new viral infection disease that is widely
spread worldwide. Deep learning plays an important role in COVID-19 images diagnosis. This
paper reviews the recent progress of deep learning in COVID-19 images applications from five
aspects; Firstly, 33 COVID-19 datasets and data enhancement methods are introduced; Secondly,
COVID-19 classification methods based on supervised learning are summarized from four aspects
of VGG, ResNet, DenseNet and Lightweight Networks. The COVID-19 segmentation methods
based on supervised learning are summarized from four aspects of attention mechanism, multi-
scale mechanism, residual connectivity mechanism, and dense connectivity mechanism; Thirdly,
the application of deep learning in semi-supervised COVID-19 images diagnosis in terms of
consistency regularization methods and self-training methods. Fourthly, the application of deep
learning in unsupervised COVID-19 diagnosis in terms of autoencoder methods and unsupervised
generative adversarial methods. Moreover, the challenges and future work of COVID-19 images
diagnostic methods in the field of deep learning are summarized. This paper reviews the latest
research status of COVID-19 images diagnosis in deep learning, which is of positive significance
to the detection of COVID-19.

Keywords: deep learning; COVID-19 datasets; supervised learning; semi-supervised learning; unsu-
pervised learning

1. Introduction

In December 2019, coronavirus disease 2019 (COVID-19) was discovered in Wuhan,
China and spread rapidly around the world. COVID-19 is characterized by strong infec-
tivity, rapid transmission and high mortality. Patients with COVID-19 mainly present
with symptoms such as fever, dry cough and malaise in the early stages and severe cases
present with respiratory distress, which may develop into respiratory organ failure and
lead to death [1]. As of 21 July 2022, the World Health Organization (WHO) reported,
504,079,039 confirmed cases with 6,204,155 deaths [2]. Figure 1 shows the top 30 countries
with the highest number of confirmed cases and deaths cases of COVID-19, where the
horizontal axis represents different countries and the vertical axis represents the number of
confirmed cases and deaths cases.

X-ray images (X-ray) and computed tomography images (CT) have become an impor-
tant tool for the detection of COVID-19. The images of COVID-19 contain ground-glass
opacities (GGOs), areas of consolidation and a mix of both in all lung lobes [3]. Figure 2
shows the X-ray and CT images of COVID-19, pneumonia and normal lungs.
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Figure 2. The X-ray and CT images of COVID-19. 
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learns the association between the input and output, based on the given sample which 
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diagnosing COVID-19 using CT images, which achieves features with a high recognition 
rate by feature parsimony. Ahmed et al.[1] detected COVID-19 by a supervised learning 
approach using a model combining preprocessing techniques and an attention module. 
Semi-supervised learning refers to making full use of the unlabeled samples of the dataset 
and automatically exploits the unlabeled samples to improve the learning performance 
[5]. Wang et al. [6] proposed a semi-supervised network to segment COVID-19 infected 
lesions, which uses a reweighting loss and a small sample iterative segmentation frame-
work. Unsupervised learning refers to learning some useful patterns from unlabeled sam-
ples without the help of artificially given labels. Chen et al. [7] proposed an adaptive 
COVID-19 segmentation model to improve the performance by an unsupervised adver-
sarial training scheme and encouraging the segmentation network to learn domain invar-
iant features. 

Deep learning methods have been widely used to assist in the diagnosis of COVID-
19 images. Several review articles on COVID-19 have been published. Soomro et al. [8] 
summarize an extensive review of the efficient AI-based methods for efficient COVID-19 
diagnosis. The review summarized the COVID-19 diagnostic methods in the aspects of 
classification and segmentation, which neglected the detailed summary and analysis of 
the existing COVID-19 datasets. A COVID-19 CT image diagnosis method based on su-
pervised and weakly supervised learning are reviewed by Haseeb et al. [9]. However, the 
article does not summarize the application of X-ray images in COVID-19 deep learning 
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Deep learning, as a powerful tool to assist physicians in diagnosis, is widely used in
computer-aided diagnosis of COVID-19. This paper summarizes the application of deep
learning in COVID-19 diagnosis from three aspects of supervised learning, semi-supervised
learning and unsupervised learning. Supervised learning means that the model learns
the association between the input and output, based on the given sample which with the
corresponding label. Song et al. [4] proposed a supervised learning model for diagnosing
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COVID-19 using CT images, which achieves features with a high recognition rate by feature
parsimony. Ahmed et al. [1] detected COVID-19 by a supervised learning approach using
a model combining preprocessing techniques and an attention module. Semi-supervised
learning refers to making full use of the unlabeled samples of the dataset and automatically
exploits the unlabeled samples to improve the learning performance [5]. Wang et al. [6]
proposed a semi-supervised network to segment COVID-19 infected lesions, which uses
a reweighting loss and a small sample iterative segmentation framework. Unsupervised
learning refers to learning some useful patterns from unlabeled samples without the help
of artificially given labels. Chen et al. [7] proposed an adaptive COVID-19 segmentation
model to improve the performance by an unsupervised adversarial training scheme and
encouraging the segmentation network to learn domain invariant features.

Deep learning methods have been widely used to assist in the diagnosis of COVID-19
images. Several review articles on COVID-19 have been published. Soomro et al. [8]
summarize an extensive review of the efficient AI-based methods for efficient COVID-19
diagnosis. The review summarized the COVID-19 diagnostic methods in the aspects of
classification and segmentation, which neglected the detailed summary and analysis of
the existing COVID-19 datasets. A COVID-19 CT image diagnosis method based on su-
pervised and weakly supervised learning are reviewed by Haseeb et al. [9]. However,
the article does not summarize the application of X-ray images in COVID-19 deep learn-
ing model and does not summarize the application of unsupervised learning methods of
COVID-19. Nandhini et al. [10] provide a review of deep learning-based detection meth-
ods for COVID-19 from transfer learning and fine-tuning, novel architectures, and other
approaches. The reader can obtain the current status of research on X-ray and CT images
of COVID-19, but only the classification methods used for COVID-19 are summarized
and the authors provide seven COVID-19 datasets, which is not enough to illustrate the
development of COVID-19 datasets.

To sum up, we can obtain a lot of knowledge about COVID-19 research status from the
existing surveys. Based on the shortcomings of the existing surveys, our review provide a
more comprehensive review of deep learning imaging diagnostic methods for COVID-19
from multiple perspectives. To provide readers with the latest research fields and research
directions, the motivation and contribution of this paper are as follows:

1. This review provides a more comprehensive review of classification and segmentation
method on CT and X-ray datasets of deep learning imaging diagnostic methods
for COVID-19.

2. This review provides a comprehensive summary of the available COVID-19 datasets.
3. The advantages and challenges of deep learning imaging diagnostic methods for

COVID-19 are given from multiple perspectives.

In this paper, the literature is searched through ScienceDirect, Web of Science, IEEE
Xplore Digital Library, SpringerLink, and ArXiv. The CT and X-ray datasets of COVID-19
are mainly summarized from the searched literature and the Kaggle website. The keywords
used in the process of searching the literature are COVID-19, deep learning, CT, X-ray,
classification, segmentation, semi-supervised learning and unsupervised learning.

The main contents of this paper are organized as follows: the general architecture
of the deep learning COVID-19 images diagnosis method is shown in Figure 3. Section 2
summarizes the datasets of COVID-19. Section 3 summarizes the application of deep
learning methods for supervised learning in diagnosis of COVID-19. Section 4 summarizes
the application of deep learning methods with semi-supervised learning in diagnosis of
COVID-19. Section 5 summarizes the application of deep learning methods for unsuper-
vised learning in diagnosis of COVID-19. Section 6 summarizes the challenges faced and
future trends of deep learning in the field of COVID-19 diagnosis.
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2. COVID-19 Datasets

The Researchers have successively released a large number of COVID-19 datasets for
deep learning model training to improve the identifying ability of COVID-19 diagnostic
models since the outbreak of COVID-19 in December 2019. In this section, the typical
COVID-19 datasets are summarized as shown in Figure 4, which is labeled by month in
order from left to right. X-ray and CT are the main types of COVID-19 datasets. The
COVID-19 datasets for the X-rays modalities released from 2020 to 2022 are distributed at
the top of the timeline and the COVID-19 datasets for the CT modalities released from 2020
to 2022 are distributed at the bottom of the timeline. It is easy to see that the relevant datasets
were mainly released in 2020 and the CT modal COVID-19 dataset is the mainstream of the
COVID-19 dataset.

2.1. Main COVID-19 Datasets

Deep learning model training requires datasets with large scale and high quality to
achieve better generalization capability. In this section, the details of the COVID-19 dataset
are summarized and the specific analysis is as follows, from seven aspects in the Table 1.
Firstly, there are 11 COVID-19 datasets about X-ray modal, 20 about CT modal and 2 about
combined X-ray and CT datasets. The CT modal dataset is more used in the COVID-19
images diagnostic study. Second, there are a total of 31 unimodal datasets and a total of



Electronics 2023, 12, 1167 5 of 22

2 bimodal datasets. The unimodal dataset is mainly used in COVID-19 diagnostic study.
Third, there are different sizes of COVID-19 datasets. The smaller dataset, the COVID
chest X-ray dataset [11], contains 123 X-ray images and was the first X-ray dataset on
COVID-19 to be publicly available, released by Cohen in February 2020. COVID-CT [12]
contains 349 of COVID-19 CT images and 397 of NO-COVID-19 CT images which is the
first CT dataset on COVID-19 to be publicly available. COVIDx CT-2A [13] is one of the
largest and most diverse publicly available datasets, containing 194,922 CT images from
3745 individuals. COVIDx-CT [13] is a CT dataset collected by the National Center for
Biological Information in China, which contains 104,009 images from 1489 patients. Fourth,
COVID-19, pneumonia and normal lung are the three main types of diagnosis. Most of the
COVID-19 datasets contain two of these types and multi-classified datasets are relatively
rare. Fifth, the COVID-19 datasets were mainly published by researchers or institutions
in China, Canada and Italy, of which the number of the researchers who contributed to
the COVID-19 datasets were 14, 4, 3. Sixth, there is a difference in the density of datasets
released in different time periods. The number of datasets published in 2020 is more than
that in 2021, including 21 in 2020, 8 in 2021, 2 in 2022. In 2020, the most intensive three
months of datasets release are April, May and June, with a total of 9 datasets released.
Finally, the formats of JPG and PNG plays a main role in the type of JPG, JPEG, PNG
DICOM, NIFIT and CKPT on COVID-19 datasets.
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Table 1. COVID-19 public datasets.

Datasets Name
Image
Modal

Sample Size Country Date
Data

Format
Online URL

COVID-chestxray [11] X-ray 434 (NCP: 434) Canada 2,2020
JPEG
PNG
JPG

https://github.com/ieee8023/
covid-chestxray-dataset

QaTa-Cov19 [14] X-ray
6286 (BP: 2760,

VP: 1485, Normal:
1579, NCP: 462)

Italy
Spain
China

5,2020 / /

COVID-CXNet [15] X-ray 452 (NCP: 452) Canada 6,2020
JPG
PNG

https://github.com/armiro/
COVID-CXNet

Synthetic COVID-19
CXR [16]

X-ray
21,295

(NCP: 21,295)
/ 10,2020 JPG

https://github.com/hasibzunair/
synthetic-covid-cxr-dataset

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/armiro/COVID-CXNet
https://github.com/armiro/COVID-CXNet
https://github.com/hasibzunair/synthetic-covid-cxr-dataset
https://github.com/hasibzunair/synthetic-covid-cxr-dataset
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Table 1. Cont.

Datasets Name
Image
Modal

Sample Size Country Date
Data

Format
Online URL

COVIDGR [17] X-ray
852 (Normal: 426,

NCP: 426)
Spain 11,2020 JPG

https://github.com/ari-
dasci/OD-covidgr

COVID-19
radiography
database [18]

X-ray
15,153 (NCP: 3616,

VP: 1345,
Normal: 10,192)

India 3,2021 PNG
https://www.kaggle.com/
tawsifurrahman/covid19-

radiography-database

COVID-QU-Ex [19] X-ray
13,119

(NCP: 11,956,
Pneumonia: 1163)

/ 3,2021 PNG
https://www.kaggle.com/

anasmohammedtahir/
covidqu

COVID19-DB [20] X-ray
1559 (NCP: 225,
Normal: 1334)

China 8,2022 JPG /

BrixIA COVID-19 [21] X-ray 4703 (NCP: 4703) Italy 8,2020 DICOM
https://github.com/BrixIA/

Brixia-score-COVID-19

COVIDx-CXR [13] X-ray
30,000

(patient: 16,400,
X-ray: 30,000)

Canada 11,2021 PNG
https://github.com/

lindawangg/COVID-Net

Balanced Augmented
COVID CXR
Dataset [22]

X-ray
30,233 (NCP: 8769,
LO: 7662, Normal:

8192, VP: 5410)
India 11,2022 PNG

https://www.kaggle.com/tr1
gg3rtrash/balanced-

augmented-covid-cxr-dataset

COVID-CT [12] CT
812 (NCP: 349,
N-NCP: 463)

China 3,2020
PNG
JPG

https://github.com/UCSD-
AI4H/COVID-CT

CC-CCII [23] CT
617,775 (NCP, CP,

Normal)
China 4,2020

JPG
PNG

http://ncov-ai.big.ac.cn/
download

COVID-CT-Seg [24] CT 20 (NCP: 20) China 4,2020 DICOM
https://gitee.com/junma11/

COVID-19-CT-Seg-
Benchmark

Yan [25] CT
165,667 (patient:
861, CT: 165,667)

China 4,2020 / /

MosMedData [26] CT
20,685 (patient:

1521, CT: 19,685)
Russia 4,2020 NIFIT

https://mosmed.ai/datasets/
covid19_1110/

SARS-CoV-2 CT-scan
[27]

CT
2482 (NCP: 1252,

N-NCP: 1230)
Brazil 5,2020 PNG

https://www.kaggle.com/
plameneduardo/sarscov2

-ctscan-dataset

HKBU
_HPML_COVID-19 [28]

CT

340,190
(NCP: 131,517,

CP: 135,038,
Normal 73,635)

China 6,2020 PNG
https://github.com/HKBU-

HPML/HKBU_HPML_
COVID-19

HUST-19 [29] CT
19,685

(patient: 1521,
CT: 19,685)

China 8,2020
DICOM

JPEG
http://ictcf.biocuckoo.cn/

HUST-19.php

TCIA [30] CT
2724 (patient:

2617, CT: 2724)

China
Japan
Italy

8,2020 / /

https://github.com/ari-dasci/OD-covidgr
https://github.com/ari-dasci/OD-covidgr
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/anasmohammedtahir/covidqu
https://www.kaggle.com/anasmohammedtahir/covidqu
https://www.kaggle.com/anasmohammedtahir/covidqu
https://github.com/BrixIA/Brixia-score-COVID-19
https://github.com/BrixIA/Brixia-score-COVID-19
https://github.com/lindawangg/COVID-Net
https://github.com/lindawangg/COVID-Net
https://www.kaggle.com/tr1gg3rtrash/balanced-augmented-covid-cxr-dataset
https://www.kaggle.com/tr1gg3rtrash/balanced-augmented-covid-cxr-dataset
https://www.kaggle.com/tr1gg3rtrash/balanced-augmented-covid-cxr-dataset
https://github.com/UCSD-AI4H/COVID-CT
https://github.com/UCSD-AI4H/COVID-CT
http://ncov-ai.big.ac.cn/download
http://ncov-ai.big.ac.cn/download
https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark
https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark
https://gitee.com/junma11/COVID-19-CT-Seg-Benchmark
https://mosmed.ai/datasets/covid19_1110/
https://mosmed.ai/datasets/covid19_1110/
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://github.com/HKBU-HPML/HKBU_HPML_COVID-19
https://github.com/HKBU-HPML/HKBU_HPML_COVID-19
https://github.com/HKBU-HPML/HKBU_HPML_COVID-19
http://ictcf.biocuckoo.cn/HUST-19.php
http://ictcf.biocuckoo.cn/HUST-19.php
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Table 1. Cont.

Datasets Name
Image
Modal

Sample Size Country Date
Data

Format
Online URL

CC-19 [31] CT 34,006 China 12,2020 JPG
https://github.com/

abdkhanstd/COVID-19

MIDRC-RICORD-
1a [32]

CT
31,856 (NCP: 28,395,

N-NCP: 5611)
USA 12.2020 DICOM

https://doi.org/10.7937/
VTW4-X588

COVIDx-CT [13] CT
104,009 (Normal:
8066, NCP: 358,

Pneumonia 5538)
China 9,2020 PNG

https://github.com/
lindawangg/COVID-Net

COVID-Net CT-2 [33] CT 200,000 / 1,2021 CKPT

https://github.com/
haydengunraj/

COVIDNet-CT/blob/
master/docs/models.md

COVIDx CT-2A [13] CT
194,922

(CT: 194,922)
China Iran

AustraliaEngland
1,2021 JPG

https://www.kaggle.
com/datasets/hgunraj/

covidxct

COVIDx CT-2B [13] CT
201,103

(CT: 201,103)
China Iran

AustraliaEngland
1,2021 JPG

https://www.kaggle.
com/datasets/hgunraj/

covidxct

COVID-CS [34] CT
145,167 (NCP:

69,626, N-NCP:
75,541)

China 2,2021 JPG
https://github.com/

yuhuan-wu/JCS

COVID-CT-Set [35] CT
63,849 (NCP: 15,589,

Normal: 48,260)
Iran 3,2021 TIFF

https://github.com/mr7
495/COVID-CTset

COVID-CT-MD [36] CT
308 (NCP: 160, CP:

69, Normal: 79)
Iran 4,2021 DICOM

https://github.com/
ShahinSHH/COVID-CT-

MD

Cov-Pne-Bac [37] CT
1566 (NCP: 631,

VP: 417, CP: 518)
Turkey 1,2022 JPG /

Large-scale Synthetic
COVID-19 CT
Dataset [38]

CT 376,000 / 9,2022 JPG

https://www.kaggle.
com/datasets/lee1234567
89/largescale-synthetic-

covid19-ct-dataset

BIMCV-COVID19+ [39]
X-ray

CT
23,527 (X-ray18 840,

CT: 6687)
Spain 6,2020 /

https://github.com/
BIMCV-CSUSP/BIMCV-

COVID-19

COVID-19-CT-CXR [40]
X-ray

CT
1590 (CT: 1327,

CXR 263)
USA 11,2020 /

https://github.com/ncbi-
nlp/COVID-19-CT-CXR

Note: NCP: COVID-19, N-NCP: Non COVID-19, BP: Bacterial pneumonia, VP: Viral pneumonia, /: No information
found. All the links are accessed on 13 January 2023.

2.2. Data Enhancement Methods

Data augmentation is the main method to increase the sample size of the dataset,
which can alleviate the overfitting phenomenon and improve the generalization ability of
the model. This section summarizes the data augmentation methods used for COVID-19 in
terms of traditional data augmentation and generative adversarial networks [41], as shown
in Figure 5.

https://github.com/abdkhanstd/COVID-19
https://github.com/abdkhanstd/COVID-19
https://doi.org/10.7937/VTW4-X588
https://doi.org/10.7937/VTW4-X588
https://github.com/lindawangg/COVID-Net
https://github.com/lindawangg/COVID-Net
https://github.com/haydengunraj/COVIDNet-CT/blob/master/docs/models.md
https://github.com/haydengunraj/COVIDNet-CT/blob/master/docs/models.md
https://github.com/haydengunraj/COVIDNet-CT/blob/master/docs/models.md
https://github.com/haydengunraj/COVIDNet-CT/blob/master/docs/models.md
https://www.kaggle.com/datasets/hgunraj/covidxct
https://www.kaggle.com/datasets/hgunraj/covidxct
https://www.kaggle.com/datasets/hgunraj/covidxct
https://www.kaggle.com/datasets/hgunraj/covidxct
https://www.kaggle.com/datasets/hgunraj/covidxct
https://www.kaggle.com/datasets/hgunraj/covidxct
https://github.com/yuhuan-wu/JCS
https://github.com/yuhuan-wu/JCS
https://github.com/mr7495/COVID-CTset
https://github.com/mr7495/COVID-CTset
https://github.com/ShahinSHH/COVID-CT-MD
https://github.com/ShahinSHH/COVID-CT-MD
https://github.com/ShahinSHH/COVID-CT-MD
https://www.kaggle.com/datasets/lee123456789/largescale-synthetic-covid19-ct-dataset
https://www.kaggle.com/datasets/lee123456789/largescale-synthetic-covid19-ct-dataset
https://www.kaggle.com/datasets/lee123456789/largescale-synthetic-covid19-ct-dataset
https://www.kaggle.com/datasets/lee123456789/largescale-synthetic-covid19-ct-dataset
https://github.com/BIMCV-CSUSP/BIMCV-COVID-19
https://github.com/BIMCV-CSUSP/BIMCV-COVID-19
https://github.com/BIMCV-CSUSP/BIMCV-COVID-19
https://github.com/ncbi-nlp/COVID-19-CT-CXR
https://github.com/ncbi-nlp/COVID-19-CT-CXR
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Traditional data enhancement is the basic way to perform data augmentation, using
resizing, scaling, cropping, flipping, and rotating operations to generate the target images. A
data augmentation method using generative adversarial networks is a method of generating
new data by finding patterns and similarities in the input dataset. Relieving the problem of
model overfitting or small samples can be achieved using generative adversarial networks
to generate COVID-19 lung images. To generate CT images with stable global structure and
diverse local details, Jiang et al. [42] used cGan to learn global and local information of CT
images in generators and discriminators. Waheed et al. [43] proposed ACGAN to generate
X-ray images, using the generated data to improve the classification accuracy of original
model by 10%. Jiang et al. [44] generated COVID-19 images from lung cancer images
with marker information in a CycleGAN model to alleviate the deficiency of high quality
marker data and achieve refinement of the model. Barshooi et al. [45] used 8 directional
and 8 scale Gabor filters for GAN model to generate X-ray data to improve the quality of
image generation. Loey et al. [46] tested combined classical data enhancement and CGAN
data generation methods on AlexNet, VGG16, VGG19, GoogleNet and ResNet50, for which
ResNet50 model gave the best results.

3. The Methods for Supervised Learning in Diagnosis of COVID-19

The methods for supervised learning in diagnosis of COVID-19 refer to the samples
used for model training being labeled. The label information is fully utilized to guide
network model training. The advantage is that the model accuracy can be effectively
improved by learning a large amount of label information and the model is easy to evaluate.
This section summarizes the current state of deep learning for COVID-19 classification
and segmentation tasks from aspects of supervised learning, including summarizing the
application of VGG, ResNet, DenseNet and lightweight networks to the classification task
of COVID-19, and summarizing the application of the attention mechanism, multiscale
mechanism, residual connectivity mechanism, and dense connectivity mechanism to the
segmentation task of COVID-19.

3.1. The Classification Methods of COVID-19 Based on Supervised Learning

The classification methods of COVID-19 based on supervised learning refers to use of
the supervised learning method in extracting features to train a deep network model to dis-
tinguish COVID-19. This section focuses on the application to the COVID-19 classification
task of VGG, ResNet, DenseNet, and lightweight networks, as shown in Table 2.
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Table 2. COVID-19 classification methods based on supervised learning.

Network Name Modal Sample Size Results (%) Open Source (Y/N)

VGG19 [47] X-ray
CT

COVID-19: 4320
Pneumonia: 5856
Normal: 20,000

Lung cancer: 3500

Acc = 98.05
Recall = 98.05
Auc = 99.66
F1 = 98.24

Y

VGG [48] X-ray COVID-19: 5656
Normal: 5656

Acc = 96.41
Sen = 96.60
Spe = 96.20
Auc = 97.70

N

VGG-16 [49] X-ray
COVID-19: 816
Pneumonia: 867

Normal: 948

Acc = 90.00
F1 = 90.00 N

Resnet [37] CT
COVID-19: 631

VP: 417
BP: 518

Acc = 99.62 N

FocusCovid [50] X-ray / Acc = 99.40

ResGANet [51] CT COVID-19: 349
Normal: 397

Acc = 80.00
F1 = 81.00

Auc = 82.00
N

ResGNet-C [52] CT COVID-19: 148
Normal: 148

Acc = 96.62
Sen = 97.33
Spe = 95.91

N

3D-ResNet [53] CT
COVID-19: 1315
Pneumonia: 2406

Normal: 936
Auc = 97.30 N

DenseNet-Tiny [54] X-ray
COVID-19: 1281
Pneumonia: 4657

Normal: 3270

Acc = 97.99
Pre = 98.38

Recall = 98.15
F1 = 98.26

Y

DenseNet [55] X-ray
COVID-19: 2431
Pneumonia: 1468
Normal: 13,649

Auc = 94.9
Sen = 90.2
Acc = 80.2

N

AM-SdenseNet [56] CT
X-ray

COVID-19:828
Normal:1000 Acc = 99.18 Y

Corona-Nidnna [57] X-ray
COVID-19: 245

Pneumonia: 5551
Normal: 8066

Acc = 95.00
Recall = 94.00 Y

InceptionV3 [58] X-ray COVID-19: 162
Pneumonia: 4280 Acc = 99.96 N

IST-CovNet [1] CT
COVID-19: 92,905
Pneumonia: 67,712

Normal: 40,030
Acc = 93.69 N

ML-CAM [59] X-ray
CT

COVID-19: 3254
Normal: 2217 Acc = 94.72 N

CNN + CFS [60] CT COVID-19: 349
Normal: 397

Acc = 91.60
Sen = 71.70
Pre = 90.40
F1 = 91.00

N

Note: /: No information found.
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It is not difficult to see the following summary from Table 2. Firstly, the mainstream
classification models are based on ResNet in COVID-19. There are three classification
models based on VGG, accounting for 18.75%. There are five classification models based on
ResNet, accounting for 31.25%. There are three classification models based on DenseNet,
accounting for 18.75%. There are five COVID-19 classification models based on lightweight
networks, accounting for 31.25%. Secondly, public datasets are mainly used for classification
method research on COVID19. COVID-19 datasets include X-ray datasets, CT datasets
and dual-modality datasets that mix X-ray and CT. About 75% of the COVID-19 dataset
come from public datasets and 25% of the COVID-19 datasets come from private datasets.
Thirdly, regarding the COVID-19 classification, 30% of the tasks are second classification,
46.66% tasks are third classification. Finally, there are relatively few open source and public
code resources about the model. The number of public code resources accounted for 25%,
and the number of undisclosed code resources accounted for 75%.

3.1.1. The Classification Methods of COVID-19 Based on VGG

VGG [61] is a deep convolutional network structure proposed by Simonyan, which
consists of five convolutional blocks and the whole network uses a convolutional kernel
of fixed size 3 × 3. The first two convolutional blocks use two successive 3 × 3 convo-
lutional operations and the last three convolutional blocks use three successive 3 × 3
convolutional operations. The advantage of VGG is its simple structure and easy to per-
form model improvement. VGG improved model performance by deepening the number
of network layers and learning more refined deep network features. The main research
work of using VGG as the backbone network for COVID-19 classification task is as fol-
lows. Ibrahim et al. [47] used X-ray and CT images in VGG19 to provide complementary
information for the classification of COVID-19. Elazab et al. [48] extracted the average of
advanced features of infected and healthy cases with the help of pre-trained VGG. The
extracted features were used as supervisory signals to retrain VGG to reduce the effect of
feature space noise and outliers. Danilov et al. [49] achieved the best results with VGG16 in
10 pre-trained networks by generating attention heat maps to supervise neural networks
focusing on the objects in the images.

3.1.2. The Classification Methods of COVID-19 Based on ResNet

ResNet [62] is a convolutional network with residual connection structure proposed
in 2015. The feature extraction capability was improved by increasing the depth. However,
the gradient disappearance problem leads to a sharp drop in the performance of the model
when the network is deepened. The ResNet uses residual connections in the network with
the aim of alleviating the gradient disappearance problem in deep neural networks. The
residual connections pass the current output directly to the next layer by adding constant
mappings between different layers. In the COVID-19 classification task, ResNet is used
to alleviate the gradient disappearance problem and improve the classification accuracy
of the model. Toğaçar et al. [37] proposed a parallel Resnet network model which uses
ResNet-18, ResNet-50, and ResNet-101 to extract different activation sets and improve the
classification performance by selecting the dominant activation set. Agrawal et al. [50]
added squeezed excitation blocks in residual blocks to enhance lower level feature repre-
sentation and avoid overfitting by keeping trainable parameters minimal. Cheng et al. [51]
improved classification performance by enriching feature information in a single residual
block. Yu et al. [52] used the Resnet101 features to underlying relationship between the
combined features of graph convolutional neural network to enhance features and improve
classification performance. Wang et al. [53] proposed a 3D ResNet-based classification
network for COVID-19 in CT images. The residual learning block reduces the complexity
of the a priori attention mechanism for transferring the pre-trained detection model.
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3.1.3. The Classification Methods of COVID-19 Based on DenseNet

DenseNet [63] is a convolutional network with dense connections structure proposed
by Huang Gao. DenseNet connects all the previous layers to the later layers and each
layer receives inputs from all the previous layers [64]. Feature reuse is achieved by feature
stitching as the input to the next module. The dense connection helps in back propagation
of gradients. DenseNet achieves better performance than ResNet in terms of parame-
ters and computational cost. With DenseNet as the backbone network in the COVID-19
classification task, dense connections pass the feature mapping of the current layer to all
subsequent layers. The feature reuse approach reduces the number of parameters and
alleviates overfitting. Montalbo et al. [54] used DenseNet as a COVID-19 classification
network to reduce the number of parameters by reducing the dense network depth in-
creasing the network width. Park et al. [55] proposed a self-attention mechanism based on
DenseNet to achieve COVID-19 X-ray image classification by feeding features into trans-
former. Li et al. [56] applied spatial attention and channel attention to DenseNet, which
improved the objective lesion features and suppressed less relevant features to improve the
COVID-19 classification accuracy.

3.1.4. The Classification Methods of COVID-19 Based on Lightweight Networks

Methods based on the lightweight COVID-19 classification model refer to minimiz-
ing the number of parameters without degrading the model performance. The current
lightweight networks mainly include SqueezeNet, ShuffleNet, MobileNet, Inception, etc.
The size of model parameters can be effectively compressed by using lightweight networks
or by introducing deep separable convolution, group convolution or channel shuffling meth-
ods. Lightweight methods have received a lot of attention from researchers. The COVID-19
classification method based on lightweight networks can effectively improve the model
training speed and facilitate the deployment on mobile devices. Chakraborty et al. [57]
designed a lightweight deep neural network, Corona-Nidaan, which uses deeply separable
convolution and multiscale convolution kernels. Das et al. [58] truncated a lightweight
network model of InceptionV3 using maximum pooling and global average pooling to
reduce the feature dimension, the number of parameters and the complexity of compu-
tation [65]. Ahmed et al. [1] added an attention module with a one-dimensional vector
representation on Inception-ResNet-V2 to evaluate this convolutional neural network and
detect COVID-19 using CT images. Owais et al. [59] integrated complementary feature
information through multiple lightweight integrated network models to detect COVID-19
from CT and X-ray images. Abraham et al. [60] proposed an integrated lightweight network
that invokes correlated feature selection algorithms in multiple networks of Squeezenet,
Darknet-53, MobilenetV2, Xception, and Shufflenet to determine the best subset of features
to improve the accuracy.

To sum up, the classification methods of COVID-19 based on VGG use different scales
and alternating training methods during the training process, which can converge in fewer
epochs and alleviate the training time. There are examples of better transferability and
strong generalization ability. However, the VGG COVID-19 classification models use three
fully connected layers with too many parameters, which leads to large memory and more
computational resources. The classification methods of COVID-19 based on ResNet use
residual connections to replicate shallow features directly. The gradient disappearance and
network degradation problems are solved by residual connectivity, and the better COVID-
19 classification performance is obtained. However, there are more deep layers in ResNet
COVID-19 classification model, and it is difficult to optimize; there is a lot of redundant
information in this model. The classification methods of COVID-19 based on DenseNet
use dense concatenation to transfer shallow layer information directly to the deep layer for
further application. The redundancy information is reduced by this model. There are better
convergence rates and less parameters at the same network layers. However, when the
network layers are increased and features are replicated multiple times, resulting in higher
computational complexity and spatial complexity of the model. The classification methods
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of COVID-19 based on lightweight networks can reduce the number of parameters and the
computation in some degree. There are a few lightweight models which are commonly put
into use for mobile devices.

3.2. The Segmentation Methods of COVID-19 Based on Supervised Learning

Image segmentation is an essential task for analyzing medical images and obtaining
further diagnostic information in the field of medical image processing. U-net is an image
segmentation network structure with classical downsampling and upsampling, which
was proposed by Ronnerberger et al. [66]. U-net can obtain accurate segmentation results
by employing fewer training samples size. U-net locates COVID-19 lesion regions using
deep features and achieves accurate segmentation results using shallow features. This
section summarizes the U-net in COVID-19 image segmentation applications combined
with attention mechanism, multi-scale mechanism, residual connectivity mechanism and
dense connectivity mechanism, as shown in Table 3.

Table 3. COVID-19 segmentation methods based on supervised learning.

Mechanism Network Name Sample Size Results (%) Open Source (Y/N)

Attention mechanism nCoVSegNet [67] Slices: 244,537

Dice = 66.80
ESN = 70.70
SPE = 99.75
PPV = 69.77

Y

Attention mechanism CAD CNN [68] Slices: 393 Dice = 85.43
Recall = 88.10 N

Attention mechanism D2A U-Net [69] Slices: 3949 Dice = 72.98
Recall = 70.71 N

Attention mechanism DUDA-Net [70] Slices: 557

Dice = 87.06
Iou = 77.09
Acc = 99.06
Sen = 90.85

Y

Attention mechanism RefNet [71] Slices: 230 Dice = 91.37
Sen = 91.54 N

Multi-scale mechanism MSD-Net [72] Slices: 4780 Sen = 90.85
Spe = 99.59 N

Multi-scale mechanism MPS-Net [73] Slices: 300

Dice = 83.25
Sen = 84.06
Spe = 99.88
Iou = 74.20

N

Multi-scale mechanism [74] Slices: 3929 Dice = 83.25
Iou = 74.20 Y

Multi-scale mechanism COVID-SegNet [75] Slices: 165,667 Sen = 84.06
Spe = 99.88 N

Multi-scale mechanism JSC [34] Slices: 2885 Dice = 78.50 Y

Residual connectivity
mechanism ResUnet [76] Slices: 5349

Dice = 85.19
Sen = 84.66
Prec = 84.22

Y

Residual connectivity
mechanism

Backbone + Res_dil +
Attention [77] Slices: 473 Dice = 83.1 N
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Table 3. Cont.

Mechanism Network Name Sample Size Results (%) Open Source (Y/N)

Residual connectivity
mechanism MultiResUNet [78] Slices: 3520 Dice = 74.28 N

Residual connectivity
mechanism Literature [79] Slices: 100

Dsc = 94
Acc = 89
Pre = 95

N

Dense connectivity
mechanism SCOAT-Net [80] Slices: 17

DSC = 88.99
SEN = 87.85
PPV = 90.28

N

Dense connectivity
mechanism ADID-UNET [81] Slices: 1318

Dice = 80.31
Pre = 84.76
Spe = 99.66
Auc = 95.51

Y

Note: /: No information found.

It is not difficult to see the following summary from Table 3. Firstly, the methods of
U-Net combined with the attention mechanism and U-Net combined with the multiscale
mechanism were more often adopted in COVID-19 lesion segmentation. There are five
COVID-19 segmentation models based on the attention mechanism, accounting for 31.25%
of all the methods of U-Net. There are five COVID-19 segmentation models based on
a multi-scale mechanism, accounting for 31.25%. There are four COVID-19 segmenta-
tion models based on a residual connection mechanism, accounting for 25%. There are
two COVID-19 segmentation models based on the dense connection mechanism, account-
ing for 12.5%. Secondly, the CT modality datasets are used for all COVID-19 segmentation
methods of U-net, and X-ray is rarely used as a segmentation dataset. Thirdly, more
COVID-19 segmentation methods focus on research on public datasets which account for
81.81% of all the datasets. Fourthly, there are relatively few open source code resources in
terms of the models. The number of public code resources accounted for 37.5%, the number
of undisclosed code resources accounted for 62.5%.

3.2.1. The Segmentation Methods of COVID-19 Based on Attention Mechanism

The segmentation methods of COVID-19 based on the attention mechanism refer to
calculating its attention distribution based on the input information and obtaining the con-
text vector to selectively focus on the key information of the lesion region in the COVID-19
image. This method can select the information that is more critical to segmentation task
among redundant information and improve the segmentation performance by efficiently
selecting segmentation features in COVID-19 images. The attention mechanism has re-
ceived a lot of attention from researchers since it was proposed and the following work
has been done in COVID-19 segmentation lesions. Liu et al. [67] used spatial and channel
attention in U-Net to segment COVID-19 lung infections. The problem of boundary un-
clear and lesions complex was solved by making the upper and lower features combined.
Karthik et al. [68] introduced contour attention on the last two decoders to refine the in-
fected region for COVID-19 lesion segmentation. The noise inherent in the coarse contour
region is discarded by combining shape and boundary information structural features with
depth semantic feature maps. Zhao et al. [69] applied gate attention between encoder and
decoder to suppress irrelevant information noise and refine the upsampling features. Xie
et al. [70] proposed a model based on expansive attention applied between encoder and
decoder to solve the redundancy problem in high-level and low-level feature channels.
Kitrungrotsakul et al. [71] proposed an interactive attention in U-Net that emphasizes
important sensitive segmentation lesions by using residual attention.
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3.2.2. The Segmentation Methods of COVID-19 Based on Multi-scale Mechanism

The COVID-19 segmentation method based on the multi-scale mechanism refers to the
multi-scale features obtained from receptive field for COVID-19 lesion segmentation. The
multiscale feature extraction method reduces the loss of lesion edge and spatial location
information and improves segmentation performance by combining multiscale feature
receptive field information. Scale invariant features are learned without loss of information
to improve the segmentation accuracy of weak lesion and boundary. For the problems of
different sizes of COVID-19 lesions, blurred boundaries and the gaps between high and
low levels, researchers mainly carried out the following work. Zheng et al. [72] proposed a
multiscale discriminative segmentation network, MSD-Net, using pyramidal convolution
blocks to achieve multiscale sensory fields for input feature maps. Pei et al. [73] used
grouped convolution in an encoder to achieve multiscale feature extraction. Bose et al. [74]
proposed a deep multiscale segmentation network, in which the deep multiscale module
captures multi-spatial dimensional objects based on acquiring different depth feature maps.
Yan et al. [75] proposed a 3D segmentation network, COVID-SegNet, which implicitly en-
hances the contrast and adaptively adjusts intensity on the feature layer to capture effective
features of different scales. Wu et al. [34] enhanced segmentation features by aggregating
different scale feature maps from different stages to segment COVID-19 lesions.

3.2.3. The Segmentation Methods of COVID-19 Based on Residual
Connectivity Mechanism

The COVID-19 segmentation method based on the residual mechanism refers to
a feature pass by using jump connections in the network cross-layer or using residual
blocks to replace the convolutional layer for COVID-19 lesions segmentation. This method
improves the feature reuse capability by introducing residual mechanism to ensure the
back propagation of gradients and alleviate the degradation problem caused by deep
networks. Hu et al. [76] proposed a COVID-19 segmentation network using ResUnet as the
backbone to reduce the semantic gap between high and low feature maps. Zhou et al. [77]
introduced residual connections in COVID-19 lesion segmentation network of U-Net to
improve segmentation performance by integrating segmentation information from different
levels. Yang et al. [78] reduced the contextual semantic gap by concatenating the outputs
of three series of convolutional layers through residual connections in a jump connection
structure. Chen et al. [79] captured complex features from the original image to segment
COVID-19 lesions by using a topology of residual connections in U-Net to better learn
potential representation of the input CT image.

3.2.4. The Segmentation Methods of COVID-19 Based on Dense Connectivity Mechanism

The COVID-19 segmentation method based on the dense connectivity mechanism
refers to the use of dense connectivity in the network for interconnection between any
layers to achieve feature reuse for COVID-19 lesions segmentation. The use of dense
connectivity in the model can reduce the interdependence between different layers and
reduce the problem of difficult optimization due to gradient disappearance in the deep
network. Zhao et al. [80] proposed a U-Net++ COVID-19 segmentation model, SCOAT-Net,
to further reduce semantic gap and produce fine segmentation results by nesting dense
jump paths connecting. Raj et al. [81] used two dense networks instead of traditional
convolution in U-net networks to enhance global feature propagation, encourage feature
reuse and accelerate information transfer to improve segmentation accuracy.

To sum up, there are some advantages in the segmentation methods of COVID-19 based
on the attention mechanism, such as ignoring irrelevant feature information, selecting
important feature information. However, the COVID-19 segmentation model with added
attention mechanism usually has a complex model structure, and it is difficult to find a sim-
ple and lightweight segmentation model with an attention mechanism. The segmentation
methods of COVID-19 based on multi-scale mechanism are beneficial to obtain the features
of different size by combining multi-scale feature receptive fields, and thus improve the
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recognition ability of multi-scale target. However, the multi-scale mechanism may lose the
continuity features by using different scales of receptive fields. The segmentation methods
of COVID-19 based on residual connectivity mechanism are beneficial to speed-up model
gradient back propagation. Model training instability is prevented, and gradient disap-
pearance avoided. However, it lacks the ability to explore segmentation feature extraction
from the full scale. The segmentation methods of COVID-19 based on dense connectivity
mechanism are beneficial to improve the efficiency of feature information transmission,
which can better solve the problem of image detail loss and improve the segmentation
performance of the network. However, it usually has a complex network structure and a
lot of parameters in segmentation model.

4. The Methods for Semi-Supervised Learning in Diagnosis of COVID-19

The semi-supervised learning of COVID-19 images diagnosis method refers to the
samples used for model training being only partially labeled. It accomplishes the learning
task by training with unlabeled samples and labeled samples together. The advantage is it
can improve the accuracy with fewer image labeled samples and alleviate the limitations
of small samples labeled in COVID-19 datasets. This section summarizes the application
of semi-supervised learning from two aspects, which are COVID-19 images diagnosis
application based on the consistent regularization method and COVID-19 images diagnosis
application based on the self-training method.

Firstly, the consistency regularization method. Consistent regularization means that
the actual perturbation is added to unlabeled data and the output result does not change
significantly. In the consistency regularization method, the model is constrained using the
corresponding loss function to accomplish a semi-supervised learning task. Li et al. [82]
proposed a self-integrating consistent regularization method to mitigate the interference of
noisy pseudo labels to each model. The prediction of COVID-19 by moving average index
integration of unlabeled data has good performance. Li et al. [83] used a semi-supervised
bicoherent learning network in lesion segmentation of COVID-19. Image transformation
equivalence was added during training to learn representations of different inputs or
feature variants. Ding et al. [84] proposed a consistent time integration model to learn
lesion features from noisy annotated CT scans. The model robustness and segmentation
performance are improved by introducing noise perception loss in the teacher–student
architecture. Abdel et al. [85] implemented knowledge representation interaction between
two paths in a semi-supervised COVID-19 lesion segmentation network by feature reor-
ganization to overcome the infection size variation problem. Gan et al. [86] proposed a
random combination of data augmentation to improve the diversity of the dataset and the
robustness of the semi-supervised network, which can improve performance of COVID-19
images identification.

Secondly, self-training methods. The self-training method is unlike the consistent
regularization method and it does not rely on data augmentation. The self-training method
determines pseudo labeling by its own model confidence. The self-training method stops
training until the model fails to produce the most plausible prediction or all unlabeled
data are labeled. Fan et al. [87] provided a self-training based semi-supervised learning to
alleviate the shortage unlabeled data. The solution is based on a random choice strategy
that uses unlabeled data to gradually expand training dataset. Haque et al. [88] proposed a
self-training teacher–student network where the teacher model generates pseudo labels on
unlabeled X-ray images. The shortage of COVID-19 datasets is alleviated by training the
student model on the labeled and pseudo labeled datasets.

To sum up, the consistency regularization method effectively utilizes the unlabeled
data to improve the model performance and alleviate the limitations of the small sample
COVID-19 dataset. However, the accuracy and coverage of pseudo label need to be
improved. Self-training methods, such as a simple semi-supervised learning method
applied to COVID-19 diagnosis, are beneficial to alleviate the problem of the high cost
of labeling and difficult label acquisition. The disadvantages are that errors in label
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prediction early in the model are reinforced and the model has limitations in terms
of convergence.

5. The Methods for Unsupervised Learning in Diagnosis of COVID-19

The unsupervised learning diagnostic method of COVID-19 images is training the
model with unlabeled samples and the model learning from the original samples without
the help of artificially given labels or feedback as guiding information. This section sum-
marizes the unsupervised learning diagnostic method of COVID-19 in two aspects, which
are the autoencoder method from COVID-19 images diagnostic and the unsupervised
generative adversarial diagnostic method from COVID-19 images.

Firstly, the COVID-19 images diagnosis method based on autoencoder. Autoen-
coder is one of the unsupervised learning approaches, which minimizes reconstruction
errors by learning valid codes of data. The COVID-19 image diagnosis task can be
implemented by learning valid data representations from large-scale unlabeled data.
Mansour et al. [89] proposed a novel unsupervised autoencoder network model for
COVID-19 classification. Appropriate class labels are assigned to COVID-19 images by
adjusting the hyperparameters of the Inceptionv4. Rashid et al. [90] proposed a weight
initialization model using unsupervised image reconstruction. It accurately captures the
spatial features of the input image and automatically learns features from unlabeled data
automatically. Scarpiniti et al. [91] used a deep denoising convolutional autoencoder
to transform the classification task into evaluating the difference between the target
histogram and the test image histogram. The model improves classification performance
while reducing computational cost.

Secondly, an unsupervised generative adversarial diagnostic method from COVID-19
images. Generating adversarial networks is a type of unsupervised learning, which
achieves unsupervised deep learning by mapping feature vectors of samples into cor-
responding labels. The method generates target images by learning the probability
distribution of data. Zunair et al. [16] proposed to learn the mapping function be-
tween non-COVID-19 images and COVID-19 in an unsupervised learning manner to
generate COVID-19 chest X-ray images without the need for paired training samples.
Morís et al. [92] combined three complementary CycleGAN architectures to generate a set
of synthetic images with appropriate separability, using an unsupervised strategy with
oversampling to avoid bias in the classification process and generating a set of synthetic
images with appropriate separability.

To sum up, there is strong generalization capability in the COVID-19 images diag-
nosis method based on autoencoder, which can effectively utilize large-scale unlabeled
COVID-19 data. However, the model is weak in expressing the semantic information of
images and is not strong in modeling complex information. The unsupervised generative
adversarial COVID-19 diagnostic method models can easily learn the distribution of real
data without too complex modeling, but there are some disadvantages in GAN, such as
training instability, gradient disappearance and pattern collapse.

6. Challenges and Future Work

Currently, the COVID-19 assisted diagnosis system based on deep learning is im-
portant for identifying and treating COVID-19. Although deep learning methods have
been implemented and work well in COVID-19 diagnosis, there are still many challenges
that need to be addressed, as shown in Figure 6. This section summarizes four main
aspects, which are dataset aspects, model aspects, COVID-19 variant detection aspects and
cross-disciplinary knowledge aspects.
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First, the dataset aspect mainly includes dataset size, data balance and multimodal data.

Dataset size

The COVID-19 diagnostic methods based on deep learning rely heavily on large
datasets, especially different variants of the virus that cannot be easily collected in a short
time, and it is essential to build a large public high-quality multiclassification dataset.

Data balance

The COVID-19 diagnostic methods based on deep learning suffer from data imbalance.
For example, Chakraborty et al. [57] and Das et al. [58] use datasets with a data imbalance
problem, and the model will not learn the best features for accurate classification due to the
lack of positive examples. Therefore, effective and verifiable data enhancement techniques
are necessary.

Multimodal data

The COVID-19 diagnostic methods based on deep learning mostly use unimodal
images; it is also important to use multimodal datasets of COVID-19, such as X-ray and CT
images, sound and audio data, and clinical data.

Second, the model aspect mainly includes the challenges faced by classification and
segmentation model and the challenges faced by segmentation model. Among them, classi-
fication and segmentation models are faced with three challenges, which are applicability
of the model, light weight of the model, interpretability of the model and generalization
ability of model. The segmentation models are faced with two challenges, which are small
target lesions of segmentation and combining with other tasks of segmentation.

Aplicability of the model

Traditional diagnostic methods to identify COVID-19 are a risky process, deep learn-
ing method based COVID-19 diagnostics can solve this problem, although many high
performance model have been developed, many of them have not been applied to assist
in clinical diagnosis. It is a challenge to resolve the applicability issues and apply the
deep-learning-based COVID-19 diagnostic method to clinical applications.

Light weight of the model

COVID-19 detection methods mostly focus on the study of non-lightweight models,
which are difficult to deploy for smart mobile devices due to the large number of model
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parameters. Chakraborty et al. [57] propose a lightweight deep convolutional neural net-
work for COVID-19 cases screening using the chest X-ray samples. The existing lightweight
COVID-19 detection models have high requirements for mobile and hardware devices.
Therefore, how to lighten the COVID-19 detection model and reduce the requirements of
the model for hardware devices is also a hot spot for future research.

Interpretability of the model

COVID-19 diagnostics based on deep learning is an end-to-end highly nonlinear
and complex model, and the interpretability of the model is in the initial stage, which
brings some obstacles to the application of COVID-19 in real life. Therefore, it is an
important research in the future to open the black-box of the deep model and improve the
interpretability of the COVID-19 diagnostics model.

Generalization ability of model

Most COVID-19 diagnosis methods based on deep learning are verified by experimen-
tal results on a small number of limited dataset, and the results may be biased. In order to
compare the experimental results more comprehensively and fairly, it is of great practical
value and significance to make multiple experiments on different datasets to verify the
generalization ability of the model.

Small lesions segmentation

The segmentation methods of COVID-19 based on supervised learning are shown
in Table 2. Performance gains are achieved through a combination of attention mecha-
nism, multi-scale mechanism, residual connectivity mechanism and dense connectivity
mechanism. The multi-scale mechanism is used to segment the lesions of different scales.
However, the segmentation of small lesions has always been a major difficulty in medical
image segmentation. Therefore, it is very important to further study the segmentation of
small lesions in COVID-19 segmentation methods based on deep learning.

Combine it with other tasks

Most of the COVID-19 segmentation methods based on deep learning focus on using
U-Net as the backbone network, because U-Net shows good performance in medical image
segmentation tasks. However, when the network model is faced with some complex
segmentation tasks, the performance of the model may be degraded. Therefore, it is an
important research direction to realize the multi-task model by combining with other tasks,
such as detection before segmentation, and to explore and develop some more advanced
multi-task segmentation models to meet the needs of different problems.

Third, detection of new variants of COVID-19

Delta and Omicron are new variants of COVID-19 with a short incubation period,
mild symptoms, fast transmission rate and the capability to easily attack patients with low
immunity or diseases. How to detect new variants of COVID-19 provides physicians with
computer-aided diagnosis as a future research direction.

Fourth, cross disciplinary knowledge

Most researchers have a background in computer science and lack interdisciplinary
knowledge; more and more medical science knowledge and expertise are included in deep
learning based COVID-19 diagnostic methods. Therefore, the cooperation of experts from
multiple disciplines is necessary. There is an urgent need to continuously promote the
development of deep-learning-based COVID-19 medical image recognition technology.

7. Conclusions

This paper reviews the recent progress of deep learning in COVID-19 applications
from COVID-19 datasets and data enhancement methods, supervised learning in COVID-19
applications of classification methods and segmentation methods, semi-supervised learn-
ing in COVID-19 applications and unsupervised learning in COVID-19 applications. The
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challenges and future work of deep learning in COVID-19 are discussed and the conclu-
sion is given. The deep learning methods to help physicians improve COVID-19 image
diagnostic processing and processing speed make great contributions to the improvement
of medical diagnosis. This will greatly promote the progress and development of deep
learning methods in COVID-19 image diagnostics.
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1. Ahmed, S.A.A.; Yavuz, M.C.; Şen, M.U.; Gülşen, F.; Tutar, O.; Korkmazer, B. Comparison and ensemble of 2D and 3D approaches

for COVID-19 detection in CT images. Neurocomputing 2022, 488, 457–469. [CrossRef] [PubMed]
2. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 21 July 2022).
3. Gourdeau, D.; Potvin, O.; Archambault, P.; Chartrand-Lefebvre, C.; Dieumegarde, L.; Forghani, R. Tracking and predicting

COVID-19 radiological trajectory on chest X-rays using deep learning. Sci. Rep. 2022, 12, 5616. [CrossRef]
4. Song, L.; Liu, X.; Chen, S.; Liu, S.; Liu, X.; Muhammad, K. A deep fuzzy model for diagnosis of COVID-19 from CT images. Appl.

Soft. Comput. 2022, 122, 108883. [CrossRef] [PubMed]
5. Yu, G.; Sun, K.; Xu, C.; Shi, X.H.; Wu, C.; Xie, T. Accurate recognition of colorectal cancer with semi-supervised deep learning on

pathological images. Nat. Commun. 2021, 12, 6311. [CrossRef]
6. Wang, X.; Yuan, Y.; Guo, D.; Huang, X.; Cui, Y.; Xia, M. SSA-Net: Spatial self-attention network for COVID-19 pneumonia

infection segmentation with semi-supervised few-shot learning. Med. Image Anal. 2022, 79, 102459. [CrossRef]
7. Chen, H.; Jiang, Y.; Loew, M.; Ko, H. Unsupervised domain adaptation based COVID-19 CT infection segmentation network.

Appl. Intell. 2022, 52, 6340–6353. [CrossRef] [PubMed]
8. Soomro, T.A.; Zheng, L.; Afifi, A.J.; Ali, A.; Yin, M.; Gao, J. Artificial intelligence (AI) for medical imaging to combat coronavirus

disease (COVID-19): A detailed review with direction for future research. Artif. Intell. Rev. 2022, 55, 1409–1439. [CrossRef]
9. Hassan, H.; Ren, Z.; Zhou, C.; Khan, M.A.; Pan, Y.; Zhao, J.; Huang, B. Supervised and weakly supervised deep learning models

for COVID-19 CT diagnosis: A systematic review. Comput. Meth. Prog. Bio. 2022, 218, 106731. [CrossRef]
10. Subramanian, N.; Elharrouss, O.; Al-Maadeed, S.; Chowdhury, M. A review of deep learning-based detection methods for

COVID-19. Comput. Biol. Med. 2022, 143, 105233. [CrossRef]
11. Cohen, J.P.; Morrison, P.; Dao, L.; Roth, K.; Duong, T.Q.; Ghassemi, M. COVID-19 image data collection: Prospective predictions

are the future. arXiv 2020, arXiv:2006.11988.
12. Zhao, J.; Zhang, Y.; He, X.; Xie, P. Covid-ct-dataset: A ct scan dataset about COVID-19. arXiv 2020, arXiv:2003.13865.
13. Wang, L.; Lin, Z.Q.; Wong, A. Covid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases

from chest x-ray images. Sci. Rep. 2020, 10, 19549. [CrossRef] [PubMed]
14. Yamac, M.; Ahishali, M.; Degerli, A.; Kiranyaz, S.; Chowdhury, M.E.; Gabbouj, M. Convolutional sparse support estimator-based

COVID-19 recognition from X-ray images. IEEE. Trans. Neural. Netw. Learn. Syst. 2021, 32, 1810–1820. [CrossRef] [PubMed]
15. Haghanifar, A.; Majdabadi, M.M.; Choi, Y.; Deivalakshmi, S.; Ko, S. Covid-cxnet: Detecting COVID-19 in frontal chest x-ray

images using deep learning. Multimed. Tools Appl. 2022, 81, 30615–30645. [CrossRef]
16. Zunair, H.; Hamza, A.B. Synthesis of COVID-19 chest X-rays using unpaired image-to-image translation. Soc. Netw. Anal. Min.

2021, 11, 23. [CrossRef]

http://doi.org/10.1016/j.neucom.2022.02.018
http://www.ncbi.nlm.nih.gov/pubmed/35345875
https://covid19.who.int/
http://doi.org/10.1038/s41598-022-09356-w
http://doi.org/10.1016/j.asoc.2022.108883
http://www.ncbi.nlm.nih.gov/pubmed/35474916
http://doi.org/10.1038/s41467-021-26643-8
http://doi.org/10.1016/j.media.2022.102459
http://doi.org/10.1007/s10489-021-02691-x
http://www.ncbi.nlm.nih.gov/pubmed/34764618
http://doi.org/10.1007/s10462-021-09985-z
http://doi.org/10.1016/j.cmpb.2022.106731
http://doi.org/10.1016/j.compbiomed.2022.105233
http://doi.org/10.1038/s41598-020-76550-z
http://www.ncbi.nlm.nih.gov/pubmed/33177550
http://doi.org/10.1109/TNNLS.2021.3070467
http://www.ncbi.nlm.nih.gov/pubmed/33872157
http://doi.org/10.1007/s11042-022-12156-z
http://doi.org/10.1007/s13278-021-00731-5


Electronics 2023, 12, 1167 20 of 22

17. Tabik, S.; Gómez-Ríos, A.; Martín-Rodríguez, J.L.; Sevillano-García, I.; Rey-Area, M.; Charte, D. COVIDGR dataset and COVID-
SDNet methodology for predicting COVID-19 based on chest X-ray images. IEEE J. Biomed. Health 2020, 24, 3595–3605. [CrossRef]
[PubMed]

18. Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B. Can AI help in screening viral and
COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]

19. COVID-QU-Ex Dataset. Available online: https://www.kaggle.com/datasets/anasmohammedtahir/covidqu (accessed on
25 October 2021).

20. Wang, Z.; Xiao, Y.; Li, Y.; Zhang, J.; Lu, F.; Hou, M. Automatically discriminating and localizing COVID-19 from community-
acquired pneumonia on chest X-rays. Pattern Recogn. 2021, 110, 107613. [CrossRef] [PubMed]

21. Signoroni, A.; Savardi, M.; Benini, S.; Adami, N.; Leonardi, R.; Gibellini, P. BS-Net: Learning COVID-19 pneumonia severity on a
large chest X-ray dataset. Med. Image Anal. 2021, 71, 102046. [CrossRef]

22. Roy, S.; Tyagi, M.; Bansal, V.; Jain, V. SVD-CLAHE boosting and balanced loss function for COVID-19 detection from an
imbalanced Chest X-Ray dataset. Comput. Biol. Med. 2022, 150, 106092. [CrossRef]

23. Zhang, K.; Liu, X.; Shen, J.; Li, Z.; Sang, Y.; Wu, X. Clinically applicable AI system for accurate diagnosis, quantitative
measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 2020, 181, 1423–1433. [CrossRef]
[PubMed]

24. Ma, J.; Wang, Y.; An, X.; Ge, C.; Yu, Z.; Chen, J. Toward data-efficient learning: A benchmark for COVID-19 CT lung and infection
segmentation. Med. Phys. 2021, 48, 1197–1210. [CrossRef]

25. Yan, Q.; Wang, B.; Gong, D.; Luo, C.; Zhao, W.; Shen, J. COVID-19 chest CT image segmentation—A deep convolutional neural
network solution. arXiv 2020, arXiv:2004.10987.

26. Morozov, S.P.; Andreychenko, A.E.; Blokhin, I.A.; Gelezhe, P.B.; Gonchar, A.P.; Nikolaev, A.E. MosMedData: Data set of 1110
chest CT scans performed during the COVID-19 epidemic. Dig. Diag. 2020, 1, 49–59. [CrossRef]

27. Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for
SARS-CoV-2 identification. MedRxiv 2020. [CrossRef]

28. He, X.; Wang, S.; Shi, S.; Chu, X.; Tang, J.; Liu, X. Benchmarking deep learning models and automated model design for COVID-19
detection with chest CT scans. MedRxiv 2020. [CrossRef]

29. Ning, W.; Lei, S.; Yang, J.; Cao, Y.; Jiang, P.; Yang, Q. Open resource of clinical data from patients with pneumonia for the
prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng. 2020, 4, 1197–1207. [CrossRef]

30. Harmon, S.A.; Sanford, T.H.; Xu, S.; Turkbey, E.B.; Roth, H.; Xu, Z. Artificial intelligence for the detection of COVID-19 pneumonia
on chest CT using multinational datasets. Nat. Commun. 2020, 11, 4080. [CrossRef]

31. Kumar, R.; Khan, A.A.; Kumar, J.; Golilarz, N.A.; Zhang, S.; Ting, Y. Blockchain-federated-learning and deep learning models for
COVID-19 detection using CT imaging. IEEE Sens. J. 2021, 21, 16301–16314. [CrossRef]

32. Tsai, E.; Simpson, S.; Lungren, M.P.; Hershman, M.; Roshkovan, L. Medical Imaging Data Resource Center-rsna International
COVID Radiology Database Release 1a-Chest ct COVID+ (midrc-ricord-1a). Available online: https://wiki.cancerimagingarchive.
net/x/DoDTB (accessed on 10 December 2021).

33. Gunraj, H.; Sabri, A.; Koff, D.; Wong, A. COVID-Net CT-2: Enhanced deep neural networks for detection of COVID-19 from chest
CT images through bigger, more diverse learning. Front. Med. 2022, 8, 3126. [CrossRef]

34. Wu, Y.H.; Gao, S.H.; Mei, J.; Xu, J.; Fan, D.P.; Zhang, R.G. Jcs: An explainable COVID-19 diagnosis system by joint classification
and segmentation. IEEE Trans. Image Process. 2021, 30, 3113–3126. [CrossRef] [PubMed]

35. Rahimzadeh, M.; Attar, A.; Sakhaei, S.M. A fully automated deep learning-based network for detecting COVID-19 from a new
and large lung ct scan dataset. Biomed. Signal. Process. 2021, 68, 102588. [CrossRef]

36. Afshar, P.; Heidarian, S.; Enshaei, N.; Naderkhani, F.; Rafiee, M.J.; Oikonomou, A. COVID-CT-MD, COVID-19 computed
tomography scan dataset applicable in machine learning and deep learning. Sci. Data. 2021, 8, 121. [CrossRef]
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