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�is paper presents a review of de	nitions of fractional order derivatives and integrals that appear in mathematics, physics, and
engineering.

1. Introduction

In 1695, l’Hôpital sent a letter to Leibniz. In his message,
an important question about the order of the derivative
emerged: What might be a derivative of order 1/2? In a
prophetic answer, Leibniz foresees the beginning of the area
that nowadays is named fractional calculus (FC). In fact, FC
is as old as the traditional calculus proposed independently
by Newton and Leibniz [1–4].

In the classical calculus, the derivative has an important
geometric interpretation; namely, it is associated with the
concept of tangent, in opposition to what occurs in the case
of FC. �is di
erence can be seen as a problem for the slow
progress of FCup to 1900.A�er Leibniz, it was Euler (1738) [3]
that noticed the problem for a derivative of noninteger order.
Fourier (1822) [3, 5] suggested an integral representation
in order to de	ne the derivative, and his version can be
considered the 	rst de	nition for the derivative of arbitrary
(positive) order. Abel (1826) [3, 5] solved an integral equation
associatedwith the tautochrone problem,which is considered
to be the 	rst application of FC. Liouville (1832) [3, 5]
suggested a de	nition based on the formula for di
erentiating
the exponential function. �is expression is known as the
	rst Liouville de	nition. �e second de	nition formulated
by Liouville is presented in terms of an integral and is
now called the version by Liouville for the integration of
noninteger order.A�er a series ofworks by Liouville, themost
important paper was published by Riemann [6], ten years

a�er his death.We also note that both Liouville and Riemann
formulations carry with them the so-called complementary
function, a problem to be solved. Grünwald [7] and Letnikov
[8], independently, developed an approach to noninteger
order derivatives in terms of a convenient convergent series,
conversely to the Riemann-Liouville approach, that is given
by an integral. Letnikov showed that his de	nition coincides
with the versions formulated by Liouville, for particular
values of the order, and by Riemann, under a convenient
interpretation of the so-called noninteger order di
erence.
Hadamard (1892) [5] published a paper where the noninteger
order derivative of an analytical function must be done in
terms of its Taylor series.

A�er 1900, the FC experiences a fast development and,
in an attempt to formulate particular problems, other def-
initions were proposed. We mention some of them. Weyl
[9] introduced a derivative in order to circumvent a prob-
lem involving a particular class of functions, the periodic
functions. Riesz [10, 11] proved the mean value theorem for
fractional integrals and introduced another formulation that
is associated with the Fourier transform. Marchaud (1927)
[3, 5] introduced a new de	nition for noninteger order of
derivatives. �is de	nition coincides with the Liouville ver-
sion for “su�ciently good” functions. Erdélyi-Kober (1940)
[3, 5] presented a distinct de	nition for noninteger order of
integration that is useful in applications involving integral
and di
erential equations. Caputo (1967) [12] formulated
a de	nition, more restrictive than the Riemann-Liouville
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but more appropriate to discuss problems involving a frac-
tional di
erential equation with initial conditions [13–21].

Due to the importance of the Caputo version, we will
compare this approach with the Riemann-Liouville formula-
tion. �e de	nition as proposed by Caputo inverts the order
of integral and derivative operators with the noninteger order
derivative of the Riemann-Liouville. We summarize the dif-
ference between these two formulations. In the Caputo: 	rst
the calculate derivative of integer order and a�er calculate the
integral of noninteger order. In the Riemann-Liouville: 	rst
calculate the integral of noninteger order and a�er calculate
the derivative of integer order. It is important to cite that the
Caputo derivative is useful to a
ront problems where initial
conditions are done in the function and in the respective
derivatives of integer order.

A�er the 	rst congress at the University of New Haven,
in 1974, FC has developed and several applications emerged
in many areas of scienti	c knowledge. As a consequence,
distinct approaches to solve problems involving the derivative
were proposed and distinct de	nitions of the fractional
derivative are available in the literature. �is paper presents
in a systematic form the existing formulations of fractional
derivatives and integrals.We shouldmention also that we can
have several alternative expressions for the same de	nition.
�erefore, we present only those more representative and
we cite particular papers [22–32] and books [33–40] that we
believe are the most relevant. Furthermore, the paper does
not focus on the pros and cons of each de	nition and does not
address the support of the function that is to be di
erentiated
or integrated.

�e paper is organized as follows. Section 2 presents the
adopted notation. Sections 3 and 4 list the proposed de	-
nitions of fractional derivatives and integrals, respectively.
Finally, Section 5 outlines some brief remarks.

2. Notation

�e following remarks clarify the notation used in the sequel
in Sections 3 and 4.

(i) Let � ∈ C : R(�) ∈ (� − 1, �], � ∈ N, where R(⋅)
denotes the real part of complex number.

(ii) Let [�, �] be a 	nite interval in R, � ∈ N, ] > 0, and
f(0) ≡ 
(0+) − 
(0−).

(iii) �e �oor function, denoted by ⌊⋅⌋, is de	ned as ⌊
⌋ =
max{� ∈ Z : � ≤ 
}.

(iv) [�] is the integer part of number � and {�} the
fractional part, 0 ≤ {�} < 1, so that � = [�] + {�}.

(v) Δ�[
(
) − 
(
0)] ≃ Γ(1 + �)Δ[
(
) − 
(
0)].
(vi) �(⋅, ⋅) is the variable fractional orderwith 0 < �(
, �) <

1 and (
, �) ∈ [�, �]. �(
) is a continuous function on
(0, 1].

(vii) C(�, �+) is a closed contour, in the complex plane,
starting at � = �, encircling � = � once in the positive
sense, and returning to � = �. �, ] ∈ R/0, with
0 < � < 1 and 0 ≤ ] ≤ 1.

(viii) Consider � ∈ C and � ∈ R. �e so-called �-gamma
function, denoted by Γ�(�), is related to the classical

gamma function by means of Γ�(�) = ��/�−1Γ(�/�).
(ix) �e so-called �-Pochhammer symbol yields (�)�,� =Γ�(
 + ��)/Γ�(
).
(x) �e �-fractionalHilfer derivative recovers, as particu-

lar cases, the fractional Riemann-Liouville derivative
if ] = 0 and � = 1 and the fractional Caputo derivative
if ] = 1 = � [41].

3. Definitions of Fractional Derivatives

Liouville derivative:

D� [
 (
)] = 1
Γ (1 − �)

d

d
 ∫
�

−∞
(
 − �)−�
 (�) d�,
− ∞ < 
 < +∞.

(1)

Liouville le�-sided derivative:

D�0+ [
 (
)] = 1
Γ (� − �)

d�

d
� ∫
�

0
(
 − �)−�+�−1
 (�) d�,


 > 0.
(2)

Liouville right-sided derivative:

D�− [
 (
)] = (−1)�
Γ (� − �)

d�

d
� ∫
∞

�
(
 − �)−�+�−1
 (�) d�,


 < ∞.
(3)

Riemann-Liouville le�-sided derivative:

RLD
�
�+ [
 (
)] = 1

Γ (� − �)
d�

d
� ∫
�

�
(
 − �)�−�−1
 (�) d�,


 ≥ �.
(4)

Riemann-Liouville right-sided derivative:

RLD
�
	− [
 (
)] = (−1)�

Γ (� − �)
d�

d
� ∫
	

�
(� − 
)�−�−1
 (�) d�,


 ≤ �.
(5)

Caputo le�-sided derivative:

∗D
�
�+ [
 (
)] = 1

Γ (� − �) ∫
�

�
(
 − �)�−�−1 d

�

d�� [
 (�)] d�,

 ≥ �.

(6)

Caputo right-sided derivative:

∗D
�
	− [
 (
)] = (−1)�

Γ (� − �) ∫
	

�
(� − 
)�−�−1 d

�

d�� [
 (�)] d�,

 ≤ �.

(7)
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Grünwald-Letnikov le�-sided derivative:

GLD
�
�+ [
 (
)]

= lim
ℎ→0

1
ℎ�
⌊�⌋
∑
�=0
(−1)� Γ (� + 1) 
 (
 − �ℎ)Γ (� + 1) Γ (� − � + 1) ,

�ℎ = 
 − �.

(8)

Grünwald-Letnikov right-sided derivative:

GLD
�
	− [
 (
)]

= lim
ℎ→0

1
ℎ�
⌊�⌋
∑
�=0
(−1)� Γ (� + 1) 
 (
 + �ℎ)Γ (� + 1) Γ (� − � + 1) ,

�ℎ = � − 
.

(9)

Weyl derivative:

�D
�
∞ [
 (
)] = D�− [
 (
)] = (−1)�( d

d�)
�
[ �W�∞ [
 (
)]] .

(10)

Marchaud derivative:

D�+ [
 (
)] = �
Γ (1 − �) ∫

�

−∞


 (
) − 
 (�)
(
 − �)1+� d�. (11)

Marchaud le�-sided derivative:

D�+ [
 (
)] = �
Γ (1 − �) ∫

∞

0


 (
) − 
 (
 − �)
�1+� d�. (12)

Marchaud right-sided derivative:

D�− [
 (
)] = �
Γ (1 − �) ∫

∞

0


 (
) − 
 (
 + �)
�1+� d�. (13)

Hadamard derivative [42]:

D�+ [
 (
)] = �
Γ (1 − �) ∫

�

0


 (
) − 
 (�)
[ln (
/�)]1+�

d�
� . (14)

Chen le�-sided derivative:

D�
c
[
 (
)] = 1

Γ (1 − �)
d

d
 ∫
�

c

(
 − �)−�
 (�) d�,

 > c.

(15)

Chen right-sided derivative:

D�
c
[
 (
)] = − 1

Γ (1 − �)
d

d
 ∫
c

�
(� − 
)−�
 (�) d�,


 < c.
(16)

Davidson-Essex derivative [15]:

D�0 [
 (
)] = 1
Γ (1 − �)

d�+1−�

d
�+1−�

× ∫�
0
(
 − �)−� d

�

d�� [
 (�)] d�.
(17)

Coimbra derivative [43–45]:

D�(�)0 [
 (
)]
= 1
Γ (1 − � (
))
× {∫�
0
(
 − �)−�(�) d

d� [
 (�)] d� + f (0) 
−�(�)} .
(18)

Canavati derivative:

�D
]

� [
 (
)] = 1
Γ (1 − �)

d

d
 ∫
�

0
(
 − �)� d

�

d�� [
 (�)] d�,
� = ⌊]⌋ , � = � − ].

(19)

Jumarie derivative, � = 1:
D�� [
 (
)] = 1

Γ (� − �)
d�

d
�
× ∫�
0
(
 − �)�−�−1 [
 (�) − 
 (0)] d�.

(20)

Riesz derivative:

D�� [
 (
)] = − 1
2 cos (�#/2)

1
Γ (�)

d�

d
�
⋅ {∫�
−∞

(
 − �)�−�−1
 (�) d�

+∫∞
�
(� − 
)�−�−1
 (�) d�} .

(21)

Cossar derivative:

D�− [
 (
)] = − 1
Γ (1 − �) lim

�→∞
d

d
 ∫
�

�
(� − 
)−�
 (�) d�.

(22)

Local fractional Yang derivative [40]:

D�− [
 (
)]$$$$�=�0 = lim�→�0

Δ� [
 (
) − 
 (
0)]
(
 − 
0)� . (23)

Le� Riemann-Liouville derivative of variable fractional
order:

�D
�(⋅,⋅)
� [
 (
)] = d

d
 ∫
�

�
(
 − �)−�(�,�)
 (�) d�

Γ [1 − � (�, 
)] .
(24)

Right Riemann-Liouville derivative of variable fractional
order:

�D
�(⋅,⋅)
	 [
 (
)] = d

d
 ∫
	

�
(� − 
)−�(�,�)
 (�) d�

Γ [1 − � (�, 
)] .
(25)

Le� Caputo derivative of variable fractional order:

�D
�(⋅,⋅)
� [
 (
)] = ∫�

�
(
 − �)−�(�,�) d

d�
 (�)
d�

Γ [1 − � (�, 
)] .
(26)
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Right Caputo derivative of variable fractional order:

�D
�(⋅,⋅)
	 [
 (
)] = ∫	

�
(� − 
)−�(�,�) d

d�
 (�)
d�

Γ [1 − � (�, 
)] .
(27)

Caputo derivative of variable fractional order:

∗D
�(�)
� [
 (
)] = 1

Γ (1 − � (
)) ∫
�

0
(
 − �)−�(�,�) d

d�
 (�) d�.
(28)

Modi	ed Riemann-Liouville fractional derivative:

D� [
 (
)] = 1
Γ (1 − �)

d

d
 ∫
�

0
(
 − �)−� [
 (�) − 
 (0)] d�.

(29)

Osler fractional derivative [46]:

�D
�
�
 (�) = Γ (� + 1)

2#% ∫
C(�,�+)


 (�)
(� − �)1+� d�. (30)

�-fractional Hilfer derivative [41]:
�D
�,]
 (
) = I

](1−�)
�

d

d
 I
(1−�)(1−])
� 
 (
) . (31)

4. Definitions of Fractional Integrals

Riemann-Liouville le�-sided integral:

RLI
�
�+ [
 (
)] = 1

Γ (�) ∫
�

�
(
 − �)�−1
 (�) d�, 
 ≥ �. (32)

Riemann-Liouville right-sided integral:

RLI
�
	− [
 (
)] = 1

Γ (�) ∫
	

�
(� − 
)�−1
 (�) d�, 
 ≤ �. (33)

Hadamard integral:

I�+ [
 (
)] = 1
Γ (�) ∫

�

0


 (�)
[ln (�/
)]1−� ⋅

d�
� , 
 > 0, � > 0.

(34)

Weyl integral:

�W
�
∞ [
 (
)] = 1

Γ (�) ∫
∞

�
(� − 
)�−1
 (�) d�. (35)

Chen le�-sided integral:

I�
c
[
 (
)] = 1

Γ (�) ∫
�

c

(
 − �)�−1
 (�) d�, 
 > c. (36)

Chen right-sided integral:

I�
c
[
 (
)] = 1

Γ (�) ∫
c

�
(� − 
)�−1
 (�) d�, 
 < c. (37)

Cossar integral [47]:

I�
c
[
 (
)] = 1

Γ (�) ∫
�

c

(
 − �)�−1
 (�) d�, 
 > c. (38)

Erdélyi (le�-sided) integral:

I��,� [
 (
)] = &
−�(�+�)
Γ (�) ∫�

0
(
� − ��)�−1���+�−1
 (�) d�.

(39)

Erdélyi (right-sided) integral:

I��,� [
 (
)] = &
��
Γ (�) ∫

∞

�
(�� − 
�)�−1��(1−�−�)−1
 (�) d�.

(40)

Kober (le�-sided) integral:

I�1,� [
 (
)] = 
−�−�
Γ (�) ∫

�

0
(
 − �)�−1��
 (�) d�. (41)

Kober (right-sided) integral:

I�1,� [
 (
)] = 
�
Γ (�) ∫

∞

�
(� − 
)�−1�−�−�
 (�) d�. (42)

Local fractional Yang integral:

�I
�
	 [
 (
)] = 1

Γ (1 + �) ∫
	

�

 (�) (d�)�. (43)

Le� Riemann-Liouville integral of variable fractional order:

�I
�(⋅,⋅)
� [
 (
)] = ∫�

�
(� − 
)�(�,�)−1
 (�) d�

Γ [� (�, 
)] . (44)

Right Riemann-Liouville integral of variable fractional order:

�I
�(⋅,⋅)
	 [
 (
)] = ∫	

�
(
 − �)�(�,�)−1
 (�) d�

Γ [� (�, 
)] . (45)

�-fractional Hilfer integral:
I��
 (
) = 1

�Γ� (�) ∫
�

0
(
 − �)�/�−1
 (�) d�. (46)

5. Some Remarks

Remark 1. If D� is any fractional derivative, the Miller-Ross
sequential derivative of order ��, � ∈ Z, is given by [3]

D
� = '�, D

�� = '�D(�−1)�. (47)

Remark 2. Whatever the de	nition employed, I0
(
) =
D0
(
) = 
(
).
Remark 3. Some authors do not distinguish the de	nition
employed bymeans of a superscript (GL, RL, C, and L) but use
di
erent fonts for the operator instead (D, ', D,D, andD).
�e particular correspondence between fonts and de	nitions
varies. Very o�en no indication at all is given, save perhaps
in the accompanying text, and the reader is presumed to
understand from the context which particular de	nition is
intended.
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Remark 4. In the literature, several alternative notations for
operator D may be found:

D��+
 (
) = (D��+
) (
) = �D��
 (
) = �I−�� 
 (
)
= D��−�
 (
) = d�
 (
)

d(
 − �)� ,
D�	−
 (
) = (D�	−
) (
) = �D�	
 (
) = �I−�	 
 (
)

= D�	−�
 (
) = d�
 (
)
d(� − 
)� .

(48)

Only one of the two operators I and D needs to be used, since
it is all a matter of changing the sign of �. In practice, D is the
one more o�en used.

Remark 5. In the expressions for the right and le� Liouville
fractional derivatives (2) and (3), respectively, some authors
have a slight distinct expression, instead of 0+ just + and at
the lower limit −∞.

Remark 6. We can mention the “di
erence of fractional
order,” discussed by Bosanquet [48], and the “Ruscheweyh
Derivative,” presented in [42, 49–51].

Remark 7. �e authors’ intention is not to discuss pros and
cons of the list of de	nitions of fractional derivatives and
integrals in Sections 3 and 4. Having in mind that the reader
can 	nd bene	ts in applying the correct de	nition for his/her
speci	c research interest, it can be said that the most used
de	nitions are the Riemann-Liouville (e.g., in calculus), the
Caputo (e.g., in physics and numerical integration), and the
Grünwald-Letnikov (e.g., in signal processing, engineering,
and control).�e problem of initialization plays an important
role in applied sciences and, consequently, various de	nitions
are occasionally adopted within the scope of speci	c topics,
but the overall problem remains to be clari	ed.

Remark 8. �e paper does not focus on particular rela-
tions involving explicit parameters, intervals, or constants,
associated with the distinct derivatives. For example, we
can mention that, for R(�) = 0, with � ̸= 0, the Liouville
fractional derivatives are of purely imaginary order. Also, for
� = � ∈ N, we recover the derivative of integer order. For

example, D�+[
(
)] = 
(�)(
) and D�−[
(
)] = (−1)�
(�)(
).
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