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Deep learning is recently showing outstanding results for solving a wide variety of robotic tasks in the areas of perception, planning,
localization, and control. Its excellent capabilities for learning representations from the complex data acquired in real environments
make it extremely suitable for many kinds of autonomous robotic applications. In parallel, Unmanned Aerial Vehicles (UAVs) are
currently being extensively applied for several types of civilian tasks in applications going from security, surveillance, and disaster
rescue to parcel delivery or warehouse management. In this paper, a thorough review has been performed on recent reported uses
and applications of deep learning forUAVs, including themost relevant developments as well as their performances and limitations.
In addition, a detailed explanation of the main deep learning techniques is provided. We conclude with a description of the main
challenges for the application of deep learning for UAV-based solutions.

1. Introduction

Recent successes of deep learning techniques in solvingmany
complex tasks by learning from raw sensor data have created
a lot of excitement in the research community. However,
deep learning is not a recent technology. It started being
used back in 1971, when Ivakhnenko [1] trained an 8-layer
neural network using the Group Method of Data Handling
(GMDH) algorithm. �e term deep learning began to be
used during the 2000s, whenConvolutionalNeural Networks
(CNNs), a computational original model from the 80s [2] but
trained e	ciently in the 90s [3], were able to provide decent
results in visual object recognition tasks. At the time, datasets
were small and computers were not powerful enough, so
the performance was o�en similar to or worse than that of
classical Computer Vision algorithms. �e development of
CUDA for Nvidia GPUs which enabled over 1000 GFLOPS
per second and the publication of the ImageNet dataset,
with 1.2 million images classi�ed in 1000 categories [4], were
important facts for the popularization of CNNs with several
layers (109 to 1010 connections and 107 to 109 parameters).
�ese deep models show great performance not only in

Computer Vision tasks but also in other tasks such as
speech recognition, signal processing, and natural language
processing [5]. More details about recent advances in deep
learning can be found in [6, 7].

An evidence of the suitability of deep learning for many
kinds of autonomous robotic applications is the increasing
trend in deep learning robot related scienti�c publications
over the past decades, which is expected to continue growing
[8].

Due to the versatility, automation capabilities, and low
cost of Unmanned Aerial Vehicles (UAVs), civilian applica-
tions in diverse �elds have experienced a drastic increase
during the last years. Some examples include power line
inspection [9], wildlife conservation [10], building inspection
[11], and precision agriculture [12]. However, UAVs have
limitations in the size, weight, and power consumption of the
payload and limited range and endurance. �ese limitations
cannot be overlooked and are particularly relevant when deep
learning algorithms are required to run on board a UAV.

In this survey, we have grouped publications according
to the taxonomy proposed in Aerostack [13], which is aerial
robotics architecture consistent with the usual components
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Figure 1: Aerostack architecture, consisting of a layered structure, corresponding to the di�erent abstraction levels in an unmanned aerial
robotic system. �e architecture has been applied here to systematically classify deep learning-based algorithms available in the state of the
art which have been deployed for applications with Unmanned Aerial Vehicles.

related to perception, guidance, navigation, and control of
unmanned rotorcra� systems. �e purpose of referring to
this architecture, depicted in Figure 1, is to achieve a better
understanding about the nature of the components to the
aerial robotic systems analyzed. Using this taxonomy also
helps identify the components in which deep learning has not
been applied yet. According to Aerostack, the components
constituting an unmanned aerial robotic system can be
classi�ed into the following systems and interfaces:

(i) Hardware interfaces: this category includes interfaces
with both sensors and actuators

(ii) Motor system: the components of a motor system
are motion controllers, which typically receive com-
mands of desired values for a variable (position,
orientation, or speed).�ese desired values are trans-
lated into low-level commands that are sent to actua-
tors

(iii) Feature extraction system: feature extraction here
refers to the extraction of useful features or repre-
sentations from sensor data. �e task of most deep
learning algorithms is to learn data representations,
so feature extraction systems are somewhat inherent
to deep learning algorithms

(iv) Situational awareness system: this system includes
components that compile sensor information into
state variables regarding the robot and its envi-
ronment, pursuing environment understanding. An
example component within the situational awareness
system is SLAM algorithms

(v) Executive system: this system receives high-level
symbolic actions and generates detailed behaviour
sequences

(vi) Planning system: this type of system generates global
solutions to complex tasks bymeans of planning (e.g.,
path planning and mission planning)

(vii) Supervision system: components in the supervision
system simulate self-awareness in the sense of abil-
ity to supervise other integrated systems. We can
exemplify this type of component with an algorithm
that checks whether the robot is actually making
progress towards its goal and reacts in the presence
of problems (unexpected obstacles, faults, etc.) with
recovery actions

(viii) Communication system: the components in the com-
munication system are responsible for establishing
an adequate communication with human operators
and/or other robots

�e remainder of this paper is as follows: �rstly, Section 2
covers a description of the currently relevant and prominent
deep learning algorithms. For the sake of completeness, deep
learning algorithms have been included regardless of their
direct use in UAV applications. Section 3 presents the state
of the art in deep learning for feature extraction in UAV
applications. Section 4 surveys UAV applications of deep
learning for the development of components of planning
and situation awareness systems. Reported applications of
deep learning for motion control in UAVs are presented in
Section 5. Finally, a discussion of the main challenges for the
application of deep learning for UAVs is covered in Section 6.
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Figure 2: A generic example of a Convolutional Neural Network model. �e usual architecture alternates convolution and subsampling
layers. Fully connected neurons are used in the last layers.

2. Deep Learning in the Context of
Machine Learning

Machine Learning is a capability enabling Arti�cial Intelli-
gence (AI) systems to learn from data. A good de�nition
for what learning involves is the following: “a computer
program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its
performance at tasks in T, as measured by P, improves with
experience E” [15].�e nature of this experience E is typically
considered for classifying Machine Learning algorithms into
the following three categories: supervised, unsupervised, and
reinforcement learning:

(i) In supervised learning, algorithms are presented with
a dataset containing a collection of features. Addi-
tionally, labels or target values are provided for each
sample. �is mapping of features to labels of target
values is where the knowledge is encoded. Once it has
learned, the algorithm is expected to �nd themapping
from the features of unseen samples to their correct
labels or target values.

(ii) �e purpose in unsupervised learning is to extract
meaningful representations and explain key features
of the data. No labels or target values are necessary in
this case in order to learn from the data.

(iii) In reinforcement learning algorithms, an AI agent
interacts with a real or simulated environment. �is
interaction provides feedback between the learning
system and the interaction experience which is useful
to improve performance in the task being learned.

Deep learning algorithms are a subset of Machine Learn-
ing algorithms that typically involve learning representations
at di�erent hierarchy levels to enable building complex con-
cepts out of simpler ones.�e following paragraphs cover the
most relevant deep learning technologies currently available
in supervised, unsupervised, and reinforcement learning.

2.1. Supervised Learning. Supervised learning algorithms
learn how to associate an input with some output, given
a training set of examples of inputs and outputs [16]. �e
following paragraphs cover the most relevant algorithms

nowadays in supervised learning: Feedforward Neural Net-
works, a popular variation of these called ConvolutionalNeu-
ral Networks (CNNs), Recurrent Neural Networks (RNNs),
and a variation of RNNs called Long Short-Term Memory
(LSTM) models.

Feedforward Neural Networks, also known as Multi-
layer Perceptrons (MLPs), are the most common supervised
learning models. �eir purpose is to work as function
approximators: given a sample vector x with � features, a
trained algorithm is expected to produce an output value or
classi�cation category y that is consistent with the mapping
of inputs and outputs provided in the training set. �e
approximated function is usually built by stacking together
several hidden layers that are activated in chain to obtain
the desired output. �e number of hidden layers is usually
referred to as the depth of the model, which explains the
origin of the term deep learning: learning using models with
several layers. �ese layers are made up of neurons or units
whose activation given an input vector � ∈ R

� is given by the
following equation:

�� (�) = � (���) , (1)

where � is a vector of �weights and � is an activation function
that is usually chosen to be nonlinear. �e activation of unit
 in layer � given its � inputs (outputs of the previous layer� − 1) is given by the following equation:

��� = � (Θ�−1�0 ��−10 + Θ�−1�1 ��−11 + ⋅ ⋅ ⋅ + Θ�−1�� ��−1� ) . (2)

During the process of learning, the weights in each unit
are updated using backpropagation in order to optimize a cost
function, which generally indicates the similarity between the
desired outputs and the actual ones.

Convolutional Neural Networks (CNNs), depicted in
Figure 2, are a speci�c type of models conceived to accept 2-
dimensional input data, such as images or time series data.
�ese models take their name from the mathematical linear
operation of convolution which is always present in at least
one of the layers of the network.�emost typical convolution
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operation used in deep learning is 2D convolution of a 2-
dimensional image � with a 2-dimensional kernel �, given
by the following equation:

� (�, �) = (� ∗ �) (�, �)
= ∑
�
∑
�
� (�, �)� (� − �, � − �) . (3)

�e output of the convolution operation is usually run
through a nonlinear activation function and then further
modi�ed by means of a pooling function, which replaces
the output in a certain location with a value obtained
from nearby outputs. �is pooling function helps make the
representation learned invariant to small translations of the
input and performs subsampling of the input data. �e most
common pooling function is max pooling, which replaces
the output with themaximum activation within a rectangular
neighborhood. Convolution and pooling layers are stacked
together to achieve feature learning in a hierarchical way.
For example, when learning from images, layers closer to the
input learn low-level feature representations (i.e., edges and
corners) and those closer to the output learn higher level
representations (i.e., contours and parts of objects). Once
the features of interest have been learned, their activations
are used in �nal layers, which are usually made up of fully
connected neurons, to classify the input or perform value
regression with it.

In contrast to MLPs, Recurrent Neural Networks (RNNs)
are models in which the output is a function of not only the
current inputs but also of the previous outputs, which are
encoded into a hidden state ℎ. �is means that RNNs have
memory of the previous outputs and therefore can encode
the information present in the sequence itself, something that
MLPs cannot do. As a consequence, this type of model can
be very useful to learn from sequential data. �e memory is
encoded into an internal state and updated as indicated in the
following equation:

ℎ� = � [��� + �ℎ�−1] , (4)

where ℎ� represents the hidden state at time step �.�eweight
matrices � (input-to-hidden) and � (hidden-to-hidden)
determine the importance given to the current input and to
the previous state, respectively. �e activation is computed
with a third weight matrix� (hidden-to-output) as indicated
by the following equation:

�� = �ℎ�. (5)

RNNs are usually trained using Backpropagation
�rough Time (BPTT), an extension of backpropagation
which takes into account temporality in order to compute the
gradients. Using this method with long temporal sequences
can lead to several issues. Gradients accumulated over a
long sequence can become immeasurably large or extremely
small. �ese problems are referred to as exploding gradients
and vanishing gradients, respectively. Exploding gradients
are easier to solve, as they can be truncated or squashed,
whereas vanishing gradients can become too small for
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Figure 3: A long-short term memory model, adapted from the
original �gure in [14]. Learned weights control how data enter and
leave and are deleted through the use of gates.

networks to learn from and for the resolution of a computer
to enable its representation.

Long Short-Term Memory (LSTM) models are a type
of RNN architecture proposed in 1997 by Hochreiter and
Schmidhuber [17] which successfully overcomes the problem
of vanishing gradients by maintaining a more constant error
through the use of gated cells, which e�ectively allow for
continuous learning over a larger number of time steps. A
typical LSTM cell is depicted in Figure 3. �e input, output,
and forget gate vector activations in a standard LSTM are
given as follows:

�� = � (���� + ��ℎ�−1) ,
�� = � (�	�� + �	ℎ�−1) ,
�� = � (�
�� + �
ℎ�−1) .

(6)

�e cell state vector activation is given by the following
equation:

 � = �� ∘  �−1 + �� ∘ � (���� + ��ℎ�−1) , (7)

where ∘ represents the Hadamard product. Finally, the output
gate vector activation is given by the following equation:

ℎ� = �� ∘ � ( �) . (8)

As it has been already stated, LSTM gated cells in RNNs
have internal recurrence, besides the outer recurrence of
RNNs. Cells store an internal state, which can be written to
and read from them. �ere are gates controlling how data
enter and leave and are deleted from this cell state. �ose
gates act on the signals they receive, and, similar to a standard
neural network, they block or pass on information based on
its strength and importance using their own sets of weights.
�ose weights, as the weights thatmodulate input and hidden
states, are adjusted via the recurrent network’s learning
process. �e cells learn when to allow data to enter and leave
or be deleted through the iterative process of making guesses,
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backpropagating error, and adjusting weights via gradient
descent. �is type of model architecture allows successful
learning from long sequences, helping to capture diverse time
scales and remote dependencies. Practical aspects on the use
of LSTMs and other deep learning architectures can be found
in [18].

2.2. Unsupervised Learning. Unsupervised learning aims
towards the development of models that are capable of
extracting meaningful and high-level representations from
high-dimensional sensory unlabeled data. �is functionality
is inspired by the visual cortex which requires very small
amount of labeled data.

Deep Generative Models such as Deep Belief Networks
(DBNs) [19, 20] allow the learning of several layers of
nonlinear features in an unsupervised manner. DBNs are
built by stacking several Restricted Boltzmann Machines
(RBMs) [21, 22], resulting in a hybrid model in which the
top two layers form a RBM and the bottom layers act as a
directed graph constituting a Sigmoid Belief Network (SBN).
�e learning algorithmproposed in [19] is supposed to be one
of the �rst e	cient ways of learning DBNs by introducing
a greedy layer-by-layer training in order to obtain a deep
hierarchical model. In this greedy learning procedure, the
hidden activity patterns obtained in the current layer are used
as the “visible” data for training the RBM of the next layer.
Once the stacked RBMs have been learned and combined
to form a DBN, a �ne-tuning procedure using a contrastive
version of the wake-sleep algorithm [23] is applied.

For a better understanding, the theoretical details of
RBMs are provided in the following equations. �e energy of
a joint con�guration {k, h} can be calculated as follows:

" (k, h; �) = −∑
�∈vis

V�#� − ∑

∈hid

ℎ
�
 − ∑
�,


��
V�ℎ
, (9)

where � = {�, #, �} represent themodel parameters. k ∈ {0, 1}
are the “visible” stochastic binary units, which are connected
to the “hidden” stochastic binary units h ∈ {0, 1}. �e bias
terms are denoted by #� for the visible units and �
 for the
hidden units.

�e probability of a joint con�guration over both visible
and hidden units depends on the energy of that joint
con�guration and is given by (10), where $(�) represents the
partition function (see (11)):

% (k, h; �) = 1$ (�) exp (−" (k, h; �)) , (10)

$ (�) = ∑
k

∑
h

(exp (−" (k, h; �))) . (11)

�e probability assigned by the model to a visible vector
k can be computed as expressed in the following equation:

% (k; �) = 1$ (�)∑ℎ exp (−" (k, h; �)) . (12)

�e conditional distributions over hidden variables h and
visible variables v can be extracted using (13). Once a training

sample is presented to the model, the binary states of the
hidden variables are set to 1 with probability given by (14).
Analogously, once the binary states of the hidden variables
are computed, the binary states of the visible units are set to 1
with a probability given by (15).

% (h | k; �) = ∏


' (ℎ
 | V) ,

% (k | h; �) = ∏
�
' (V� | ℎ) , (13)

' (ℎ
 = 1 | V) = *(∑
�
��
V� + �
) , (14)

' (V� = 1 | ℎ) = *(∑


��
ℎ
 + #�) , (15)

where *(4) = 1/1 + exp(−4) is the logistic function.
For training the RBMmodel, the learning is conducted by

applying the ContrastiveDivergence algorithm [22], in which
the update rule applied to the model parameters is given by
the following equation:

Δ��
 = 7 (⟨V�ℎ
⟩data
− ⟨V�ℎ
⟩recons

) , (16)

where 7 is the learning rate, ⟨V�ℎ
⟩data represents the expected
value of the product of visible and hidden states at thermal
equilibrium, when training data is presented to the model,
and ⟨V�ℎ
⟩recons is the expected value of the product of visible
and hidden states a�er running a Gibbs chain.

Deep neural networks can also be utilized for dimen-
sionality reduction of the input data. For this purpose,
deep “autoencoders” [24, 25] have been shown to provide
successful results in a wide variety of applications such
as document retrieval [26] and image retrieval [27]. An
autoencoder (see Figure 4) is an unsupervised neural network
in which the target values are set to be equal to the inputs.
Autoencoders aremainly composed of an “encoder” network,
which transforms the input data into a low-dimensional code,
and a “decoder” network, which reconstructs the data from
the code. Training these deepmodels involvesminimizing the
error between the original data and its reconstruction. In this
process, the weights initialization is critical to avoid reaching
a bad local optimum; thus some authors have proposed a
pretrained stage based on stacked RBMs and a �ne-tuning
stage using backpropagation [24, 27]. In addition, the encoder
part of the autoencoder can serve as a good unsupervised
nonlinear feature extractor. In this �eld, the use of Stacked
Denoising Autoencoders (SDAE) [25] has been proven to
be an e�ective unsupervised feature extractor in di�erent
classi�cation problems. �e experiments presented in [25]
showed that training denoising autoencoders with higher
noise levels forced the model to extract more distinctive and
less local features.

2.3.DeepReinforcement Learning. In reinforcement learning,
an agent is de�ned to interact with an environment, seeking
to �nd the best action for each state at any step in time (see
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�e optimization methods to solve the reinforcement learning
problem are mainly categorized into value function and policy
search methods.

Figure 5). �e agent must balance exploration and exploita-
tion of the state space in order to �nd the optimal policy
that maximizes the accumulated reward from the interaction
with the environment. In this context, an agent modi�es
its behaviour or policy with the awareness of the states,
actions taken, and rewards for every time step. Reinforcement
learning composes an optimization process throughout the
whole state space in order to maximize the accumulated
reward. Robotic problems are o�en task-based with temporal
structure.�ese types of problems are suitable to be solved by
means of a reinforcement learning framework [28].

�e standard reinforcement learning theory states that an
agent is able to obtain a policy, which maps every state > ∈ S

to an action � ∈ A, where S is the state space (possible states
of the agent in the environment) and A is the �nite action
space. �e inner dynamics of the agent are represented by
the transition probability model '(>�+1 | >�, ��) at time �. �e
policy can be stochastic ?(� | >), with a probability associated
with each possible action, or deterministic ?(>). In each time
step, the policy determines the action to be chosen and the
reward @(>�, ��) is observed from the environment.�e goal of
the agent is to maximize the accumulated discounted rewardA� = ∑��=� C�−�@(>�, ��) from a state at time � to time D (D = ∞
for in�nite horizon problems) [29]. �e discount factor C is
de�ned to allocate di�erent weights for the future rewards.

For a speci�c policy ?, the value function �� in (17)
is a representation of the expectation of the accumulated
discounted reward A� for each state > ∈ S (assuming a
deterministic policy ?(>�)):

�� (>�) = E [A� | >�, �� = ? (>�)] . (17)

An equivalent of the value function is represented by the
action-value function F� in (18) for every action-state pair(>�, ��):

F� (>�, ��) = @ (>�, ��) + C∑
��+1

' (>�+1 | >�, ��) �� (>�+1) . (18)

�e optimal policy ?∗ shall be the one that maximizes the
value function (or equivalently the action-value function), as
in the following equation:

?∗ = argmax
�

�� (>�) . (19)

A general problem in real robotic applications is that the
state and action spaces are o�en continuous spaces. A con-
tinuous state and/or action space can make the optimization
problem intractable, due to the overwhelming set of di�erent
states and/or actions. As a general framework for representa-
tion, reinforcement learning methods are enhanced through
deep learning to aid the design for feature representation,
which is known as deep reinforcement learning. Reinforce-
ment learning and optimal control aim at �nding the optimal
policy ?∗ by means of several methods. �e optimal solution
can be searched in this original primal problem, or the dual
formulation �∗, F∗ can be the optimization objective. In
this review, deep reinforcement learningmethods are divided
into two main categories: value function and policy search
methods.

2.3.1. Value Function Methods. �ese methods seek to �nd
optimal �∗, F∗, from which the optimal policy ?∗ in (20)
is directly derived. F-learning approaches are based on the
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optimization of the action-value function F, based on the
Bellman Optimality Equation [29] for F (see (21)):

?∗ = argmax
��

F∗ (>�, ��) , (20)

F∗ (>�, ��) = E [@ (>�, ��) + Cmax��+1
F (>�+1, ��+1)] . (21)

Deep F-Network (DQN) [30, 31] method estimates the
action-value function (see (22)) by means of a CNN model
with a set of weights � as F∗(>, �) ≈ F(>, �; �):

F∗� (>�, ��) = J�
= E [@ (>�, ��) + Cmax��+1

F (>�+1, ��+1; ��−1) | >�, ��] . (22)

�e CNN can be trained by minimizing a sequence of
loss functions K �(��) which are optimized in each iteration �
as shown in the following equation:

K � (��) = E [(J� − F (>�, ��; ��))2] . (23)

�e state > of the DQN algorithm is the raw image and
it has been widely tested with Atari games [31]. DQN is not
designed for continuous tasks; thus this method may �nd
di	culties approaching some robotics problems previously
solved by continuous control. Continuous F-learning with
Normalized Advantage Functions (NAF) overcomes this
issue by the use of a neural network that separately outputs
a value function �(�) and an advantage term N(�, O), which
is parametrized as a quadratic function of nonlinear features

[32]. �ese two functions compose �nal F(�, O | ��), given
by the following equation:

F(�, O | ��) = N (�, O | ��) + � (� | ��) (24)

with � being the state, O being the action, and ��, ��, and�� being the sets of weights of F, N, and � functions,
respectively. �is representation allows simplifying more
standard actor-critic style algorithms, while preserving the
bene�ts of nonlinear value function approximation [32]. NAF
is valid for continuous control tasks and takes advantage of
trainedmodels to approximate the standardmodel-free value
function.

2.3.2. Policy Search Methods. Policy-based reinforcement
learning methods aim towards directly searching for the
optimal policy ?∗, which provides a feasible framework
for continuous control. Deep Deterministic Policy Gradient
(DDPG) [33] is based on the actor-critic paradigm [29], with
two neural networks to approximate a greedy deterministic
policy (actor) and F function (critic). �e actor network is
updated by applying the chain rule to the expected return
from the start distribution P with respect to the actor
parameters (see (25)):

Q��P ≈ E��∼�� [Q��F(>, � | ��)RRRRR�=�� ,�=�(��|��)] . (25)

DDPG method learns with an average factor of 20 times
fewer experience steps than DQN [33]. Both DDPG and
DQN require large samples datasets, since they are model-
free algorithms. RegardingDNN-basedGuided Policy Search
(DNN-based GPS) [34] method, it learns to map from the
tuple raw visual information and joint states directly to
joint torques. Compared to the previous works, it managed
to perform high-dimensional control, even from imperfect
sensor data. DNN-based GPS has been widely applied to
robotic control, from manipulation to navigation tasks [35,
36].

3. Deep Learning for Feature Extraction

�emain objective of feature extraction systems is to extract
representative features from the raw measurements provided
by sensors on board a UAV.

3.1.With Image Sensors. Deep learning techniques for feature
extraction using image sensors have been applied over a wide
range of applications using di�erent imaging technologies
(e.g., monocular RGB camera, RGB-D sensors, infrared,
etc.). Despite the wide variety of sensors utilized for image
processing, main deep learning feature extractors are based
on CNNs [67]. As explained in Section 2.1, CNN models
consist of several stacked convolution and pooling layers.
�e convolution layers are responsible for extracting features
from the data by convolving the input image with learned �l-
ters, while pooling layers provide a dimensionality reduction
over previous convolution layers.

In the robotics �eld, feature extraction systems based on
CNNmodels have beenmainly applied for object recognition
[42–48] and scene classi�cation [51–54]. Concerning the
object recognition task, recent advances have integrated
object detection solutions by means of bounding box regres-
sion and object classi�cation capabilities within the same
CNN model [42–44]. Unsupervised feature learning for
object recognition was applied in [68], making fewer require-
ments on manually labeled training data, the obtainment
of which can be an extremely time-consuming and costly
process. Regarding the scene classi�cation problem, recent
advances have focused on learning e	cient and global image
representations from the convolutional and fully connected
layers frompretrainedCNNs in order to obtain representative
image features [53]. In [52], it was also shown that the
learned features obtained from pretrained CNNmodels were
able to generalize properly even in substantially di�erent
domains for those in which they were trained, such as the
classi�cation of aerial images. Scene classi�cation on board a
Parrot AR.Drone quadrotor was also presented in [40], where
a 10-layered CNNwas utilized for classifying the input image
of a forest trail into three classes, each of which represented
the action to be taken in order to maintain the aerial robot on
the trail (turn le�, go straight, and turn right).

Nowadays, object recognition and scene classi�cation
from aerial imagery using deep learning techniques have
also acquired a relevant role in agriculture applications. In
these kinds of applications, UAVs provide a low-cost platform
for aerial image acquisition, while deep learned features
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are mainly utilized for plant counting and identi�cation.
Several applications have used deep learning techniques for
this purpose [12, 49, 50, 55, 56], providing robust systems
for monitoring the state of the crops in order to maximize
their productivity. In [55], a sparse autoencoder was utilized
for unsupervised feature learning in order to perform weed
classi�cation from images taken by a multirotor UAV. In
[56], a hybrid neural network for crop classi�cation amongst
23 classes was proposed. �e hybrid network consisted
of the combination of a Feedforward Neural Network for
histogram information management and a CNN. In [49],
the well-known AlexNet CNN architecture proposed in [69]
was utilized in combination with a sliding window object
proposal technique for palm tree detection and counting.
Other similar approaches have focused on weed scouting
using a CNNmodel for weed speci�es classi�cation [12].

Deep learning techniques applied on images taken from
UAVs have also gained a lot of importance in monitor-
ing and search and rescue applications, such as jelly�sh
monitoring [70], road tra	c monitoring from UAVs [71],
assisting avalanche search and rescue operations with UAV
imagery [72], and terrorist identi�cation [73]. In [72, 73],
the use of pretrained CNN models for feature extraction is
worth noting again. In both cases, the well-known Inception
model [74] was used. In [72], the Inception model was
utilized with a Support Vector Machine (SVM) classi�er for
detecting possible survivors, while in [73], a transfer-learning
technique was used to �ne-tune the Inception network in
order to detect possible terrorists.

Most of the presented approaches, especially in the �eld of
object recognition, require the use of GPUs for dealing with
real-time constraints. In this sense, the state-of-the-art object
recognition systems are based on the approaches presented in
[46, 47], in which the object recognizer is able to run at rates
from 40 to 90 frames per second on an Nvidia GeForce GTX
Titan X.

Despite the good results provided by the aforementioned
systems, UAV constraints such as endurance, weight, and
payload require the development of speci�c hardware and
so�ware solutions for being embedded on board a UAV.
Taking these limitations into account, only few systems in the
literature have embedded feature extraction algorithms using
deep learning processed by GPU technology on board a UAV.
In [75], the problem of automatic detection, localization,
and classi�cation (ADLC) of plywood targets was addressed.
�e solution consisted of a cascade of classi�ers based on
CNN models trained on an Nvidia Titan X and applied over
24M-pixel RGB images processed by an Nvidia Jetson TK1
mounted on board a �xed-wing UAV. �e ADLC algorithm
was processed by combining the CPU cores for the detection
stage, allowing the GPU to focus on the classi�cation tasks.

3.2. With Other Sensors. Most of the presented workload
using deep learning in the literature has been applied to
data capture by image sensors due to the consolidated
results obtained using CNNmodels. However, deep learning
techniques cover a wide range of applications and can be
used in conjunction with sensors other than cameras, such
as acoustic, radar, and laser sensors.

Deep learning techniques for UAVs have been utilized for
acoustic data recognition [64, 65]. In [64], a Partially Shared
Deep Neural Network (PS-DNN) was proposed to deal with
the problem of sound source separation and identi�cation
using partially annotated data. For this purpose, the PS-DNN
is composed of two partially overlapped subnetworks: one
regression network for sound source separation and one clas-
si�cation network responsible for the sound identi�cation.
�e objective of the regression network for sound source
separation is to improve the network training for sound
source classi�cation by providing a cleaner sound signal.
Results showed that PS-DNN model worked reasonably well
for people’s voice identi�cation in disastrous situations. �e
data was collected using a microphone array on board a
Parrot Bebop UAV.

In [65], the problem of UAVs identi�cation based on
their speci�c sound was addressed by using a bidirectional
LSTM-RNN with 3 layers and 300 LSTM blocks. �is model
exhibited the best performance amongst other 2 preselected
models, namely, Gaussian Mixture Models (GMM) and
CNN.

Concerning the radar technology and despite the fact that
radar data has not been widely addressed using deep learning
techniques for UAVs in the literature, the recent advances
presented in [62] are worth mentioning. In this paper, the
spectral correlation function (SCF) was captured using a
2.4GHz Doppler radar sensor that was utilized in order
to detect and classify micro-UAVs amongst 3 prede�ned
classes. �e model utilized for this purpose was based on a
semisupervised DBN trained with the SCF data.

Regarding laser technology, in [66], a novel strategy
for detecting safe landing areas based on the point clouds
captured from a LIDAR sensor mounted on a helicopter
was proposed. In this paper, subvolumes of 1m3 from a
volumetric density map constructed from the original point
cloud were used as input to a 3D CNN which was trained
to predict the probability of the evaluated area as being a
safe landing zone. Several CNN models consisting of one or
two convolutional layers were evaluated over synthetic and
semisynthetic datasets, showing in both cases good results
when using a 3D CNNmodel with two convolutional layers.

4. Deep Learning for Planning and
Situational Awareness

Several deep learning developments have been reported for
tasks related to UAV planning and situational awareness.
Planning tasks refer to the generation of solutions for com-
plex problems without having to hand-code the environment
model or the robot’s skills or strategies into a reactive con-
troller. Planning is required in the presence of unstructured,
dynamic environments or when there is diversity in the
scope and/or the robot’s tasks. Typical tasks include path,
motion, navigation, or manipulation planning. Situational
awareness tasks allow robots to have knowledge about their
own state and their environment’s state. Some examples of
this kind of tasks are robot state estimation, self-localization,
and mapping.
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4.1. Planning. Path planning for collaborative search and
rescue missions with deep learning-based exploration is
presented in [57].�is work, where a UAV explores andmaps
the environment trying to �nd a traversable path for a ground
robot, focuses on minimizing overall deployment time (i.e.,
both exploration and path traversal). In order to map the
terrain and �nd a traversable path, a CNN is proposed for
terrain classi�cation. Instead of using a pretrained CNN,
training is done on the spot, allowing training the classi�er
on demand with the terrain present at the disaster site [58].
However, the model takes around 15 minutes to train.

4.2. Situational Awareness. Cross-view localization of images
is achieved with the help of deep learning in [59]. Although
the work is presented as a solution for UAV localization, no
UAVs were used for image collection and the experiments
were based on ground-level images only. �e approach is
based on mining a library of raw image data to �nd nearest
neighbor visual features (i.e., landmarks) which are then
matched with the features extracted from an input query
image. A pretrained CNN is used to extract features for
matching veri�cation purposes, and although the approach
is said to have low computational complexity, authors do not
provide details about retrieval time.

Ground-level query images are matched to a reference
database of aerial images in [60]. Deep learning is applied
here to reduce the wide baseline and appearance variations
between both ground-level and aerial images. A pair-based
network structure is proposed to learn deep representations
from data for distinguishing matched and unmatched cross-
view image pairs. Even though the training procedure in the
reported experiments took 4 days, the use of fast algorithms
such as locality-sensitive hashing allowed for real-time cross-
view matching at city scale. �e main limitation of their
approach is the need to estimate scale, orientation, and
dominant depth at test time for ground-level queries.

In [61], a CNN is proposed to generate control actions
(the permitted turns for a UAV) given an image captured
on board and a global motion plan. �is global motion plan
indicates the actions to take given a position on the map
by means of a potential function. �e purpose of the CNN
is to learn the mapping from images to position-dependent
actions. �e process would be equivalent to perform image
registration and then generate the control actions given the
global motion plan but this behaviour is here learnt to
be e	ciently encoded in a CNN, demonstrating superior
results to classical image registration techniques. However,
no tests on real UAV were carried out and no information is
provided about execution time, which might complicate the
deployment for a real UAV application.

As seen from the presented works, developments in
planning and situational awareness with deep learning for
UAVs are still quite rudimentary.�epath planning approach
presented is limited to small-scale disaster sites and the
di�erent localization and mapping approaches are still slow
and have little accuracy for real UAV applications.

5. Deep Learning for Motion Control

Deep learning techniques for motion control have been
recently involved in several scienti�c researches. Classic con-
trol has solved diverse robotic control problems in a precise
and analytic manner, allowing robots to perform complex
maneuvers. Nevertheless, standard control theory only solves
the problem for a speci�c case and for an approximated robot
model, not being able to easily adapt to changes in the robot
model and/or to hostile environments (e.g., a propeller on
a UAV gets damaged, wind gusts, and rain). In this context,
learning from experience is amatter of importancewhich can
overcome numerous stated limitations.

As a key advantage, deep learning methods are able to
properly generalize with certain sets of labelled input data.
Deep learning allows inferring a pattern from raw inputs,
such as images and LIDAR sensor data which can lead to
proper behaviour even in unknown situations. Concerning
the UAV indoor navigation task, recent advances have led
to a successful application of CNNs in order to map images
to high-level behaviour directives (e.g., turn le�, turn right,
rotate le�, and rotate right) [38, 39]. In [38], F function is
estimated through a CNN, which is trained in simulation and
successfully tested in real experiments. In [39], actions are
directly mapped from raw images. In all stated methods, the
learned model is run o� board, usually taking advantage of a
GPU in an external laptop.

With regard to UAV navigation in unstructured envi-
ronments, some studies have focused on cluttered natural
scenarios, such as dense forests or trails [40]. In [40], a DNN
model was trained to map image to action probabilities (turn
le�, go straight, or turn right) with a �nal so	max layer
and tested on board by means of an ODROID-U3 processor.
�e performance of two automated methods, SVM and the
method proposed in [76], is latterly compared to that of two
human observers.

In [37], navigable areas are predicted from a disparity
image in the form of up to three bounding boxes. �e center
of the biggest bounding box found is selected as the next
waypoint. Using this strategy, UAV �ights are successfully
performed.�emain drawback is the requirement to send the
disparity images to a host device where all computations are
made.�e whole pipeline for the UAV horizontal translation,
disparity map generation, and waypoint selection takes about
1.3 seconds which makes navigation still quite slow for real
applications. On the other hand, low-level motion control
is challenging, since tackling with continuous and multi-
variable action spaces can become an intractable problem.
Nevertheless, recent works have proposed novel methods to
learn low-level control policies from imperfect sensor data
in simulation [41, 63]. In [63], a Model Predictive Controller
(MPC) was used to generate data at training time in order
to train a DNN policy, which was allowed to access only raw
observations from the UAV onboard sensors. In testing time,
the UAV was able to follow an obstacle-free trajectory even
in unknown situations. In [41], the well-known Inception v3
model (pretrained CNN) was adapted in order to enable the
�nal layer to provide six action nodes (three transitions and
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Table 1: Deep learning-based UAV applications grouped by learning algorithms and application �elds.

Learning type Algorithm Tasks Field of application References

Supervised CNN

Outdoor navigation
Navigation

[37–39]

Indoor navigation [40, 41]

Object recognition Generic
[42–45]

[46–48]

Object recognition Agriculture [49, 50]

Scene classi�cation Generic [51–54]

Scene classi�cation Agriculture [55, 56]

Path planning Search & rescue [57, 58]

Image registration
Localization

[59–61]
Navigation

Unsupervised
Autoencoder Feature extraction Agriculture [55]

DBN Feature extraction UAV identi�cation [62]

Reinforcement

DQN — — —

DDPG — — —

NAF — — —

GPS Indoor navigation Navigation [63]

three orientations). A�er retraining, the UAV managed to
cross a room �lled with a few obstacles in random locations.

Deep learning techniques for robotic motion control
can provide increasing bene�ts in order to infer com-
plex behaviours from raw observation data. Deep learning
approaches have the potential of generalization, with the
limitations of current methods which have to overcome the
di	culties of continuous state and action spaces, as well as
issues related to the samples e	ciency. Furthermore, novel
deep learning models require the usage of GPUs in order
to work in real time. In this context, onboard GPUs, Field
Programmable Gate Arrays (FPGAs), or Application-Speci�c
Integrated Circuits (ASICs) are amatter of importance which
hardware manufacturers shall take into consideration.

6. Discussion

Deep learning has arisen as a promising set of technologies
to the current demands for highly autonomous UAV opera-
tions, due to its excellent capabilities for learning high-level
representations from raw sensor data. Multiple success cases
have been reported (Tables 1 and 2) in a wide variety of
applications.

A straightforward conclusion from the surveyed articles
is that images acquired from UAVs are currently the prevail-
ing type of information being exploited by deep learning,
mainly due to the low cost, low weight, and low power
consumption of image sensors. �is noticeable fact explains
the dominance of CNNs among the deep learning algorithms
used in UAV applications, given the excellent capabilities of
CNNs in extracting useful information from images.

However, deep learning techniques, UAV technology, and
the combined use of both still present several challenges,
which are preventing faster and further advances in this �eld.

Challenges in Deep Learning. Deep learning techniques are
still facing several challenges, beginning with their own
theoretical understanding. An example of this is the lack
of knowledge about the geometry of the objective function
in deep neural networks or why certain architectures work
better than others. Furthermore, a lot of e�ort is currently
being put in �nding e	cient ways to do unsupervised
learning, since collecting large amounts of unlabeled data is
nowadays becoming economically and technologically less
expensive. Success in this objective will allow algorithms to
learn how the world works by simply observing it, as we
humans do.

Additionally, as mentioned in Section 2.3, real-world
problems that usually involve high-dimensional continuous
state spaces (large number of states and/or actions) can turn
the problem intractable with current approaches, severely
limiting the development of real applications. An e	cient
way for coping with these types of problems remains as an
unsolved challenge.

Challenges in UAV Autonomy. UAV autonomous operations,
enabling safe navigation with little or no human super-
vision, are currently key for the development of several
civilian and military applications. However, UAV platforms
still have important �ight endurance limitations, restricting
size, weight, and power consumption of the payload. �ese
limitations arise mainly from the current state of sensor and
battery technology and limit the required capabilities for
autonomous operations. Undoubtedly, we will see develop-
ments in these areas in the forthcoming years.

Furthermore, onboard processing is desired for many
UAV operations, especially those where communications can
compromise performance, such as when large amounts of
data have to be transmitted and/or when there is limited
bandwidth available. Today, the design of powerful minia-
turized computing devices with low-power consumption,
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Table 2: Deep learning-based UAV applications grouped by the type of system within an unmanned aerial systems architecture, the sensor
technologies, and the type of learning algorithms: supervised (S), unsupervised (�), and reinforcement (A).
Aerial robot systems Sensing technologies Learning algorithms References

Feature extraction

Image S [42–45]

[46–48]

[51–54]

Image S, � [55]

Acoustic S [64, 65]

Radar S, � [62]

LIDAR S [66]

Planning Image S [57, 58]

Situational awareness Image S [59–61]

Motion control
Image S [38–41]

LIDAR A [63]

particularly GPUs, is an active working �eld for embedded
hardware developers.

Challenges in Deep Learning-Based UAV Applications. �is
review reveals that, within the architecture of an unmanned
aerial system, feature extraction systems are the type of
systems in which deep learning algorithms have been more
widely applied. �is is reasonable given the excellent abilities
of deep learning to learn data representations from raw sensor
data. Systems regarding higher-level abstractions, such as
UAV supervision and planning systems, have so far obtained
little regard from the research community. �ese systems
implement complex behaviours that have to be learned
and where the application of supervised learning (e.g., the
generation of labelled datasets) is complex.

Nevertheless, systems operating at lower levels of abstrac-
tion, such as feature extraction systems, still demand great
computational resources. �ese resources are still hard to
integrate on boardUAVs, requiring powerful communication
capabilities and o�-board processing. Furthermore, available
computational resources are in most cases not compati-
ble with online processing, limiting the applications where
reactive behaviours are necessary. �is again imposes the
aforementioned challenge of developing embedded hardware
technology advances but should also encourage researchers
to design more e	cient deep learning architectures.
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