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Fig. 1. Evolution of speech processing models over the years.

The field of speech processing has undergone a transformative shift with the advent of deep learning. The
use of multiple processing layers has enabled the creation of models capable of extracting intricate features
from speech data. This development has paved the way for unparalleled advancements in speech recognition,
text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance
of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues
for research and innovation in the field of speech processing, with far-reaching implications for a range of
industries and applications. This review paper provides a comprehensive overview of the key deep learning
models and their applications in speech-processing tasks. We begin by tracing the evolution of speech
processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep
learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize
the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore,
we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and
describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we
discuss the challenges and future directions of deep learning in speech processing, including the need for more
parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing.
By examining the field’s evolution, comparing and contrasting different approaches, and highlighting future
directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field.
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1 Introduction
Humans employ language as a means to effectively convey their emotions and sentiments. Language
encompasses a collection of words forming a vocabulary, accompanied by grammar, which dictates
the appropriate usage of these words. It manifests in various forms, including written text, sign
language, and spoken communication. Speech, specifically, entails the utilization of phonetic
combinations of consonant and vowel sounds to articulate words from the vocabulary. Phonetics,
in turn, pertains to the production and perception of sounds by individuals. Through speech,
individuals are able to express themselves and convey meaning in their chosen language.
Speech processing is a field dedicated to the study and application of methods for analyzing

and manipulating speech signals. It encompasses a range of tasks, including automatic speech
recognition (ASR) [390, 628], speaker recognition (SR) [31], and speech synthesis or text-to-speech
[396]. In recent years, speech processing has garnered increasing significance due to its diverse
applications in areas such as telecommunications, healthcare, and entertainment. Notably, statistical
modeling techniques, particularly Hidden Markov Models (HMMs), have played a pivotal role in
advancing the field [149, 442]. These models have paved the way for significant advancements and
breakthroughs in speech processing research and development.
Over the past few years, the field of speech processing has been transformed by introducing

powerful tools, including deep learning. Figure 1 illustrates the evolution of speech processing
models over the years, the rapid development of deep learning architecture for speech processing
reflects the growing complexity and diversity of the field. This technology has revolutionized
the analysis and processing of speech signals using deep neural networks (DNNs), convolutional
neural networks (CNNs), and recurrent neural networks (RNNs). These architectures have proven
highly effective in various speech-processing applications, such as speech recognition, speaker
recognition, and speech synthesis. This study comprehensively overviews the most critical and
emerging deep-learning techniques and their potential applications in various speech-processing
tasks.
Deep learning has revolutionized speech processing by its ability to automatically learn mean-

ingful features from raw speech signals, eliminating the need for manual feature engineering. This
breakthrough has led to significant advancements in speech processing performance, particularly
in challenging scenarios involving noise, as well as diverse accents and dialects. By leveraging the
power of deep neural networks, speech processing systems can now adapt and generalize more
effectively, resulting in improved accuracy and robustness in various applications. The inherent
capability of deep learning to extract intricate patterns and representations from speech data has
opened up new possibilities for tackling real-world speech processing challenges.
Deep learning architectures have emerged as powerful tools in speech processing, offering

remarkable improvements in various tasks. Pioneering studies, such as [185], have demonstrated
the substantial gains achieved by deep neural networks (DNNs) in speech recognition accuracy
compared to traditional HMM-based systems. Complementing this, research in [3] showcased the
effectiveness of convolutional neural networks (CNNs) for speech recognition. Moreover, recurrent
neural networks (RNNs) have proven their efficacy in both speech recognition and synthesis,
as highlighted in [161]. Recent advancements in deep learning have further enhanced speech
processing systems, with attention mechanisms [85] and transformers [554] playing significant
roles. Attention mechanisms enable the model to focus on salient sections of the input signal, while
transformers facilitate modeling long-range dependencies within the signal. These developments
have led to substantial improvements in the performance and versatility of speech processing
systems, unlocking new possibilities for applications in diverse domains.
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Although deep learning has made remarkable progress in speech processing, it still faces certain
challenges that need to be addressed. These challenges include the requirement for substantial
amounts of labeled data, the interpretability of the models, and their robustness to different
environmental conditions. To provide a comprehensive understanding of the advancements in
this domain, this paper presents an extensive overview of deep learning architectures employed
in speech-processing applications. Speech processing encompasses the analysis, synthesis, and
recognition of speech signals, and the integration of deep learning techniques has led to significant
advancements in these areas. By examining the current state-of-the-art approaches, this paper
aims to shed light on the potential of deep learning for tackling the existing challenges and further
advancing speech processing research.
The paper provides a comprehensive exploration of deep-learning architectures in the field of

speech processing. It begins by establishing the background, encompassing the definition of speech
signals, speech features, and traditional non-neural models. Subsequently, the focus shifts towards
an in-depth examination of various deep-learning architectures specifically tailored for speech
processing, including RNNs, CNNs, Transformers, GNNs, and diffusion models. Recognizing the
significance of representation learning techniques in this domain, the survey paper dedicates a
dedicated section to their exploration.

Moving forward, the paper delves into an extensive range of speech processing tasks where deep
learning has demonstrated substantial advancements. These tasks encompass critical areas such
as speech recognition, speech synthesis, speaker recognition, speech-to-speech translation, and
speech synthesis. By thoroughly analyzing the fundamentals, model architectures, and specific
tasks within the field, the paper then progresses to discuss advanced transfer learning techniques,
including domain adaptation, meta-learning, and parameter-efficient transfer learning.

Finally, in the conclusion, the paper reflects on the current state of the field and identifies potential
future directions. By considering emerging trends and novel approaches, the paper aims to shed
light on the evolving landscape of deep learning in speech processing and provide insights into
promising avenues for further research and development.

Why this paper?. Deep learning has become a powerful tool in speech processing because it
automatically learns high-level representations of speech signals from raw audio data. As a result,
significant advancements have been made in various speech-processing tasks, including speech
recognition, speaker identification, speech synthesis, and more. These tasks are essential in various
applications, such as human-computer interaction, speech-based search, and assistive technology
for people with speech impairments. For example, virtual assistants like Siri and Alexa use speech
recognition technology, while audiobooks and in-car navigation systems rely on text-to-speech
systems.

Given the wide range of applications and the rapidly evolving nature of deep learning, a compre-
hensive review paper that surveys the current state-of-the-art techniques and their applications in
speech processing is necessary. Such a paper can help researchers and practitioners stay up-to-
date with the latest developments and trends and provide insights into potential areas for future
research. However, to the best of our knowledge, no current work covers a broad spectrum of
speech-processing tasks.
A review paper on deep learning for speech processing can also be a valuable resource for

beginners interested in learning about the field. It can provide an overview of the fundamental
concepts and techniques used in deep learning for speech processing and help them gain a deeper
understanding of the field. While some survey papers focus on specific speech-processing tasks
such as speech recognition, a broad survey would cover a wide range of other tasks such as speaker
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recognition speech synthesis, and more. A broad survey would highlight the commonalities and
differences between these tasks and provide a comprehensive view of the advancements made in
the field.

2 Background
Before moving on to deep neural architectures, we discuss basic terms used in speech processing,
low-level representations of speech signals, and traditional models used in the field.

2.1 Speech Signals
Signal processing is a fundamental discipline that encompasses the study of quantities that exhibit
variations in space or time. In the realm of signal processing, a quantity exhibiting spatial or
temporal variations is commonly referred to as a signal. Specifically, sound signals are defined
as variations in air pressure. Consequently, a speech signal is identified as a type of sound signal,
namely pressure variations, generated by humans to facilitate spoken communication. Transducers
play a vital role in converting these signals from one form, such as air pressure, to another form,
typically an electrical signal.

In signal processing, a signal that repetitively manifests after a fixed duration, known as a period,
is classified as periodic. The reciprocal of this period represents the frequency of the signal. The
waveform of a periodic signal defines its shape and concurrently determines its timbre, which
pertains to the subjective perception of sound quality by humans. To facilitate the processing
of speech, speech signals are commonly digitized. This entails converting them into a series of
numerical values by measuring the signal’s amplitude at consistent time intervals. The sampling
rate, defined by the number of samples collected per second, determines the granularity of this
digitization process.

2.2 Speech Features
Speech features are numerical representations of speech signals that are used for analysis, recog-
nition, and synthesis. Broadly, speech signals can be classified into two categories: time-domain
features and frequency-domain features.
Time-domain features are derived directly from the amplitude of the speech signal over time.

These are simple to compute and often used in real-time speech-processing applications. Some
common time-domain features include:
• Energy: Energy is a quantitative measure of the amplitude characteristics of a speech
signal over time. It is computed by squaring each sample in the signal and summing them
within a specific time window. This captures the overall strength and dynamics of the
signal, revealing temporal variations in intensity. The energy measure provides insights into
segments with higher or lower amplitudes, aiding in speech recognition, audio segmentation,
and speaker diarization. It also helps identify events and transitions indicative of changes
in vocal activity. By quantifying amplitude variations, energy analysis contributes to a
comprehensive understanding of speech signals and their acoustic properties.
• Zero-crossing rate: The zero-crossing rate indicates how frequently the speech signal crosses

the zero-axis within a defined time frame. It is computed by counting the number of polarity
changes in the signal during a specific window.
• Pitch: Pitch refers to the perceived tonal quality in a speaker’s voice, which is determined
by analyzing the fundamental frequency of the speech signal. The fundamental frequency
can be estimated through the application of pitch detection algorithms [441] or by utilizing
autocorrelation techniques [527].
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• Linear predictive coding (LPC):Linear Predictive Coding (LPC) is a powerful technique
that represents the speech signal as a linear combination of past samples, employing an
autoregressive model. The estimation of model parameters is accomplished throughmethods
like the Levinson-Durbin algorithm [54]. The obtained coefficients serve as a valuable feature
representation for various speech-processing tasks.

Frequency-domain features are derived from the signal represented in the frequency domain
also known as its spectrum. A spectrum captures the distribution of energy as a function of
frequency. Spectrograms are two-dimensional visual representations capturing the variations in a
signal’s spectrum over time. When compared against time-domain features, it is generally more
complex to compute frequency-domain features as they tend to involve time-frequency transform
operations such as Fourier transform.
• Mel-spectrogram: A Mel spectrogram, also known as a Mel-frequency spectrogram or

Melspectrogram, is a representation of the short-term power spectrum of a sound signal. It
is widely used in audio signal processing and speech recognition tasks. It is obtained by
converting the power spectrum of a speech signal into a mel-scale, which is a perceptual
scale of pitches based on the human auditory system’s response to different frequencies.
The mel-scale divides the frequency range into a set of mel-frequency bands, with higher
resolution in the lower frequencies and coarser resolution in the higher frequencies. This
scale is designed to mimic the non-linear frequency perception of human hearing. To
compute the Melspectrogram, the speech signal is typically divided into short overlapping
frames. For each frame, the Fast Fourier Transform (FFT) is applied to obtain the power
spectrum. The power spectrum is then transformed into the mel-scale using a filterbank that
converts the power values at different frequencies to their corresponding mel-frequency
bands. Finally, the logarithm of the mel-scale power values is computed, resulting in the
Melspectrogram.
Melspectrogram provides a time-frequency representation of the audio signal, where the
time dimension corresponds to the frame index, and the frequency dimension represents
the mel-frequency bands. It captures both the spectral content and temporal dynamics
of the signal, making it useful for tasks such as speech recognition, music analysis, and
sound classification. By using the Melspectrogram, the representation of the audio signal is
transformed to amore perceptually meaningful domain, which can enhance the performance
of various audio processing algorithms. It is particularly beneficial in scenarios where
capturing the spectral patterns and frequency content of the signal is important for the
analysis or classification task at hand.
• Mel-frequency cepstral coefficients (MFCCs): Mel-frequency cepstral coefficients (MFCCs)

are a feature representation widely utilized in various applications such as speech recogni-
tion, gesture recognition, speaker identification, and cetacean auditory perception systems.
MFCCs capture the power spectrum of a sound over a short duration by utilizing a linear
cosine transformation of a logarithmically-scaled power spectrum on a non-linear mel
frequency scale. The MFCCs consist of a set of coefficients that collectively form a Mel-
frequency cepstrum 1. With just 12 parameters related to the amplitude of frequencies,
MFCCs provide an adequate number of frequency channels to analyze audio, while still
maintaining a compact representation. The main objectives of MFCC extraction are to
eliminate vocal fold excitation (F0) information related to pitch, ensure the independence of
the extracted features, align with human perception of loudness and frequency, and capture
the contextual dynamics of phones. The process of extracting MFCC features involves

1https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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A/D conversion, pre-emphasis filtering, framing, windowing, Fourier transform, Mel filter
bank application, logarithmic operation, discrete cosine transform (DCT), and liftering. By
following these steps, MFCCs enable the extraction of informative audio features while
avoiding redundancy and preserving the relevant characteristics of the sound signal.

Other types of speech features include formant frequencies, pitch contour, cepstral coefficients,
wavelet coefficients, and spectral envelope. These features can be used for various speech-processing
tasks, including speech recognition, speaker identification, emotion recognition, and speech syn-
thesis.

In the field of speech processing, frequency-based representations such as Mel spectrogram and
MFCC are widely used since they are more robust to noise as compared to temporal variations
of the sound [7]. Time-domain features can be useful when the task warrants this information
(such as pauses, emotions, phoneme duration, and speech segments). It is noteworthy that the
time-domain and frequency-domain features tend to capture different sets of information and thus
can be used in conjunction to solve a task [512, 529, 568].

2.3 Traditional models for speech processing
Traditional speech representation learning algorithms based on shallow models utilize basic non-
parametric models for extracting features from speech signals. The primary objective of these
models is to extract significant features from the speech signal through mathematical operations,
such as Fourier transforms, wavelet transforms, and linear predictive coding (LPC). The extracted
features serve as inputs to classification or regression models. The shallow models aim to extract
meaningful features from the speech signal, enabling the classification or regression model to learn
and make accurate predictions.

• Gaussian Mixture Models (GMMs): Gaussian Mixture Models (GMMs) are powerful genera-
tive models employed to represent the probability distribution of a speech feature vector.
They achieve this by combining multiple Gaussian distributions with different weights.
GMMs have found widespread applications in speaker identification [259] and speech recog-
nition tasks [461]. Specifically, in speaker identification, GMMs are utilized to capture the
distribution of speaker-specific features, enabling the recognition of individuals based on
their unique characteristics. Conversely, in speech recognition, GMMs are employed to
model the acoustic properties of speech sounds, facilitating accurate recognition of spoken
words and phrases. GMMs play a crucial role in these domains, enabling robust and efficient
analysis of speech-related data.
• Support Vector Machines (SVMs): Support Vector Machines (SVMs) are a widely adopted

class of supervised learning algorithms extensively utilized for various speech classification
tasks [504]. They are particularly effective in domains like speaker recognition [174, 509, 510]
and phoneme recognition [52]. SVMs excel in their ability to identify optimal hyperplanes
that effectively separate different classes in the feature space. By leveraging this optimal
separation, SVMs enable accurate classification and recognition of speech patterns. As a
result, SVMs have become a fundamental tool in the field of speech analysis and play a vital
role in enhancing the performance of speech-related classification tasks.
• Hidden Markov Models (HMMs): Hidden Markov Models (HMMs) have gained significant

popularity as a powerful tool for performing various speech recognition tasks, particularly
ASR [149, 442]. In ASR, HMMs are employed to model the probability distribution of
speech sounds by incorporating a sequential arrangement of hidden states along with
corresponding observations. The training of HMMs is commonly carried out using the
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Baum-Welch algorithm, a variant of the Expectation Maximization algorithm, which enables
effective parameter estimation and model optimization2.
By leveraging HMMs in speech recognition, it becomes possible to predict the most likely
sequence of speech sounds given an input speech signal. This enables accurate and effi-
cient recognition of spoken language, making HMMs a crucial component in advancing
speech recognition technology. Their flexibility and ability to model temporal dependencies
contribute to their widespread use in ASR and various other speech-related applications,
further enhancing our understanding and utilization of spoken language.
• The K-nearest neighbors (KNN) algorithm is a simple yet effective classification approach

utilized in a wide range of speech-related applications, including speaker recognition [475]
and language recognition. The core principle of KNN involves identifying the K-nearest
neighbors of a given input feature vector within the training data and assigning it to the
class that appears most frequently among those neighbors. This algorithm has gained
significant popularity due to its practicality and intuitive nature, making it a reliable choice
for classifying speech data in numerous real-world scenarios. By leveraging the proximity-
based classification, KNN provides a straightforward yet powerful method for accurately
categorizing speech samples based on their similarities to the training data. Its versatility
and ease of implementation contribute to its widespread adoption in various speech-related
domains, facilitating advancements in speaker recognition, language identification, and
other applications in the field of speech processing.
• Decision trees: Decision trees are widely employed in speech classification tasks as a
class of supervised learning algorithms. Their operation involves recursively partitioning
the feature space into smaller regions, guided by the values of the features. Within each
partition, a decision rule is established to assign the input feature vector to a specific class.
The strength of decision trees lies in their ability to capture complex decision boundaries
by hierarchically dividing the feature space. By analyzing the values of the input features
at each node, decision trees efficiently navigate the classification process. This approach
not only provides interpretability, but also facilitates the identification of key features
contributing to the classification outcome. Through their recursive partitioning mechanism,
decision trees offer a flexible and versatile framework for speech classification. They excel in
scenarios where the decision rules are based on discernible thresholds or ranges of feature
values. The simplicity and transparency of decision trees make them a valuable tool for
understanding and solving speech-related classification tasks.

To summarize, conventional speech representation learning algorithms based on shallow models
entail feature extraction from the speech signal, which is subsequently used as input for classification
or regression models. These algorithms have found extensive applications in speech processing
tasks like speech recognition, speaker identification, and speech synthesis. However, they have
been progressively superseded by more advanced representation learning algorithms, particularly
deep neural networks, due to their enhanced capabilities.

3 Deep Learning Architectures and Their Applications in Speech Processing Tasks
Deep learning architectures have revolutionized the field of speech processing by demonstrating
remarkable performance across various tasks. With their ability to automatically learn hierarchical
representations from raw speech data, deep learning models have surpassed traditional approaches
in areas such as speech recognition, speaker identification, and speech synthesis. These architectures
have been instrumental in capturing intricate patterns, uncovering latent features, and extracting
2Wikipedia: Baum-Welch algorithm: http://en.wikipedia.org/wiki/Baum%e2%80%93Welch_algorithm

http://en.wikipedia.org/wiki/Baum%e2%80%93Welch_algorithm
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valuable information from vast amounts of speech data. In this section, we delve into the applications
of deep learning architectures in speech processing tasks, exploring their potential, advancements,
and the impact they have had on the field. By examining the key components and techniques
employed in these architectures, we aim to provide insights into the current state-of-the-art in
deep learning for speech processing and shed light on the exciting prospects it holds for future
advancements in the field.

3.1 Recurrent Neural Networks (RNNs)
It is natural to consider Recurrent Neural Networks for various speech processing tasks since
the input speech signal is inherently a dynamic process [477]. RNNs can model a given time-
varying (sequential) patterns that were otherwise hard to capture by standard feedforward neural
architectures. Initially, RNNs were used in conjunction with HMMs where the sequential data is
first modeled by HMMs while localized classification is done by the neural network. However, such
a hybrid model tends to inherit limitations of HMMs, for instance, HMM requires task-specific
knowledge and independence constraints for observed states [43]. To overcome the limitations
inherited by the hybrid approach, end-to-end systems completely based on RNNs became popular
for sequence transduction tasks such as speech recognition and text[158, 246]. Next, we discuss
RNN and it’s variants:

3.1.1 RNN Models

Vanilla RNN. Give input sequence of T states (𝑥1, . . . , 𝑥𝑇 ) with 𝑥𝑖 ∈ R𝑑 , the output state at
time 𝑡 can be computed as

ℎ𝑡 = H(𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ) (1)

𝑦𝑡 =𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (2)
where𝑊ℎℎ,𝑊ℎ𝑥 ,𝑊𝑦ℎ are weight matrices and 𝑏ℎ, 𝑏𝑦 are bias vectors.H is non-linear activation

functions such as Tanh, ReLU, and Sigmoid. RNNs aremade of high dimensional hidden states, notice
ℎ𝑡 in the above equation, which makes it possible for them to model sequences and help overcome
the limitation of feedforward neural networks. The state of the hidden layer is conditioned on the
current input and the previous state, which makes the underlying operation recursive. Essentially,
the hidden state ℎ𝑡−1 works as a memory of past inputs {𝑥𝑘 }𝑡−1𝑘=1 that influence the current output
𝑦𝑡 .

Bidirectional RNNs. For numerous tasks in speech processing, it is more effective to process
the whole utterance at once. For instance, in speech recognition, one-shot input transcription can
be more robust than transcribing based on the partial (i.e. previous) context information [161]. The
vanilla RNN has a limitation in such cases as they are unidirectional in nature, that is, output 𝑦𝑡 is
obtained from {𝑥𝑘 }𝑡𝑘=1, and thus, agnostic of what comes after time 𝑡 . Bidirectional RNNs (BRNNs)
were proposed to overcome such shortcomings of RNNs [485]. BRRNs encode both future and past
(input) context in separate hidden layers. The outputs of the two RNNs are then combined at each
time step, typically by concatenating them together, to create a new, richer representation that
includes both past and future context.

−→
ℎ𝑡 = H(𝑊−→

ℎℎ

−→
ℎ 𝑡−1 +𝑊−→

𝑥ℎ
𝑥𝑡 + 𝑏−→

ℎ
) (3)

←−
ℎ𝑡 = H(𝑊←−

ℎℎ

←−
ℎ 𝑡+1 +𝑊←−

𝑥ℎ
𝑥𝑡 + 𝑏←−

ℎ
) (4)

𝑦𝑡 =𝑊−→
ℎ𝑦

−→
ℎ 𝑡 +𝑊←−

ℎ𝑦

←−
ℎ 𝑡 + 𝑏𝑦 (5)
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where high dimensional hidden states
−→
ℎ 𝑡−1 and

←−
ℎ 𝑡+1 are hidden states modeling the forward

context from 1, 2, . . . , 𝑡 − 1 and backward context from 𝑇,𝑇 − 1, . . . , 𝑡 + 1, respectively.

Long Short-Term Memory. Vanilla RNNs are observed to face another limitation, that is,
vanishing gradients that do not allow them to learn from long-range context information. To
overcome this, a variant of RNN, named as LSTM, was specifically designed to address the vanishing
gradient problem and enable the network to selectively retain (or forget) information over longer
periods of time [187]. This attribute is achieved by maintaining separate purpose-built memory cells
in the network: the long-term memory cell 𝑐𝑡 and the short-term memory cell ℎ𝑡 . In Equation (2),
LSTM redefines the operatorH in terms of forget gate 𝑓𝑡 , input gate 𝑖𝑡 , and output gate 𝑜𝑡 ,

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖 ), (6)
𝑓𝑡 = 𝜎 (𝑊𝑥 𝑓 𝑥𝑡 +𝑊ℎ𝑓 ℎ𝑡−1 +𝑊𝑐 𝑓 𝑐𝑡−1 + 𝑏 𝑓 ), (7)
𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh (𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐 ), (8)
𝑜𝑡 = 𝜎 (𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜 ), (9)
ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡 ), (10)

where 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ) is a logistic sigmoid activation function. 𝑐𝑡 is a fusion of the information
from the previous state of the long-term memory 𝑐𝑡−1, the previous state of short-term memory
ℎ𝑡−1, and current input 𝑥𝑡 .𝑊 and 𝑏 are weight matrices and biases. ⊙ is the element-wise vector
multiplication or Hadamard operator. Bidirectional LSTMs (BLSTMs) can capture longer contexts
in both forward and backward directions [158].

Gated Recurrent Units. Gated Recurrent Units (GRU) aim to be a computationally-efficient
approximate of LSTM by using only two gates (vs three in LSTM) and a single memory cell (vs two
in LSTM). To control the flow of information over time, a GRU uses an update gate 𝑧𝑡 to decide
how much of the new input to be added to the previous hidden state and a reset gate 𝑟𝑡 to decide
how much of previous hidden state information to be forgotten.

𝑧𝑡 = 𝜎 (𝑊𝑥𝑧𝑥𝑡 +𝑊ℎ𝑧ℎ𝑡−1), (11)
𝑟𝑡 = 𝜎 (𝑊𝑥𝑟𝑥𝑡 +𝑊ℎ𝑟ℎ𝑡−1), (12)
ℎ𝑡 = (1 − 𝑧𝑡 ) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ tanh(𝑊𝑥ℎ𝑥𝑡 +𝑊𝑟ℎ (𝑟𝑡 ⊙ ℎ𝑡−1)), (13)

where ⊙ is element-wise multiplication between the two vectors (Hadamard product).
RNNs and their variants are widely used in various deep learning applications like speech

recognition, synthesis, and natural language understanding. Although seq2seq based on recurrent
architectures such as LSTM/GRU has made great strides in speech processing, they suffer from the
drawback of slow training speed due to internal recurrence. Another drawback of the RNN family
is their inability to leverage information from long distant time steps accurately.

Connectionist Temporal Classification. Connectionist Temporal Classification (CTC) [159]
is a scoring and output function commonly used to train LSTM networks for sequence-based prob-
lems with variable timing. CTC has been applied to several tasks, including phoneme recognition,
ASR, and other sequence-based problems. One of the major benefits of CTC is its ability to handle
unknown alignment between input and output, simplifying the training process. When used in
ASR [104, 105, 378], CTC eliminates the need for manual data labeling by assigning probability
scores to the output given any input signal. This is particularly advantageous for tasks such as
speech recognition and handwriting recognition, where the input and output can vary in size. CTC
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also solves the problem of having to specify the position of a character in the output, allowing for
more efficient training of the neural network without post-processing the output. Finally, the CTC
decoder can transform the neural network output into the final text without post-processing.

3.1.2 Application
The utilization of RNNs in popular products such as Google’s voice search and Apple’s Siri to
process user input and predict the output has been well-documented [177, 304]. RNNs are frequently
utilized in speech recognition tasks, such as the prediction of phonetic segments from audio signals
[412]. They excel in use cases where context plays a vital role in outcome prediction and are distinct
from CNNs as they utilize feedback loops to process a data sequence that informs the final output
[412].
In recent times, there have been advancements in the architecture of RNNs, which have been

primarily focused on developing end-to-end (E2E) models [302, 409] for ASR. These E2E models
have replaced conventional hybrid models and have displayed substantial enhancements in speech
recognition [302, 303]. However, a significant challenge faced by E2E RNN models is the synchro-
nization of the input speech sequence with the output label sequence [158]. To tackle this issue, a
loss function called CTC [159] is utilized for training RNN models, allowing for the repetition of
labels to construct paths of the same length as the input speech sequence. An alternative method is
to employ an Attention-based Encoder-Decoder (AED) model based on RNN architecture, which
utilizes an attention mechanism to align the input speech sequence with the output label sequence.
However, AED models tend to perform poorly on lengthy utterances.
The development of Bimodal Recurrent Neural Networks (BRNN) has led to significant ad-

vancements in the field of Audiovisual Speech Activity Detection (AV-SAD) [531]. BRNNs have
demonstrated immense potential in improving the performance of speech recognition systems,
particularly in noisy environments, by combining information from various sources. By integrating
separate RNNs for each modality, BRNNs can capture temporal dependencies within and across
modalities. This leads to successful outcomes in speech-based systems, where integrating audio and
visual modalities is crucial for accurate speech recognition. Compared to conventional audio-only
systems, BRNN-based AV-SAD systems display superior performance, particularly in challenging
acoustic conditions where audio-only systems might struggle.
To enhance the performance of continuous speech recognition, LSTM networks have been

utilized in hybrid architectures alongside CNNs [417]. The CNNs extract local features from speech
frames that are then processed by LSTMs over time [417]. LSTMs have also been employed for
speech synthesis, where they have been shown to enhance the quality of statistical parametric
speech synthesis [417].

Aside from their ASR and speech synthesis applications, LSTM networks have been utilized for
speech post-filtering. To improve the quality of synthesized speech, researchers have proposed deep
learning-based post-filters, with LSTMs demonstrating superior performance over other post-filter
types [99]. Bidirectional LSTM (Bi-LSTM) is another variant of RNN that has been widely used
for speech synthesis [136]. Several RNN-based analysis/synthesis models such as WaveNet [402],
SampleRNN [373], and Tacotron have been developed. These neural vocoder models can generate
high-quality synthesized speech from acoustic features without requiring intermediate vocoding
steps.

3.2 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a specialized class of deep neural architecture consisting
of one or more pairs of alternating convolutional and pooling layers. A convolution layer applies
filters that process small local parts of the input, where these filters are replicated along the whole
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input space. A pooling layer converts convolution layer activations to low resolution by taking the
maximum filter activation within a specified window and shifting across the activation map. CNNs
are variants of fully connected neural networks widely used for processing data with grid-like
topology. For example, time-series data (1D grid) with samples at regular intervals or images (2D
grid) with pixels constitute a grid-like structure.
As discussed in Section 2, the speech spectrogram retains more information than hand-crafted

features, including speaker characteristics such as vocal tract length differences across speakers,
distinct speaking styles causing formant to undershoot or overshoot, etc. Also, explicitly expressed
these characteristics in the frequency domain. The spectrogram representation shows very strong
correlations in time and frequency. Due to these characteristics of the spectrogram, it is a suitable
input for a CNN processing pipeline that requires preserving locality in both frequency and time
axis. For speech signals, modeling local correlations with CNNs will be beneficial. The CNNs can
also effectively extract the structural features from the spectrogram and reduce the complexity of
the model through weight sharing. This section will discuss the architecture of 1D and 2D CNNs
used in various speech-processing tasks.

3.2.1 CNN Model Variants
2D CNN. Since spectrograms are two-dimensional visual representations, one can leverage

CNN architectures widely used for visual data processing (images and videos) by performing
convolutions in two dimensions. The mathematical equation for a 2D convolutional layer can be
represented as:

𝑦
(𝑘 )
𝑖, 𝑗

= 𝜎

( 𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=1

𝑥
(𝑙 )
𝑖+𝑙−1, 𝑗+𝑚−1𝑤

(𝑘 )
𝑙,𝑚
+ 𝑏 (𝑘 )

)
(14)

Here, 𝑥 (𝑙 )
𝑖, 𝑗

is the pixel value of the 𝑙𝑡ℎ input channel at the spatial location (𝑖, 𝑗),𝑤 (𝑘 )
𝑙,𝑚

is the weight
of the𝑚𝑡ℎ filter at the 𝑙𝑡ℎ channel producing the 𝑘𝑡ℎ feature map, and 𝑏 (𝑘 ) is the bias term for the
𝑘𝑡ℎ feature map.

The output feature map 𝑦 (𝑘 )
𝑖, 𝑗

is obtained by convolving the input image with the filters and then
applying an activation function 𝜎 to introduce non-linearity. The convolution operation involves
sliding the filter window over the input image, computing the dot product between the filter and
the input pixels at each location, and producing a single output pixel.

However, there are some drawbacks to using a 2D CNN for speech processing. One of the main
issues is that 2D convolutions are computationally expensive, especially for large inputs. This is
because 2D convolutions involve many multiplications and additions, and the computational cost
grows quickly with the input size.
To address this issue, a 1D CNN can be designed to operate directly on the speech signal

without needing a spectrogram. 1D convolutions are much less computationally expensive than
2D convolutions because they only operate on one dimension of the input. This reduces the
multiplications and additions required, making the network faster and more efficient. In addition,
1D feature maps require less memory during processing, which is especially important for real-time
applications. A neural network’s memory requirements are proportional to its feature maps’ size.
By using 1D convolutions, the size of the feature maps can be significantly reduced, which can
improve the efficiency of the network and reduce the memory requirements.

1D CNN. 1D CNN is essentially a special case of 2D CNN where the height of the filter is
equal to the height the spectogram. Thus, the filter only slides along the temporal dimension and
the height of the resultant feature maps is one. As such, 1D convolutions are computationally less
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expensive and memory efficient [261], as compared to 2D CNNs. Several studies [6, 245, 262] have
shown that 1D CNNs are preferable to their 2D counterparts in certain applications. For example,
Alsabhan [12] found that the performance of predicting emotions with a 2D CNN model was lower
compared to a 1D CNN model.

1D convolution is useful in speech processing for several reasons:
• Since, speech signals are sequences of amplitudes sampled over time, 1D convolution can
be applied along temporal dimension to capture temporal variations in the signal.
• Robustness to distortion and noise: Since, 1D convolution allows local feature extraction,
the resultant features are often resilient to global distortions of the signal. For instance,
a speaker might be interrupted in the middle of an utterance. Local features would still
produce robust representations for those relevant spans, which is key to ASR, among
many speech processing task. On the other hand, speech signals are often contaminated
with noise, making extracting meaningful information difficult. 1D convolution followed
by pooling layers can mitigate the impact of noise [180], improving speech recognition
systems’ accuracy.

The basic building block of a 1D CNN is the convolutional layer, which applies a set of filters to
the input data. A convolutional layer employs a collection of adjustable parameters called filters
to carry out convolution operations on the input data, resulting in a set of feature maps as the
output, which represent the activation of each filter at each position in the input data. The size of
the feature maps depends on the size of the input data, the size of the filters, and the number of
filters used. The activation function used in a 1D CNN is typically a non-linear function, such as
the rectified linear unit (ReLU) function.

Given an input sequence 𝑥 of length 𝑁 , a set of 𝐾 filters𝑊𝑘 of length𝑀 , and a bias term 𝑏𝑘 , the
output feature map 𝑦𝑘 of the 𝑘𝑡ℎ filter is given by

𝑦𝑘 [𝑛] = ReLU(𝑏𝑘 +
𝑀−1∑︁
𝑚=0

𝑊𝑘 [𝑚] ∗ 𝑥 [𝑛 −𝑚]) (15)

where𝑛 ranges from𝑀−1 to𝑁 −1, and ∗ denotes the convolution operation. After the convolutional
layer, the output tensor is typically passed through a pooling layer, reducing the feature maps’ size
by down-sampling. The most commonly used pooling operation is the max-pooling, which keeps
the maximum value from a sliding window across each feature map.
CNNs often replace previously popular methods like HMMs and GMM-UBM in various cases.

Moreover, CNNs possess the ability to acquire features that remain robust despite variations in
speech signals resulting from diverse speakers, accents, and background noise. This is made possible
due to three key properties of CNNs: locality, weight sharing, and pooling. The locality property
enhances resilience against non-white noise by enabling the computation of effective features from
cleaner portions of the spectrum. Consequently, only a smaller subset of features is affected by
the noise, allowing higher network layers a better opportunity to handle the noise by combining
higher-level features computed for each frequency band. This improvement over standard fully
connected neural networks, which process all input features in the lower layers, highlights the
significance of locality. As a result, locality reduces the number of network weights that must be
learned.

3.2.2 Application
CNNs have proven to be versatile tools for a range of speech-processing tasks. They have been
successfully applied to speech recognition [4, 390], including in hybrid NN-HMMmodels for speech
recognition, and can be used for multi-class classification of words [5]. In addition, CNNs have
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been proposed for speaker recognition in an emotional speech, with a constrained CNN model
presented in [496].

CNNs, both 1D and 2D, have emerged as the core building block for various speech processing
models, including acoustic models [162, 273, 483] in ASR systems. For instance, in 2021, researchers
from Facebook AI proposed wav2vec2.0 [483], a hybrid ASR system based on CNNs for learning
representations of raw speech signals that were then fed into a transformer-based language model.
The system achieved state-of-the-art results on several benchmark datasets.

Similarly, Google’s VGGVox [92] used a CNNwith VGG architecture to learn speaker embeddings
from Mel spectrograms, achieving state-of-the-art results in speaker recognition. CNNs have
also been widely used in developing state-of-the-art speech enhancement and text-to-speech
architectures. For instance, the architecture proposed in [311, 541] for Deep Noise Suppression
(DNS) [457] challenge and Google’s Tacotron2 [491] are examples of models that use CNNs as
their core building blocks. In addition to traditional tasks like ASR and speaker identification,
CNNs have also been applied to non-traditional speech processing tasks like emotion recognition
[230], Parkinson’s disease detection [224], language identification [498] and sleep apnea detection
[497]. In all these tasks, CNN extracted features from speech signals and fed them into the task
classification model.

3.2.3 Temporal Convolution Neural Networks
Recurrent neural networks, including RNNs, LSTMs, and GRUs, have long been popular for deep-
learning sequence modeling tasks. They are especially favored in the speech-processing domain.
However, recent studies have revealed that certain CNN architectures can achieve state-of-the-art
accuracy in tasks such as audio synthesis, word-level language modelling, and machine translation,
as reported in [102, 233, 234]. The advantage of convolutional neural networks is that they enable
faster training by allowing parallel computation. They can avoid common issues associated with
recurrent models, such as the vanishing or exploding gradient problem or the inability to retain
long-term memory.
In a recent study by Bai et al. [30], they proposed a generic Temporal Convolutional Neural

Network (TCNN) architecture that can be applied to various speech-related tasks. This architecture
combines the best practices of modern CNNs and has demonstrated comparable performance to
recurrent architectures such as LSTMs and GRUs. The TCN approach could revolutionize speech
processing by providing an alternative to the widely used recurrent neural network models.

3.2.4 TCNN Model Variants
The architecture of TCNN is based upon two principles:(1) There is no information “leakage” from
future to past;(2) the architecture can map an input sequence of any length to an output sequence
of the same length, similar to RNN. TCN consists of dilated, causal 1D fully-convolutional layers
with the same input and output lengths to satisfy the above conditions. In other words, TCNN is
simply a 1D fully-convolutional network (FCN) with casual convolutions as shown in Figure 2.

• Causal Convolution [402]: Causal convolution convolves the input at a specific time point 𝑡
solely with the temporally-prior elements.
• Dilated Convolution [629]: By itself, causal convolution filters have a limited range of per-

ception, meaning they can only consider a fixed number of elements in the past. Therefore,
it is challenging to learn any dependency between temporally distant elements for longer
sequences. Dilated convolution ameliorates this limitation by repeatedly applying dilating
filters to expand the range of perception, as shown in Figure 2. The dilation is achieved by
uniformly inserting zeros between the filter weights.
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Fig. 2. TCNNs leverage causal and dilated convolutions to model temporal dependencies in sequential data.
Causal convolutions ensure that future information is not used during training, while dilated convolutions
increase the receptive field without increasing computational complexity. This makes TCNNs an effective
and efficient solution for a wide range of tasks, including speech recognition, action recognition, and music
analysis.

Consider a 1-D sequence 𝑥 ∈ R𝑛 and a filter: 𝑓 : {0, ..., 𝑘 − 1} → R, the dilated convolution
operation 𝐹𝑑 on an element 𝑦 of the sequence is defined as

𝐹𝑑 (𝑦) = (𝑥 ∗𝑑 𝑓 ) (𝑠) =
𝑘−1∑︁
𝑖=0

𝑓 (𝑖).𝑥𝑦−𝑑.𝑖 , (16)

where 𝑘 is filter size, 𝑑 is dilation factor, and 𝑦 − 𝑑.𝑖 is the span along the past. The dilation
step introduces a fixed step between every two adjacent filter taps. When 𝑑 = 1, a dilated
convolution acts as a normal convolution. Whereas, for larger dilation, the filter acts on
a wide but non-contiguous range of inputs. Therefore, dilation effectively expands the
receptive field of the convolutional networks.

3.2.5 Application
Recent studies have shown that the TCNN architecture not only outperforms traditional recurrent
networks like LSTMs and GRUs in terms of accuracy but also possesses a set of advantageous
properties, including:
• Parallelism is a key advantage of TCNN over RNNs. In RNNs, time-step predictions depend
on their predecessors’ completion, which limits parallel computation. In contrast, TCNNs
apply the same filter to each span in the input, allowing parallel application thereof. This
feature enables more efficient processing of long input sequences compared to RNNs that
process sequentially.
• The receptive field size can be modified in various ways to enhance the performance of
TCNNs. For example, incorporating additional dilated convolutional layers, employing
larger dilation factors, or augmenting the filter size are all effective methods. Consequently,
TCNNs offer superior management of the model’s memory size and are highly adaptable to
diverse domains.
• When dealing with lengthy input sequences, LSTM and GRU models tend to consume a
significant amount of memory to retain the intermediate outcomes for their numerous
cell gates. On the other hand, TCNNs utilize shared filters throughout a layer, and the



16 Mehrish et al.

back-propagation route depends solely on the depth of the network. This makes TCNNs
a more memory-efficient alternative to LSTMs and GRUs, especially in scenarios where
memory constraints are a concern.

TCNNs can perform real-time speech enhancement in the time domain [411]. They have much
fewer trainable parameters than earlier models, making them more efficient. TCNs have also been
used for speech and music detection in radio broadcasts [212, 297]. They have been used for single
channel speech enhancement [322, 464] and are trained as filter banks to extract features from
waveform to improve the performance of ASR [307].

3.3 Transformers
While recurrence in RNNs (Section 3.1) is a boon for neural networks to model sequential data, it is
also a bane as the recurrence in time to update the hidden state intrinsically precludes parallelization.
Additionally, although dedicated gated RNNs such as LSTM and GRU have helped to mitigate
the vanishing gradient problem to some extent, it can still be a challenge to maintain long-term
dependencies in RNNs.

Proposed by Vaswani et al. [554], Transformer solved a critical shortcoming of RNNs by allowing
parallelization within the training sample, that is, facilitating the processing of the entire input
sequence at once. Since then, the primary idea of using only the attention mechanism to construct
an encoder and decoder has served as the basic recipe for many state-of-the-art architectures across
the domains of machine learning. In this survey, we use transformer to denote architectures
that are inspired by Transformer [46, 109, 167, 444, 445]. This section overviews the transformer’s
fundamental design proposed by Vaswani et al. [554] and its adaptations for different speech-related
applications.

3.3.1 Basic Architecture
Transformer architecture [554] comprises an attention-based encoder and decoder, with each
module consisting of a stack of identical blocks. Each block in the encoder and decoder consists
of two sub-layers: a multi-head attention (MHA) mechanism and a position-wise fully connected
feedforward network as described in Figure 3. The MHA mechanism in the encoder allows each
input element to attend to every other element in the sequence, enabling the model to capture
long-range dependencies in the input sequence. The decoder typically uses a combination of MHA
and encoder-decoder attention to attend to both the input sequence and the previously generated
output elements. The feedforward network in each block of the Transformer provides non-linear
transformations to the output of the attention mechanism. Next, we discuss operations involved in
transformer layers, that is, multi-head attention and position-wise feedforward network:

Attention in Transformers. Attention mechanism, first proposed by Bahdanau et al. [28],
has revolutionized sequence modeling and transduction models in various tasks of NLP, speech,
and computer vision [60, 80, 148, 566]. Broadly, it allows the model to focus on specific parts of the
input or output sequence, without being limited by the distance between the elements. We can
describe the attention mechanism as the mapping of a query vector and set of key-value vector
pairs to an output. Precisely, the output vector is computed as a weighted summation of value
vectors where the weight of a value vector is obtained by computing the compatibility between
the query vector and key vector. Let, each query 𝑄 and key 𝐾 are 𝑑𝑘 dimensional and value 𝑉 is
𝑑𝑣 dimensional. Specific to the Transformer, the compatibility function between a query and each
key is computed as their dot product between scaled by

√
𝑑𝑘 . To obtain the weights on values, the

scaled dot product values are passed through a softmax function:
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Fig. 3. Illustrations of attention (left) and multi-headed attention (right).

Attention(Q,K,V) = softmax
(
QK𝑇
√
𝑑𝑘

)
V (17)

Here multiple queries, keys, and value vectors, are packed together in matrix form respectively
denoted by Q ∈ R𝑁×𝑑𝑘 , K ∈ R𝑀×𝑑𝑘 , and V ∈ R𝑀×𝑑𝑣 . N and M represent the lengths of queries and
keys (or values). Scaling of dot product attention becomes critical to tackling the issue of small
gradients with the increase in 𝑑𝑘 [554].
Instead of performing single attention in each transformer block, multiple attentions in lower-

dimensional space have been observed to work better [554]. This observation gave rise toMulti-
Head Attention: For ℎ heads and dimension of tokens in the model 𝑑𝑚 , the 𝑑𝑚-dimensional
query, key, and values are projected ℎ times to 𝑑𝑘 , 𝑑𝑘 , and 𝑑𝑣 dimensions using learnable linear
projections3. Each head performs attention operation as per Equation (17). The ℎ 𝑑𝑣-dimensional
are concatenated and projected back to 𝑑𝑚 using another projection matrix:

MultiHeadAttn(Q,K,V) = Concat(head 1, .... head ℎ)W𝑂 , (18)

with head 𝑖 = Attention(QW𝑄

𝑖
,KW𝐾

𝑖 ,VW
𝑉
𝑖 ) (19)

Where W𝑄 ,W𝐾 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,W𝑉 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 ,W𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 are learnable projection
matrices. Intuitively, multiple attention heads allow for attending to parts of the sequence differently
(e.g., longer-term dependencies versus shorter-term dependencies). Intuitively, multiple attention
heads allow for attending in different representational spaces jointly.

Position-wise FFN. The position-wise FNN consists of two dense layers. It is referred to
position-wise since the same two dense layers are used for each positioned item in the sequence
and are equivalent to applying two 1 × 1 convolution layers.

3Projection weights are neither shared across heads nor query, key, and values.
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Residual Connection and Normalization. Residual connection and Layer Normalization
are employed around each module for building a deep model. For example, each encoder block
output can be defined as follows:

𝐻
′
= LayerNorm(SelfAttention(𝑋 ) + 𝑋 ) (20)

𝐻 = LayerNorm(FFN(𝐻 ′ ) + 𝐻 ′ ) (21)
SelfAttention(.) denotes attention module with Q = K = V = X, where X is the output of the
previous layer.
Transformer-based architecture turned out to be better than many other architectures such

as RNN, LSTM/GRU, etc. One of the major difficulties when applying a Transformer to speech
applications that it requires more complex configurations (e.g., optimizer, network structure, data
augmentation) than the conventional RNN-based models. Speech signals are continuous-time
signals with much higher dimensionality than text data. This high dimensionality poses significant
computational challenges for the Transformer architecture, originally designed for sequential text
data. Speech signals also have temporal dependencies, which means that the model needs to be
able to process and learn from the entire signal rather than just a sequence of inputs. Also, speech
signals are inherently variable and complex. The same sentence can be spoken differently and even
by the same person at different times. This variability requires the model to be robust to differences
in pitch, accent, and speed of speech.

3.3.2 Application
Recent advancements in NLP which lead to a paradigm shift in the field are highly attributed to
the foundation models that are primarily a part of the transformers category, with self-attention
being a key ingredient [42]. The recent models have demonstrated human-level performance in
several professional and academic benchmarks. For instance, GPT4 scored within the top 10% of
test takers on a simulated version of the Uniform Bar Examination [405]. While speech processing
has not yet seen a shift in paradigm as in NLP owing to the capabilities of foundational models,
even so, transformers have significantly contributed to advancement in the field including but not
limited to the following tasks: automatic speech recognition, speech translation, speech synthesis,
and speech enhancement, most of which we discuss in detail in Section 5.
RNNs and Transformers are two widely adopted neural network architectures employed in

the domain of Natural Language Processing (NLP) and speech processing. While RNNs process
input words sequentially and preserve a hidden state vector over time, Transformers analyze
the entire sentence in parallel and incorporate an internal attention mechanism. This unique
feature makes Transformers more efficient than RNNs [244]. Moreover, Transformers employ an
attention mechanism that evaluates the relevance of other input tokens in encoding a specific
token. This is particularly advantageous in machine translation, as it allows the Transformer to
incorporate contextual information, thereby enhancing translation accuracy [244]. To achieve this,
Transformers combine word vector embeddings and positional encodings, which are subsequently
subjected to a sequence of encoders and decoders. These fundamental differences between RNNs
and Transformers establish the latter as a promising option for various natural language processing
tasks [244].

A comparative study on transformer vs. RNN [244] in speech applications found that transformer
neural networks achieve state-of-the-art performance in neural machine translation and other
natural language processing applications [244]. The study compared and analysed transformer and
conventional RNNs in a total of 15 ASR, one multilingual ASR, one ST, and two TTS applications.
The study found that transformer neural networks outperformed RNNs in most applications tested.
Another survey of transformer-based models in speech processing found that transformers have an
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advantage in comprehending speech, as they analyse the entire sentence simultaneously, whereas
RNNs process input words one by one.
Transformers have been successfully applied in end-to-end speech processing, including auto-

matic speech recognition (ASR), speech translation (ST), and text-to-speech (TTS) [309]. In 2018,
the Speech-Transformer was introduced as a no-recurrence sequence-to-sequence model for speech
recognition. To reduce the dimension difference between input and output sequences, the model’s
architecture was modified by adding convolutional neural network (CNN) layers before feeding
the features to the transformer. In a later study [388], the authors proposed a method to improve
the performance of end-to-end speech recognition models based on transformers. They integrated
the connectionist temporal classification (CTC) with the transformer-based model to achieve better
accuracy and used language models to incorporate additional context and mitigate recognition
errors.
In addition to speech recognition, the transformer model has shown promising results in TTS

applications. The transformer based TTSmodel generates mel-spectrograms, followed by aWaveNet
vocoder to output the final audio results [309]. Several neural network-based TTS models, such as
Tacotron 2, DeepVoice 3, and transformer TTS, have outperformed traditional concatenative and
statistical parametric approaches in terms of speech quality [309, 426, 491].
One of the strengths of Transformer-based architectures for neural speech synthesis is their

high efficiency while considering the global context [162, 492]. The Transformer TTS model has
shown advantages in training and inference efficiency over RNN-based models such as Tacotron 2
[491]. The efficiency of the Transformer TTS network can speed up the training about 4.25 times
[309]. Moreover, Multi-Speech, a multi-speaker TTS model based on the Transformer [309], has
demonstrated the effectiveness of synthesizing a more robust and better quality multi-speaker
voice than naive Transformer-based TTS.

In contrast to the strengths of Transformer-based architectures in neural speech synthesis, large
language models based on Transformers such as BERT [109], GPT [444], XLNet [618], and T5
[448] have limitations when it comes to speech processing. One of the issues is that these models
require discrete tokens as input, necessitating using a tokenizer or a speech recognition system,
introducing errors and noise. Furthermore, pre-training on large-scale text corpora can lead to
domain mismatch problems when processing speech data. To address these limitations, dedicated
frameworks have been developed for learning speech representations using transformers, including
wav2vec [483], data2vec [24], Whisper [443], VALL-E [562], Unispeech [565], SpeechT5 [16] etc.
We discuss some of them as follows.

• Speech representation learning frameworks, such as wav2vec, have enabled significant ad-
vancements in speech processing tasks. One recent framework, w2v-BERT [585], combines
contrastive learning and MLM to achieve self-supervised speech pre-training on discrete
tokens. Fine-tuning wav2vec models with limited labeled data has also been demonstrated
to achieve state-of-the-art results in speech recognition tasks [25]. Moreover, XLS-R [20],
another model based on wav2vec 2.0, has shown state-of-the-art results in various tasks,
domains, data regimes, and languages, by leveraging multilingual data augmentation and
contrastive learning techniques on a large scale. These models learn universal speech rep-
resentations that can be transferred across languages and domains, thus representing a
significant advancement in speech representation learning.
• Transformers have been increasingly popular in the development of frameworks for learn-

ing representations from multi-modal data, such as speech, images, and text. Among these
frameworks, Data2vec [24] is a self-supervised training approach that aims to learn joint rep-
resentations to capture cross-modal correlations and transfer knowledge across modalities.
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It has outperformed other unsupervised methods for learning multi-modal representations
in benchmark datasets. However, for tasks that require domain-specific models, such as
speech recognition or speaker identification, domain-specific models may be more effective,
particularly when dealing with data in specific domains or languages. The self-supervised
training approach of Data2vec enables cost-effective and scalable learning of representations
without requiring labeled data, making it a promising framework for various multi-modal
learning applications.
• The field of speech recognition has undergone a revolutionary change with the advent of the
Whisper model [443]. This innovative solution has proven to be highly versatile, providing
exceptional accuracy for various speech-related tasks, even in challenging environments.
The Whisper model achieves its outstanding performance through a minimalist approach
to data pre-processing and weak supervision, which allows it to deliver state-of-the-art
results in speech processing. The model is capable of performing multilingual speech
recognition, translation, and language identification, thanks to its training on a diverse
audio dataset. Its multitasking model can cater to various speech-related tasks, such as
transcription, voice assistants, education, entertainment, and accessibility. One of the unique
features of Whisper is its minimalist approach to data pre-processing, which eliminates
the need for significant standardization and simplifies the speech recognition pipeline.
The resulting models generalize well to standard benchmarks and deliver competitive
performance without fine-tuning, demonstrating the potential of advancedmachine learning
techniques in speech processing.
• Text-to-speech synthesis has been a topic of interest for many years, and recent advance-
ments have led to the development of new models such as VALL-E [562]. VALL-E is a
novel text-to-speech synthesis model that has gained significant attention due to its unique
approach to the task. Unlike traditional TTS systems, VALL-E treats the task as a conditional
language modelling problem and leverages a large amount of semi-supervised data to train
a generalized TTS system. It can generate high-quality personalized speech with a 3-second
acoustic prompt from an unseen speaker and provides diverse outputs with the same input
text. VALL-E also preserves the acoustic environment and the speaker’s emotions about the
acoustic prompt, without requiring additional structure engineering, pre-designed acoustic
features, or fine-tuning. Furthermore, VALL-E X [659] is an extension of VALL-E that enables
cross-lingual speech synthesis, representing a significant advancement in TTS technology.

The timeline highlights the development of large transformer based models for speech processing
is shown in Figure 4. The size of the models has grown exponentially, with significant breakthroughs
achieved in speech recognition, synthesis, and translation. These large models have set new
performance benchmarks in the field of speech processing, but also pose significant computational
and data requirements for training and inference.

3.4 Conformer
The Transformer architecture, which utilizes a self-attention mechanism, has successfully replaced
recurrent operations in previous architectures. Over the past few years, various Transformer
variants have been proposed [162]. Architectures combining Transformers and CNNs have re-
cently shown promising results on speech-processing tasks [582]. To efficiently model both local
and global dependencies of an audio sequence, several attempts have been made to combine
CNNs and Transformers. One such architecture proposed by the authors is the Conformer [162], a
convolution-augmented transformer for speech recognition. Conformer outperforms RNNs, pre-
vious Transformers, and CNN-based models, achieving state-of-the-art performance in speech
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Fig. 4. Timeline highlighting notable large Transformer models developed for speech processing, along with
their corresponding parameter sizes.

recognition. The Conformer model consists of several building blocks, including convolutional
layers, self-attention layers, and feedforward layers. The architecture of the Conformer model can
be summarized as follows:

• Input Layer: The Conformer model inputs a sequence of audio features, such as MFCCs or
Mel spectrograms.
• Convolutional Layers: Local features are extracted from the audio signal by processing the
input sequence through convolutional layers.
• Self-Attention Layers: The Conformer model incorporates self-attention layers following
the convolutional layers. Self-attention is a mechanism that enables the model to focus
on various sections of the input sequence while making predictions. This is especially
advantageous for speech recognition because it facilitates capturing long-term dependencies
in the audio signal.
• Feedforward Layers: After the self-attention layers, the Conformer model applies a sequence

of feedforward layers intended to process the output of the self-attention layers further and
ready it for the ultimate prediction.
• Output Layer: Finally, the output from the feedforward layers undergoes a softmax activation
function to generate the final prediction, typically representing a sequence of character
labels or phonemes.

The conformer model has emerged as a promising neural network architecture for various
speech-related research tasks, including but not limited to speech recognition, speaker recognition,
and language identification. In a recent study by Gulati et al. [162], the conformer model was
demonstrated to outperform previous state-of-the-art models, particularly in speech recognition
significantly. This highlights the potential of the conformer model as a key tool for advancing
speech-related research.
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3.4.1 Application
The Conformer model stands out among other speech recognition models due to its ability to
efficiently model both local and global dependencies of an audio sequence. This is crucial for speech
recognition, language translation, and audio classification [1, 2, 162]. The model achieves this
through self-attention and convolution modules, combining the strengths of CNNs and Trans-
formers. While CNNs capture local information in audio sequences, the self-attention mechanism
captures global dependencies [2]. The Conformer model has achieved remarkable performance in
speech recognition tasks, setting benchmarks on datasets such as LibriSpeech and AISHELL-1.

Despite these successes, speech synthesis and recognition challenges persist, including difficulties
generating natural-sounding speech in non-English languages and real-time speech generation.
To address these limitations, Wang et al. [658] proposed a novel approach that combines noisy
student training with SpecAugment and large Conformer models pre-trained on the Libri-Light
dataset using the wav2vec 2.0 pre-training method. This approach achieved state-of-the-art word
error rates on the LibriSpeech dataset. Recently, Wang et al. [575] developed Conformer-LHUC,
an extension of the Conformer model that employs learning hidden unit contribution (LHUC) for
speaker adaptation. Conformer-LHUC has demonstrated exceptional performance in elderly speech
recognition and shows promise for the clinical diagnosis and treatment of Alzheimer’s disease.
Several enhancements have been made to the Conformer-based model to address high word

error rates without a language model, as documented in [336]. Wu [598] proposed a deep sparse
Conformer to improve its long-sequence representation capabilities. Furthermore, Burchi and
Timofte [49] have recently enhanced the noise robustness of the Efficient Conformer architecture
by processing both audio and visual modalities. In addition, models based on Conformer, such as
Transducers [252], have been adopted for real-time speech recognition [412] due to their ability to
process audio data much more quickly than conventional recurrent neural network (RNN) models.

3.5 Sequence to Sequence Models
The sequence-to-sequence (seq2seq) model in speech processing is popularly used for ASR, ST, and
TTS tasks. The general architecture of the seq2seq model involves an encoder-decoder network
that learns to map an input sequence to an output sequence of varying lengths. In the case of ASR,
the input sequence is the speech signal, which is processed by the encoder network to produce
a fixed-length feature vector representation of the input signal. The decoder network inputs this
feature vector and produces the corresponding text sequence. This can be achieved through a stack
of RNNs [434], Transformer [116] or Conformer [162] in the encoder and decoder networks.
The sequence-to-sequence model has emerged as a potent tool in speech translation. It can

train end-to-end to efficiently map speech spectrograms in one language to their corresponding
spectrograms in another. The notable advantage of this approach is eliminating the need for an
intermediate text representation, resulting in improved efficiency. Additionally, the Seq2seq models
have been successfully implemented in speech generation tasks, where they reverse the ASR
approach. In such applications, the input text sequence serves as the input, with the encoder
network creating a feature vector representation of the input text. The decoder network then
leverages this representation to generate the desired speech signal.
Karita et al. [244] conducted an extensive study comparing the performance of transformer

and traditional RNN models on 15 different benchmarks for Automatic Speech Recognition (ASR),
including a multilingual ASR benchmark, a Speech Translation (ST) benchmark, and two Text-
to-Speech (TTS) benchmarks. In addition, they proposed a shared Sequence-to-Sequence (S2S)
architecture for AST, TTS, and ST tasks, which is depicted in Figure 5.
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Fig. 5. Unified formulation for Sequence-to-Sequence architecture in speech applications [244]. 𝑋 and 𝑌 are
source and target sequences respectively.

• Encoder
𝑋0 = Encoder-PreNet(𝑋 ),
𝑋𝑒 = Encoder-Main(𝑋0)

(22)

where 𝑋 is the sequence of speech features (e.g. Mel spectrogram) for AST and ST and
phoneme or character sequence for TTS.
• Decoder

𝑌0 [1 : 𝑡 − 1] = Decoder-PreNet(𝑌 [1 : 𝑡 − 1]),
𝑌𝑑 [𝑡] = Decoder-Main(𝑋𝑒 , 𝑌0 [1 : 𝑡 − 1]),

𝑌𝑝𝑜𝑠𝑡 [1 : 𝑡] = Decoder-PostNet(𝑌𝑑 [1 : 𝑡]),
(23)

During the training stage, input to the decoder is ground truth target sequence 𝑌 [1 :
𝑡 − 1]. The Decoder-Main module is utilized to produce a subsequent target frame. This
is accomplished by utilizing the encoded sequence 𝑋𝑒 and the prefix of the target prefix
𝑌0 [1 : 𝑡 − 1]. The decoder is mostly unidirectional for sequence generation and often uses
an attention mechanism [28] to produce the output.

Seq2seq models have been widely used in speech processing, initially based on RNNs. However,
RNNs face the challenge of processing long sequences, which can lead to the loss of the initial
context by the end of the sequence [244]. To overcome this limitation, the transformer architecture
has emerged, leveraging self-attention mechanisms to handle sequential data. The transformer has
shown remarkable performance in tasks such as ASR, ST, and speech synthesis. As a result, the use
of RNN-based seq2seq models has declined in favour of the transformer-based approach.
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3.5.1 Application
Seq2seq models have been used for speech processing tasks such as voice conversion [210, 528],
speech synthesis [210, 398, 399, 567, 583], and speech recognition. The field of ASR has seen sig-
nificant progress, with several advanced techniques emerging as popular options. These include
the CTC approach, which has been further developed and improved upon through recent advance-
ments [160], as well as attention-based approaches that have also gained traction [85]. The growing
interest in these techniques has increased the use of seq2seq models in the speech community.
• Attention-based Approaches: The attention mechanism is a crucial component of sequence-
to-sequence models, allowing them to effectively weigh input acoustic features during
decoding [28, 355]. Attention-based Seq2seq models utilize previously generated output
tokens and the complete input sequence to factorize the joint probability of the target
sequence into individual time steps. The attention mechanism is conditioned on the current
decoder states and runs over the encoder output representations to incorporate information
from the input sequence into the decoder output. Incorporating attention mechanisms in
Seq2Seq models has resulted in an impressive performance in various speech processing
tasks, such as speech recognition [389, 434, 539, 591], text-to-speech [400, 491, 620], and
voice conversion [210, 528]. These models have demonstrated competitiveness with tra-
ditional state-of-the-art approaches. Additionally, attention-based Seq2Seq models have
been used for confidence estimation tasks in speech recognition, where confidence scores
generated by a speech recognizer can assess transcription quality [312]. Furthermore, these
models have been explored for few-shot learning, which has the potential to simplify the
training and deployment of speech recognition systems [183].
• Connectionist Temporal Classification: While attention-based methods create a soft align-

ment between input and target sequences, approaches that utilize CTC loss aim to maximize
log conditional likelihood by considering all possible monotonic alignments between them.
These CTC-based Seq2Seq models have delivered competitive results across various ASR
benchmarks [162, 182, 365, 524] and have been extended to other speech-processing tasks
such as voice conversion [339, 648, 655], speech synthesis [648] etc. Recent studies have
concentrated on enhancing the performance of Seq2Seq models by combining CTC with
attention-based mechanisms, resulting in promising outcomes. This combination remains a
subject of active investigation in the speech-processing domain.

3.6 Reinforcement Learning
Reinforcement learning (RL) is a machine learning paradigm that trains an agent to perform
discrete actions in an environment and receive rewards or punishments based on its interactions.
The agent aims to learn a policy that maximizes its long-term reward. In recent years, RL has
become increasingly popular and has been applied to various domains, including robotics, game
playing, and natural language processing. RL has been utilized in speech recognition, speaker
diarization, and speech enhancement tasks in the speech field. One of the significant benefits of
using RL for speech tasks is its ability to learn directly from raw audio data, eliminating the need for
hand-engineered features. This can result in better performance compared to traditional methods
that rely on feature extraction. By capturing intricate patterns and relationships in the audio data,
RL-based speech systems have the potential to enhance accuracy and robustness.

3.6.1 Basic Models
The utilization of deep reinforcement learning (DRL) in speech processing involves the environment
(a set of states 𝑆), agent, actions (𝐴), and reward (𝑟 ). The semantics of these components depends on
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the task at hand. For instance, in ASR tasks, the environment can be composed of speech features,
the action can be the choices of phonemes, and the reward could be the correctness of those
phonemes given the input. Audio signals are one-dimensional time-series signals that undergo
pre-processing and feature extraction procedures. Pre-processing steps include noise suppression,
silence removal, and channel equalization, improving audio signal quality and creating robust and
efficient audio-based systems. Previous research has demonstrated that pre-processing improves
the performance of deep learning-based audio systems [288].
Feature extraction is typically performed after pre-processing to convert the audio signal into

meaningful and informative features while reducing their number. MFCCs and spectrograms are
popular feature extraction choices in speech-based systems [288]. These features are then given to
the DRL agent to perform various tasks depending on the application. For instance, consider the
scenario where a human speaks to a DRL-trained machine, where the machine must act based on
features derived from audio signals.
• Value-based DRL: Given the state of the environment (𝑠), a value function 𝑄 : 𝑆 ×𝐴→ R is
learned to estimate overall future reward 𝑄 (𝑠, 𝑎) should an action 𝑎 be taken. This value
function is parameterized with deep networks like CNN, Transformers, etc.
• Policy-based DRL: As opposed to value-based RL, policy-based RL methods learns a policy
function 𝜋 : 𝑆 → 𝐴 that chooses the best possible action (𝑎) based on reward.
• Model-based DRL: Unlike the previous two approaches, model-based RL learns the dynamics

of the environment in terms of the state transition probabilities, i.e., a function𝑀 : 𝑆 ×𝐴 ×
𝑆 → R. Given such a model, policy, or value functions are optimized.

3.6.2 Application
In speech-related research, deep reinforcement learning can be used for several purposes, including:

Speech recognition and Emotion modeling. Deep reinforcement learning (DRL) can be
used to train speech recognition systems [88, 89, 231, 451, 534] to transcribe speech accurately. In
this case, the system receives an audio input and outputs a text sequence corresponding to the
spoken words. The environmental states might be learned from the input audio features. The actions
might be the generated phonemes. The reward could be the similarity between the generated and
gold phonemes, quantified in edit distance. Several works have also achieved promising results for
non-native speech recognition [446]
DRL pre-training has shown promise in reducing training time and enhancing performance

in various Human-Computer Interaction (HCI) applications, including speech recognition [451].
Recently, researchers have suggested using a reinforcement learning algorithm to develop a Speech
Enhancement (SE) system that effectively improves ASR systems. However, ASR systems are often
complicated and composed of non-differentiable units, such as acoustic and language models.
Therefore, the ASR system’s recognition outcomes should be employed to establish the objective
function for optimizing the SE model. Other than ASR, SE, some studies have also focused on SER
using DRL algorithms [243, 282, 452]

Speaker identification. Similarly, for speaker identification tasks, the actions can be the
speaker’s choices, and a binary reward can be the correctness of choice.

Speech synthesis and coding. Likewise, the states can be the input text, the actions can
be the generated audio, and the reward could be the similarity between the gold and generated
mel-spectrogram.
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Fig. 6. A standard experimental pipeline for GCNs, which embeds the graph node and embeds the graph
node edge features, performs several GNN layers to compute convolutional features, and finally predicts a
task-specific MLP layer.

Deep reinforcement learning has several advantages over traditional machine learning techniques.
It can learn from raw data without needing hand-engineered features, making it more flexible
and adaptable. It can also learn from feedback, making it more robust and able to handle noisy
environments.
However, deep reinforcement learning also has some challenges that must be addressed. It

requires a lot of data to train and can be computationally expensive. It also requires careful selection
of the reward function to ensure that the system learns the desired behavior.

3.7 Graph Neural Network
Over the past few years, the field of Graph Neural Networks (GNNs) has witnessed a remarkable
expansion as a widely adopted approach for analysing and learning from data on graphs. GNNs have
demonstrated their potential in various domains, including computer science, physics, mathematics,
chemistry, and biology, by delivering successful outcomes. Furthermore, in recent times, the speech-
processing domain has also witnessed the growth of GNNs.

3.7.1 Basic Models
Speech processing involves analysing and processing audio signals, and GNNs can be useful in
this context when we represent the audio data as a graph. In this answer, we will explain the
architecture of GNNs for speech processing. The standard GNN pipeline is shown in Figure 6,
according to the application the GNN layer can consist of Graph Convolutional Layers [652], Graph
Attention Layers [555], or Graph Transformer [632].

Graph Representation of Speech Data. The first step in using GNNs for speech processing
is representing the speech data as a graph. One way to do this is to represent the speech signal as a
sequence of frames, each representing a short audio signal segment. We can then represent each
frame as a node in the graph, with edges connecting adjacent frames.

Graph Convolutional Layers. Once the speech data is represented as a graph, we can use
graph convolutional layers to learn representations of the graph nodes. Graph convolutional layers
are similar to traditional ones, but instead of operating on a grid-like structure, they operate on
graphs. These layers learn to aggregate information from neighboring nodes to update the features
of each node.

Graph Attention Layers. Graph attention layers can be combined with graph convolutional
layers to give more importance to certain nodes in the graph. Graph attention layers learn to assign
weights to neighbor nodes based on their features, which can help capture important patterns in



A Review of Deep Learning Techniques for Speech Processing 27

speech data. Several works have used graph attention layers for neural speech synthesis [338] or
speaker verification [227] and diarization [277].

Recurrent Layers. Recurrent layers can be used in GNNs for speech processing to capture
temporal dependencies between adjacent frames in the audio signal. Recurrent layers allow the
network to maintain an internal state that carries information from previous time steps, which can
be useful for modeling the dynamics of speech signals.

Output Layers. The output layer of a GNN for speech processing can be a classification layer
that predicts a label for the speech data (e.g., phoneme or word) or a regression layer that predicts
a continuous value (e.g., pitch or loudness). The output layer can be a traditional fully connected
layer or a graph pooling layer that aggregates information from all the nodes in the graph.

3.7.2 Application
The advantages of using GNNs for speech processing tasks include their ability to represent
the dependencies and interrelationships between various entities, which is suitable for speech
processing tasks such as speaker diarization [499, 500, 571], speaker verification [228, 494], speech
synthesis [338, 520, 521], or speech separation [558, 576], which require the analysis of complex
data representations. GNNs retain a state representing information from their neighborhood with
arbitrary depth, unlike standard neural networks. GNNs can be used to model the relationship
between phonemes and words. GNNs can learn to recognize words in spoken language by treating
the phoneme sequence as a graph. GNNs can also be used to model the relationship between
different acoustic features, such as pitch, duration, and amplitude, in speech signals, improving
speech recognition accuracy.

GNNs have shown promising results in multichannel speech enhancement, where they are used
for extracting clean speech from noisy mixtures captured by multiple microphones [542]. The
authors of a recent study [391] propose a novel approach to multichannel speech enhancement by
combining Graph Convolutional Networks (GCNs) with spatial filtering techniques such as the
Minimum Variance Distortionless Response (MVDR) beamformer. The algorithm aims to extract
speech and noise from noisy signals by computing the Power Spectral Density (PSD) matrices of
the noise and the speech signal of interest and then obtaining optimal weights for the beam former
using a frequency-time mask. The proposed method combines the MVDR beam former with a
super-Gaussian joint maximum a posteriori (SGJMAP) based SE gain function and a GCN-based
separation network. The SGJMAP-based SE gain function is used to enhance the speech signals,
while the GCN-based separation network is used to separate the speech from the noise further.

3.8 Diffusion Probabilistic Model
Diffusion probabilistic models, inspired by non-equilibrium thermodynamics [186, 508], have
proven to be highly effective for generating high-quality images and audio. These models create a
Markov chain of diffusion steps (𝑥𝑡 ∼ 𝑞(𝑥𝑡 |𝑥𝑡−1)) from the original data (𝑥0) to the latent variable
𝑥𝑇 ∼ N(0, I) by gradually adding pre-scheduled noise to the data. The reverse diffusion process
then reconstructs the desired data samples (𝑥0) from the noise 𝑥𝑇 , as shown in Figure 7. Unlike
VAE or flow models, diffusion models keep the dimensionality of the latent variables fixed. While
mostly used for image and audio synthesis, diffusion models have potential applications in speech-
processing tasks, such as speech synthesis and enhancement. This section offers a comprehensive
overview of the fundamental principles of diffusion models and explores their potential uses in the
speech domain.
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diffusion process
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Fig. 7. The Diffusion Probabilistic Model is a generative model that progressively transforms a noise distribu-
tion into the target data distribution through a series of diffusion steps, where the noise level decreases as
the process continues. The model is trained by maximizing the likelihood of the data distribution and can be
used for tasks such as speech synthesis, enhancement, and denoising.

Forward diffusion process. Given a clean speech data 𝑥0 ∼ 𝑞𝑑𝑎𝑡𝑎 (𝑥0),

𝑞(𝑥1, ..., 𝑥𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1). (24)

At every time step 𝑡 , 𝑞(𝑥𝑡 |𝑥𝑡−1) := N(𝑥𝑡 ;
√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I) where {𝛽𝑡 ∈ (0, 1)}𝑇𝑡=1. As the forward

process progresses, the data sample 𝑥0 losses its distinguishable features, and as 𝑇 → ∞, 𝑥𝑇
approaches a standard Gaussian distribution.

Reverse diffusion process. The reverse diffusion process is defined by a Markov chain from
𝑥𝑇 ∼ N(0, I) to 𝑥0 and parameterized by 𝜃 :

𝑝𝜃 (𝑥0, ..., 𝑥𝑇−1 |𝑥𝑇 ) =
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) (25)

where 𝑥𝑇 ∼ N(0, 𝐼 ) and the transition probability 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) is learnt through noise-estimation.
This process eliminates the Gaussian noise added in the forward diffusion process.

3.8.1 Application
Diffusion models have emerged as a leading approach for generating high-quality speech in recent
years [67, 204, 218, 269, 431, 432]. These non-autoregressive models transform white noise signals
into structured waveforms via a Markov chain with a fixed number of steps. One such model,
FastDiff, has achieved impressive results in high-quality speech synthesis [204]. By leveraging a
stack of time-aware diffusion processes, FastDiff can generate high-quality speech samples 58 times
faster than real-time on a V100 GPU, making it practical for speech synthesis deployment for the
first time. It also outperforms other competing methods in end-to-end text-to-speech synthesis.
Another powerful diffusion probabilistic model proposed for audio synthesis is DiffWave [269]. It is
non-autoregressive and generates high-fidelity audio for different waveform generation tasks, such
as neural vocoding conditioned onmel spectrogram, class-conditional generation, and unconditional
generation. DiffWave delivers speech quality on par with the strong WaveNet vocoder [402] while
synthesizing audio much faster.
Diffusion models have shown great promise in speech processing, particularly in speech en-

hancement [347, 348, 440, 487]. Recent advances in diffusion probabilistic models have led to the
development of a new speech enhancement algorithm that incorporates the characteristics of the
noisy speech signal into the diffusion and reverses processes [349]. This new algorithm is a gener-
alized form of the probabilistic diffusion model, known as the conditional diffusion probabilistic
model. During its reverse process, it can adapt to non-Gaussian real noises in the estimated speech
signal. In addition, Qiu et al. [440] propose SRTNet, a novel method for speech enhancement that
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uses the diffusion model as a module for stochastic refinement. The proposed method comprises a
joint network of deterministic and stochastic modules, forming the “enhance-and-refine” paradigm.
The paper also includes a theoretical demonstration of the proposed method’s feasibility and
presents experimental results to support its effectiveness.

4 Speech Representation Learning
The process of speech representation learning is essential for extracting pertinent and practical
characteristics from speech signals, which can be utilized for various downstream tasks such as
speaker identification, speech recognition, and emotion recognition. While traditional methods
for engineering features have been extensively used, recent advancements in deep-learning-based
techniques utilizing supervised or unsupervised learning have shown remarkable potential in
this field. Nonetheless, a novel approach founded on self-supervised representation learning has
surfaced, aiming to unveil the inherent structure of speech data and acquire representations that
capture the underlying structure of the data. This approach surpasses traditional feature engineering
methods and can significantly increase the accuracy to a considerable extent and effectiveness
of downstream tasks. The primary objective of this new paradigm is to uncover informative and
meaningful features from speech signals and outperform existing approaches. Therefore, this
approach is considered a promising direction for future research in speech representation learning.

This section provides a comprehensive overview of the evolution of speech representation learn-
ing with neural networks. We will examine various techniques and architectures developed over the
years, including the emergence of unsupervised representation learning methods like autoencoders,
generative adversarial networks (GANs), and self-supervised representation learning frameworks.
We will also examine the difficulties and constraints associated with these techniques, such as
data scarcity, domain adaptation, and the interpretability of learned representations. Through
a comprehensive analysis of the advantages and limitations of different representation learning
approaches, we aim to provide insights into how to harness their power to improve the accuracy
and robustness of speech processing systems.

4.1 Supervised Learning
In supervised representation learning, the model is trained using annotated datasets to learn a
mapping between input data and output labels. The set of parameters that define the mapping
function is optimized during training to minimize the difference between the predicted and true
output labels in the training data. The goal of supervised representation learning is to enable the
model to learn a useful representation or features of the input data that can be used to accurately
predict the output label for new, unseen data. For instance, supervised representation learning
in speech processing using CNNs learn speech features from spectrograms. CNNs can identify
patterns in spectrograms relevant to speech recognition, such as those corresponding to different
phonemes or words. Unlike CNNs, which typically require spectrogram input, RNNs can directly
take in the raw speech signals as input and learn to extract features or representations that are
relevant for speech recognition or other speech-processing tasks. Learning speaker representations
typically involves minimizing a loss function. Chung et al. [91] compares their effectiveness for
speaker recognition tasks, we distill it in Table 1 to present an overview of commonly used loss
functions. Additionally, a new angular variant of the prototypical loss is introduced in their work.
Results from extensive experimental validation on the VoxCeleb1 test set indicate that the GE2E
and prototypical networks outperform other models in terms of performance.
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Fig. 8. 𝑑-vector model architecture.

4.1.1 Deep speaker representations
Speaker representation is a critical aspect of speech processing, allowing machines to analyze
and process various parts of a speaker’s voice, including pitch, intonation, accent, and speaking
style. In recent years, deep neural networks (DNNs) have shown great promise in learning robust
features for speaker recognition. This section reviews deep learning-based techniques for speaker
representation learning that have demonstrated significant improvements over traditional methods.
These deep speaker representations can be applied to a range of speaker-recognition tasks

beyond verification and identification, including diarization [287, 572, 637], voice conversion
[86, 323, 594], multi-speaker TTS [418, 476, 607], speaker adaptation [84] etc. To provide a com-
prehensive overview, we analyzed deep embeddings from the perspectives of input raw [226, 454]
or mel-spectogram [507], network architecture [108, 325], temporal pooling strategies [384], and
loss functions [91, 505, 569]. In the following subsection, we introduce two representative deep
embeddings: 𝑑-vector [552] and 𝑥-vector [506, 507]. These embeddings have been widely adopted
recently and have demonstrated state-of-the-art performance in various speaker-recognition tasks.
By understanding the strengths and weaknesses of different deep learning-based techniques for
speaker-representation learning, we can better leverage their power to improve the accuracy and
robustness of speaker-recognition systems.
• d-vector technique, proposed by Variani et al. (2014) [552], serves as a frame-level speaker
embedding method, as illustrated in Figure 8. In this approach, during the training phase,
each frame within a training utterance is labeled with the speaker’s true identity. This
transforms the training process into a classification task, where a maxout Deep Neural
Network (DNN) classifies the frames based on the speaker’s identity. The DNN employs
softmax as the output layer to minimize the cross-entropy loss between the ground-truth
frame labels and the network’s output. During the testing phase, the 𝑑-vector technique
extracts the output activation of each frame from the last hidden layer of the DNN, serving
as the deep embedding feature for that frame. To generate a compact representation called
the 𝑑-vector, the technique computes the average of the deep embedding features from all
frames within an utterance. The underlying hypothesis is that the compact representation
space developed using a development set can effectively generalize to unseen speakers
during the testing phase [552].
• x-vector [506, 507] is a segment-level speaker embedding and an advancement over the 𝑑-
vector method as it incorporates additional modeling of temporal information and phonetic
information in speech signals, resulting in improved performance compared to the 𝑑-vector.
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speech utterance.

𝑥-vector employs an aggregation process to move from frame-by-frame speaker labeling
to utterance-level speaker labeling as highlighted in Figure 9. The network structure of
the 𝑥-vector is depicted in a figure, which consists of time-delay layers for extracting
frame-level speech embeddings, a statistical pooling layer for concatenating mean and
standard deviation of embeddings as a segment-level feature, and a standard feedforward
network for classifying the segment-level feature to its speaker. 𝑥-vector is the segment-level
speaker embedding generated from the feedforward network’s second-to-last hidden layer.
The authors in [470, 616] have also discovered the significance of data augmentation in
enhancing the performance of the 𝑥-vector.

Table 1. The table summarizes various loss functions used in training the speaker recognition models including
their formulation [91].

Loss Function Objective Type Description

Softmax Classification 𝐿𝑆 = − 1
𝑁

∑𝑁
𝑖=1 log

exp𝑊𝑇
𝑦𝑖
𝑥𝑖+𝑏𝑦𝑖∑𝐶

𝑗=1 exp𝑊𝑇
𝑗
𝑥𝑖+𝑏𝑦𝑖

AM-Softmax (CosFace) [569] Classification 𝐿𝐶 = − 1
𝑁

∑𝑁
𝑖=1 log

exp 𝑠 (cos𝜃𝑦𝑖 ,𝑖−𝑚)
exp 𝑠 (cos𝜃𝑦𝑖 ,𝑖−𝑚)+

∑
𝑗≠𝑦𝑖

exp 𝑠 (cos𝜃 𝑗,𝑖 )

AAM-Softmax (ArcFace) [103] Classification 𝐿𝐴 = − 1
𝑁

∑𝑁
𝑖=1 log

exp 𝑠 (cos𝜃𝑦𝑖 ,𝑖−𝑚)
exp 𝑠 (cos𝜃𝑦𝑖 ,𝑖+𝑚)+

∑
𝑗≠𝑦𝑖

exp 𝑠 (cos𝜃 𝑗,𝑖 )
Triplet [484] Metric learning [640] 𝐿𝑇 = 1

𝑁

∑𝑁
𝑗=1 max(0, | |𝑥 𝑗,0 − 𝑥 𝑗,1 | |22, | |𝑥 𝑗,0 − 𝑥𝑘≠𝑗,1 | |22 +𝑚)

Prototypical [505] Metric learning [505] 𝐿𝑃 = − 1
𝑁

∑𝑁
𝑗=1 log

exp S𝑗,𝑗∑𝑁
𝑘=1 exp S𝑗,𝑘

Generalized end-to-end (GE2E) [561] Metric learning [573] 𝐿𝐺 = − 1
𝑁

∑
𝑗,𝑖 log

exp S𝑗,𝑖,𝑗∑𝑁
𝑘=1 exp S𝑗,𝑖,𝑘

Angular Prototypical Metric learning 𝐿𝐴𝑃 = − 1
𝑁

∑
𝑗,𝑖 log

exp S𝑗,𝑖,𝑗∑𝑁
𝑘=1 exp S𝑗,𝑖,𝑘
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latent variable 𝑧 is used for representing learning.

4.2 Unsupervised learning
Unsupervised representation learning for speech processing has gained significant emphasis over
the past few years. Similar to visual modality in CV and text modality in NLP, speech i.e. audio
modality introduces unique challenges. Unsupervised speech representation learning is concerned
with learning useful speech representations without using annotated data. Usually, the model is
first pre-trained on the task where plenty of data is available. The model is then fined tuned or used
to extract input representations for a small model, specifically targeting tasks with limited data.

One approach to addressing the unique challenges of unsupervised speech representation learning
is to use probabilistic latent variable models (PLVM), which assume an unknown generative
process produces the data and enables the learning of rich structural representations and reasoning
about observed and unobserved factors of variation in complex datasets such as speech within a
probabilistic framework. PLVM specified a joint distribution 𝑝 (𝑥, 𝑧) over unobserved stochastic
latent variable z and observed variables x. By factorizing the joint distribution into modular
components, it becomes possible to learn rich structural representations and reason about observed
and unobserved factors of variation in complex datasets such as speech within a probabilistic
framework. The likelihood of a PLVM given a data x can be written as

𝑝 (𝑥) =
∫

𝑝 (𝑥 |𝑧)𝑝 (𝑧)𝑑𝑧. (26)

Probabilistic latent variable models provide a powerful way to learn a representation that captures
the underlying relationships between observed and unobserved variables, without requiring explicit
supervision or labels. These models involve unobserved latent variables that must be inferred from
the observed data, typically using probabilistic inference techniques such as Markov Chain Monte
Carlo (MCMC) methods. In the context of representation learning, Variational autoencoders (VAE)
are commonly used with latent variable models for various speech processing tasks, leveraging the
power of probabilistic modeling to capture complex patterns in speech data.

4.3 Semi-supervised Learning
Semi-supervised learning can be viewed as a process of optimizing a model using both labeled and
unlabeled data. The set of labeled data points, denoted by 𝑋𝐿 , contains 𝑁𝐿 items, where each item
is represented as (𝑥𝑖 , 𝑦𝑖 ) with 𝑦𝑖 being the label of 𝑥𝑖 . On the other hand, the set of unlabeled data
points, denoted by 𝑋𝑈 , consists of 𝑁𝑈 items, represented as 𝑥𝑁𝐿+1, 𝑥𝑁𝐿+2, ..., 𝑥𝑁𝐿+𝑁𝑈

.
In semi-supervised learning, the objective is to train a model 𝑓𝜃 with parameters 𝜃 that can

minimize the expected loss over the entire dataset. The loss function 𝐿(𝑦, 𝑓𝜃 (𝑥)) is used to quantify
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the deviation between the model’s prediction 𝑓𝜃 (𝑥) and the ground truth label 𝑦. The expected loss
can be mathematically expressed as:

𝐿(𝑦, 𝑓𝜃 (𝑥)) = 𝐸 (𝑥,𝑦)∼𝑝𝑑𝑎𝑡𝑎 (𝑥,𝑦) [𝐿(𝑦, 𝑓𝜃 (𝑥))] (27)
where 𝑝𝑑𝑎𝑡𝑎 (𝑥,𝑦) is the underlying data distribution.In semi-supervised learning, the loss function
is typically decomposed into two parts: a supervised loss term that is only defined on the labeled
data, and an unsupervised loss term that is defined on both labeled and unlabelled data. The
supervised loss term is calculated as follows:

L𝑠𝑢𝑝 =
1
𝑁𝐿

∑︁
(𝑥,𝑦) ∈𝑋𝐿

𝐿(𝑦, 𝑓𝜃 (𝑥)) (28)

The unsupervised loss term leverages the unlabelled data to encourage the model to learn
meaningful representations that capture the underlying structure of the data. One common approach
is to use a regularization term that encourages the model to produce similar outputs for similar
input data. This can be achieved by minimizing the distance between the output of the model for
two similar input data points. One such regularization term is the entropy minimization term,
which can be expressed as:

L𝑢𝑛𝑠𝑢𝑝 =
1
𝑁𝑈

∑︁
(𝑥𝑖 ) ∈𝑋𝑈

|𝑦 |∑︁
𝑗=1

𝑝𝜃 (𝑦 𝑗 , 𝑥𝑖 ) log𝑝𝜃 (𝑦 𝑗 , 𝑥𝑖 ) (29)

where 𝑝𝜃 (𝑦 𝑗 |𝑥𝑖 ) is the predicted probability of the 𝑗-th label for the unlabelled data point 𝑥𝑖 . Finally
the overall objective function for semi-supervised learning can be expressed as L = L𝑠𝑢𝑝 +𝛼L𝑢𝑛𝑠𝑢𝑝 ,
𝛼 is a hyperparameter that controls the weight of the unsupervised loss term. The goal is to find
the optimal parameters 𝜃 that minimize this objective function. Semi-supervised learning involves
learning a model from both labelled and unlabelled data by minimizing a combination of supervised
and unsupervised loss terms. By leveraging the additional unlabelled data, semi-supervised learning
can improve the generalization and performance of the model in downstream tasks.
Semi-supervised learning techniques are increasingly being employed to enhance the perfor-

mance of DNNs across a range of downstream tasks in speech processing, including ASR, TTS, etc.
The primary objective of such approaches is to leverage large unlabelled datasets to augment the
performance of supervised tasks that rely on labelled datasets. The recent advancements in speech
recognition have led to a growing interest in the integration of semi-supervised learning methods
to improve the performance of ASR and TTS systems [34, 89, 229, 605, 657, 658]. This approach is
particularly beneficial in scenarios where labelled data is scarce or expensive to acquire. In fact,
for many languages around the globe, labelled data for training ASR models are often inadequate,
making it challenging to achieve optimal results. Thus, using a semi-supervised learning model
trained on abundant resource data can offer a viable solution that can be readily extended to
low-resource languages.

Semi-supervised learning has emerged as a valuable tool for addressing the challenges of insuf-
ficient annotations and poor generalization [165]. Research in various domains, including image
quality assessment [341], has demonstrated that leveraging both labelled and unlabelled data
through semi-supervised learning can lead to improved performance and generalization. In the
domain of speech quality assessment, several studies [488] have exploited the generalization
capabilities of semi-supervised learning to enhance performance.
Moreover, semi-supervised learning has gained significant attention in other areas of speech

processing, such as end-to-end speech translation [428]. By leveraging large amounts of unlabelled
data, semi-supervised learning approaches have demonstrated promising results in improving
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Fig. 11. Generative approaches to self-supervised learning.

the performance and robustness of speech translation models. This highlights the potential of
semi-supervised learning to address the limitations of traditional supervised learning approaches
in a variety of speech processing tasks.

4.4 Self-supervised representation learning (SSRL)
Self-supervised representation learning (SSRL) is a machine learning approach that focuses on
achieving robust and in-depth feature learning while minimizing reliance on extensively annotated
datasets, thus reducing the annotation bottleneck [132, 289]. SSRL comprises various techniques
that allow models to be trained without needing human-annotated labels [132, 289]. One of the
key advantages of SSRL is its ability to operate on unlabelled datasets, which reduces the need for
large annotated datasets [132, 289]. In recent years, self-supervised learning has progressed rapidly,
with some methods approaching or surpassing the efficacy of fully supervised learning methods.
Self-supervised learning methods typically involve pretext tasks that generate pseudo labels for
discriminative model training without actual labeling. The difference between self-supervised
representation learning and unsupervised representation is highlighted in Figure 10. In contrast
to unsupervised representation learning, SSRL techniques are designed to generate these pseudo
labels for model training. The ability of SSRL to achieve robust and in-depth feature learning
without relying heavily on annotated datasets holds great promise for the continued development
of machine learning techniques.

SSRL differs from supervised learning mainly in terms of its data requirements. While supervised
learning relies on labeled data, where the model learns from input-output pairs, SSL generates
its own labels from the input data, eliminating the need for labeled data [289]. The SSL approach
trains the model to predict a portion of the input data, which is then utilized as a label for the
task at hand [289]. Although SSRL is an unsupervised learning technique, it seeks to tackle tasks
commonly associated with supervised learning without relying on labeled data [289].

4.4.1 Generative Models
This method involves instructing a model to produce samples resembling the input data without
explicitly learning the labels, creating valuable representations applicable to other tasks. The
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detailed architecture for generative models with three different variants is shown in Figure 11. The
earliest self-supervised method, predicting masked inputs using surrounding data, originated from
the text field in 2013 with word2vec. The continuous bag of words (CBOW) concept of word2vec
predicts a central word based on its neighbors, resembling ELMo and BERT’s masked language
modeling (MLM). These non-autoregressive generative approaches differ in their use of advanced
structures, such as bidirectional LSTM (for ELMo) and transformer (for BERT), with recent models
producing contextual embeddings. In the context of the speech, Mockingjay [330] applied masking
to all feature dimensions in the speech domain, whereas TERA [329] applied to mask only to a
particular subset of feature dimensions. The summary of generative self-supervised approaches
along with the data used for training the models are outlined in Table 2. We further discuss different
generative approaches as highlighted in Figure 11 as follows:

Table 2. Summary of generative self-supervised approaches and proposed models for speech processing with
associated metrics and training Data. ASR: Automatic Speech Recognition, PR: Phoneme Recognition. PC:
Phoneme Classification, SR: Speaker Recognition, LS: LibriSpeech.

Model Reference Task (Metric) Pre-Training
Dataset (hours)

Dataset
Training Test

Mockingjay [330] PC LS (360h) LS (360h) LS (test-clean)
SR LS (360h) LS (100h) LS (100h)

PASE [416] ASR LS (50 hr) DIRHA DIRHA

PASE+ [456] ASR LS (50 hr) DIRHA
CHiME-5

DIRHA
CHiME-5

DeCoAR [326] ASR LS (100h, 360h, 460 h, 960h)
WSJ si284

LS (100h, 360h, 460 h, 960h)
WSJ si284

LS (test-clean)
LS (test-other)

• Auto-encoding Models: Auto-encoding Models have garnered significant attention in the
domain of self-supervised learning, particularly Autoencoders (AEs) and Variational Autoen-
coders (VAEs). AEs consist of an encoder and a decoder that work together to reconstruct
input while disregarding less important details, prioritizing the extraction of meaningful
features. VAEs, a probabilistic variant of AEs, have found wide-ranging applications in the
field of speech modeling. Furthermore, the vector-quantized variational autoencoder (VQ-
VAE) [550] has been developed as an extended generative model. The VQ-VAE introduces
parameterization of the posterior distribution to represent discrete latent representations.
Remarkably, the VQ-VAE has demonstrated notable success in generative spoken language
modeling. By combining a discrete latent space with self-supervised learning, its perfor-
mance is further improved.
• Autoregressive models: Autoregressive generative self-supervised learning uses autoregres-
sive prediction coding technique [95] to model the probability distribution of a sequence
of data points. This approach aims to predict the next data point in a sequence based
on the previous data points. Autoregressive models typically use RNNs or a transformer
architecture as a basic model.
The authors in paper [402] introduce a generative model for raw audio called WaveNet,
based on PixelCNN [549]. To enhance the model’s ability to handle long-range temporal
dependencies, the authors incorporate dilated causal convolutions [402]. They also utilize
Gated Residual blocks and skip connections to improve the model’s expressivity.
• Masked Reconstruction: The concept of masked reconstruction is influenced by the masked
language model (MLM) task proposed in BERT [109]. This task involves masking specific
tokens in input sentences with learned masking tokens or other input tokens, and training
the model to reconstruct these masked tokens from the non-masked ones. Recent research
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has explored similar pretext tasks for speech representation learning that help models
develop contextualized representations capturing information from the entire input, like
the DeCoAR model [326]. This approach assists the model in comprehending input data
better, leading to more precise and informative representations.

4.4.2 Contrastive Models
The technique involves training a model to differentiate between similar and dissimilar pairs of data
samples, which helps the model acquire valuable representations that can be utilized for various
tasks, as shown on Figure 12. The fundamental principle of contrastive learning is to generate
positive and negative pairs of training samples based on the comprehension of the data. The model
must learn a function that assigns high similarity scores to two positive samples and low similarity
scores to two negative samples. Therefore, generating appropriate samples is crucial for ensuring
that the model comprehends the fundamental features and structures of the data. Table 3 outlines
popular contrastive self-supervised models used for different speech-processing tasks. We discuss
Wav2Vec 2.0 since it has achieved state-of-the-art results in different downstream tasks.

• Wav2Vec 2.0 [26] is a framework for self-supervised learning of speech representations that
is one of the current state-of-the-art models for ASR [26]. The training of the model occurs
in two stages. Initially, the model operates in a self-supervised mode during the first phase,
where it uses unlabelled data and aims to achieve the best speech representation possible.
The second phase is fine-tuning a particular dataset for a specific purpose. Wav2Vec 2.0
takes advantage of self-supervised training and uses convolutional layers to extract features
from raw audio.

In the speech field, researchers have explored different approaches to avoid overfitting, including
augmentation techniques like Speech SimCLR [220] and the use of positive and negative pairs
through methods like Contrastive Predictive Coding (CPC) (Ooster and Meyer [404]), Wav2vec
(v1, v2.0) (Schneider et al. [483]), VQ-wav2vec (Baevski et al. [25]), and Discrete BERT [23]." "In the
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Table 3. Summary of contrastive self-supervised approaches and proposed models for speech processing with
associated metrics and training Data. ASR: Automatic Speech Recognition, PR: Phoneme Recognition. PC:
Phoneme Classification, SR: Speaker Recognition, LS: LibriSpeech, LL: LibriLight, WSJ: Wall Street Journal.

Model Reference Task Pre-Training
Dataset (hours)

Dataset
Training Test

CPC [403] PC LS (100h) LS (100h) LS (100h)
SR LS (100h) LS (100h) LS (100h)

Modified CPC [465] PC LS (100h, 360h)
Zerospeech2017(45h) CV-Dataset CV-Dataset

Bidirectional CPC [247] ASR

WSJ (80h)
LS (960h)
TIMIT (5h)
SSA (1h)

TED3 (440h)
SwithBoard (310h)

WSJ (80h)
LS (960h)
TIMIT (5h)
SSA (1h)

TED3 (440h)
SwithBoard (310h)

WSJ (test92, test93)
LS (test-clean, test-other)

TED3 (dev, test)
SwithBoard (eval2000)

ASR-Multi
Audio Set (2500h)
AVSpeech (3100h)
CV-Dataset (430h

Audio Set (2500h)
AVSpeech (3100h)
CV-Dataset (430h)

OpenSLR
ALFFA

wav2vec [483] ASR LS 80/860h
LS 960h + WSJ (si284) WSJ (si284) WSJ (eval92)

PR TIMIT TIMIT TIMIT

wav2vec 2.0 [26] ASR LS (960h)
LL (60000h) LS (960h) LS (test-clean)

LS (test-other)

PR LS (960h)
LL (60000h) TIMIT TIMIT

vq-wav2vec 2.0 [25] ASR LS (960h) WSJ (si284) WSJ (eval92)
PR LS (960h) TIMIT TIMIT

wav2vec-C [474] ASR Alexa-10k Alexa-eval Alexa-eval

w2v-BERT [96] ASR LL (60000h) LS (960h)

LS (test)
LS (test-other)

LS (dev)
LS (dev-other)

Speech SimCLR [220] ASR
LS (960h)
WJS (si284)

TED2
WJS (si284) WJS (si284)

PR
LS (960h)
WJS (si284)

TED2
TIMIT TIMIT

UnSpeech [381] ASR-Mult
LL (60000h)

GigaSpeech (10000h)
VP (24000h)

SUPERB SUPERB

graph field, researchers have developed approaches like Deep Graph Infomax (DGI) (Velickovic
et al., 2019 [556]) to learn representations that maximize the mutual information between local
patches and global structures while minimizing mutual information between patches of corrupted
graphs and the original graph’s global representation.

4.4.3 Predictive Models
In training predictive models, the primary concept involves creating simpler objectives or targets
to minimize the need for data generation. However, the most critical and difficult aspect is ensuring
that the task’s difficulty level is appropriate for the model to learn effectively. Predictive SSRL
methods have been leveraged in ASR through transformer-based models to acquire meaningful
representations [23, 193, 329] and have proven transformative in exploiting the growing abundance
of data [150]. Table 4 highlight popularly used SSRL methods along with the data used for training
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Fig. 13. Predictive Self-supervised learning: (a) Discrete BERT (b) HuBERT.

these models. In the following section we breifly discuss three popular predictive SSRL approaches
used widely in various downstream tasks.
• The direct application of BERT-type training to speech input presents challenges due to the
unsegmented and unstructured nature of speech. To overcome this obstacle, a pioneering
model known as Discrete BERT [23] has been developed. This model converts continuous
speech input into a sequence of discrete codes, facilitating code representation learning.
The discrete units are obtained from a pre-trained vq-wav2vec model [25], and they serve as
both inputs and targets within a standard BERT model. The architecture of Discrete BERT,
illustrated in Figure 13 (a), incorporates a softmax normalized output layer. During training,
categorical cross-entropy loss is employed, with a masked perspective of the original speech
input utilized for predicting code representations. Remarkably, the Discrete BERT model
has exhibited impressive efficacy in self-supervised speech representation learning. Even
with a mere 10-minute fine-tuning set, it achieved a Word Error Rate (WER) of 25% on
the standard test-other subset. This approach effectively tackles the challenge of directly
applying BERT-type training to continuous speech input and holds substantial potential for
significantly enhancing speech recognition accuracy
• The HuBERT [193] and TERA [329] models are two self-supervised approaches for speech

representation learning. HuBERT uses an offline clustering step to align target labels with a
BERT-like prediction loss, with the prediction loss applied only over the masked regions
as outlined in Figure 13 (b). This encourages the model to learn a combined acoustic and
language model over the continuous inputs. On the other hand, TERA is a self-supervised
speech pre-trainingmethod that reconstructs acoustic frames from their altered counterparts
using a stochastic policy to alter along various dimensions, including time, frequency, and
tasks. These alterations help extract feature-based speech representations that can be fine-
tuned as part of downstream models.

Microsoft has introduced UniSpeech-SAT [72] andWavLM [71]models, which follow theHuBERT
framework. These models have been designed to enhance speaker representation and improve vari-
ous downstream tasks. The key focus of these models is data augmentation during the pre-training
stage, resulting in superior performance. WavLM model has exhibited outstanding effectiveness in
diverse downstream tasks, such as automatic speech recognition, phoneme recognition, speaker
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Table 4. Summary of predictive self-supervised approaches and proposed models for speech processing with
associated metrics and training Data. ASR: Automatic Speech Recognition, PR: Phoneme Recognition. PC:
Phoneme Classification, SR: Speaker Recognition, LL: LibriLight, LS: LibriSpeech.

Model Reference Task (Metric) Pre-Training
Dataset (hours)

Dataset
Training Test

BEST-RQ [78] ASR LL (60000h) LS (960h)

LS (test)
LS (test-other)

LS (dev)
LS (dev-other)

ASR-Multi
LL (60000h)

GigaSpeech (10000h)
VP (24000h)

SUPERB SUPERB

data2vec [24] ASR LS (960h) LS (10m, 1h, 100h, 960h) LS (960h)

Discrete BERT [23] ASR LS (960h) LS (100h) LS (test)
LS (test-other)

HuBERT [625] ASR LS (960h)
LL (60000h) LS (960h) LS (test)

LS (test-other)
WavLM [71] ASR LL (60000h) SUPERB SUPERB

identification, and emotion recognition. It is worth highlighting that this model currently holds the
top position on the SUPERB leaderboard [615], which evaluates speech representations’ perfor-
mance in terms of reusability.
Self-supervised learning has emerged as a widely adopted and effective technique for speech

processing tasks due to its ability to train models with large amounts of unlabeled data. A compre-
hensive overview of self-supervised approaches, evaluation metrics, and training data is provided
in Table 4 for speech recognition, speaker recognition, and speech enhancement. Researchers
and practitioners can use this resource to select appropriate self-supervised methods and datasets
to enhance their speech-processing systems. As self-supervised learning techniques continue to
advance and refine, we can expect significant progress and advancements in speech processing.

5 Speech Processing Tasks
In recent times, the field of speech processing has gained significant attention due to its rapid
evolution and its crucial role in modern technological applications. This field involves the use of
diverse techniques and algorithms to analyse and understand spoken language, ranging from basic
speech recognition to more complex tasks such as spoken language understanding and speaker
identification. Since speech is one of the most natural forms of communication, speech processing
has become a critical component of many applications such as virtual assistants, call centres, and
speech-to-text transcription. In this section, we provide a comprehensive overview of the various
speech-processing tasks and the techniques used to achieve them, while also discussing the current
challenges and limitations faced in this field and its potential for future development.

The assessment of speech-processing models depends greatly on the calibre of datasets employed.
By utilizing standardized datasets, researchers are enabled to objectively gauge the efficacy of
varying approaches and identify scopes for advancement. The selection of evaluation metrics plays
a critical role in this process, hinging on the task at hand and the desired outcome. Therefore, it is
essential that researchers conduct a meticulous appraisal of different metrics to make informed
decisions. This paper offers a thorough summary of frequently utilized datasets and metrics across
diverse downstream tasks, as presented in Table 5 and, Table 6.
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Table 5. Comparative analysis of speech processing datasets: This table summarizes the essential features of
different speech-processing datasets, including their typical applications in various speech-processing tasks.
ASR: Automatic Speech Recognition, PR: Phoneme Recognition. PC: Phoneme Classification, SR: Speaker
Recognition, SV: Speaker Verification, SER: Speech Emotion Recognition, IC: Intent Classification, TTS:
Text-to-Speech, VC: Voice Conversion, ST: Speech Translation, SS: Speech Separation

Dataset Language Lenght (hours) ASR PR PC SR SV SER IC TTS VC ST SS

TIMIT Acoustic-Phonetic Continuous Speech Corpus English 5.4 ✓ ✓ ✓

Lip Reading Sentences 2 (LRS2) English ✓

LibriSpeech (LS) English 1000 ✓ ✓ ✓ ✓

GigaSpeech English 10000 ✓

Fleurs Multilingual 12 ✓

LibriTTS English 585 ✓ ✓

L2ARCTIC English 11.2 ✓ ✓

CMUARCTIC English 20 ✓ ✓

Wall Street Journal (WSJ) English ✓ ✓ ✓

VoxPopuli (VP) Multilingual 1800 ✓

BABEL (BBL) Multilingual ✓

Common Voice (CV-dataset) Multilingual 9283 ✓ ✓ ✓

CSTR VCTK English

HUB 5 English 2000 ✓

CHiME-5 English 50.12

TED-LIUM 3 (TED 3) English 452

TED-LIUM 2 (TED 2) English 118

AISHELL-1 Mandarin 520 ✓

AISHELL-3 Mandarin 85 ✓ ✓

AISHELL-4 Mandarin 120 ✓ ✓

Arabic Speech Corpus Arabic 3.7 ✓ ✓ ✓

Persian Consonant Vowel Combination Persian - ✓ ✓ ✓

ALFFA Multilingual 5.2-18.3

OpenSLR-multi Multilingual 4.4-265.9

VCTK English 44

VoxCeleb1/2 English ✓ ✓

Fluent Speech Commands (FSC) English 14.7 ✓

Emotional Speech Dataset (ESD) English 29 ✓

Interactive Emotional Dyadic Motion Capture (IEMOCAP) English 12 ✓

Multimodal EmotionLines Dataset ( MELD) English - ✓

LibraSeepch En-Fr English/French - ✓

CoVoST-2 Multilingual 2880 ✓

LibriLight (LL) English 60000 ✓ ✓

5.1 Automatic speech recognition (ASR) & conversational multi-speaker AST
5.1.1 Task Description
Automatic speech recognition (ASR) technology enables machines to convert spoken language into
text or commands, serving as a cornerstone of human-machine communication and facilitating a
wide range of applications such as speech-to-speech translation and information retrieval [345].
ASR involves multiple intricate steps, starting with the extraction and analysis of acoustic features,
including spectral and prosodic features, which are then employed to recognize spoken words.
Next, an acoustic model matches the extracted features to phonetic units, while a language model
predicts the most probable sequence of words based on the recognized phonetic units. Ultimately,
the acoustic and language model outcomes are merged to produce the transcription of spoken words.
Deep learning techniques have gained popularity in recent years, allowing for improved accuracy
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Table 6. Comprehensive Evaluation Metrics for Speech Processing Tasks. This table provides a comprehensive
overview of the evaluation metrics used to assess the performance of speech-based systems across various
tasks such as ASR, speaker verification, and TTS. The table highlights the specific metrics employed for each
task, along with the score range and commonly used datasets.

Tasks Metric Description Score range Evaluation dataset

Automatic speech recognition WER Word Error Rate 0-1 TIMIT

CER Character Error Rate 0-1 LibriSpeech

Phoneme recognition Accuracy Classification accuracy 0-1 TIMIT

Phoneme classification F1-score Harmonic mean of precision and recall 0-1 TIMIT

Speaker recognition EER Equal Error Rate 0-1 VoxCeleb1

Speaker verification FAR/FRR False Acceptance Rate / False Rejection Rate 0-1 VoxCeleb1

Speech emotion recognition Accuracy Classification accuracy 0-1 IEMOCAP, ESD

Intent classification F1-score Harmonic mean of precision and recall 0-1 ATIS, SNIPS

Text-to-speech MOS Mean Opinion Score 1-5 LJSpeech, LibriTTS

Voice conversion MOS Mean Opinion Score 1-5 VCC 2016

Speech translation BLEU Bilingual Evaluation Understudy 0-1 MuST-C

Speech separation SI-SDRi Signal to Distortion Ratio -20-30 WSJ0-2mix

Speech enhancement PESQ Perceptual Evaluation of Speech Quality -0.5-4.5 NOIZEUS

Voice activity detection F1-score Harmonic mean of precision and recall 0-1 QUT-NOISE

in ASR systems [26, 443]. This paper provides an overview of the key components involved in ASR
and highlights the role of deep learning techniques in enhancing the technology’s accuracy.

Most speech recognition systems that use deep learning aim to simplify the processing pipeline
by training a single model to directly map speech signals to their corresponding text transcriptions.
Unlike traditional ASR systems that require multiple components to extract and model features,
such as HMMs and GMMs, end-to-end models do not rely on hand-designed components [19,
305]. Instead, end-to-end ASR systems use DNNs to learn acoustic and linguistic representations
directly from the input speech signals [305]. One popular type of end-to-end model is the encoder-
decoder model with attention. This model uses an encoder network to map input audio signals to
hidden representations, and a decoder network to generate text transcriptions from the hidden
representations. During the decoding process, the attention mechanism enables the decoder to
selectively focus on different parts of the input signal [305].
End-to-end ASR models can be trained using various techniques such as CTC [245], which is

used to train models without explicit alignment between the input and output sequences, and
RNNs, which are commonly used to model temporal dependencies in sequential data such as
speech signals. Transfer learning-based approaches can also improve end-to-end ASR performance
by leveraging pre-trained models or features [106, 327, 489]. While end-to-end ASR models have
shown promising results in various applications, there is still room for improvement to achieve
human-level performance [106, 137, 236, 237, 327, 625]. Nonetheless, deep learning-based end-to-
end ASR architecture offers a promising and efficient approach to speech recognition that can
simplify the processing pipeline and improve recognition accuracy.

5.1.2 Dataset
The development and evaluation of ASR systems are heavily dependent on the availability of large
datasets. As a result, ASR is an active area of research, with numerous datasets used for this purpose.
In this context, several popular datasets have gained prominence for use in ASR systems.
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• CommonVoice: Mozilla’s CommonVoice project [17] is dedicated to producing an accessible,
unrestricted collection of human speech for the purpose of training speech recognition
systems. This ever-expanding dataset features contributions from more than 9, 000 speakers
spanning 60 different languages.
• LibriSpeech: LibriSpeech [410] is a corpus of approximately 1,000 hours of read English

speech created from audiobooks in the public domain. It is widely used for speech recognition
research and is notable for its high audio quality and clean transcription.
• VoxCeleb: VoxCeleb [92] is a large-scale dataset containing over 1 million short audio clips

of celebrities speaking, which can be used for speech recognition and recognition research.
It includes a diverse range of speakers from different backgrounds and professions.
• TIMIT: The TIMIT corpus [153] is a widely used speech dataset consisting of recordings

consisting of 630 speakers representing eight major dialects of American English, each read-
ing ten phonetically rich sentences. It has been used as a benchmark for speech recognition
research since its creation in 1986.
• CHiME-5: The CHiME-5 dataset [33] is a collection of recordings made in a domestic
environment to simulate a real-world speech recognition scenario. It includes 6.5 hours of
audio from multiple microphone arrays and is designed to test the performance of ASR
systems in noisy and reverberant environments.

Other notable datasets include Google’s Speech Commands Dataset [589], the Wall Street Journal
dataset4, and TED-LIUM [468].

5.1.3 Models
The use of RNN-based architecture in speech recognition has many advantages over traditional
acoustic models. One of the most significant benefits is their ability to capture long-term temporal
dependencies [244] in speech data, enabling them to model the dynamic nature of speech signals.
Additionally, RNNs can effectively process variable-length audio sequences, which is essential
in speech recognition tasks where the duration of spoken words and phrases can vary widely.
RNN-based models can efficiently identify and segment phonemes, detect and transcribe spoken
words, and can be trained end-to-end, eliminating the need for intermediate steps. These features
make RNN-based models particularly useful in real-time applications, such as speech recognition
in mobile devices or smart homes [117, 178], where low latency and high accuracy are crucial.
In the past, RNNs were the go-to model for ASR. However, their limited ability to handle long-

range dependencies prompted the adoption of the Transformer architecture. For example, in 2019,
Google’s Speech-to-Text API transitioned to a Transformer-based architecture that surpassed
the previous RNN-based model, especially in noisy environments and for longer sentences, as
reported in [651]. Additionally, Facebook AI Research introduced wav2vec 2.0, a self-supervised
learning approach that leverages a Transformer-based architecture to perform unsupervised speech
recognition. wav2vec 2.0 has significantly outperformed the previous RNN-based model and
achieved state-of-the-art results on several benchmark datasets.
Transformer for the ASR task is first proposed in [116], where authors include CNN layers

before submitting preprocessed speech features to the input. By incorporating more CNN layers, it
becomes feasible to diminish the gap between the sizes of the input and output sequences, given
that the number of frames in audio exceeds the number of tokens in text. This results in a favorable
impact on the training process. The change in the original architecture is minimal, and the model
achieves a competitive word error rate (WER) of 10.9% on the Wall Street Journal (WSK) speech
recognition dataset (Table 7). Despite its numerous advantages, Transformers in its pristine state

4https://www.ldc.upenn.edu/
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Table 7. Table summarizing the performance of different ASR models in terms of WER% on five different
datasets (LibriSpeech test, LibriSpeech clean, TIMIT, Common Voice, WSJ eval92, and GigaSpeech) also
highlighting the use of extra data during training. ZS stands for Zero-Shot Performance.

Model Architecture
Extra

Training Data
WER% ↓ WER% ↓ Model Architecture

Extra

Training Data
WER% ↓

LibriSpeech test clean others TIMIT

Conformer + Wav2vec 2.0 [658] Conformer + wav2vec2.0 Y 1.4 2.6 wav2vec 2.0 [26] Transformer + CNN Y 8.3

w2v-BERT XXL [96] CNN+Transformer Y 1.4 2.5 vq-wav2vec [25] Transformer + CNN Y 11.6

SpeechStew (1B)[58] Conformer Y 1.7 3.3 LSTM + Monophone Reg [455] LSTM N 14.5

SpeechStew (100M) [58] Conformer N 2.0 4.0 Common Voice

ContextNet + SpecAugment [413] LSTM+CNN Y 1.7 3.4 SpeechStew (1B) [58] Conformer N 10.8

Conformer (L) [162] Conformer N 1.9 4.1 Whisper [443] N 9.5

ContextNet [169] Conformer + wav2vec2.0 N 1.9 3.4 WSJ eval92

Squeezeformer [255] Conformer N 2.47 5.97 SpeechStew (100M) [58] Conformer N 1.3

LSTM Transducer [636] LSTM N 2.23 5.6 tdnn+chain [433] TDNN N 2.32

Transformer Transducer [331] Transformer N 2.0 4.2 GigaSpeech

Whisper [443] N 2.7 (ZS) 5.6 (ZS) Conformer/Transformer-AED [61] Conformer N 10.80

has several issues when applied to ASR. RNN, with its overall training speed (i.e., convergence)
and better WER because of effective joint training and decoding methods, is still the best option.

The authors in [116] propose the Speech Transformer, which has the advantage of faster iteration
time, but slower convergence compared to RNN-based ASR. However, integrating the Speech
Transformer with the naive language model (LM) is challenging. To address this issue, various
improvements in the Speech Transformer architecture have been proposed in recent years. For
example, [245] suggests incorporating the Connectionist Temporal Classification (CTC) loss into
the Speech Transformer. CTC is a popular technique used in speech recognition to align input and
output sequences of varying lengths and one-to-many or many-to-one mappings. It introduces
a blank symbol representing gaps between output symbols and computes the loss function by
summing probabilities across all possible paths. The loss function encourages the model to assign
high probabilities to correct output symbols and low probabilities to incorrect output symbols
and the blank symbol, allowing the model to predict sequences of varying lengths. The CTC loss
is commonly used with RNNs such as LSTM and GRU, which are well-suited for sequential data.
CTC loss is a powerful tool for training neural networks to perform sequence-to-sequence tasks
where the input and output sequences have varying lengths and mappings between them are not
one-to-one.
Various other improvements have also been proposed to enhance the performance of Speech

Transformer architecture and integrate it with the naive language model, as the use of the trans-
former directly for ASR has not been effective in exploiting the correlation among the speech
frames. The sequence order of speech, which the recurrent processing of input features can repre-
sent, is an important distinction. The degradation in performance for long sentences is reported
using absolute positional embedding (AED) [85]. The problems associated with long sequences
can become more acute for transformer [672]. To address this issue, a transition was made from
absolute positional encoding to relative positional embeddings [672]. Whereas authors in [537]
replace positional embeddings with pooling layers. In a considerably different approach, the authors
in [383] propose a novel way of combining positional embedding with speech features by replacing
positional encoding with trainable convolution layers. This update further improves the stability
of optimization for large-scale learning of transformer networks. The above works confirmed the
superiority of their techniques against sinusoidal positional encoding.
In 2016, Baidu introduced a hybrid ASR model called Deep Speech 2 [13] that uses both RNNs

and Transformers. The model also uses CNNs to extract features from the audio signal, followed
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Table 8. Comparison of performance between wav2vec2.0 Large and Whisper on different datasets. The zero-
shot Whisper model consistently outperforms wav2vec2.0 Large on several datasets, indicating significant
performance differences.

Dataset wav2vec2.0 Large Whisper Large

Common Voice 29.9 9.0

Fleurs En 14.6 4.4

Tedlium 10.5 4.0

CHiME6 65.8 25.5

VoxPopuli En 17.9 7.3

Switchboard 28.3 13.8

CallHome 34.8 17.6

LibriSpeech Clean 2.7 2.7

LibriSpeech Other 6.2 5.2

by a stack of RNNs to model the temporal dependencies and a Transformer-based decoder to
generate the output sequence. This approach achieved state-of-the-art results on several benchmark
datasets such as LibriSpeech, VoxForge, WSJeval92 etc. The transition of ASR models from RNNs
to Transformers has significantly improved performance, especially for long sentences and noisy
environments.
The Transformer architecture has been widely adopted by different companies and research

groups for their ASR models, and it is expected that more organizations will follow this trend
in the upcoming years. One of the advanced speech models that leverage this architecture is the
Universal Speech Model (USM) [656] developed by Google, which has been trained on over 12
million hours of speech and 28 billion sentences of text in more than 300 languages. With its 2 billion
parameters, USM can recognize speech in both common languages like English and Mandarin and
less-common languages. Other popular acoustic models for speech recognition include Quartznet
[273], Citrinet [365], and Conformer [162]. These models can be chosen and switched based on the
specific use case and performance requirements of the speech recognition pipeline. For example,
Conformer-based acoustic models are preferred for addressing robust ASR, as shown in a recent
study. Another study found that Conformer-15 is more effective in handling real-world data and
can produce up to 43% fewer errors on noisy data than other popular ASR models. Additionally,
fine-tuning pre-trained models such as BERT [109] and GPT [444] has been explored for ASR
tasks, leading to state-of-the-art performance on benchmark datasets like LibriSpeech (refer to
Table 7). An open-source toolkit called Vosk6 provides pre-trained models for multiple languages
optimized for real-time and efficient performance, making it suitable for applications that require
such performance.
The field of speech recognition has made significant progress by adopting unsupervised pre-

training techniques, such as those utilized by Wav2Vec 2.0 [26]. Another recent advancement
in automatic speech recognition (ASR) is the whisper model, which has achieved human-level

5https://www.assemblyai.com/blog/conformer-1/
6https://alphacephei.com/vosk/lm
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accuracy when transcribing the LibriSpeech dataset. These two cutting-edge frameworks, Wav2Vec
2.0 and whisper, currently represent the state-of-the-art in ASR. The whisper model is trained on
an extensive supervised dataset, including over 680,000 hours of audio data collected from the web,
which has made it more resilient to various accents, background noise, and technical jargon. The
whisper model is also capable of transcribing and translating audio in multiple languages, making
it a versatile tool. OpenAI has released inference models and code, laying the groundwork for the
development of practical applications based on the whisper model.
In contrast to its predecessor, Wav2Vec 2.0 is a self-supervised learning framework that trains

models on unlabeled audio data before fine-tuning them on specific datasets. It uses a contrastive
predictive coding (CPC) loss function to learn speech representations directly from raw audio data,
requiring less labeled data. The model’s performance has been impressive, achieving state-of-the-art
results on several ASR benchmarks. These advances in unsupervised pre-training techniques and
the development of novel ASR frameworks like Whisper and Wav2Vec 2.0 have greatly improved
the field of speech recognition, paving the way for new real-world applications. In summary, the
Table 8 highlights the varying effectiveness of wav2vec2.0 large and whisper models across different
datasets.

5.2 Neural Speech Synthesis
5.2.1 Task Description
Neural speech synthesis is a technology that utilizes artificial intelligence and deep learning
techniques to create speech from text or other inputs. Its applications are widespread, including
in healthcare, where it can be used to develop assistive technologies for those who are unable to
communicate due to neurological impairments. To generate speech, deep neural networks like
CNNs, RNNs, transformers, and diffusion models are trained using phonemes and the mel spectrum.
The process involves several components, such as text analysis, acoustic models, and vocoders, as
shown in Figure 14. Acoustic models convert linguistic features into acoustic features, which are
then used by the vocoder to synthesize the final speech signal. Various architectures, including
neural vocoders based on GANs like HiFi-GAN [268], are used by the vocoder to generate speech.
Neural speech synthesis also enables manipulation of voice, pitch, and speed of speech signals
using frameworks such as Fastspeech2 [458] and NANSY/NANSY++ [82, 83]. These frameworks use
information bottleneck to disentangle analysis features for controllable synthesis. The research in
neural speech synthesis can be classified into two prominent approaches: autoregressive and non-
autoregressive models. Autoregressive models generate speech one element at a time, sequentially,
while non-autoregressive models generate all the elements simultaneously, in parallel. Table 9
outlines the different architecture proposed under each category.
The evaluation of synthesized speech is of paramount importance for assessing its quality and

fidelity. It serves as a means to gauge the effectiveness of different speech synthesis techniques,
algorithms, and parameterization methods. In this regard, the application of statistical tests has
emerged as a valuable approach to objectively measure the similarity between synthesized speech
and natural speech [139]. These tests complement the traditional Mean Opinion Score (MOS)
evaluations and provide quantitative insights into the performance of speech synthesis systems.
Additionally, widely used objective metrics such as Mel Cepstral Distortion (MCD) and Word Error
Rate (WER) contribute to the comprehensive evaluation of synthesized speech, enabling researchers
and practitioners to identify areas for improvement and refine the synthesis process. By employing
these objective metrics and statistical tests, the evaluation of synthesized speech becomes a rigorous
and systematic process, enhancing the overall quality and fidelity of speech synthesis techniques.
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Table 9. Exploring the Landscape of TTS and Vocoder Architectures: Autoregressive and Non-Autoregressive
Models.

Method Text-To-Speech Vocoder

Autoregressive Model

Tacotron [583] ,Tacotron2 [491], Deep Voice 1,2,3

Transformer-TTS [309], DurIAN [627], Flowtron [548]

RobuTrans [310], DeviceTTS [211],Wave-Tacotron [590]

Apple TTS [9]

WaveNet [402], WaveRNN [232], WaveGAN [420]

LPCNet [546], GAN-TTS [38], MultiBand-WaveRNN [627]

ImporvedLPCNet [545], Bunched LPCNet2 [414]

Non-Autoregressive Model

ParaNet [421], FastSpeech [460], JDI-T [317], EATS [115]

FastSpeech2 [458], FastPitch [284], Glow-TTS [250]

Flow-TTS [376], SpeedySpeech [544]

Parallel Tacotron [126], BVAE-TTS [296]

Parallel Tacotron2 [126], Grad-TTS [431], VITS [251]

RAD-TTS [493], WaveGrad2 [69], DelightfulTTS [342]

PortaSpeech [459], DiffGAN-TTS [340], JETS [318]

WavThruVec [502], FastDiff [204], CLONE [343]

Parallel-WaveNet [401], WaveGlow [435], Parallel-WaveGAN [608]

MelGAN [275], MultiBand-MelGAN [612], VocGAN [614], WaveGrad [67]

DiffWave [269], HiFi-GAN [268], StyleMelGAN [386], Fre-GAN [254]

iSTFTNet [241], Avocodo [32]

5.2.2 Datasets
The field of neural speech synthesis is rapidly advancing and relies heavily on high-quality datasets
for effective training and evaluation of models. One of the most frequently utilized datasets in
this field is the LJ Speech [217], which features about 24 hours of recorded speech from a single
female speaker reading passages from the public domain LJ Speech Corpus. This dataset is free
and has corresponding transcripts, making it an excellent choice for text-to-speech synthesis tasks.
Moreover, it has been used as a benchmark for numerous neural speech synthesis models, including
Tacotron [583], WaveNet [402], and DeepVoice [18, 156].

Apart from the LJ Speech dataset, several other datasets are widely used in neural speech synthesis
research. The CMU Arctic [267] and L2 Arctic [661] datasets contain recordings of English speakers
with diverse accents reading passages designed to capture various phonetic and prosodic aspects of
speech. The LibriSpeech [410], VoxCeleb [92], TIMIT Acoustic-Phonetic Continuous Speech Corpus
[153], and Common Voice Dataset [17] are other valuable datasets that offer ample opportunities
for training and evaluating text-to-speech synthesis models.

5.2.3 Models
Neural network-based text-to-speech (TTS) systems have been proposed using neural networks
as the basis for speech synthesis, particularly with the emergence of deep learning. In Statistical
Parametric Speech Synthesis (SPSS), early neural models replaced HMMs for acoustic modeling.
The first modern neural TTS model, WaveNet [402], generated waveforms directly from linguistic
features. Other models, such as DeepVoice 1/2 [18, 156], used neural network-based models to follow
the three components of statistical parametric synthesis. End-to-end models, including Tacotron
1 & 2 [491, 583], Deep Voice 3, and FastSpeech 1 & 2 [458, 460], simplified text analysis modules
and utilized mel-spectrograms to simplify acoustic features with character/phoneme sequences
as input. Fully end-to-end TTS systems, such as ClariNet [425], FastSpeech 2 [458], and EATS
[114], are capable of directly generating waveforms from text inputs. Compared to concatenative
synthesis 7 and statistical parametric synthesis, neural network-based speech synthesis offers
several advantages including superior voice quality, naturalness, intelligibility, and reduced reliance
on human preprocessing and feature development. Therefore, end-to-end TTS systems represent a
promising direction for advancing the field of speech synthesis.

7https://en.wikipedia.org/wiki/Concatenative_synthesis
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Transformer models have become increasingly popular for generating mel-spectrograms in TTS
systems [309, 458]. These models are preferred over RNN structures in end-to-end TTS systems
because they improve training and inference efficiency [309, 460]. In a study conducted by Li
et al. [309], a multi-head attention mechanism replaced both RNN structures and the vanilla
attention mechanism in Tacotron 2 [491]. This approach addressed the long-distance dependency
problem and improved pluralization. Phoneme sequences were used as input to generate the mel-
spectrogram, and speech samples were synthesized using WaveNet as a vocoder. Results showed
that the transformer-based TTS approach was 4.25 times faster than Tacotron 2 and achieved
similar MOS (Mean Opinion Score) performance.
Aside from the work mentioned above, there are other studies that are based on the Tacotron

architecture. For example, Skerry-Ryan et al. [503] and Wang et al. [584] proposed Tacotron-based
models for prosody control. These models use a separate encoder to compute style information from
reference audio that is not provided in the text. Another noteworthy work is the Global-style-Token
(GST) [584] which improves on style embeddings by adding an attention layer to capture a wider
range of acoustic styles.

The FastSpeech [460] algorithm aims to improve the inference speed of TTS systems. To achieve
this, it utilizes a feedforward network based on 1D convolution and the self-attention mechanism in
transformers to generate Mel-spectrograms in parallel. Additionally, it solves the issue of sequence
length mismatch between the Mel-spectrogram sequence and its corresponding phoneme sequence
by employing a length regulator based on a duration predictor. The FastSpeech model was evaluated
on the LJSpeech dataset and demonstrated significantly faster Mel-spectrogram generation than
the autoregressive transformer model while maintaining comparable performance. FastPitch builds
on FastSpeech by conditioning the TTS model on fundamental frequency or pitch contour, which
improves convergence and eliminates the need for knowledge distillation of Mel-spectrogram
targets in FastSpeech.

FastSpeech 2 [458] represents a transformer-based Text-to-Speech (TTS) system that addresses
the limitations of its predecessor, FastSpeech, while effectively handling the challenging one-to-
manymapping problem in TTS. It introduces the utilization of a broader range of speech information,
including energy, pitch, and more accurate duration, as conditional inputs. Furthermore, FastSpeech
2 trains the system directly on a ground-truth target, enhancing the quality of the synthesized speech.
Additionally, a simplified variant called FastSpeech 2s has been proposed in [61], eliminating the
requirement for intermediate Mel-spectrograms and enabling the direct generation of speech from
text during inference. Experimental evaluations conducted on the LJSpeech dataset demonstrated
that both FastSpeech 2 and FastSpeech 2s offer a streamlined training pipeline, resulting in fast,
robust, and controllable speech synthesis compared to FastSpeech.

Furthermore, in addition to the transformer-based TTS systems like FastSpeech 2 and FastSpeech
2s, researchers have also been exploring the potential of Variational Autoencoder (VAE) based TTS
models [163, 196, 251, 296]. These models can learn a latent representation of speech signals from
textual input and may be able to produce high-quality speech with less training data and greater
control over the generated speech characteristics. For example, authors in [251] used a conditional
variational autoencoder (CVAE) to model the acoustic features of speech and an adversarial loss to
improve the naturalness of the generated speech. This approach involved conditioning the CVAE
on the linguistic features of the input text and using an adversarial loss to match the distribution of
the generated speech to that of natural speech. Results from this method have shown promise in
generating speech that exhibits natural prosody and intonation.
WaveGrad [67] and DiffWave [269] have emerged as significant contributions in the field,

employing diffusion models to generate raw waveforms with exceptional performance. In contrast,
GradTTS [431] and DiffTTS [218] utilize diffusion models to generate mel features rather than raw
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Fig. 14. Neural Text-to-speech (TTS) pipeline: a diagram showing the main modules of a typical TTS system.
The system takes text input and processes it through various stages to generate speech output. The text
analysis module tokenizes the input text and generates linguistic features such as phonemes and prosody. The
acoustic model module then converts these linguistic features into acoustic features, such as mel spectrograms,
using a neural network. Finally, the waveform generation module synthesizes the speech waveform from the
acoustic features using another neural network.

waveforms. Addressing the intricate challenge of one-shot many-to-many voice conversion, DiffVC
[432] introduces a novel solver based on stochastic differential equations. Expanding the scope of
sound generation to include singing voice synthesis, DiffSinger [334] introduces a shallow diffusion
mechanism. Additionally, Diffsound [611] proposes a sound generation framework that incorporates
text conditioning and employs a discrete diffusion model, effectively resolving concerns related to
unidirectional bias and accumulated errors.
EdiTTS [525] introduces a diffusion-based audio model that is specifically tailored for the text-

to-speech task. Its innovative approach involves the utilization of the denoising reversal process to
incorporate desired edits through coarse perturbations in the prior space. Similarly, Guided-TTS
[249] and Guided-TTS2 [257] stand as early text-to-speech models that have effectively harnessed
diffusion models for sound generation. Furthermore, Levkovitch et al. [301] have made notable
contributions by combining a voice diffusion model with a spectrogram domain conditioning
technique. This combined approach facilitates text-to-speech synthesis, even with previously
unseen voices during the training phase, thereby enhancing the model’s versatility and capabilities.

InferGrad [74] enhances the diffusion-based text-to-speech model by incorporating the inference
process during training, particularly when a limited number of inference steps are available. This
improvement results in faster and higher-quality sampling. SpecGrad [264] introduces adaptations
to the time-varying spectral envelope of diffusion noise based on conditioning log-mel spectrograms,
drawing inspiration from signal processing techniques. ItoTTS [597] presents a unified framework
that combines text-to-speech and vocoder models, utilizing linear SDE (Stochastic Differential
Equation) as its fundamental principle. ProDiff [206] proposes a progressive and efficient diffusion
model specifically designed for generating high-quality text-to-speech synthesis. Unlike traditional
diffusion models that require a large number of iterations, ProDiff parameterizes the model by pre-
dicting clean data and incorporates a teacher-synthesized mel-spectrogram as a target to minimize
data discrepancies and improve the sharpness of predictions. Finally, Binaural Grad [299] explores
the application of diffusion models in binaural audio synthesis, aiming to generate binaural audio
from monaural audio sources. It accomplishes this through a two-stage diffusion-based framework.

5.2.4 Alignment
Improving the alignment of text and speech in TTS architecture has been the focus of recent
research [22, 29, 35, 64, 225, 250, 316, 375, 377, 431, 459, 490, 493, 646]. Traditional TTS models
require external aligners to provide attention alignments of phoneme-to-frame sequences, which
can be complex and inefficient. Although autoregressive TTS models use an attention mechanism
to learn these alignments online, these alignments tend to be brittle and often fail to generalize to
long utterances and out-of-domain text, resulting in missing or repeating words.
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Fig. 15. The architecture of the Generative Spoken Language Model GSLM introduced by Meta in [281].
GSLM model operates through a three-part architecture. Firstly, the encoder takes the speech waveform and
transforms it into distinct units represented as S2u. Secondly, the decoder reverses this mapping by converting
the units back to the original waveform, represented as u2S. Finally, the language model is unit-based and
captures the distribution of unit sequences, which can be viewed as a form of pseudo-text.

In their study [121], the authors presented a novel text encoder network that includes an
additional objective function to explicitly align text and speech encodings. The text encoder
architecture is straightforward, consisting of an embedding layer, followed by two bidirectional
LSTM layers that maintain the input’s resolution. The study utilized the same subword segmentation
for the input text as for the ASR output targets. While RNN models with soft attention mechanisms
have been proven to be highly effective in various tasks, including speech synthesis, their use in
online settings results in quadratic time complexity due to the pass over the entire input sequence
for generating each element in the output sequence. In [447], the authors proposed an end-to-end
differentiable method for learning monotonic alignments, enabling the computation of attention in
linear time. Several enhancements, such as those proposed in [79], have been proposed in recent
years to improve alignment in TTS models. Additionally, in [21], the authors introduced a generic
alignment learning framework that can be easily extended to various neural TTS models.
The use of normalizing flow has been introduced to address output diversity issues in parallel

TTS architectures. This technique is utilized to model the duration of speech, as evidenced by
studies conducted in [250, 377, 493]. One such flow-based generative model is Glow-TTS [250],
developed specifically for parallel TTS without the need for an external aligner. The model employs
the generic Glow architecture previously used in computer vision and vocoder models to produce
mel-spectrograms from text inputs, which are then converted to speech audio. Glow-TTS has
demonstrated superior synthesis speed over the autoregressivemodel, Tacotron 2, whilemaintaining
comparable speech quality.

Recently, a newTTSmodel called EfficientTTS [377] has been introduced. Thismodel outperforms
previous models such as Tacotron 2 and Glow-TTS in terms of speech quality, training efficiency,
and synthesis speed. The EfficientTTS model uses a multi-head attention mechanism to align input
text and speech encodings, enabling it to generate high-quality speech with fewer parameters
and faster synthesis speed. Overall, the introduction of normalizing flow and the development of
models such as Glow-TTS and EfficientTTS have significantly improved the quality and efficiency
of TTS systems.
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To resolve output diversity issues in parallel TTS architectures, normalizing flow has been intro-
duced to model the duration of speech [250, 377, 493]. Glow-TTS [250] is a flow-based generative
model for parallel TTS that does not require any external aligner12345. It is built on the generic
Glow model that is previously used in computer vision and vocoder models3. Glow-TTS is designed
to produce mel-spectrograms from text input, which can then be converted to speech audio4. It has
been shown to achieve an order-of-magnitude speed-up over the autoregressive model, Tacotron 2,
at synthesis with comparable speech quality. EfficientTTS is a recent study that proposed a new
TTS model, which significantly outperformed models such as Tacotron 2 [491] and Glow-TTS [250]
in terms of speech quality, training efficiency, and synthesis speed. The EfficientTTS [377] model
uses a multi-head attention mechanism to align the input text and speech encodings, enabling it to
generate high-quality speech with fewer parameters and faster synthesis speed.

5.2.5 Speech Resynthesis
Speech resynthesis is the process of generating speech from a given input signal. The input signal
can be in various forms, such as a digital recording, text, or other types of data. The aim of speech
resynthesis is to create an output that closely resembles the original signal in terms of sound
quality, prosody, and other acoustic characteristics. Speech resynthesis is an important research
area with various applications, including speech enhancement [194, 363, 526], and voice conversion
[362]. Recent advancements in speech resynthesis have revolutionized the field by incorporating
self-supervised discrete representations to generate disentangled representations of speech content,
prosodic information, and speaker identity. These techniques enable the generation of speech
in a controlled and precise manner, as seen in [281, 429, 437, 495]. The objective is to generate
high-quality speech that maintains or degrades acoustic cues, such as phonotactics, syllabic rhythm,
or intonation, from natural speech recordings.

Speech resynthesis is a vital research area with various applications, including speech enhance-
ment and voice conversion, and recent advancements have revolutionized the field by incorporating
self-supervised discrete representations. These techniques enable the generation of high-quality
speech that maintains or degrades acoustic cues from natural speech recordings, and they have
been used in the GSLM [281] architecture for acoustic modeling, speech recognition, and synthesis,
as outlined in Figure 15. It comprises a discrete speech encoder, a generative language model, and
a speech decoder, all trained without supervision. GSLM is the only prior work addressing the
generative aspect of speech pre-training, which builds a text-free language model using discovered
units.

5.2.6 Voice Conversion
Modifying a speaker’s voice in a provided audio sample to that of another individual is called
voice conversion, preserving linguistic content information. TTS and Voice conversion share a
common objective of generating natural speech. While models based on RNNs and CNNs have
been successfully applied to voice conversion, the use of the transformer has shown promising
results. Voice Transformer Network (VTN) [210] is a seq2seq voice conversion (VC) model based on
the transformer architecture with TTS pre-training. Seq2seq VC models are attractive as they can
convert prosody, and the VTN is a novel approach in this field that has been proven to be effective
in converting speech from a source to a target without changing the linguistic content.
ASR and TTS-based voice conversion is a promising approach to voice conversion [532]. It

involves using an ASR model to transcribe the source speech into the linguistic representation
and then using a TTS model to synthesize the target speech with the desired voice characteristics
[430]. However, this approach overlooks the modeling of prosody, which plays an important role in
speech naturalness and conversion similarity. To address this issue, researchers have proposed to
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directly predict prosody from the linguistic representation in a target-speaker-dependent manner
[649]. Other researchers have explored using a mix of ASR and TTS features to improve the quality
of voice conversion [86, 209, 647, 665].

CycleGAN [238–240], VAE [82, 235, 595], and VAE with the generative adversarial network [191]
are other popular VC other popular approaches for non-parallel-voice conversion. CycleGAN-VC
[238] uses a cycle-consistent adversarial network to convert the source voice to the target voice and
can generate high-quality speech without any extra data, modules, or alignment procedure. Several
improvements and modifications are also proposed in recent years [191, 239, 240]. VAE-based voice
conversion is a promising approach that can generate high-quality speech with a small amount of
training data [82, 235, 595].

5.2.7 Vocoders
The field of audio synthesis has undergone significant advancements in recent years, with various
approaches proposed to enhance the quality of synthesized audio. Prior studies have concentrated
on improving discriminator architectures or incorporating auxiliary training losses. For instance,
MelGAN introduced a multiscale discriminator that uses window-based discriminators at different
scales and applies average pooling to downsample the rawwaveform. It enforces the correspondence
between the input Mel spectrogram and the synthesized waveform using an L1 feature matching
loss from the discriminator. In contrast, GAN-TTS [38] utilizes an ensemble of discriminators that
operate on random windows of different sizes and enforce the mapping between the conditioner
and the waveform adversarially using conditional discriminators. Another approach, parallel
WaveGAN [608], extends the single short-time Fourier transform loss to multi-resolution and
employs it as an auxiliary loss for GAN training. Recently, some researchers have improved
MelGAN by integrating the multi-resolution short-time Fourier transform loss. HiFi-GAN reuses
the multi-scale discriminator from MelGAN and introduces the multi-period discriminator for high-
fidelity synthesis. UnivNet employs a multi-resolution discriminator that takes multi-resolution
spectrograms as input and can enhance the spectral structure of a synthesized waveform. In contrast,
CARGAN integrates partial autoregression into the generator to enhance pitch and periodicity
accuracy. The recent generativemodels for modeling raw audio can be categorized into the following
groups.
• Autoregressivemodels: AlthoughWaveNet is renowned for its exceptional ability to generate
high-quality speech, including natural-sounding intonation and prosody, other neural
vocoders have emerged as potential alternatives in recent years. For instance, LPCNet [546]
employs a combination of linear predictive coding (LPC) and deep neural networks (DNNs)
to generate speech of similar quality while being computationally efficient and capable of
producing low-bitrate speech. Similarly, SampleRNN [373], an unconditional end-to-end
model, has demonstrated potential as it leverages a hierarchical RNN architecture and is
trained end-to-end to generate raw speech of high quality.
• Generative Adversarial Network (GAN) vocoders: Numerous vocoders have been created
that employ Generative Adversarial Networks (GANs) to generate speech of exceptional
quality. These GAN-based vocoders, which include MelGAN MelGAN [275]and HiFIGAN
[268], are capable of producing high-fidelity raw audio by conditioning on mel spectrograms.
Furthermore, they can synthesize audio at speeds several hundred times faster than real-time
on a single GPU, as evidenced by research conducted in [39, 113, 268, 275, 608].
• Diffusion-based models: In recent years, there have been several novel architectures pro-
posed that are based on diffusion. Two prominent examples of these are WaveGrad [68]
and DiffWave [269]. The WaveGrad model architecture builds upon prior works from score
matching and diffusion probabilistic models, while the DiffWave model uses adaptive noise
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spectral shaping to adapt the diffusion noise. This adaptation, achieved through time-varying
filtering, improves sound quality, particularly in high-frequency bands. Other examples
of diffusion-based vocoders include InferGrad [74], SpecGrad [264], and Priorgrad [293].
InfraGrad incorporates the inference process into training to reduce inference iterations
while maintaining high quality. SpecGrad adapts the diffusion noise distribution to a given
acoustic feature and uses adaptive noise spectral shaping to generate high-fidelity speech
waveforms.
• Flow-based models: Parallel WaveNet, WaveGlow, etc. [258, 294, 354, 427, 435] are based

on normalizing flows and are capable of generating high-fidelity speech in real-time. While
flow-based vocoders generally perform worse than autoregressive vocoders with regard to
modeling the density of speech signals, recent research [354] has proposed new techniques
to improve their performance.

Universal neural vocoding is a challenging task that has achieved limited success to date. However,
recent advances in speech synthesis have shown a promising trend toward improving zero-shot
performance by scaling up model sizes. Despite its potential, this approach has yet to be extensively
explored. Nonetheless, several approaches have been proposed to address the challenges of universal
vocoding. For example,WaveRNNhas been utilized in previous studies to achieve universal vocoding
(Lorenzo-Trueba et al. [344]; Paul et al. [419]). Another approach Jiao et al. [221] developed involves
constructing a universal vocoder using a flow-based model. Additionally, the GAN vocoder has
emerged as a promising candidate for this task, as suggested by You et al. [626].

5.2.8 Controllable Speech Synthesis
Controllable Speech Synthesis [122, 276, 460, 543, 547, 584, 676] is a rapidly evolving research area
that focuses on generating natural-sounding speech with the ability to control various aspects of
speech, including pitch, speed, and emotion. Controllable Speech Synthesis is positioned in the
emerging field of affective computing at the intersection of three disciplines: expressive speech
analysis [533], natural language processing, and machine learning. This field aims to develop
systems capable of recognizing, interpreting, and generating human-like emotional responses in
interactions between humans and machines.
Expressive speech analysis is a critical component of this field. It provides mathematical tools

to analyse speech signals and extract various acoustic features, including pitch, loudness, and
duration, that convey emotions in speech. Natural language processing is also crucial to this
field, as it helps to process the text input and extract the meaning and sentiment of the words.
Finally, machine learning techniques are used to model and control the expressive features of the
synthesized speech, enabling the systems to produce more expressive and controllable speech
[11, 205, 274, 295, 337, 408, 515, 548, 666].
In the last few years, notable advancements have been achieved in this field [164, 248, 450],

and several approaches have been proposed to enhance the quality of synthesized speech. For
example, some studies propose using deep learning techniques to synthesize expressive speech
and conditional generation models to control the prosodic features of speech [248, 450]. Others
propose using motion matching-based algorithms to synthesize gestures from speech [164].

5.2.9 Disentangling and Transferring
The importance of disentangled representations for neural speech synthesis cannot be overstated,
as it has been widely recognized in the literature that this approach can greatly improve the inter-
pretability and expressiveness of speech synthesis models [195, 360, 436]. Disentangling multiple
styles or prosody information during training is crucial to enhance the quality of expressive speech
synthesis and control. Various disentangling techniques have been developed using adversarial
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and collaborative games, the VAE framework, bottleneck reconstructions, and frame-level noise
modeling combined with adversarial training.

For instance, Ma et al. [360] have employed adversarial and collaborative games to enhance the
disentanglement of content and style, resulting in improved controllability. Hsu et al. [195] have
utilized the VAE framework with adversarial training to separate speaker information from noise.
Qian et al. [436] have introduced speech flow, which can disentangle rhythm, pitch, content, and
timbre through three bottleneck reconstructions. In another work based on, adversarial training,
Zhang et al. [642] have proposed a method that disentangles noise from the speaker by modeling
the noise at the frame level.
Developing high-quality speech synthesis models that can handle noisy data and generate

accurate representations of speech is a challenging task. To tackle this issue, Zhang et al. [650]
propose a novel approach involving multi-length adversarial training. This method allows for
modeling different noise conditions and improves the accuracy of pitch prediction by incorporating
discriminators on the mel-spectrogram. By replacing the traditional pitch predictor model with this
approach, the authors demonstrate significant improvements in the fidelity of synthesized speech.

5.2.10 Robustness
Using neural TTS models can present issues with robustness, leading to low-quality audio sam-
ples for unseen or atypical text. In response, Li et al. [310] proposed RobuTrans [310], a robust
transformer that converts input text to linguistic features before feeding it to the encoder. This
model also includes modifications to the attention mechanism and position embedding, resulting in
improved MOS scores compared to other TTS models. Another approach to enhancing robustness
is the s-Transformer, introduced by Wang et al. [579], which models speech at the segment level,
allowing it to capture long-term dependencies and use segment-level encoder-decoder attention.
This technique performs similarly to the standard transformer, exhibiting robustness for extra-long
sentences. Lastly, Zheng et al. [670] proposed an approach that combines a local recurrent neural
network with the transformer to capture sequential and local information in sequences. Evaluation
of a 20-hour Mandarin speech corpus demonstrated that this model outperforms the transformer
alone in performance.

In their recent paper [610], the authors proposed a novel method for extracting dynamic prosody
information from audio recordings, even in noisy environments. Their approach employs proba-
bilistic denoising diffusion models and knowledge distillation to learn speaking style features from
a teacher model, resulting in a highly accurate reproduction of prosody and timber. This model
shows great potential in applications such as speech synthesis and recognition, where noise-robust
prosody information is crucial. Other noteworthy advances in the development of robust TTS
systems include the work by [493], which focuses on a robust speech-text alignment module, as
well as the use of normalizing flows for diverse speech synthesis.

5.2.11 Low-Resource Neural Speech Synthesis
High-quality paired text and speech data are crucial for building high-quality Text-to-Speech
(TTS) systems [147]. Unfortunately, most languages are not supported by popular commercialized
speech services due to the lack of sufficient training data [604]. To overcome this challenge,
researchers have developed TTS systems under low data resource scenarios using various techniques
[127, 147, 538, 604].

Several techniques have been proposed by researchers to enhance the efficiency of low-resource/Zero-
shot TTS systems. One of these is the use of semi-supervised speech synthesis methods that utilize
unpaired training data to improve data efficiency, as suggested in a study by Liu et al. [328]. Another
method involves cascading pre-trained models for ASR, MT, and TTS to increase data size from
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unlabelled speech, as proposed by Nguyen et al. [394]. In addition, researchers have employed
crowdsourced acoustic data collection to develop TTS systems for low-resource languages, as
shown in a study by Butryna et al. [50]. Huang et al. [205] introduced a zero-shot style transfer
approach for out-of-domain speech synthesis that generates speech samples exhibiting a new and
distinctive style, such as speaker identity, emotion, and prosody.

5.3 Speaker recognition
5.3.1 Task Description
Speech signal consists of information on various characteristics of a speaker, such as origin,
identity, gender, emotion, etc. This property of speech allows speech-based speaker profiling with a
wide range of applications in forensics, recommendation systems, etc. The research on recognizing
speakers is extensive and aims to solve two major tasks: speaker identification (what is the identity?)
and speaker verification (is the speaker he/she claims to be?). Speaker recognition/verification tasks
require extracting a fixed-length vector, called speaker embedding, from unconstrained utterances.
These embeddings represent the speakers and can be used for identification or verification tasks.
Recent state-of-the-art speaker-embedding-extractor models are based on DNNs and have shown
superior performance on both speaker identification and verification tasks.
• Speaker Recognition (SR) relies on speaker identification as a key aspect, where an
unknown speaker’s speech sample is compared to speech models of known speakers to
determine their identity. The primary aim of speaker identification is to distinguish an
individual’s identity from a group of known speakers. This process involves a detailed
analysis of the speaker’s voice characteristics such as pitch, tone, accent, and other pertinent
features to establish their identity. Recent advancements in deep learning techniques have
significantly enhanced speaker identification, leading to the creation of accurate, efficient,
and end-to-end models. Various deep learning-based models such as CNNs, RNNs, and their
combinations have demonstrated exceptional performance in several subtasks of speaker
identification, including verification, identification, diarization, and robust recognition
[247, 260, 456].
• Speaker Verification (SV) is a process that involves confirming the identity of a speaker

through their speech. It differs from speaker identification, which aims to identify unknown
speakers by comparing their voices with that of registered speakers in a database. Speaker
verification verifies whether a speaker is who they claim to be by comparing their voice with
an available speaker template. Deep learning-based speaker verification relies on Speaker
Representation based on embeddings, which involves learning low-dimensional vector
representations from speech signals that capture speaker characteristics, such as pitch and
speaking style, and can be used to compare different speech signals and determine their
similarity.

5.3.2 Dataset
The VoxCeleb dataset (VoxCeleb 1 & 2) is widely used in speaker recognition research, as mentioned
in [92]. This dataset consists of speech data collected from publicly available media, employing a
fully automated pipeline that incorporates computer vision techniques. The pipeline retrieves videos
from YouTube and applies active speaker verification using a two-stream synchronization CNN.
Speaker identity is further confirmed through CNN-based facial recognition. Another commonly
employed dataset is TIMIT, which comprises recordings of phonetically balanced English sentences
spoken by a diverse set of speakers. TIMIT is commonly used for evaluating speech recognition
and speaker identification systems, as referenced in [153].



A Review of Deep Learning Techniques for Speech Processing 55

Other noteworthy datasets in the field include the SITW database [371], which provides hand-
annotated speech samples for benchmarking text-independent speaker recognition technology,
and the RSR2015 database [286], which contains speech recordings acquired in a typical office
environment using multiple mobile devices. Additionally, the RedDots project [291] and VOICES
corpus [463] offer unique collections of offline voice recordings in furnished rooms with background
noise, while the CN-CELEB database [135] focuses on a specific person of interest extracted from
bilibili.com using an automated pipeline followed by human verification.
The BookTubeSpeech dataset [424] was also collected using an automated pipeline from Book-

Tube videos, and the Hi-MIA database [438] was designed specifically for far-field scenarios using
multiple microphone arrays. The FFSVC20 challenge [439] and DIHARD challenge [471] are speaker
verification and diarization research initiatives focusing on far-field and robustness challenges,
respectively. Finally, the LibriSpeech dataset [410], originally intended for speech recognition, is
also useful for speaker recognition tasks due to its included speaker identity labels.

5.3.3 Models
Speaker identification (SI) and verification (SV) are crucial research topics in the field of speech
technology due to their significant importance in various applications such as security [125],
forensics [270], biometric authentication [170], and speaker diarization [601]. Speaker recognition
has become more popular with technological advancements, including the Internet of Things (IoT),
smart devices, voice assistants, smart homes, and humanoids. Therefore, a significant quantity
of research has been conducted in this field, and many methods have been developed, making
the state-of-the-art in this field quite mature and versatile. However, it has become increasingly
challenging to provide an overview of the various methods due to the high number of studies in
the field.

A neural network approach for speaker verification was first attempted by Variani et al. [553] in
2014, utilizing four fully connected layers for speaker classification. Their approach has successfully
verified speakers with short-duration utterances by obtaining the 𝑑-vector by averaging the output
of the last hidden layer across frames. Although various attempts have been made to directly learn
speaker representation from raw waveforms by other researchers (Jung et al. [226], Ravanelli and
Bengio [454]), other well-designed neural networks like CNNs and RNNs have been proposed for
speaker verification tasks by Ye and Yang [621]. Nevertheless, the field still requires more powerful
deep neural networks for superior extraction of speaker features.

Speaker verification has seen notable advancements with the advent of more powerful deep neural
networks. One such model is the 𝑥-vector-based system proposed by Snyder et al. [507], which has
gained widespread popularity due to its remarkable performance. Since its introduction, the 𝑥-vector
system has undergone significant architectural enhancements and optimized training procedures
[103]. The widely-used ResNet [176] architecture has been incorporated into the system to improve
its performance further. Adding residual connections between frame-level layers has been found
to improve the embeddings [152, 634]. This technique has also aided in faster convergence of the
back-propagation algorithm and mitigated the vanishing gradient problem [176]. Tang et al. [530]
proposed further improvements to the 𝑥-vector system. They introduced a hybrid structure based
on TDNN and LSTM to generate complementary speaker information at different levels. They
also suggested a multi-level pooling strategy to collect the speaker information from global and
local perspectives. These advancements have significantly improved speaker verification systems’
performance and paved the way for further developments in the field.

Desplanques et al. [108] propose a state-of-the-art architecture for speaker verification utilizing
a Time Delay Neural Network (TDNN) called ECAPA-TDNN. The paper presents a range of
enhancements to the existing 𝑥-vector architecture that leverages recent developments in face
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verification and computer vision. Specifically, the authors suggest three major improvements.
Firstly, they propose restructuring the initial frame layers into 1-dimensional Res2Net modules
with impactful skip connections, which can better capture the relationships between different time
frames. Secondly, they introduce Squeeze-and-Excitation blocks to the TDNN layers, which help
highlight the most informative channels and improve feature discrimination. Lastly, the paper
proposes channel attention propagation and aggregation to efficiently propagate attention weights
through multiple TDNN layers, further enhancing the model’s ability to discriminate between
speakers.
Additionally, the paper presents a new approach that utilizes ECAPA-TDNN from the speaker

recognition domain as the backbone network for a multiscale channel adaptive module. The
proposed method achieves promising results, demonstrating the effectiveness of the proposed
architecture in speaker verification. Overall, ECAPA-TDNN offers a comprehensive solution to
speaker verification by introducing several novel contributions that improve the existing 𝑥-vector
architecture, which has been state-of-the-art in speaker verification for several years. The proposed
approach also achieves promising results, suggesting that the proposed architecture can effectively
tackle the challenges of speaker verification.
The attention mechanism is a powerful method for obtaining a more discriminative utterance-

level feature by explicitly selecting frame-level representations that better represent speaker char-
acteristics. Recently, the Transformer model with a self-attention mechanism has become effective
in various application fields, including speaker verification. The Transformer architecture has been
extensively explored for speaker verification. TESA [370] is an architecture based on the Trans-
former’s encoder, proposed as a replacement for conventional PLDA-based speaker verification to
capture speaker characteristics better. TESA outperforms PLDA on the same dataset by utilizing
the next sentence prediction task of BERT [109]. Zhu et al. [675] proposed a method to create fixed-
dimensional speaker verification representation using a serialized multi-layer multi-head attention
mechanism. Unlike other studies that redesign the inner structure of the attention module, their
approach strictly follows the original Transformer, providing simple but effective modifications.

5.4 Speaker Diarization
5.4.1 Task Description
Speaker diarization is a critical component in the analysis of multi-speaker audio data, and it
addresses the question of "who spoke when." The term "diarize" refers to the process of making a
note or keeping a record of events, as per the English dictionary. A traditional speaker diarization
system comprises several crucial components that work together to achieve accurate and efficient
speaker diarization. In this section, we will discuss the different components of a speaker diarization
system (Figure 16) and their role in achieving accurate speaker diarization.

• Acoustic Features Extraction: In the analysis of multi-speaker speech data, one critical
component is the extraction of acoustic features [14, 536]. This process involves extracting
features such as pitch, energy, and MFCCs from the audio signal. These acoustic features
play a crucial role in identifying different speakers by analyzing their unique characteristics.
• Segmentation: Segmentation is a crucial component in the analysis of multi-speaker audio
data, where the audio signal is divided into smaller segments based on the silence periods
between speakers [14, 536]. This process helps in reducing the complexity of the problem
and makes it easier to identify different speakers in smaller segments
• Speaker Embedding Extraction: This process involves obtaining a low-dimensional repre-
sentation of each speaker’s voice, which is commonly referred to as speaker embedding.
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Fig. 16. Speaker diarization system diagram showcasing the process of identifying and differentiating multiple
speakers in an audio recording using various techniques such as VAD, segmentation, clustering and re-
segmentation.

This is achieved by passing the acoustic features extracted from the speech signal through
a deep neural network, such as a CNN or RNN[506].
• Clustering: In this component, the extracted speaker embeddings are clustered based on

similarity, and each cluster represents a different speaker [14, 536]. This process commonly
uses unsupervised clustering algorithms, such as k-means clustering.
• Speaker Classification: In this component, the speaker embeddings are classified into different

speaker identities using a supervised classification algorithm, such as SVM or MLP [14, 536].
• Re-segmentation: This component is responsible for refining the initial segmentation by

adjusting the segment boundaries based on the classification results. It helps in improving the
accuracy of speaker diarization by reducing the errors made during the initial segmentation.

Various studies focus on traditional speaker diarization systems [14, 536]. This paper will review
the recent efforts toward deep learning-based speaker diarizations techniques.

5.4.2 Dataset
• NIST SRE 2000 (Disk-8) or CALLHOME dataset: The NIST SRE 2000 (Disk-8) corpus, also

referred to as the CALLHOME dataset, is a frequently utilized resource for speaker diariza-
tion in contemporary research papers. Originally released in 2000, this dataset comprises
conversational telephone speech (CTS) collected from diverse speakers representing a wide
range of ages, genders, and dialects. It includes 500 sessions of multilingual telephonic
speech, each containing two to seven speakers, with two primary speakers in each con-
versation. The dataset covers various topics, including personal and familial relationships,
work, education, and leisure activities. The audio recordings were obtained using a single
microphone and had a sampling rate of 8 kHz, with 16-bit linear quantization.
• Directions into Heterogeneous Audio Research (DIHARD) Challenge and dataset: The DIHARD
Challenge, organized by the National Institute of Standards and Technology (NIST), aims
to enhance the accuracy of speech recognition and diarization in challenging acoustic
environments, such as crowded spaces, distant microphones, and reverberant rooms. The
challenge comprises tasks requiring advanced machine-learning techniques, including
speaker diarization, recognition, and speech activity detection. The DIHARD dataset used
in the challenge comprises over 50 hours of speech from more than 500 speakers, gathered
from diverse sources like meetings, broadcast news, and telephone conversations. These
recordings feature various acoustic challenges, such as overlapping speech, background
noise, and distant or reverberant speech, captured through different microphone setups. To
aid in the evaluation process, the dataset has been divided into separate development and
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evaluation sets. The assessment metrics used to gauge performance include diarization error
rate (DER), as well as accuracy in speaker verification, identification, and speech activity
detection.
• Augmented Multi-party Interaction (AMI) database: The AMI database is a collection of
audio and video recordings that capture real-world multi-party conversations in office
environments. The database was developed as part of the AMI project, which aimed to
develop technology for automatically analyzingmulti-party meetings. The database contains
over 100 hours of audio and video recordings ofmeetings involving four to seven participants,
totaling 112 meetings. The meetings were held in multiple offices and were designed to
reflect the kinds of discussions that take place in typical business meetings. The audio
recordings were captured using close-talk microphones placed on each participant and
additional microphones placed in the room to capture ambient sound. The video recordings
were captured using multiple cameras placed around the room. In addition to the audio and
video recordings, the database also includes annotations that provide additional information
about the meetings, including speaker identities, speech transcriptions, and information
about the meeting structure (e.g., turn-taking patterns). The AMI database has been used
extensively in research on automatic speech recognition, speaker diarization, and other
related speech and language processing topics.
• VoxSRC Challenge and VoxConverse corpus: The VoxCeleb Speaker Recognition Challenge
(VoxSRC) is an annual competition designed to assess the capabilities of speaker recognition
systems in identifying speakers from speech recorded in real-world environments. The
challenge provides participants with a dataset of audio and visual recordings of interviews,
news shows, and talk shows featuring famous individuals. The VoxSRC encompasses several
tracks, including speaker diarization, and comprises a development set (20.3 hours, 216
recordings) and a test set (53.5 hours, 310 recordings). Recordings in the dataset may feature
between one and 21 speakers, with a diverse range of ambient noises, such as background
music and laughter. To facilitate the speaker diarization track of the VoxSRC-21 and VoxSRC-
22 competitions, VoxConverse, an audio-visual diarization dataset containing multi-speaker
clips of human speech sourced from YouTube videos, is available, and additional details are
provided on the project website 8.
• LibriCSS: The LibriCSS corpus is a valuable resource for researchers studying speech sepa-

ration, recognition, and speaker diarization. The corpus comprises 10 hours of multichannel
recordings captured using a 7-channel microphone array in a real meeting room. The audio
was played from the LibriSpeech corpus, and each of the ten sessions was subdivided into
six 10-minute mini-sessions. Each mini-session contained audio from eight speakers and
was designed to have different overlap ratios ranging from 0% to 40%. To make research
easier, the corpus includes baseline systems for speech separation and Automatic Speech
Recognition (ASR) and a baseline system that integrates speech separation, speaker diariza-
tion, and ASR. These baseline systems have already been developed and made available to
researchers.
• Rich Transcription Evaluation Series: The Rich Transcription Evaluation Series dataset is a
collection of speech data used for speaker diarization evaluation. The Rich Transcription
Fall 2003 Evaluation (RT-03F) was the first evaluation in the series focused on "Who Said
What" tasks. The dataset has been used in subsequent evaluations, including the Second
DIHARD Diarization Challenge, which used the Jaccard index to compute the JER (Jaccard
Error Rate) for each pair of segmentations. The dataset is essential for data-driven spoken

8https://www.robots.ox.ac.uk/ vgg/data/voxconverse/
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language processing methods and calculates speaker diarization accuracy at the utterance
level. The dataset includes rules, evaluation methods, and baseline systems to promote
reproducible research in the field. The dataset has been used in various speaker diarization
systems and their subtasks in the context of broadcast news and CTS data
• CHiME-5/6 challenge and dataset The CHiME-5/6 challenge is a speech processing challenge
focusing on distant multi-microphone conversational speech diarization and recognition
in everyday home environments. The challenge provides a dataset of recordings from
everyday home environments, including dinner recordings originally collected for and
exposed during the CHiME-5 challenge. The dataset is designed to be representative of
natural conversational speech. The challenge features two audio input conditions: single-
channel and multichannel. Participants are provided with baseline systems for speech
enhancement, speech activity detection (SAD), and diarization, as well as results obtained
with these systems for all tracks. The challenge aims to improve the robustness of diarization
systems to variations in recording equipment, noise conditions, and conversational domains.
• AMI dataset: The AMI database is a comprehensive collection of 100 hours of recordings
sourced from 171 meeting sessions held across various locations. It features two distinct
audio sources – one recorded using lapel microphones for individual speakers and the
other using omnidirectional microphone arrays placed on the table. It is an ideal dataset
for evaluating speaker diarization systems integrated with the ASR module. AMI’s value
proposition is further enhanced by providing forced alignment data, which captures the
timings at the word and phoneme levels and speaker labeling. Finally, it’s worth noting that
each meeting session involves a small group of three to five speakers.

5.4.3 Models
Speaker diarization has been a subject of research in the field of audio processing, with the goal
of separating speakers in an audio recording. In recent years, deep learning has emerged as a
powerful technique for speaker diarization, leading to significant advancements in this field. In this
article, we will explore some of the recent developments in deep learning architecture for speaker
diarization, focusing on different modules of speaker diarization as outlined in Figure 16. Through
this discussion, we will highlight major advancements in each module.

• Segmentation and clustering: Speaker diarization systems typically use a range of techniques
for segmenting speech, such as identifying speaker change, uniform speaker segmenta-
tion, ASR-based word segmentation, and supervised speaker turn detection. However, each
approach has its own benefits and drawbacks. Uniform speaker segmentation involves
dividing speech into segments of equal length, which can be difficult to optimize to capture
speaker turn boundaries and include enough speaker information. ASR-based word seg-
mentation identifies word boundaries using automatic speech recognition, but the resulting
segments may be too brief to provide adequate speaker information. Supervised speaker
turn detection, on the other hand, involves a specialized model that can accurately identify
speaker turn timestamps. While this method can achieve high accuracy, it requires labeled
data for training. These techniques have been widely discussed in previous research, and
choosing the appropriate one depends on the specific requirements of the application.
– The authors in [98] propose real-time speaker diarization system that combines incre-

mental clustering and local diarization applied to a rolling window of speech data and
is designed to handle overlapping speech segments. The proposed pipeline is designed
to utilize end-to-end overlap-aware segmentation to detect and separate overlapping
speakers.
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– In another related work, authors in [643] introduce a novel speaker diarization system
with a generalized neural speaker clustering module as the backbone.

– In a recent study conducted by Park et al. [415], a new framework for spectral clustering
is proposed that allows for automatic parameter tuning of the clustering algorithm
in the context of speaker diarization. The proposed technique utilizes normalized
maximum eigengap (NME) values to determine the number of clusters and threshold
parameters for each row in an affinity matrix during spectral clustering. The authors
demonstrated that their method outperformed existing state-of-the-art methods on
two different datasets for speaker diarization.

– Bayesian HMM clustering of x-vector sequences (VBx) diarization approach, which
clusters x-vectors using a Bayesian hidden Markov model (BHMM) [285], combined
with a ResNet101 (He et al. [176]) 𝑥-vector extractor achieves superior results on
CALLHOME [111], AMI [53] and DIHARD II [472] datasets

• Speaker Embedding Extraction and Classification:
– Attentive Aggregation for Speaker Diarization [278]: This approach uses an attention

mechanism to aggregate embeddings from multiple frames and generate speaker
embeddings. The speaker embeddings are then used for clustering to identify speaker
segments.

– End-to-End Speaker Diarization with Self-Attention [145]: This method uses a self-
attention mechanism to capture the correlations between the input frames and gen-
erates embeddings for each frame. The embeddings are then used for clustering to
identify speaker segments.

– Wang et al. [577] present an innovative method for measuring similarity between
speaker embeddings in speaker diarization using neural networks. The approach incor-
porates past and future contexts and uses a segmental pooling strategy. Furthermore,
the speaker embedding network and similarity measurement model are jointly trained.
The paper extends this framework to target-speaker voice activity detection (TS-VAD)
[372]. The proposed method effectively learns the similarity between speaker embed-
dings by considering both past and future contexts.

– Time-Depth Separable Convolutions for Speaker Diarization [266]: This approach uses
time-depth separable convolutions to generate embeddings for each frame, which are
then used for clustering to identify speaker segments. The method is computationally
efficient and achieves state-of-the-art performance on several benchmark datasets.

• Re-segmentation:
– Numerous studies in this field centre around developing a re-segmentation strategy

for diarization systems that can effectively handle both voice activity and overlapped
speech detection. This approach can also be a post-processing step to identify and
assign overlapped speech regions accurately. Notable examples of such works include
those by Bullock et al. [47] and Bredin and Laurent [45].

• End-to-End Neural Diarization: In addition to the above work, end-to-end speaker diarization
systems have gained the attention of the research community due to their ability to handle
speaker overlaps and their optimization to minimize diarization errors directly. In one such
work, the authors propose end-to-end neural speaker diarization that does not rely on
clustering and instead uses a self-attention-based neural network to directly output the
joint speech activities of all speakers for each segment [145]. Following the trend, several
other works propose enhanced architectures based on self-attention [324, 630]
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5.5 Speech-to-speech translation
5.5.1 Task Description
Speech-to-text translation (ST) is the process of converting spoken language from one language
to another in text form. Traditionally, this has been achieved using a cascaded structure that
incorporates automatic speech recognition (ASR) and machine translation (MT) components.
However, a more recent end-to-end (E2E) method [15, 62, 166, 478, 522, 639, 669] has gained
popularity due to its ability to eliminate issues with error propagation and high latency associated
with cascaded methods [63, 516]. The E2E method uses an audio encoder to analyze audio signals
and a text decoder to generate translated text.
One notable advantage of ST systems is that they allow for more natural and fluent communi-

cation than other language translation methods. By translating speech in real-time, ST systems
can capture the subtleties of speech, including tone, intonation, and rhythm, which are essential
for effective communication. Developing ST systems is a highly intricate process that involves
integrating various technologies such as speech recognition, natural language processing, and
machine translation. One significant obstacle in ST is the variation in accents and dialects across
different languages, which can significantly impact the accuracy of the translation.

5.5.2 Dataset
There are numerous datasets available for the end-to-end speech translation task, with some of the
most widely used ones being MuST-C [56], IWSLT [481], and CoVoST 2 [564]. These datasets cover
a variety of languages, including English, German, Spanish, French, Italian, Dutch, Portuguese,
Romanian, Arabic, Chinese, Japanese, Korean, and Russian. For instance, TED-LIUM [468] is a
suitable dataset for speech-to-text, text-to-speech, and speech-to-speech translation tasks, as it
contains transcriptions and audio recordings of TED talks in English, French, German, Italian, and
Spanish. Another open-source dataset is Common Voice, which covers several languages, including
English, French, German, Italian, and Spanish. Additionally, VoxForge9 is designed for acoustic
model training and includes speech recordings and transcriptions in several languages, including
English, French, German, Italian, and Spanish. LibriSpeech [410] is a dataset of spoken English
specifically designed for speech recognition and speech-to-text translation tasks. Lastly, How2 [124]
is a multimodal machine translation dataset that includes speech recordings, text transcriptions,
and video and image data, covering English, German, Italian, and Spanish. These datasets have been
instrumental in training state-of-the-art speech-to-speech translation models and will continue to
play a crucial role in further advancing the field.

5.5.3 Models
End-to-end speech translation models are a promising approach to direct the speech translation
field. These models use a single sequence-to-sequence model for speech-to-text translation and then
text-to-speech translation. In 2017, researchers demonstrated that end-to-end models outperform
cascade models[3]. One study published in 2019 provides an overview of different end-to-end
architectures and the usage of an additional connectionist temporal classification (CTC) loss
for better convergence [27]. The study compares different end-to-end architectures for speech-
to-text translation. In 2019, Google introduced Translatotron [219], an end-to-end speech-to-
speech translation system. Translatotron uses a single sequence-to-sequence model for speech-
to-text translation and then text-to-speech translation. No transcripts or other intermediate text
representations are used during inference. The system was validated by measuring the BLEU score,
computed with text transcribed by a speech recognition system. Though the results lag behind a
9http://www.voxforge.org/
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conventional cascade system, the feasibility of the end-to-end direct speech-to-speech translation
was demonstrated [219].

In a recent publication from 2020, researchers presented a study on an end-to-end speech
translation system. This system incorporates pre-trained models such as Wav2Vec 2.0 and mBART,
along with coupling modules between the encoder and decoder. The study also introduces an
efficient fine-tuning technique, which selectively trains only 20% of the total parameters [622]. The
system developed by the UPC Machine Translation group actively participated in the IWSLT 2021
offline speech translation task, which aimed to develop a system capable of translating English
audio recordings from TED talks into German text.
E2E ST is often improved by pretraining the encoder and/or decoder with transcripts from

speech recognition or text translation tasks [110, 563, 603, 639]. Consequently, it has become
the standard approach used in various toolkits [214, 563, 660, 669]. However, transcripts are not
always available, and the significance of pretraining for E2E ST is rarely studied. Zhang et al. [638]
explored the effectiveness of E2E ST trained solely on speech-translation pairs and proposed an
algorithm for training from scratch. The proposed system outperforms previous studies in four
benchmarks covering 23 languages without pretraining. The paper also discusses neural acoustic
feature modeling, which extracts acoustic features directly from raw speech signals to simplify
inductive biases and enhance speech description.

5.6 Speech enhancement
5.6.1 Task Description
In situations where there is ambient noise present, speech recognition systems can encounter
difficulty in correctly interpreting spoken language signals, resulting in reduced performance [123].
One possible solution to address this issue is the development of speech enhancement systems that
can eliminate noise and other types of signal distortion from spoken language, thereby improving
signal quality. These systems are frequently implemented as a preprocessing step to enhance
the accuracy of speech recognition and can serve as an effective approach for enhancing the
performance of ASR systems in noisy environments. This section will delve into the significance of
speech enhancement technology in boosting the accuracy of speech recognition.

5.6.2 Dataset
One popular dataset for speech enhancement tasks is AISHELL-4, which comprises authentic
Mandarin speech recordings captured during conferences using an 8-channel circular microphone
array. In accordance with [144], AISHELL-4 is composed of 211 meeting sessions, each featuring 4
to 8 speakers, for a total of 120 hours of content. This dataset is of great value for research into
multi-speaker processing owing to its realistic acoustics and various speech qualities, including
speaker diarization and speech recognition

Another popular dataset used for speech enhancement is the dataset fromDeepNoise Suppression
(DNS) challenge [457], a large-scale dataset of noisy speech signals and their corresponding clean
speech signals. The DNS dataset contains over 10, 000 hours of noisy speech signals and over
1, 000 hours of clean speech signals, making it useful for training deep learning models for speech
enhancement. The Voice Bank Corpus (VCTK) is another dataset containing speech recordings
from 109 speakers, each recording approximately 400 sentences. The dataset contains clean and
noisy speech recordings, making it useful for training speech enhancement models. These datasets
provide realistic acoustics, rich natural speech characteristics, and large-scale noisy and clean
speech signals, making them useful for training deep learning models.
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Table 10. Performance of different speech enhancement algorithms on the Deep Noise Suppression (DNS)
Challenge dataset. The table showcases improvements in PESQ-WB, PESQ-NB, SI-SDR-WB, and SI-SDR-NB
metrics, and identifies the top-performing methods in each category.

Model PESQ-WB PESQ-NB SI-SDR-WB SI-SDR-NB Architecture

FRCRN [664] 3.23 - - - U-Net + CRN

Sudo rm -rf [541] 2.95 - 19.7 - UConvBlock + CNN

DCTCRN-P [311] 2.82 - - - CNN

PoCoNet [216] 2.7885 - - - -

FullSubNet [172] 2.777 3.305 17.29 - LSTM

RNN-Modulation [559] 2.75 - - - GRU

Conv-TasNet-SNR [271] 2.73 - - - CNN

Sudo rm-rf [540] 2.69 - 18.6 - UConvBlock + CNN

RemixIT [541] 2.34 - 16.0 - UConvBlock

SN-Net [668] - 3.39 - 19.52 CNN

DCCRN-E-Aug [202] - 3.214 - - CNN + LSTM

DTLN [592] - 3.04 16.34 - LSTM

DCCRN-E [202] - 3.04 - - CNN + LSTM

5.6.3 Models
Several Classical algorithms have been reported in the literature for speech enhancement, including
spectral subtraction [41], Wiener and Kalman filtering [319, 480], MMSE estimation [128], comb
filtering [222], subspace methods [171]. Phase spectrum compensation [407]. However, classical
algorithms such as spectral subtraction and Wiener filtering approach the problem in the spectral
domain and are restricted to stationary or quasi-stationary noise.

Neural network-based approaches inspired from other areas such as computer vision [10, 146, 188]
and generative adversarial networks [142, 321, 469, 596] or developed for general audio processing
tasks [157, 588] have outperformed the classical approaches. Various neural network models
based on different architectures, including fully connected neural networks [606], deep denoising
autoencoder [346], CNN [143], LSTM [77], and Transformer [263] have effectively handled diverse
noisy conditions.
Diffusion-based models have also shown promising results for speech enhancement [298, 349,

623] and have led to the development of novel speech enhancement algorithms called Conditional
Diffusion Probabilistic Model (CDiffuSE) that incorporates characteristics of the observed noisy
speech signal into the diffusion and reverse processing [349]. CDiffuSE is a generalized formulation
of the diffusion probabilistic model that can adapt to non-Gaussian real noises in the estimated
speech signal. Another diffusion-based model for speech enhancement is StoRM [298], which
stands for Stochastic Regeneration Model. It uses a predictive model to remove vocalizing and
breathing artifacts while producing high-quality samples using a diffusion process, even in adverse
conditions. StoRM has shown great ability at bridging the performance gap between predictive
and generative approaches for speech enhancement. Furthermore, authors in [623] propose cold
diffusion process is an advanced iterative version of the diffusion process to recover clean speech
from noisy speech. According to the authors, it can be utilized to restore high-quality samples from
arbitrary degradations. Table 10 summarizing the performance of different speech enhancement
algorithms on the Deep Noise Suppression (DNS) Challenge dataset using different metrics.
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5.7 Audio Super Resolution
5.7.1 Task Description
Audio super-resolution is a technique that involves predicting the missing high-resolution compo-
nents of low-resolution audio signals. Achieving this task can be difficult due to the continuous
nature of audio signals. Current methods typically approach super-resolution by treating audio as
discrete data and focusing on fixed scale factors. In order to accomplish audio super-resolution, deep
neural networks are trained using pairs of low and high-quality audio examples. During testing,
the model predicts missing samples within a low-resolution signal. Some recent deep network
approaches have shown promise by framing the problem as a regression issue either in the time or
frequency domain [320]. These methods have been able to achieve impressive results.

5.7.2 Datasets
This section provides an overview of the diverse datasets utilized in Audio Super Resolution
literature. One of the most frequently used datasets is the MUSDB18, specifically designed for
music source separation and enhancement. This dataset encompasses more than 150 songs with
distinct tracks for individual instruments. Another prominent dataset is UrbanSound8K, which
comprises over, 8000 environmental sound files collected from 10 different categories, making it
ideal for evaluating Audio Super Resolution algorithms in noisy environments. Furthermore, the
VoiceBank dataset is another essential resource for evaluating Audio Super Resolution systems,
comprising over 10,000 speech recordings from five distinct speakers. This dataset offers a rich
source of information for assessing speech processing systems, including Audio Super Resolution.
Another dataset, LibriSpeech, features more than 1000 hours of spoken words from several books
and speakers, making it valuable for evaluating Audio Super Resolution algorithms to enhance the
quality of spoken words. Finally, the TED-LIUM dataset, which includes over 140 hours of speech
recordings from various speakers giving TED talks, provides a real-world setting for evaluating
Audio Super Resolution algorithms for speech enhancement. By using these datasets, researchers
can evaluate Audio Super Resolution systems for a wide range of audio signals and improve the
generalizability of these algorithms for real-world scenarios.

5.7.3 Models
Audio super-resolution has been extensively explored using deep learning architectures [8, 40,
168, 253, 290, 320, 333, 392, 453, 624]. One notable paper by Rakotonirina [453] proposes a novel
network architecture that integrates convolution and self-attention mechanisms for audio super-
resolution. Specifically, they use Attention-based Feature-Wise Linear Modulation (AFiLM) [453]
to modulate the activations of the convolutional model. In another recent work by Yoneyama et al.
[624], the super-resolution task is decomposed into domain adaptation and resampling processes
to handle acoustic mismatch in unpaired low- and high-resolution signals. To address this, they
jointly optimize the two processes within the CycleGAN framework.
Moreover, the Time-Frequency Network (TFNet) [320] proposed a deep network that achieves

promising results by modeling the task as a regression problem in either time or frequency domain.
To further enhance audio super-resolution, the paper proposes a time-frequency network that
combines time and frequency domain information. Finally, recent advancements in diffusion models
have introduced new approaches to neural audio upsampling. Specifically, Lee and Han [290], and
Han and Lee [168] propose NU-Wave 1 and 2 diffusion probabilistic models, respectively, which
can produce high-quality waveforms with a sampling rate of 48kHz from coarse 16kHz or 24kHz
inputs. These models are a promising direction for improving audio super-resolution.
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5.8 Voice Activity Detection (VAD)
5.8.1 Task Description
Due to the increasing sophistication of mobile devices like smartphones, speech-controlled ap-
plications have become incredibly popular. These apps offer a hands-free method for controlling
home devices, facilitating telephony, and allowing drivers to safely use their vehicle’s infotainment
systems while on the go. However, accurately distinguishing between noise and human speech is
critical for these applications to work without interruption. To overcome this issue, Voice Activity
Detection (VAD) systems have been created to recognize speech presence or absence, thus ensuring
consistent and effective operation.

5.8.2 Datasets
Voice activity detection models can be trained and evaluated using various datasets, each with
unique features. The TIMIT dataset is popular, providing, 6300 phonetically transcribed utterances
from 630 speakers. On the other hand, CHiME-5 is designed for speech separation and recognition
in real-world environments and includes multichannel recordings of 20 speakers in locations such
as cafés, buses, and pedestrian areas. Despite its primary purpose, CHiME-5 is widely used for
voice activity detection. AURORA-4 is specifically designed to evaluate the robustness of ASR
systems and contains over 10, 000 in noisy speech utterances recorded in environments like car
noise, babble noise, and street noise. It is also extended to VAD for evaluating challenging scenarios.
DEMAND is a suitable dataset for evaluating VAD algorithms as it includes over 1200 artificially
created noise signals with various noise types like white noise, pink noise, and café noise. Finally,
VoxCeleb contains over 100,000 utterances from more than 6,000 speakers, primarily designed for
speaker recognition systems evaluation, but it can also be used for voice activity detection.

5.8.3 Models
Recent advances in deep learning have greatly improved the performance of voice activity detection
(VAD), particularly in noisy environments [380, 462]. To further improve VAD accuracy, researchers
have explored various deep learning architectures, including NAS-VAD [462] and self-attentive
VAD [223]. NAS-VAD employs neural architecture search to reduce the need for human effort
in network design and has demonstrated superior performance in terms of AUC and F1-score
compared to other models. Similarly, self-attentive VAD uses a self-attention mechanism to capture
long-term dependencies in input signals and has also outperformed other models on the TIMIT
dataset. Additionally, a deep neural network (DNN) system has been proposed for automatic speech
detection in audio signals [380]. This system uses MLPs, RNNs, and CNNs, with CNNs delivering
the best performance. Furthermore, a hybrid acoustic-lexical deep learning approach has been
proposed for deception detection, combining both acoustic and lexical features.

5.9 SpeechQuality Assessment
5.9.1 Task Description
Speech quality assessment is a crucial process that involves the objective evaluation of speech
signals using various metrics and measures. The primary aim of this assessment is to determine
the level of intelligibility and comprehensibility of speech to a human listener. Although human
evaluation is considered the gold standard for assessing speech quality, it can be time-consuming,
expensive, and not scalable. Mean opinion score (MOS) is the most commonly used and reliable
method of obtaining human judgments for speech quality estimation. Accurate speech quality
assessment is essential in the development and design of real-world applications such as ASR,
Speech Enhancement, and VoIP.
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5.9.2 Datasets
The speech quality assessment algorithms are evaluated using several datasets, each with unique
characteristics. The TIMIT Acoustic-Phonetic Continuous Speech Corpus [153] has clean speech
recordings and artificially generated degraded versions for speech synthesis and quality assessment
research. The NOIZEUS dataset [203] is designed for evaluating noise reduction and speech quality
assessment algorithms, with clean speech and artificially degraded versions containing various
types of noise and distortion. The ETSI Aurora databases [361] are used for evaluating speech
enhancement techniques and quality assessment algorithms, containing speech recordings with
different types of distortions like acoustic echo and background noise. Furthermore, for training
and validation, the clean speech recordings from the DNS Challenge [457] can be used along with
the noise dataset such as FSDK50 [138] for additive noise degradation.

5.9.3 Models
Current objective methods such as Perceptual Evaluation of Speech Quality (PESQ) [466] and
Perceptual Objective Listening Quality Assessment (POLQA) [36] for evaluating the quality of
speech mostly rely on the availability of the corresponding clean reference. These methods fail
in real-world scenarios where the ground truth clean reference is unavailable. In recent years,
several attempts to automatically estimate the MOS using neural networks for performing quality
assessment and predicting ratings or scores have attracted much attention [55, 57, 118, 119, 404,
514]. These approaches outperform traditional approaches without the need for a clean reference.
However, they lack robustness and generalization capabilities, limiting their use in real-world
applications. The authors in [404] explore Deep machine listening for Estimating Speech Quality
(DESQ) for predicting the perceived speech quality based on phoneme posterior probabilities
obtained using a deep neural network.
In recent years, there have been several quality assessment frameworks developed to estimate

speech quality, such as NORESQA [369] based on non-matching reference (NMR). NORESQA takes
inspiration from the human ability to assess speech quality even when the content is non-matching.
Additionally, NORESQA introduces two new metrics - NORESQA-score, which is based on SI-SDR
for speech, and NORESQA-MOS, which evaluates the Mean Opinion Score (MOS) of a speech
recording using non-matching references. A recent extension to NORESQA, known as NORESQA-
MOS, has been proposed in [368]. The primary difference between these frameworks is that while
NORESQA estimates speech quality using non-matching references through NORESQA-score and
NORESQA-MOS, NORESQA-MOS is specifically designed to assess the MOS of a given speech
recording using NMRs.

5.10 Speech Separation
5.10.1 Task Description
Speech separation refers to separating a mixed audio signal into its sources, including speech,
music, and background noise. The problem is often referred to as the cocktail party problem
[175], as it mimics the difficulty of listening to a conversation in a noisy room with multiple
speakers. This problem is particularly relevant in real-world scenarios such as phone conversations,
meetings, and live events, where various extraneous sounds may contaminate speech. Traditionally,
speech separation has been studied as a signal-processing problem, where researchers have focused
on developing algorithms to separate sources based on their spectral characteristics [557, 635].
However, recent advances in machine learning have led to a new approach that formulates speech
separation as a supervised learning problem [181, 352, 587]. This approach has seen a significant
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improvement in performance with the advent of deep neural networks, which can learn complex
relationships between input features and output sources.

5.10.2 Datasets
The WSJ0-2mix dataset comprises mixtures of two Wall Street Journal corpus (WSJ) speakers. It
consists of a training set of 30,000 mixtures and a test set of 5000 mixtures, and it has been widely
used to evaluate speech separation algorithms. CHiME-4 is a dataset that contains recordings of
multiple speakers in real-world environments, such as a living room, a kitchen, and a café and is
designed to test algorithms in challenging acoustic environments. TIMIT-2mix is a dataset based
on the TIMIT corpus, consisting of mixtures of two speakers, and includes a training set of 462
mixtures and a test set of 400 mixtures. The dataset provides a more controlled environment than
CHiME-4 to test speech separation algorithms. LibriMix is derived from the LibriSpeech corpus
and includes mixtures of up to four speakers, with a training set of 100,000 mixtures and a test set
of 1,000 mixtures, providing a more realistic and challenging environment than WSJ0-2mix. Lastly,
the MUSDB18 dataset contains mixtures of music tracks separated into individual stems, including
vocals, drums, bass, and other instruments. It consists of a training set of 100 songs and a test set of
50 songs. Despite not being specifically designed for that purpose, it has been used as a benchmark
for evaluating speech separation algorithms.

5.10.3 Models
Deep Clustering++ [181], first proposed in 2015, employs deep neural networks to extract features
from the input signal and cluster similar feature vectors in a latent space to separate different
speakers. The model’s performance is improved using spectral masking and a permutation invariant
training method. The advantage of this model is its ability to handle multiple speakers, but it also
has a high computational cost. Chimera++ [587] is another effective model that combines deep
clustering with mask-inference networks in a multi-objective training scheme. The model is trained
using a multitask learning approach, optimizing speech enhancement and speaker identification.
Chimera++ can perform speech enhancement and speaker identification but has a relatively long
training time.
TasNet v2 [352] employs a convolutional neural network (CNN) to process the input signal

and generate a time-frequency mask for each source. The model is trained using an invariant
permutation training (PIT) method [265], which enables it to separate multiple sources accurately.
TasNet v2 achieves state-of-the-art performance in various speech separation tasks with high
separation accuracy, but its disadvantage is its relatively high computational cost. The variant of
TasNet based on CNNs is proposed in [353]. The model is called Conv-TasNet and can generate a
time-frequency mask for each source to obtain the separated source’s signal. Compared to previous
models, Conv-TasNet has faster processing time but lower accuracy.

In recent research, encoder-decoder architectures have been explored for effectively separating
source signals. One promising approach is the Hybrid Tasnet architecture [613], which utilizes an
encoder to extract features from the input signal and a decoder to generate the independent sources.
This hybrid architecture captures both short-term and long-term dependencies in the input signal,
leading to improved separation performance. However, it should be noted that this model’s higher
computational cost should be considered when selecting an appropriate separation method.
Dual-path RNN [351] uses RNN architecture to perform speech separation. The model uses a

dual-path structure [351] to capture low-frequency and high-frequency information in the input
signal. Dual-path RNN achieves impressive performance in various speech separation tasks. The
advantage of this model is its ability to capture low-frequency and high-frequency information, but
its disadvantage is its high computational cost. Gated DualPathRNN [387] is a variant of Dual-path
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Table 11. Table comparing the performance of different speech separation methods using SI-SDRi metrics on
various speech separation benchmarks.

Model Architecture WSJ0-2mix WSJ0-3mix WSJ0-5mix Libri2Mix Libri5Mix Libri10Mix Libri20Mix WHAM

Separate And Diffuse [357] Diffusion 23.9 20.9 - 21.5 14.2 9 5.2 -

MossFormer (L) [663] Transformer 22.8 21.2 - - - - - -

MossFormer (M) [663] Transformer 22.5 20.8 - - - - - 17.3

SepFormer [518] Transformer 22.3 19.5 - - - - - -

Sandglasset [283] Transformer + LSTM 21.0 19.5 - - - - - -

Hungarian PIT [120] RNN - - 13.22 - 12.72 7.78 4.26 -

TDANet (L) [308] Transformer + CNN - - - 17.4 - - - 15.2

TDANet [308] Transformer + CNN - - - 16.9 - - - 14.8

Sepit [356] CNN 22.4 20.1 - - 13.7 8.2 - -

Gated DualPathRNN [387] CNN + LSTM 20.12 16.85 10.56 - - - - -

Dual-path RNN [351] LSTM 18.8 - - - - - - -

Conv-Tasnet [353] CNN 15.3 - - - - - - -

RNN that employs gated recurrent units (GRUs) to improve the model’s performance. The model
uses a gating mechanism to control the flow of information in the recurrent network, allowing it to
capture long-term dependencies in the input signal. Gated DualPathRNN achieves state-of-the-art
performance in various speech separation tasks. The advantage of this model is its ability to capture
long-term dependencies, but its disadvantage is its higher computational cost than other models.
Wavesplit [633] employs a Wave-U-Net [517] architecture to perform speech separation. The

model uses a fully convolutional neural network to extract features from the input signal and
generate a time-frequency mask for each source. Wavesplit achieves impressive performance in
various speech separation tasks. The advantage of this model is its high separation accuracy and
relatively fast processing time, but its disadvantage is its relatively high memory usage.

Numerous studies have investigated the application of Transformer architecture in the context
of speech separation. One such study is SepFormer [518], which has yielded encouraging outcomes
on the WSJ0-2mix and WSJ0-3mix datasets, as evidenced by the data presented in Table 11. Addi-
tionally, MossFormer [663] is another cutting-edge architecture that has successfully pushed the
boundaries of monaural speech separation across multiple speech separation benchmarks. It is
worth noting that although both models employ attention mechanisms, MossFormer integrates a
blend of convolutional modules to further amplify its performance.

Diffusionmodels have been proven to be highly effective in variousmachine learning tasks related
to computer vision, as well as speech-processing tasks. The recent development of DiffSep [482] for
speech separation, which is based on score-matching of a stochastic differential equation, has shown
competitive performance on the VoiceBank-DEMAND dataset. Additionally, Separate And Diffuse
[357], another diffusion-based model that utilizes a pretrained diffusion model, currently represents
the state-of-the-art performance in various speech separation benchmarks (refer to Table 11). These
advancements demonstrate the significant potential of diffusion models in advancing the field of
machine learning and speech processing.

5.11 Spoken Language Understanding
5.11.1 Task Description
Spoken Language Understanding (SLU) is a rapidly developing field that brings together speech
processing and natural language processing to help machines comprehend human speech and
respond appropriately. The ultimate goal of SLU is to bridge the gap between human and machine
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understanding. Typically, SLU tasks involve identifying the domain or topic of a spoken utterance,
determining the speaker’s intent or goal in making the utterance, and filling in any relevant slots
or variables associated with that intent. For example, consider the spoken utterance, "What is the
weather like in San Francisco today?" An SLU system would need to identify the domain (weather),
the intent (obtaining current weather information), and the specific slot to be filled (location-San
Francisco) to generate an appropriate response. By improving SLU capabilities, we can enable more
effective communication between humans and machines, making interactions more natural and
efficient.

Data-driven methods are frequently utilized to achieve these tasks, employing large datasets to
train models capable of accurately recognizing and interpreting spoken language. Among these
methods, machine learning techniques, such as deep neural networks, are widely employed, given
their exceptional ability to handle complex and ambiguous speech data. The SLU task may be
subdivided into the following categories for greater clarity.
• Keyword Spotting: Keyword Spotting (KS) is a technique used in speech processing to
identify specific words or phrases within spoken language. It involves analysing audio
recordings and detecting instances of pre-defined keywords or phrases. This technique is
commonly used in applications such as voice assistants, where the system needs to recognize
specific commands or questions from the user.
• Intent Classification: Intent Classification (IC) is a spoken language understanding task
that involves identifying the intent behind a spoken sentence. It is usually implemented
as a pipeline process, with a speech recognition module followed by text processing that
classifies the intents. However, end-to-end intent classification using speech has numerous
advantages compared to the conventional pipeline approach using AST followed by NLP
modules.
• Slot Filling: Slot Filling (SF) is a widely used technique in Speech Language Understanding
(SLU) that enables the extraction of important information, such as names, dates, and
locations, from a user’s speech. The process involves identifying the specific pieces of
information that are relevant to the user’s request and placing them into pre-defined slots.
For instance, if a user asks for the weather in a particular city, the system will identify the
city name and fill it into the appropriate slot, thereby providing an accurate and relevant
response.

5.11.2 Dataset
• Keyword Spotting Datasets:

– Coucke et al. [100]: This dataset is a speech command recognition dataset that consists
of 105,000 spoken commands in English, with each command being one of 35 keywords.
The dataset is designed to be highly varied and challenging, with a diverse set of
speakers and background noise conditions.

– Leroy et al. [300]: This dataset is a federated learning-based keyword spotting dataset,
it is composed of data from multiple sources that are trained together without sharing
the raw data. The dataset consists of audio recordings from multiple devices and
environments, with the goal of improving the robustness of KS across different devices
and settings

– Auto-KWS [570]: This dataset is automatically generated using TTS approach. The
dataset consists of 1000 keywords spoken by 100 different synthetic voices, with
variations in accent, gender, and age.

– Speech Commands [589]: This data is a large-scale dataset for KS task that consists
of over 100, 000 spoken commands in English, with each command belonging to 35
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different keywords. The dataset is specifically designed to be highly varied and chal-
lenging, with a diverse set of speakers and background noises. It is commonly used as
a benchmark dataset for KS research.

• Intent Classification and Slot Filling
– ATIS [179]: The Airline Travel Information System (ATIS) dataset is a collection of

spoken queries and responses related to airline travel, such as flight reservations, flight
status, and airport information. The dataset is annotated with both intent labels (e.g.
“flight booking”, “flight status inquiry") and slot labels (e.g. depart city, arrival city,
date). The ATIS dataset has been used extensively as a benchmark for natural language
understanding models.

– SNIPS [101]: SNIPS is a dataset of voice commands designed for building a natural
language understanding system. It consists of thousands of examples of spoken requests,
each annotated with the intent of the request (e.g. “play music”, “set an alarm”, etc.).
The dataset is widely used for training IC and SF models.

– Fluent Speech Commands [350]: It is a dataset of voice commands for controlling smart
home devices, such as lights, thermostats, and locks. The dataset consists of over 1,5000
spoken commands, each labeled with the intended devices and action (e.g. “turn on the
living room lights”, “set the thermostat to 72 degrees”). The dataset is designed to have
variations in speaker accent, background noise, and device placement.

– MIT-Restaurant and MIT-Movie [335]: These are two datasets created by researchers at
MIT for training natural language understanding models from restaurant and movie
information requests. The dataset contains spoken and text-based queries, each labeled
with the intent of the request (e.g. “find a nearby Italian restaurant”,” get informa-
tion about the movie Inception”) and relevant slot information (e.g. restaurant type,
movie name, etc). The datasets are widely used for benchmarking natural language
understanding models.

5.11.3 Models
• Keyword Spotting: The state-of-the-art techniques for keyword spotting in speech involve
deep learning models, such as CNNs [467] and transformers [37]. Wav2Keyword is one of
the popular model based on Wav2Vec2.0 architecture [486] and have achieved SOTA results
on Speech Commands data V1 and V21. Another model that achieves SOTA classification
accuracy on the Google Speech commands dataset is Keyword Transformer (KWT) [486].
KWT uses a transformer model and achieves 98.6% and 97.7% accuracy on the 12 and
35-word tasks, respectively. KWT also has low latency and can be used on mobile devices.
• The DIET architecture, as introduced in [48], is a transformer-based multitask model that
addresses intent classification and entity recognition simultaneously. DIET allows for the
seamless integration of various pre-trained embeddings such as BERT, GloVe, and ConveRT.
Results from experiments show that DIET outperforms fine-tuned BERT and has the added
benefit of being six times faster to train.
• Chang et al. [59] investigated the effectiveness of prompt tuning on the GSLM architecture

and showcased its competitiveness on various SLU tasks, such as KS, IC, and SF. Impressively,
this approach achieves comparable results with fewer trainable parameters than full fine-
tuning. Despite being a popular and effective technique in numerous NLP tasks, prompt
tuning has not received much attention in the speech community. Additionally, other
researchers have pursued a different path by utilizing pre-trained wav2vec2.0 and different
adapters [315] to attain state-of-the-art outcomes.
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Table 12. Comprehensive performance analysis of various models for Keyword Spotting (KS) and Slot Filling
(SF) tasks, evaluated on two benchmark datasets: Google Speech Commands for KS and ATIS for SF.

Keyword Spotting on Google Speech Commands (Accuracy % ↑) Slot Filling on ATIS (F1 ↑)

Model Reference Google Speech Commands V1 12 Google Speech Commands V2 12 Google Speech Commands V2 35 Model Reference ATIS

TripletLoss-res15 [560] 98.56 98.37 97.0 CTRAN [449] 0.9846

Wav2KWS [486] 97.9 98.5 97.8 Bi-model with a decoder [581] 0.9689

KWT-3 [37] 97.49 ±0.15 98.56 ±0.07 97.69 ±0.09 Joint BERT [70] 0.961

KWT-1 [37] 97.27 ±0.08 98.43±0.08 97.74 ±0.03 Joint BERT + CRF [70] 0.96

KWT-2 [37] 97.26±0.18 98.08±0.10 96.95±0.14 SF-ID [397] 0.958

Attention RNN [473] 95.6 96.9 93.9 Capsule-NLU [641] 0.952

Despite the remarkable progress made in the field of SLU, accurately comprehending human
speech in real-life situations continues to pose significant challenges. These challenges are amplified
by the presence of diverse accents, dialects, and linguistic variations. In a notable study, Vanzo et al.
[551] emphasize the significance of SLU in facilitating effective human-robot interaction, particularly
within the context of house service robots. The authors delve into the specific obstacles encountered
in this domain, which encompass handling noisy and unstructured speech, accommodating various
accents and speech variations, and deciphering complex commands involving multiple actions.
To overcome these obstacles, ongoing research endeavors are dedicated to developing innovative
solutions that enhance the precision and efficacy of SLU systems. By addressing these challenges,
the aim is to enable more robust and accurate speech comprehension in diverse real-life scenarios.
Recent studies, including the comprehensive analysis of the performance of different models

and techniques for Keyword Spotting (KS) and Slot Filling (SF) tasks on Google Speech Commands
and ATIS benchmark datasets (Table 12), have furnished valuable insights into the strengths and
limitations of such approaches in SLU. Capitalizing on these findings and leveraging the latest
advances in deep learning and speech recognition could help us continue to expand the frontiers of
spoken language understanding and drive further innovation in this domain.

5.12 Audio/visual multimodal speech processing
The process of speech perception in humans is intricate and involves multiple sensory modalities,
including auditory and visual cues. The generation of speech sounds involves articulators such as
the tongue, lips, and teeth, whose movements are critical for producing different speech sounds
and visible to others. The importance of visual cues becomes more pronounced for individuals
with hearing impairments who depend on lip-reading to comprehend spoken language, while
individuals with normal hearing can also benefit from visual cues in noisy environments.

When investigating language comprehension and communication, it is essential to consider both
auditory and visual information, as studies have demonstrated that visual information can assist
in distinguishing between acoustically similar sounds that differ in articulatory characteristics.
A comprehensive understanding of the interaction between these sensory modalities can lead to
the development of assistive technologies for individuals with hearing impairments and enhance
communication strategies in challenging listening environments.

5.12.1 Task Description
The tasks under audiovisual multimodal processing can be subdivided into the following categories.

• Lip-reading: Lip-reading is a remarkable ability that allows us to comprehend spoken
language from silent videos. However, it is a challenging task even for humans. Recent
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advancements in deep learning technology have enabled the development of neural network-
based lip-reading models to accomplish this task with high accuracy. These models take
silent facial videos as input and produce the corresponding speech audio or characters as
output. The potential applications of automatic lip-reading models are vast and diverse,
including enabling videoconferencing in noisy environments, using surveillance videos
as long-range listening devices, and facilitating conversations in noisy social settings.
Developing these models could significantly improve our daily lives.
• Audiovisual speech separation: Recent years have witnessed a growing interest in audiovi-

sual speech separation, driven by the remarkable human capacity to selectively focus on a
specific sound source amidst background noise, commonly known as the "cocktail party
effect." This phenomenon poses a significant challenge in computer speech recognition,
prompting the development of automatic speech separation techniques aimed at isolating
individual speech sources from complex audio signals. In a noteworthy study by Ephrat et al.
(2018) Ephrat et al. [130], the authors proposed that audiovisual speech separation surpasses
audio-only approaches by leveraging visual cues from a speaker’s face to resolve ambiguity
in speech signals. By integrating visual information, the model’s ability to disentangle over-
lapping speech signals is enhanced. The implications of automatic speech separation extend
across diverse applications, including assistive technologies for individuals with hearing
impairments and head-mounted devices designed to facilitate effective communication in
noisy meeting scenarios.
• Talking face generation: Generating a realistic talking face of a target character, synchronized
with a given speech and ensuring smooth transitions between facial images, is the objective
of talking face generation. This task has garnered substantial interest and poses a significant
challenge due to the dynamic nature of facial movements, which depend on both visual
information (input face image) and acoustic information (input speech audio) to achieve
accurate lip-speech synchronization. Despite its challenges, talking face generation holds
immense potential for various applications, including teleconferencing, creating virtual
characters with specific facial expressions, and enhancing speech comprehension. In recent
years, significant advancements have been made in the field of talking face generation, as
evidenced by notable studies [65, 133, 134, 513, 671].

5.12.2 Datasets
Several datasets are widely used for audiovisual multimodal research, including VoxCeleb, TCD-
TIMID [173] , etc. We briefly discuss some of them in the following section.

• TCD-TIMID [173]: This is an extensive and diverse audiovisual dataset that encompasses
both audio and video recordings of 600 distinct sentences spoken by 60 participants. The
dataset features a wide range of speakers with different genders, accents, and backgrounds,
making it highly suitable for talker-independent speech recognition research. The audio
recordings are of exceptional quality, captured using high-fidelity microphones with a
sampling rate of 48kHz. Meanwhile, the video footage is of 720p resolution and includes
depth information for every frame
• LipReading in the Wild (LRW) [93]: The LRW is a comprehensive audiovisual dataset that

encompasses 500 distinct words spoken by more than 1000 speakers. This dataset has been
segmented into distinct training, evaluation, and test sets to facilitate efficient research.
Additionally, the LRW-1000 dataset [617] represents a subset of LRW, featuring a 1000-
word vocabulary. Researchers can benefit from pre-trained weights included with this
dataset, simplifying the evaluation process. Overall, these datasets are highly regarded in
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the scientific community for their size and versatility in supporting research related to
speech recognition and natural language processing
• LRS2 and LRS3 10: The LRS2 and LRS3 datasets are additional examples of audiovisual
speech recognition datasets that have been gathered from videos captured in real-world
settings. Each of these datasets has its own distinct train/test split and includes cropped face
tracks as well as corresponding audio clips sourced from British television. Both datasets
are considered to be of significant value to researchers in the field of speech recognition,
particularly those focused on audiovisual analysis.
• GRID [97]: This dataset comprises high-fidelity audio and video recordings of more than
1000 sentences spoken by 34 distinct speakers, including 18 males and 16 females. The
sentences were gathered using the prompt "put red at G9 now" and are widely employed in
research related to audio-visual speech separation and talking face synthesis. The dataset is
considered to be of exceptional quality and is highly sought after in the scientific community.

5.12.3 Models
In recent years, there has been a remarkable surge in the development of algorithms tailored
for multimodal tasks. Specifically, significant attention has been devoted to the advancement of
neural networks for Text-to-Speech (TTS) applications [251, 458–460]. The integration of visual
and auditory modalities through multimodal processing has played a pivotal role in enhancing
various tasks relevant to our daily lives. Lip-reading, for instance, has witnessed notable progress in
recent years, whether accompanied by audio or not. Son et al. have made a significant contribution
to this field with their hybrid model [511]. Combining convolutional neural networks (CNN),
long short-term memory (LSTM) networks, and an attention mechanism, their model captures
correlations between lip videos and audio, enabling accurate character generation. Additionally,
the authors introduce a new dataset called LRS, which facilitates the development of lip-reading
models.
Another noteworthy model, LiRA [359], focuses on self-supervised learning for lip-reading. It

leverages lip image sequences and audio waveforms to derive high-level representations during the
pre-training stage, achieving word-level and sentence-level lip-reading capabilities. In the realm
of capturing human emotions expressed through acoustic signals, Ephrat et al. [129] propose an
innovative model that frames the task as an acoustic regression problem instead of a visual-to-
text modeling approach. Their work emphasizes the advantages of this perspective. Furthermore,
Vid2Speech [131], a CNN-based model, takes facial image sequences as input and generates cor-
responding speech audio waveforms. It employs a two-tower CNN model that processes facial
grayscale images while calculating optical flow between frames. Additionally, other models such as
those based on mutual information maximization [667] and spatiotemporal fusion [653] have been
proposed for the lip-reading task, further expanding the methodologies explored in this domain.
In an early attempt to develop algorithms for audiovisual speech separation, the authors of

[130] proposed a CNN-based architecture that encodes facial images and speech spectrograms to
compute a complex mask for speech separation. Additionally, they introduced the AVspeech dataset
in this work. AV-CVAE [393] utilizes a conditional VAE to detect the lip movements of the speaker
and predict separated speech. In a deviation from speech signals, [385] focuses on audiovisual
singing separation and employs a two-stream CNN architecture, Y-Net [374], to process audio and
video separately. This work introduces a large dataset of solo singing videos for audiovisual singing
separation. The VisualSpeech [151] architecture takes a face image sequence and mixed audio of
lip movement as input and predicts a complex mask. It also proposes a cross-modal embedding

10https://www.robots.ox.ac.uk/ṽgg/data/lip_reading/lrs2.html
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space to facilitate the correlation of audio and visual modalities. Finally, FaceFilter [94] uses still
images as visual information, and other methods for the audiovisual speech separation task are
proposed in [10, 146, 379].
The rise of Deepfake videos on the internet has led to a surge in demand for creating realistic

talking faces for various applications, such as video production, marketing, and entertainment.
Previously, the conventional approach involved manipulating 3D meshes to create specific faces,
which was time-consuming and limited to certain identities. However, recent advancements in deep
generative models have made significant progress. For example, DAVS [671] introduced an end-to-
end trainable deep neural network capable of learning a joint audiovisual representation, which uses
adversarial training to disentangle the latent space. Another architecture proposed by ATVGnet
[65] consists of an audio transformation network (AT-net) and a visual generation network (VG-net)
for processing acoustic and visual information, respectively. This method introduced a regression-
based discriminator, a dynamically adjustable pixel-wise loss, and an attention mechanism. In
[674], a novel framework for talking face generation was presented, which discovers audiovisual
coherence through an asymmetrical mutual information estimator. Furthermore, the authors in
[133] proposed an end-to-end approach based on generative adversarial networks that use noisy
speech for talking face generation. In addition, alternative methods based on conditional recurrent
adversarial networks and speech-driven talking face generation were introduced in [134, 513].

6 Advanced Transfer Learning Techniques for Speech Processing
6.1 Domain Adaptation
6.1.1 Task Description
Domain adaptation is a field that deals with adapting a model trained on a labeled dataset from a
source domain to a target domain, where the source domain differs from the target domain. The
goal of domain adaptation is to reduce the performance gap between the source and target domains
by minimizing the difference between their distributions. In speech processing, domain adaptation
has various applications such as speech recognition [44, 87, 200, 292, 395], speaker verification
[76, 184, 578, 600, 645], and speech synthesis [602, 631]. This section explores the use of domain
adaptation in these tasks by reviewing recent literature on the subject. Specifically, we discuss
the techniques used in domain adaptation, their effectiveness, and the challenges that arise when
applying them to speech processing.

6.1.2 Models
Various techniques have been proposed to adapt a deep learning model for speech processing
tasks. An example of a technique is reconstruction-based domain adaptation, which leverages an
additional reconstruction task to generate a communal representation for all the domains. The
Deep Reconstruction Classification Network (DRCN) [154] is an illustration of such an approach,
as it endeavors to address both tasks concurrently: (i) classification of the source data and (ii)
reconstruction of the input data. Another technique used in domain adaptation is the domain-
adversarial neural network architecture, which aims to learn domain-invariant features using a
gradient reversal layer [51, 574, 654].

Different domain adaptation techniques are successfully applied to different speech processing
tasks, such as speaker recognition [44, 200, 313, 395] and verification [75, 76, 306, 645, 673], where
the goal is to verify the identity of a speaker using their voice. One approach for domain adaptation
in speaker verification is to use adversarial domain training to learn speaker-independent features
insensitive to variations in the recording environment [75].
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Domain adaptation has also been applied to speech recognition [213, 367, 519, 631] to improve
speech recognition accuracy in a target domain. One recent approach for domain adaptation in
ASR is prompt-tuning [112], which involves fine-tuning the ASR system on a small amount of data
from the new domain. Another approach is to use adapter modules for transducer-based speech
recognition systems [364, 479], which can balance the recognition accuracy of general speech and
improve recognition on adaptation domains. The Machine Speech Chain integrates both end-to-end
(E2E) ASR and neural text-to-speech (TTS) into one circle [631]. This integration can be used for
domain adaptation by fine-tuning the E2E ASR on a small amount of data from the new domain
and then using the TTS to generate synthetic speech in the new domain for further training.

In addition to domain adaptation techniques used in speech recognition, there has been growing
interest in adapting text-to-speech (TTS) models to specific speakers or domains. This research
direction is critical, especially in low-resource settings where collecting sufficient training data can
be challenging. Several recent works have proposed different approaches for speaker and domain
adaptation in TTS, such as AdaSpeech [66, 599, 609].

6.2 Meta Learning
6.2.1 Task Description
Meta-learning is a branch of machine learning that focuses on improving the learning algorithms
used for tasks such as parameter initialization, optimization strategies, network architecture, and
distance metrics. This approach has been demonstrated to facilitate faster fine-tuning, better
performance convergence, and the ability to train models from scratch, which is especially advan-
tageous for speech-processing tasks. Meta-learning techniques have been employed in various
speech-processing tasks, such as low-resource ASR [192, 215], SV [644], TTS [208] and domain
generalization for speaker recognition [242].

Meta-learning has the potential to improve speech processing tasks by learning better learning
algorithms that can adapt to new tasks and data more efficiently. Meta-learning can also reduce
the cost of model training and fine-tuning, which is particularly useful for low-resource speech
processing tasks. Further investigation is required to delve into the full potential of meta-learning
in speech processing and to develop more effective meta-learning algorithms for different speech-
processing tasks.

6.2.2 Models
In low-resource ASR, meta-learning is used to quickly adapt unseen target languages by formulating
ASR for different languages as different tasks and meta-learning the initialization parameters from
many pretraining languages [192, 501]. The proposed approach, MetaASR [192], significantly
outperforms the state-of-the-art multitask pretraining approach on all target languages with
different combinations of pretraining languages. In speaker verification, meta-learning is used to
improve the meta-learning training for SV by introducing two methods to improve the backbone
embedding network [73]. The proposed methods can obtain consistent improvements over the
existing meta-learning training framework [279].

Meta-learning has proven to be a promising approach in various speech-related tasks, including
low-resource ASR and speaker verification. In addition to these tasks, meta-learning has also been
applied to few-shot speaker adaptive TTS and language-agnostic TTS, demonstrating its potential to
improve performance across different speech technologies. Meta-TTS [208] is an example of a meta-
learning model used for a few-shot speaker adaptive TTS. It can synthesize high-speaker-similarity
speech from a few enrolment samples with fewer adaptation steps. Similarly, a language-agnostic
meta-learning approach is proposed in [358] for low-resource TTS.
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6.3 Parameter-Efficient Transfer Learning
Transfer learning has played a significant role in the recent progress of speech processing. Fine-
tuning pre-trained large models, such as those trained on LibriSpeech [410] or Common Voice [17],
has been widely used for transfer learning in speech processing. However, fine-tuning all param-
eters for each downstream task can be computationally expensive. To overcome this challenge,
researchers have been exploring parameter-efficient transfer learning techniques that optimize
only a fraction of the model parameters, aiming to improve training efficiency. This article in-
vestigates these parameter-efficient transfer learning techniques in speech processing, evaluates
their effectiveness in improving training efficiency without sacrificing performance, and discusses
the challenges and opportunities associated with these techniques, highlighting their potential to
advance the field of speech processing.

6.3.1 Adapters
In recent years, retrofitting adapter modules with a few parameters to pre-trained models has
emerged as an effective approach in speech processing. This involves optimizing the adapter
modules while keeping the pre-trained parameters frozen for downstream tasks. Recent studies (Li
et al., 2023; Liu et al., 2021) [315, 615] have shown that adapters often outperform fine-tuning while
using only a fraction of the total parameters. Different adapter architectures are available, such
as bottleneck adapters (Houlsby et al., 2019)[190], tiny attention adapters (Zhao et al., 2022)[662],
prefix-tuning adapters (Li and Liang, 2021)[314], and LoRA adapters (Hu et al., 2022)[199], among
others Next, we will review the different approaches for parameter-efficient transfer learning. The
different approaches are illustrated in Figure 17 and Figure 18
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Fig. 18. The architecture of 1D convolution layer-based lightweight adapter. 𝑘 is the kernel size of 1D
convolution. ∗ denotes depth-wise convolution.

Adapter Tuning. Adapters are a type of neural module that can be retrofitted onto a pre-trained
language model, with significantly fewer parameters than the original model. One such type is the
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bottleneck or standard adapter (Houlsby et al., 2019; Pfeiffer et al., 2020) [189, 423]. The adapter
takes an input vector ℎ ∈ R𝑑 and down-projects it to a lower-dimensional space with dimensionality
𝑚 (where𝑚 < 𝑑), applies a non-linear function 𝑔(·), and then up-projects the result back to the
original 𝑑-dimensional space. Finally, the output is obtained by adding a residual connection.

𝒉← 𝒉 + 𝑔(𝒉𝑾down)𝑾up (30)
where matrices𝑾down and𝑾up are used as down and up projection matrices, respectively, with
𝑾down having dimensions R𝑑×𝑚 and𝑾up having dimensions R𝑚×𝑑 . Previous studies have empir-
ically shown that a two-layer feedforward neural network with a bottleneck is effective. In this
work, we follow the experimental settings outlined in [423] for the adapter, which is inserted after
the feedforward layer of every transformer module, as depicted in Figure 17.

Prefix tuning. Recent studies have suggested modifying the attention module of the Transformer
model to improve its performance in natural language processing tasks. This approach involves
adding learnable vectors to the pre-trained multi-head attention keys and values at every layer, as
depicted in Figure 17. Specifically, two sets of learnable prefix vectors, 𝑷𝑲 and 𝑷𝑽 , are concatenated
with the original key and value matrices 𝑲 and 𝑽 , while the query matrix 𝑸 remains unchanged.
The resulting matrices are then used for multi-head attention, where each head of the attention
mechanism is computed as follows:

head𝑖 = Attn(𝑸𝑾 (𝑖 )
𝑄
, [𝑷 (𝑖 )

𝐾
,𝑲𝑾 (𝑖 )

𝑄
], [𝑷 (𝑖 )

𝑉
, 𝑽𝑾 (𝑖 )

𝑄
]) (31)

where Attn(·) is scaled dot-product attention given by:

Attn(𝑸,𝑲 , 𝑽 ) = softmax(𝑸𝑲𝑇
√
𝑑𝑘
)𝑽 (32)

The attention heads in each layer are modified by prefix tuning, with only the prefix vectors 𝑷𝐾 and
𝑷𝑉 being updated during training. This approach provides greater control over the transmission of
acoustic information between layers and effectively activates the pre-trained model’s knowledge.

LoRA. LoRA is a novel approach proposed by Hu et al. (2021) [198], which aims to approximate
weight updates in the Transformer by injecting trainable low-rank matrices into its layers. In
this method, a pre-trained weight matrix𝑊 ∈ R𝑑×𝑘 is updated by a low-rank decomposition
𝑾 + Δ𝑾 = 𝑾 +𝑾down𝑾up, where𝑾down ∈ R𝑑×𝑟 ,𝑾up ∈ R𝑟×𝑘 are tunable parameters and 𝑟
represents the rank of the decomposition matrices, with 𝑟 < 𝑑 . Specifically, for a given input 𝒙 to
the linear projection in the multi-headed attention layer, LoRA modifies the projection output 𝒉 as
follows:

𝒉← 𝒉 + 𝑠 · 𝒙𝑾down𝑾up (33)
In this work, LoRA is integrated into four locations of the multi-head attention layer, as illustrated
in Figure 17. Thanks to its lightweight nature, the pre-trained model can accommodate many
small modules for different tasks, allowing for efficient task switching by replacing the modules.
Additionally, LoRA incurs no inference latency and achieves a convergence rate that is comparable
to that of training the original model, unlike fully fine-tuned models [198].
Convolutional Adapter. CNNs have become increasingly popular in the field of speech processing
due to their ability to learn task-specific information and combine channel-wise information within
local receptive fields. To further improve the efficiency of CNNs for speech processing tasks, Li
et al. (2023) [315] proposed a lightweight adapter, called the ConvAdapter, which uses three 1D
convolutional layers, layer normalization, and a squeeze-and-excitemodule (Zhang et al., 2017) [201],
as shown in Figure 18. By utilizing depth-wise convolution, which requires fewer parameters and
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is more computationally efficient, the authors were able to achieve better performance while using
fewer resources. In this approach, the ConvAdapter is added to the same location as the Bottleneck
Adapter (Figure 17).

Table 13. The study evaluated various parameter-efficient training methods on pre-trained Word2Vec 2.0,
including full fine-tuning, on the SURE benchmark. The fraction of trainable parameters were represented by
percentages, with the number of KS task’s trainable parameters given. Results are reported using weighted-f1
as the metric (w-f1) on MELD, with the best performance in bold and the second best underlined. To avoid
data imbalance, the researchers opted for using weighted-f1 as the metric. The study cites Li et al. (2023)
[315] as a reference.

Method #Parameters
SER (acc % / w-f1) ↑ SR (acc %) ↑ ASR (wer) ↓ KS (acc %) ↑

ESD MELD ESD VCTK ESD FLEURS LS Speech Command

Fine Tuning 315,703,947 96.53 42.93 99.00 92.36 0.2295 0.135 0.0903 99.08

Adapter 25,467,915 (8.08%) 94.07 41.58 98.87 96.32 0.2290 0.214 0.2425 99.19

Prefix Tuning 1,739,787 (0.55%) 90.00 44.21 99.73 98.49 0.2255 0.166 0.1022 98.86

LoRA 3,804,171 (1.20%) 90.00 47.05 99.00 97.61 0.2428 0.149 0.1014 98.28

ConvAdapter 2,952,539 (0.94%) 91.87 46.30 99.60 97.61 0.2456 0.2062 0.2958 98.99

Table 14. Results on SURE benchmark for full fine-tuning and other parameter-efficient training methods on
pre-trained Wav2Vec 2.0 for IC and PR tasks on FS: Fluent Speech [350] and LS: LibriSpeech [410] datasets,
respectively.

Method
IC PR SF

#Parameters
FS

#Parameters
LS

#Parameters
SNIPS

ACC% ↑ PER ↓ F1 % ↑ CER ↓

Fine-Tuning 315707288 99.60 311304394 0.0577 311375119 93.89 0.1411

Adapter 25471256 (8.06%) 99.39 25278538 (8.01%) 0.1571 25349263 (8.14%) 92.60 0.1666

Prefix Tuning 1743128 (0.55%) 93.43 1550410 (0.49%) 0.1598 1621135 (0.50%) 62.32 0.6041

LoRA 3807512 (1.20%) 99.68 3614794 (1.16%) 0.1053 3685519 (1.18%) 90.61 0.2016

ConvAdapter 3672344 (1.16%) 95.60 3479626 (1.11%) 0.1532 3550351 (1.14%) 59.27 0.6405

Table 15. Results on the SURE benchmark for the TTS task. MCD and WER are the metrics used to compare
fine-tuning and other parameter-efficient approaches.

Method Parameters (%)
LTS L2ARCTIC

MCD ↓ WER ↓ MCD ↓ WER ↓

Fine-tuning 35802977 6.2038 0.2655 6.71469 0.2141

Adapter 659200 6.1634 0.3143 6.544 0.2504

Prefix 153600 6.2523 0.3334 7.4264 0.3244

LoRA 81920 6.8319 0.3786 7.0698 0.3291

Convadapter 108800 6.9202 0.3365 6.9712 0.3227



A Review of Deep Learning Techniques for Speech Processing 79

Table 13, Table 14, and Table 15 present the results of various speech processing tasks in the
SURE benchmark. The findings demonstrate that the adapter-based methods perform comparably
well in fine-tuning. However, there is no significant advantage of any particular adapter type over
others for these benchmark tasks and datasets.

6.3.2 Knowledge Distillation (KD)
Knowledge distillation involves training a smaller model to mimic the behavior of a larger and
more complex model. This can be done by training the smaller model to predict the outputs of the
larger model or, by using, the larger model’s hidden representations as input to the smaller model.
Knowledge distillation is effective in reducing the computational cost of training and inference.

Cho et al. [81] conducted knowledge distillation (KD) by directly applying it to the downstream
task. One way to improve this approach is to use KD as pre-training for various downstream tasks,
thus allowing for knowledge reuse. A noteworthy result achieved by Denisov and Vu [107] was
using KD in pretraining. However, they achieved this by initializing an utterance encoder with a
trained ASR model’s backbone, followed by a trained NLU backbone. Knowledge distillation can be
applied directly into a wav2vec 2.0 encoder without ASR training and a trained NLU module to
enhance this method. Kim et al. [256] implemented a more complex architecture, utilizing KD in
both the pretraining and fine-tuning stages.

6.3.3 Model Compression
Researchers have also explored various architectural modifications to existing models to make them
more parameter-efficient. One such approach is pruning [141, 586], where motivated by lottery-
ticket hypothesis (LTH) [140], the task-irrelevant parameters are masked based on some threshold
defined by importance score, such as some parameter norm. Another form of compression could be
low-rank factorization [197], where the parameter matrices are factorized into lower-rank matrices
with much fewer parameters. Finally, quantization is a popular approach to reduce the model size
and improve energy efficiency with a minimal performance penalty. It involves transforming 32-bit
floating point model weights into integers with fewer bit-counts [619]—8-bit, 4-bit, 2-bit, and even
1-bit—through scaling and shifting. At the same time, the quantization of the activation is also
handled based on the input.
Lai et al. [280] iteratively prune and subsequently fine-tune wav2vec2.0 on downstream tasks

to obtained improved results over fine-tuned wav2vec2.0. Winata et al. [593] employ low-rank
transformers to excise the model size by half and increase the inference speed by 1.35 times. Peng
et al. [422] employ KD and quantization to make wav2vec2.0 twice as fast, twice as energy efficient,
and 4.8 times smaller at the cost of a 7% increase in WER. Without the KD step, the model is 3.6
times smaller with mere 0.1% WER degradation.

7 Conclusion and Future Research Directions
The rapid advancements in deep learning techniques have revolutionized speech processing tasks,
enabling significant progress in speech recognition, speaker recognition, and speech synthesis.
This paper provides a comprehensive review of the latest developments in deep learning techniques
for speech-processing tasks. We begin by examining the early developments in speech processing,
including representation learning and HMM-based modeling, before presenting a concise summary
of fundamental deep learning techniques and their applications in speech processing. Furthermore,
we discuss key speech-processing tasks, highlight the datasets used in these tasks, and present the
latest and most relevant research works utilizing deep learning techniques.

We envisage several lines of development in speech processing:
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(1) Large Speech Models: In addition to the advancements made with wav2vec2.0, further
progress in the field of ASR and TTS models involves the development of larger and more
comprehensive models, along with the utilization of larger datasets. By leveraging these
resources, it becomes possible to create TTS models that exhibit enhanced naturalness and
human-like prosody. One promising approach to achieve this is through the application of
adversarial training, where a discriminator is employed to distinguish between machine-
generated speech and reference speech. This adversarial framework facilitates the generation
of TTS models that closely resemble human speech, providing a significant step forward in
achieving more realistic and high-quality synthesized speech. By exploring these avenues,
researchers aim to push the boundaries of speech synthesis technology, ultimately enhancing
the overall performance and realism of TTS systems.

(2) Multilingual Models: Self-supervised learning has emerged as a transformative approach
in the field of speech recognition, particularly for low-resource languages characterized
by scarce or unavailable labeled datasets. The recent development of the XLS-R model, a
state-of-the-art self-supervised speech recognition model, represents a significant milestone
in this domain. With a remarkable scale of over 2 billion parameters, the XLS-R model has
been trained on a diverse dataset spanning 128 languages, surpassing its predecessor in
terms of language coverage. The notable advantage of scaling up larger multilingual models
like XLS-R lies in the substantial performance improvements they offer. As a result, these
models are poised to outperform single-language models and hold immense promise for
the future of speech recognition. By harnessing the power of self-supervised learning and
leveragingmultilingual datasets, the XLS-Rmodel showcases the potential for addressing the
challenges posed by low-resource languages and advancing the field of speech recognition
to new heights.

(3) Multimodal Speech Models: Traditional speech and text models have typically operated
within a single modality, focusing solely on either speech or text inputs and outputs. How-
ever, as the scale of generative models continues to grow exponentially, the integration
of multiple modalities becomes a natural progression. This trend is evident in the latest
developments, such as the unveiling of groundbreaking language models like GPT-4 [405]
and Kosmos-I [207], which demonstrate the ability to process both images and text jointly.
These pioneering multimodal models pave the way for the emergence of large-scale ar-
chitectures that can seamlessly handle speech and other modalities in a unified manner.
The convergence of multiple modalities within a single model opens up new avenues for
comprehensive understanding and generation of multimodal content, and it is highly antic-
ipated that we will witness the rapid development of large multimodal models tailored for
speech and beyond in the near future.

(4) In-Context Learning: Utilizing mixed-modality models opens up possibilities for the devel-
opment of in-context learning approaches for a wide range of speech-related tasks. This
paradigm allows the tasks to be explicitly defined within the input, along with accompa-
nying examples. Remarkable progress has already been demonstrated in large language
models (LLMs), including notable works such as InstructGPT [406], FLAN-T5 [90], and
LLaMA [535]. These models showcase the efficacy of in-context learning, where the in-
tegration of context-driven information empowers the models to excel in various speech
tasks. By leveraging mixed-modality models and incorporating contextual cues, researchers
are advancing the boundaries of speech processing capabilities, paving the way for more
versatile and context-aware speech systems.

(5) Controllable Speech Generation:An intriguing application stemming from the aforementioned
concept is controllable text-to-speech (TTS), which allows for fine-grained control over
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various attributes of the synthesized speech. Attributes such as tone, accent, age, gender,
and more can be precisely controlled through in-context text guidance. This controllability
in TTS opens up exciting possibilities for personalization and customization, enabling users
to tailor the synthesized speech to their specific requirements. By leveraging advanced
models and techniques, researchers are making significant strides in developing controllable
TTS systems that provide users with a powerful and flexible speech synthesis experience.

(6) Parameter-efficient Learning: With the increasing scale of LLMs and speech models, it
becomes imperative to adapt these models with minimal parameter updates. This necessi-
tates the development of specialized adapters that can efficiently update these emerging
mixed-modality large models. Additionally, model compression techniques have proven
to be practical solutions in addressing the challenges posed by these large models. Recent
research [280, 422, 593] has demonstrated the effectiveness of model compression, highlight-
ing the sparsity that exists within these models, particularly for specific tasks. By employing
model compression techniques, researchers can reduce the computational requirements
and memory footprint of these models while preserving their performance, making them
more practical and accessible for real-world applications.

(7) Explainability: Explainability remains elusive to these large networks as they grow. Re-
searchers are steadfast in explaining these networks’ functioning and learning dynamics.
Recently, much work has been done to learn the fine-tuning and in-context learning dy-
namics of these large models for text under the neural-tangent-kernel (NTK) asymptotic
framework [366]. Such exploration is yet to be done in the speech domain. More yet, ex-
plainability could be built-in as inductive bias in architecture. To this end, brain-inspired
architectures [382] are being developed, which may shed more light on this aspect of large
models.

(8) Neuroscience-inspired Architectures:In recent years, there has been significant research
exploring the parallels between speech-processing architectures and the intricate workings
of the human brain [382]. These studies have unveiled compelling evidence of a strong
correlation between the layers of speech models and the functional hierarchy observed in
the human brain. This intriguing finding has served as a catalyst for the development of
neuroscience-inspired speech models that demonstrate comparable performance to state-
of-the-art (SOTA) models [382]. By drawing inspiration from the underlying principles
of neural processing in the human brain, these innovative speech models aim to enhance
our understanding of speech perception and production while pushing the boundaries of
performance in the field of speech processing.

(9) Text-to-Audio Models for Text-to-Speech: Lately, transformer and diffusion-based text-to-
audio (TTA) model development is turning into an exciting area of research. Until recently,
most of these models [155, 272, 332, 580, 611] overlooked speech in favour of general audio.
In the future, however, the models will likely strive to be equally performant in both audio
and speech. To that end, current TTS methods will likely be an integral part of those models.
Recently, Suno-AI [523] have aimed at striking a good balance between general audio and
speech, although their implementation is not public, nor have they provided any detailed
paper.

Acknowledgement
This research is supported by the Ministry of Education, Singapore, under its AcRF Tier-2 grant
(Project no. T2MOE2008, and Grantor reference no. MOE-T2EP20220-0017), and A*STAR under its
RIE 2020 AME programmatic grant (project reference no. RGAST2003. Any opinions, findings and



82 Mehrish et al.

conclusions or recommendations expressed in this material are those of the author(s) and do not
reflect the views of the Ministry of Education, Singapore.

References
[1] 2022. Conformer-1. AssemblyAI (2022). https://www.assemblyai.com/blog/conformer-1/
[2] 2022. Speech Recognition With Conformer. Nvidia (2022). https://docs.nvidia.com/tao/tao-toolkit/text/asr/speech_

recognition_with_conformer.html
[3] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong Yu. 2014. Convolutional

neural networks for speech recognition. IEEE/ACM Transactions on audio, speech, and language processing 22, 10
(2014), 1533–1545.

[4] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and Dong Yu. 2014. Convolutional
Neural Networks for Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22, 10
(2014), 1533–1545. https://doi.org/10.1109/TASLP.2014.2339736

[5] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn. 2012. Applying Convolutional Neural
Networks concepts to hybrid NN-HMM model for speech recognition. In 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 4277–4280. https://doi.org/10.1109/ICASSP.2012.6288864

[6] Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and Daniel J Inman. 2017. Real-time vibration-based
structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration
388 (2017), 154–170.

[7] Zrar Kh. Abdul and Abdulbasit K. Al-Talabani. 2022. Mel Frequency Cepstral Coefficient and its Applications: A
Review. IEEE Access 10 (2022), 122136–122158. https://doi.org/10.1109/ACCESS.2022.3223444

[8] Sherif Abdulatif, Ruizhe Cao, and Bin Yang. 2022. CMGAN: Conformer-Based Metric-GAN for Monaural Speech
Enhancement. arXiv preprint arXiv:2209.11112 (2022).

[9] Sivanand Achanta, Albert Antony, Ladan Golipour, Jiangchuan Li, Tuomo Raitio, Ramya Rasipuram, Francesco
Rossi, Jennifer Shi, Jaimin Upadhyay, David Winarsky, et al. 2021. On-device neural speech synthesis. In 2021 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 1155–1161.

[10] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. 2018. The conversation: Deep audio-visual speech
enhancement. arXiv preprint arXiv:1804.04121 (2018).

[11] Vatsal Aggarwal, Marius Cotescu, Nishant Prateek, Jaime Lorenzo-Trueba, and Roberto Barra-Chicote. 2020. Using
Vaes and Normalizing Flows for One-Shot Text-To-Speech Synthesis of Expressive Speech. In ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 6179–6183. https://doi.org/10.1109/
ICASSP40776.2020.9053678

[12] Waleed Alsabhan. 2023. Human–Computer Interaction with a Real-Time Speech Emotion Recognition with Ensem-
bling Techniques 1D Convolution Neural Network and Attention. Sensors 23, 3 (2023), 1386.

[13] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case, Jared
Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. 2016. Deep speech 2: End-to-end speech recognition in
english and mandarin. In International conference on machine learning. PMLR, 173–182.

[14] Xavier Anguera, Simon Bozonnet, Nicholas Evans, Corinne Fredouille, Gerald Friedland, and Oriol Vinyals. 2012.
Speaker diarization: A review of recent research. IEEE Transactions on audio, speech, and language processing 20, 2
(2012), 356–370.

[15] Ebrahim Ansari, Amittai Axelrod, Nguyen Bach, Ondřej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir Durrani, Marcello
Federico, Christian Federmann, Jiatao Gu, et al. 2020. Findings of the IWSLT 2020 evaluation campaign. In Proceedings
of the 17th International Conference on Spoken Language Translation. 1–34.

[16] Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, et al.
2021. Speecht5: Unified-modal encoder-decoder pre-training for spoken language processing. arXiv preprint
arXiv:2110.07205 (2021).

[17] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer, Reuben Morais, Lindsay
Saunders, Francis M Tyers, and Gregor Weber. 2019. Common voice: A massively-multilingual speech corpus. arXiv
preprint arXiv:1912.06670 (2019).

[18] Sercan Ö Arık, Mike Chrzanowski, Adam Coates, Gregory Diamos, Andrew Gibiansky, Yongguo Kang, Xian Li,
John Miller, Andrew Ng, Jonathan Raiman, et al. 2017. Deep voice: Real-time neural text-to-speech. In International
conference on machine learning. PMLR, 195–204.

[19] Kartik Audhkhasi, George Saon, Zoltán Tüske, Brian Kingsbury, and Michael Picheny. 2019. Forget a Bit to Learn
Better: Soft Forgetting for CTC-Based Automatic Speech Recognition.. In Interspeech. 2618–2622.

[20] Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick
von Platen, Yatharth Saraf, Juan Pino, et al. 2021. XLS-R: Self-supervised cross-lingual speech representation learning

https://www.assemblyai.com/blog/conformer-1/
https://docs.nvidia.com/tao/tao-toolkit/text/asr/speech_recognition_with_conformer.html
https://docs.nvidia.com/tao/tao-toolkit/text/asr/speech_recognition_with_conformer.html
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/ACCESS.2022.3223444
https://doi.org/10.1109/ICASSP40776.2020.9053678
https://doi.org/10.1109/ICASSP40776.2020.9053678


A Review of Deep Learning Techniques for Speech Processing 83

at scale. arXiv preprint arXiv:2111.09296 (2021).
[21] Rohan Badlani, Adrian Łańcucki, Kevin J Shih, Rafael Valle, Wei Ping, and Bryan Catanzaro. 2022. One TTS alignment

to rule them all. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 6092–6096.

[22] Rohan Badlani, Adrian Łańcucki, Kevin J. Shih, Rafael Valle, Wei Ping, and Bryan Catanzaro. 2022. One TTS Alignment
to Rule Them All. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 6092–6096. https://doi.org/10.1109/ICASSP43922.2022.9747707

[23] Alexei Baevski, Michael Auli, and Abdelrahman Mohamed. 2019. Effectiveness of self-supervised pre-training for
speech recognition. arXiv preprint arXiv:1911.03912 (2019).

[24] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. 2022. Data2vec: A general
framework for self-supervised learning in speech, vision and language. In International Conference on Machine
Learning. PMLR, 1298–1312.

[25] Alexei Baevski, Steffen Schneider, and Michael Auli. 2019. vq-wav2vec: Self-supervised learning of discrete speech
representations. arXiv preprint arXiv:1910.05453 (2019).

[26] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020. wav2vec 2.0: A framework for
self-supervised learning of speech representations. Advances in Neural Information Processing Systems 33 (2020).

[27] Parnia Bahar, Tobias Bieschke, and Hermann Ney. 2019. A comparative study on end-to-end speech to text translation.
In 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). IEEE, 792–799.

[28] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473 (2014).

[29] He Bai, Renjie Zheng, Junkun Chen, Mingbo Ma, Xintong Li, and Liang Huang. 2022. A3T: Alignment-Aware Acoustic
and Text Pretraining for Speech Synthesis and Editing. In International Conference on Machine Learning. PMLR,
1399–1411.

[30] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018).

[31] Zhongxin Bai and Xiao-Lei Zhang. 2021. Speaker recognition based on deep learning: An overview. Neural Networks
140 (2021), 65–99.

[32] Taejun Bak, Junmo Lee, Hanbin Bae, Jinhyeok Yang, Jae-Sung Bae, and Young-Sun Joo. 2022. Avocodo: Generative
adversarial network for artifact-free vocoder. arXiv preprint arXiv:2206.13404 (2022).

[33] Jon Barker, Shinji Watanabe, Emmanuel Vincent, and Jan Trmal. 2018. The fifth’CHiME’speech separation and
recognition challenge: dataset, task and baselines. arXiv preprint arXiv:1803.10609 (2018).

[34] Murali Karthick Baskar, Shinji Watanabe, Ramon Astudillo, Takaaki Hori, Lukáš Burget, and Jan Černockỳ. 2019.
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