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ABSTRACT Phasor estimation under dynamic conditions has been under study recently by relaxing the
amplitude and phase of the static phasor. This paper will review some methods to estimate dynamic phasor
by nonlinear Kalman filters. Nonlinear Kalman filters have found an application in the tracking of time-
varying amplitude and phase. Five nonlinear Kalman filtering methods for dynamic phasor estimation are
examined in this paper. These methods are: EKF1 stands for first-order Extended Kalman filter, EKF2
stands for second-order Extended Kalman, UKF stands for Unscented Kalman filter, GHKF stands for
Gauss Hermite Kalman filter, and finally CKF stands for Cubature Kalman filter. This paper describes the
theoretical processes of these methods and demonstrates their effectiveness in dynamic phasor estimation
by some test signal simulations in MATLAB. The simulation section shows that nonlinear Kalman filters
give more accuracy than linear Kalman filters when the phasor is relaxed by modulated amplitude and
phase. Moreover, comparative assessments among the performance of five nonlinear Kalman filters are
done for dynamic phasor estimation, and also their performances are compared with the other methods
which have already been published. According to the simulation results, EKF1 gives the highest accuracy
during steady-state (2 × 10−13) because the signal model is more similar to the estimation model of EK1
during the steady-state condition. However, the other non-linear Kalman filters show better performances in
dynamic conditions. When the phasor is a time-varying amplitude and phase, filters give the same accuracy
(TVE = 0.5%). A step-change in amplitude and phase creates different overshoot and response times, but
EKF2 shows the least overshoot (3.2%) and the longest response time (7.6 ms). Computation burden and
noise indices can discriminate the methods from other viewpoints. The computation burden of GHKF is
drastically increased when the number of states gives rise. CKF shows an appropriate performance when the
number of samples and the number of the state increased in the input signal. EKF1 is not a good solution
for noise infiltration when SNR is less than 40 dB, but CKF gives the highest accuracy in high noise levels.
Compared to the six already pblished methods, CK shows the best performance with a reasonable estimation
error (TVE = 0.1101%) and simulation time (0.6146 ms).

INDEX TERMS Dynamic phasor, non-linear Kalman filter, phasor estimation, wide area protection.

I. INTRODUCTION
The complexity of modern power systems is steadily increas-
ing. It is inspiring for researchers to address several chal-
lenges of modern power systems. Power system dynamics
vary significantly by huge penetrations of renewable energy,
so it demands new platforms to monitor the power system.
Phasor measurement units (PMUs) as a synchronized moni-
toring system presents a reliable platform for the complicated
power system [1], [2]. Various signal analysis techniques
can be employed to estimate applicable parameters of the
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measured signal by the PMU, such as Least square, Wavelet
transform, Kalman filters, Hilbert-Huang Transform, and
Prony [3].

There are two main standards for phasor estimation in
phasor estimation unit (PMU) (IEC/IEEE 60255-118-1 pub-
lished in 2018 and IEEE C37.118.1 published in 2011) that
have constructed a framework and covered issues from pha-
sor estimation to communication. In the standards, several
dynamic test signals (such as modulation, frequency ramp,
and signal parameters jumps) are recommended for the per-
formance evaluation under dynamic conditions (where the
signal parameters (i.e., amplitude, phase, and frequency)
of the input signal are not fixed and change during time).
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Dynamic phasor is a new notion that can improve accuracy
of estimation under dynamic conditions and more studies
should be done for clarification [4], [5]. Dynamic phasor
application is not limited to PMU, and it is also profitable
in simulation programs [6]. There are two domains of sim-
ulation in the simulation program; time domain and phasor
domain. Time-domain needs a complete model of compo-
nents and solving system variables in every sample, which
requires a long simulation time. However, in the phasor-
domain, phasor of system variables are used, which reduces
simulation time significantly. Nowadays, the phasor-domain
methods of simulation programs are based on a static phasor,
which considers phasor a fixed amplitude and phase. This
unreal concept of phasor faces difficulties in solving systems
containingmodern devices likes FACTS. The dynamic phasor
notion proposed in [7] can improve the accuracy of simulation
cases when there is a dynamic condition in the power system
simulations.

The phasor estimation block as an internal part of the PMU
can be driven by different algorithms [5], [8]. Some of the
recent publications consider the following topics: Maximum
likelihood algorithm based on a semi-orthogonal transform
to estimate phasor with lower computation complexity [9],
Robust DFT-based technique to estimate phasor when DC
component is in themeasured signal by PMU [10], Dictionary
matrix to estimation procedure for low-cost estimation in a
P-class PMU [11], Modified Gauss-Newton adaptive filter
estimated time varying-phasor of the fundamental compo-
nent [12], Recursive wavelet transform to estimate the phasor
only by a quarter cycle of the measured signal [13], Shank
method, which is widely used in designing a digital filter,
to estimate the phasor [14]. Methods have pros and cons in
terms of delay, noise, computation burden, integer and non-
integer harmonics, off-nominal frequency.

By relaxing the amplitude and phase of the static phasor,
a new notation is formed, which is called dynamic phasor.
In a quasi-steady-state condition, the amplitude and phase of
the main signal are not fixed and may change during time.
This phenomenon is observed in the power systems when
there is a power swing (stable or unstable) consequence of
a range of events. Sudden loss of generation, severe sort
circuit (faults), and sudden connecting and tripping of large
loads are some examples of roots of power swing [15], [16].
As a result of these phenomena, the flow of power
will fluctuate, creating problems for the protection system
(distance relay) and phasor estimation in PMUs. The topic
of dynamic phasor estimation has been studied in different
references.Prony algorithm is a promising method presented
in [17] to estimate dynamic phasor when the frequency of the
system is also changing with time. The saturation problem
created by the current transformer is solved by the proposed
method in [18], in which phasor estimation is done by a
least square-based curve fitting. The instantaneous phasor is
calculated by the angle-shifted-based energy, which is pro-
posed in [19]. Kalman filter as an instantaneous estimator
combined with Taylor expansion has application in dynamic

phasor estimation as shown in [20], [21]. A combination of
Taylor expansion and Least-square technique as a one-cycle-
delay estimator is used in dynamic phasor estimation, and the
results of the method are presented in [22]. Adaptive band-
pass filter presented in [23] is another promising method is
phasor estimation. DC offset issue in phasor estimation pro-
cedure is resolved in [24] by applying a newmodified Fourier
Transform. More methods and more elaborations about pha-
sor estimation under steady-state and dynamic conditions can
be found in references [25]–[30].

Kalman filter-based algorithms are extensively employed
to estimate and track the parameters [31]. Little computation
burden, instantaneous (Zero delays) estimation by a recursive
algorithmmakes the Kalman filter a promising observer [32].
Kalman filters combine two sources of information, the pre-
dicted states and noisy measurements, to produce optimal,
unbiased estimates of system states. The filter is optimal in
the sense that it minimizes the variance in the estimated states.
Kalman filter is statistically optimal in a sense that it gives
theminimum error covariance estimate, based on all available
observation data at the present time step under the linear sys-
tem. A Kalman filter (linear or non-linear) is generally based
on a dynamic state-space model, representing the movement
of a system’s desired states in the time domain. An estima-
tion is accomplished by the Kalman filter in two steps. The
estimates are predicted in the first step by a mathematical
model and the last estimates. The predicted estimates in the
first step will be adjusted in the second step by a feedback
loop. The Kalman filter modifies the predicted estimates by
remedial term. The remedial term is a subtraction of the
measured signal by the estimated signal that is weighted by
a Kalman filter gain [33], [34]. Kalman filtering has been
extensively applied to many areas, but we concentrate on its
applications to power system signal frequency and phasor
estimation. Extended Kalman filter (EKF) has been widely
used to track and estimate the frequency as presented in
[35]–[37]. [38] has dealt with the inter-harmonic issue by a
newmethod based on amixture of Kalman filter and CSTFM.
In [39], Kalman filter and output smoother is utilized to
improve the accuracy of estimation. An extended Kalman
filter based on generalized state-space model is proposed
in [40] to estimate the frequency of harmonic components
with a noisy measurement. Phase angle and consequently the
frequency is estimated by the method proposed in [41] based
on a complex data linear Kalman filter. An improved UKF
is proposed in [42] to estimate the harmonics and frequency
of the main signal when the signal is changing during time.
[43] and [44] are other references which concentrate on fre-
quency tracking by Kalman filter.

The application of the linear Kalman filter may be com-
plex in real-world issues because a steady-state model and
measurement model of a dynamic system are usually non-
linear [45]. One of these nonlinear systems is the phasor
estimation system. The Nonlinear Kalman filter is proposed
here as a nonlinear and instantaneous estimator. However,
there are several kinds of literature related to the algorithms
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of dynamic phasor estimation and nonlinear Kalman filter
applications for frequency tracking individually, but nonlin-
ear Kalman filter has not gotten attention in dynamic phasor
estimation. This paper aims to compare performance of non-
linear Kalman filters in dynamic phasor estimation that can
be used mostly in PMU (class M and class P) and phasor
estimation used in a distance relay. Designing algorithms of
five nonlinear Kalman filters for nonlinear phasor estimation
are presented in this paper. These five methods are:

A) EKF1 method: This algorithm approximates the non-
linear function by a firth-order Taylor expansion [46].

B) EKF2 method: Second-order Taylor expansion has
been used to approximate non-linear function in this
method [46].

C) UKFmethod: One of the main concerns of the first two
methods is the derivative of a nonlinear function. Compared
with the second method, the UKF method uses Unscented
Transformation (UT) to solve this problem. The process
and observation models are considered a black box in this
method [46], [47]. The fundamental part of this method is the
UT which utilizes a collection of weighted points to calculate
the averages and covariances of distributions.

D) GHKF method: the main design of this method is the
use of the Gauss Hermite algorithm for calculating integral
numerically [48]. The main challenge in GHKF design is
related to the number of sigma points which rises exponen-
tially with increasing dimension number [46].

E) CKF method: spherical radial method is used in this
method to calculate integral. This method is actually a kind
of UKF with specific parameters [46], [48].

The mathematical foundation of Non-linear Kalman filters
is not author’s contribution. It has been tried to form a state-
space model of non-linear Kalman filter for dynamic phasor
estimation and implement non-linear Kalman filters to esti-
mate a dynamic phasor. Application of non-linear Kalman
filter in dynamic phasor estimation is the contribution of this
paper. We collect and compare different types of filters to
enrich this paper to be helpful to electrical power engineers
to use these filters in future monitoring systems. .There are
different types of non-linear Kalman filters in the literature.
Methods are selected from extended category (EKF1 and
EKF2), black box category (UKF) and numerical integra-
tion solver (GHKF and CKF) to cover problem of dynamic
phasor estimation from different viewpoints.This paper aims
to investigate the performance of five different nonlinear
Kalman filters for estimation of the dynamic phasor. The
principal contributions of this review paper are:
• Presenting methodological stages of nonlinear Kalman
filters.

• Formulation of state space of dynamic phasor estimation
which is used by nonlinear Kalman filters.

• Comparison of linear and nonlinear Kalman filters
when amplitude and phase of the main signal are time
varying.

• Comparison of the performance of different nonlinear
Kalman filters for dynamic phasor estimation.

• Comparison of performance of nonlinear Kalman fil-
ters with some other methods which have already been
published.

The paper is arranged as follows: Section II presents
the methodological stages of five nonlinear Kalman filters.
The formulation of state-space for dynamic phasor estima-
tion by nonlinear Kalman filters is presented in Section III.
Section IV presents simulation results to verify the analytical
achievements. Steady-state compliance, dynamic compliance
(bandwidth and step change), electrical power system case,
IEEE 39 Bus simulation in DIgSILENT, noise, computa-
tion burden, and comparison with other dynamic phasor
estimation methods are subsections included in section IV.
Section V concludes the research, and section VI presents the
future work.

II. NON-LINEAR KALMAN FILTERS
Since system dynamics and observation equations of most
interesting applications are nonlinear, estimating the state of
such a system is not accurate if linear Kalman filter is used
for estimation process [49]. In these kinds of systems, one
or both dynamic and measurement models may be nonlinear.
A dynamic model of a nonlinear discrete-time system has the
form of:

xk = f (xk−1)+ qk−1 (1)

where f is a nonlinear dynamic model function, xk is the
state of the system, k is counter of step-time, and qk−1 is
the process noise originated by modeling error. qk−1 stands
for normal distribution with mean value of zero and variance
value of Qk−1.

yk = h(xk )+ rk (2)

where h is the nonlinear measurement model function,
yk is the measurement, and rk is the measurement noise.
rk stands for normal distribution with mean value of zero
and variance value of Rk . Since the Kalman filter was
proposed, researchers have continuously developed various
improvements to this algorithm. First-order and second-order
extended Kalman filter, unscented Kalman filter, Gauss Her-
mite Kalman filter, and cubature Kalman filter are different
nonlinear Kalman filters which are proposed in the literature.
The methodological stages of these five nonlinear Kalman
filters are presented in this section.

A. FIRST ORDER EXTENDED KALMAN FILTER (EKF)
Extended Kalman filter (EKF) is one derivation of Kalman
filter for optimally estimating the states and parameters of
nonlinear systems based on first-order and second-order lin-
earization [50]. The Extended Kalman filter expands the
principle of Kalman filter to nonlinear optimal filtering using
Taylor series-based transformation. The advantage of the
EKF is that it answers the nonlinear equations while granting
optimal denoising [51]. If just two parameters of Taylor series
expansion are used, this Kalman filter would be First-Order
Extended Kalman Filter (EKF1). The extended Kalman filter
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is also divided into two stages, just like the linear Kalman
filter. The future state of the system is predicted by the process
model. Mean value of state is predicted as:

m− = f (mk−1) (3)

where mk−1 is the mean of last estimate at step time k
before observing the measurement. The predicted covariance
of state is:

P− = Fx(mk−1).Pk−1.FTx (mk−1)+ Qk−1 (4)

where Pk−1 is the covariance of last estimate at step time k ,
and matrix Fx is the Jacobian of nonlinear model function f
represented by:

Fx = [
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

] (5)

The corrected mean and covariance of estimate is given by
updating the prediction with the current sensor measurement
as follows:

m = m− + K .v (6)

P = P− − K .S.KT (7)

where m and P are the estimated mean and covariance of
the state, respectively, on time step k after observing the
measurement. Sign ‘‘.’’ represents a mathematical product
operator. v is the measurement residual and calculated by:

v = y− h(m−) (8)

In (6) and (7), capital letter K was gain of Kalman filter
(tells the correction amount in the prediction) and calcu-
lated as:

K = P−.HT
x (m

−)/S (9)

where S is the measurement prediction covariance given by

S = Hx(m−).P−.HT
x (m

−)+ Rk (10)

where matrix Hx is the Jacobian of nonlinear measurement
function h

Hx = [
∂h
∂x1

,
∂h
∂x2

, . . . ,
∂h
∂xn

] (11)

It is worthy to note that EKF1 is a suboptimal nonlinear filter
since this filter delivers the first-order accuracy by ignoring
the higher-order terms in Taylor’s series expansion [52]. The
whole estimation procedure of EKF1 is shown in Fig. 1.

B. SECOND ORDER EXTENDED KALMAN FILTER (EKF2)
The difference between the first-order and second-order
extended Kalman filter is in utilizing the higher terms in the
Taylor series. The first three terms of Taylor series expansion
(second-order expansion) are used in this method). The pro-
cesses which occur in EKF2 consists of perdition step and
updating step. In the prediction step, the mean value of state
is predicted based on previous estimates as:

m− = f (mk−1)+
1
2
trace{Fxx(mk−1).Pk−1} (12)

FIGURE 1. Flowchart of EKF1.

where compared to EKF1 presented in(3), new term is added
to the prediction. ‘‘trace’’ extracts the diagonal elements and
adds them together in the partial derivative function FXX
presented in (13).

[
Fxx
]
=



∂2f
∂x1∂x1

∂2f
∂x1∂x2

. . .
∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

. . .
∂2f
∂x2∂xn

...
...

...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . .
∂2f
∂xn∂xn


(13)

Predicted covariance of estimate is calculated by
EKF2 by (14).

P− = Fx(mk−1).Pk−1.FTx (mk−1)+ Qk−1

+
1
2
trace{Fxx(mk−1).Pk−1.Fxx(mk−1).Pk−1} (14)

The predicted mean and covariance are used in the updat-
ing step to be modified. The updated mean value is:

m = m− + K .v (15)

and updated covariance is:

P = P− − K .S.KT (16)

where the Kalman filter’s gain K , v and S are calculated
respectively by equations (17), (18), and (19).

K = P−.HT
x (m

−)/S (17)

v = y− h(m−)−
1
2
trace{H i

xx(m
−).P−} (18)

S = Hx(m−).P−.HT
x (m

−)+ Rk

+
1
2
trace{H i

xx(m
−).P−.H i

xx(m
−).P− (19)
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FIGURE 2. Flowchart of EKF2.

where matrix HXX is partial derivative of nonlinear function
of measurement and expressed as:

[
Hxx

]
=



∂2h
∂x1∂x1

∂2h
∂x1∂x2

. . .
∂2h
∂x1∂xn

∂2h
∂x2∂x1

∂2h
∂x2∂x2

. . .
∂2h
∂x2∂xn

...
...

...

∂2h
∂xn∂x1

∂2h
∂xn∂x2

. . .
∂2h
∂xn∂xn


(20)

According to required derivative matrices, two presented
methods (EKF1 and EKF2) need linearization, which intro-
duces significant errors in many practical situations. The
EKF1 and EKF2 are also challenging to be realized since
the calculations of Jacobian matrices require high computa-
tion capacity in a complex system. It is worthy to note that
the Jacobian matrices must be estimated at every prediction
step of the Kalman filter [46] that makes the whole process
time-consuming. The whole estimation procedure of EKF2 is
shown in Fig. 2.

C. UNSCENTED KALMAN FILTER
The requirement of high computation capacity of lineariza-
tion was a motivation of researchers to propose a new type of
nonlinear Kalman filter, which is called Unscented Kalman
filter (UKF) [53]–[55]. In this method, the Kalman gain
is calculated without linearization of the nonlinear equa-
tions. An unscented Transformation (UT) is used instead.
A bounded number of sigma points and weights form the
Unscented Transformation, by which the Kalman gain is
estimated in UKF. A pre-defined number of sigma points
are collected deterministically in UT , which exactly obtain
the desired mean and covariance of the main distribution (x).
Following the spread of the sigma points into the nonlinear
function, it is possible to determine the moments (mean and
covariance) of the transformed variable [46]. This method,

just like other methods based on the Kalman filter, includes
prediction and updating steps. Perdition step includes:

1) CREATE 2.n+ 1 SIGMA POINTS SELECTED BY
THE ALGORITHM
The first sigma point (i = 0) is:

X (0)
k−1 = mk−1 (21)

The next n sigma points (i = 1, . . . , n) are:

X (i)
k−1 = mk−1 +

√
n+ λ.[

√
Pk−1] (22)

Finally the second n sigma points (i = n+ 1, . . . , 2n) are:

X (i)
k−1 = mk−1 −

√
n+ λ.[

√
Pk−1] (23)

where λ is scaling parameter and n is dimension of system.

2) SPREAD OF THE 2n+ 1 SIGMA POINTS INTO NONLINEAR
DYNAMIC MODEL (AS A BLACK BOX)

X̂ (i)
= f (X (i)

k−1) i = 0, . . . , 2n (24)

3) THE PREDICTED MOMENTS ARE GIVEN BY
The mean value of estimate is predicted as:

m− =
i=2n∑
i=0

W (m)
i .X̂ (i) (25)

where W (m) is weighting parameters for mean value calcula-
tion and 2n+ 1 weighting parameters are calculated as:

W (m)
0 = λ/(n+ λ) (26)

W (m)
i = λ/(2.(n+ λ)) i = 1, . . . , 2n (27)

The covariance of estimate is predicted as:

P− =
i=2n∑
i=0

W (c)
i .(X̂ (i)

− m−).(X̂ (i)
− m−)T + Qk−1 (28)

where weighting parameters W (c) for covariance calculation
are obtained as:

W (c)
0 = λ/(n+ λ)+ (1− α2 + β) (29)

W (c)
i = λ/(2.(n+ λ)) i = 1, . . . , 2n (30)

The predicted mean value and covariance are used in the
updating step of UKF to form new set of sigma points and
the whole procedure of updating is done is the next three
steps (4-6).

4) CREATE THE NEW NUMBER OF SIGMA POINTS AS
X−(0) = m−

X−(i) = m− +
√
n+ λ.[

√
P−] i = 1, . . . , n

X−(i) = m− −
√
n+ λ.[

√
P−] i = n+ 1, . . . , 2n

(31)
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5) SPREAD OF THE SIGMA POINTS INTO NON-LINEAR
MEASUREMENT MODEL

ŷ(i) = h(X−(i)) i = 0, . . . , 2n (32)

6) UPDATE THE PREDICTION AND SO THE ESTIMATE IS
CALCULATE AT TIME STEP k + 1 AS
The updated mean value is:

m = m− + K .(y− µ) (33)

The updated covariance is:

P = P− − K .S.KT (34)

The UKF’s gain is:

K = C/S (35)

The quantities µ, S and C are:

µ =

i=2n∑
i=0

W (m)
i .ŷ(i) (36)

S =
i=2n∑
i=0

W (c)
i .(ŷ(i) − µ).(ŷ(i) − µ)T + Rk (37)

C =
i=2n∑
i=0

W (c)
i .(X−(i) − m−).(µ̂(i)

− µ)T (38)

Thewhole estimation procedure of UKF is shown in Fig. 3.

D. GAUSS HERMITE KALMAN FILTER
State estimation of a stochastic nonlinear system polluted by
noise is characterized in the nonlinear filtering problem. This
section aims to examine real-time and appropriate filters for
nonlinear filtering problems with Gaussian distributions. The
methodical formulation of Gaussian filters is developed in
this section. The optimal filter used in this section is based
on the Bayesian equation as a recursive numerical integration
method. The recursive characteristic ends in the removal
of calculation of the Jacobian matrix, which was essential
in EKF [56]. The Gauss-Hermit algorithm for filtering is
based on the Gauss-Hermite quadrature rule. According to
the quadrature rule, a Gaussian density with zero average is
considered for the weight function. Analytically, it isn’t easy
to determine quadrature weights and points for a nonlinear
problem. Consequently, a number of proper points are col-
lected as quadratic points. Then, the weights are calculated
by estimating the mean and covariance of the integral of
quadrature points [57].

Desired moments of the primary distribution of x are
obtained precisely by estimating the integrals in the predic-
tion step as follows:

m− =
∫
f (xk−1).N (xk−1|mk−1,Pk−1)dxk−1 (39)

P− = Qk−1 +
∫
E .ET .N (xk−1|mk−1,Pk−1)dxk−1 (40)

FIGURE 3. Flowchart of UKF.

where E = f (xk−1)− m
−

k . In update step the integrals as:

m = m− + K .(y− µ) (41)

P = P− − K .S.KT (42)

where different quantities in (41) and (42) are obtained as:

µ =
∫
h(xk )N (xk |m−,P−)dxk

E = h(xk )− µ
S =

∫
E .ET .N (xk |m−,P−)dxk + Rk

C =
∫
(xk − m−)(h(xk )− µ)T .N (xk |m−,P−)dxk

K = C/S

(43)

It is possible to solve the integrals in (39) by an analyt-
ical integration method or a numerical integration method.
However, there is no general and absolute solution for these
integrals, so approximate methods must be used to solve
them. Gauss-Hermite is one of the approximate methods
which is used in this section. A quadrature algorithm based
on orthogonal polynomials is Gauss–Hermite integration
method used in this section [58]. A weighted sum estimate
approach for determining the result of integrals, which is
called the Gauss-Hermite rule, is as follows:∫

Rn
f (X ).e(−X

T .X )dX ≈
m∑
i=1

ωif (Xi) (44)
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The GHKF algorithm (degree p) also includes two steps;
perdition and updating which its prediction step includes
following steps:

1) BASED ON THE GAUSS HERMITE THEORY, THE
QUADRATURE POINTS ARE DETERMINED TO BE THE ROOTS
OF HERMITE POLYNOMIAL WITH THE ORDER p AS
FOLLOWS [32]

Hp(x) roots
−−→

xi, i = 1, .., p (45)

2) CALCULATE THE ASSOCIATED WEIGHTS AS

ωi =
2p−1.p!

p2.[Hp−1(xi)]2
(46)

3) APPLY THE PRODUCT RULE TO DEVELOP THE PREVIOUS
POINTS TO AN N-dimeNsioNal LATTICE OF POINTS

xi, i = 1, . . . , p n− dimension
−−−−−−−−−→

ξi, i = 1, . . . , pn (47)

4) CONSIDER THE FOLLOWING POINT AS SIGMA POINTS

X (i)
k−1 = mk−1 +

√
Pk−1.ξi (48)

5) EACH SIGMA POINT IS PASSED INTO THE PROCESS
MODEL TO GENERATE A NUMBER OF
TRANSFORMED SAMPLES AS

X̂ (i)
= f (X (i)

k−1) (49)

6) THE PREDICTED MEAN AND COVARIANCE ARE
CALCULATED AS

m− =
pn∑
i=1

ωi.X̂ (i) (50)

P− =
pn∑
i=1

ωi.(X̂ (i)
− m−).(X̂ (i)

− m−)T + Qk−1 (51)

And updating step includes following steps:

7) REPEAT STEP 1-3 OF PREDICTION PART TO
GET POINTS AND THEIR WEIGHTS
8) CREATE THE SIGMA POINTS AS

X−(i) = m− +
√

P−.ξi (52)

9) BY APPLYING THE NON-LINEAR MEASUREMENT
FUNCTION TO SIGMA POINTS WE HAVE

ŷ(i) = h(X−(i)) (53)

10) BY MEASURING yk AS A NEW MEASUREMENT yk ,
THE UPDATED MEAN AND COVARIANCE CAN
BE CALCULATED AS

m = m− + K .(y− µ) (54)

P = P− − K .S.KT (55)

FIGURE 4. Flowchart of GHKF.

where different quantities in (54) and (55) are obtained as:

µ =
pn∑
i=1
ωi.ŷ(i)

S =
pn∑
i=1
ωi.(ŷ(i) − µ).(ŷ(i) − µ)T + Rk

C =
pn∑
i=1
ωi.(X−

(i)
− m−).(ŷ(i) − µ)T

K = C/S

(56)

The whole estimation procedure of GHKF is shown in
Fig. 4. Application of the explained filter is challenging
due to dimensional problems because the needed quadra-
ture points grow exponentially with an increase in the
system’s dimension. The problem of dimensionality causes
this method to be highly ineffective with multiple dimen-
sions [59]. Therefore next method (Cubature Kalman filter)
is presented in this paper.

E. CUBATURE KALMAN FILTER
A simpler process to solve non-linear integral is given by the
spherical radial cubature transformation which is proposed
first by [47]. Compared to GHKF, the integrals required to
be determined are identical, but the numerical integration
technique is changed. Cubature Kalman filter (CKF) is used
in this section as a nonlinear filter with the ability to handle
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a system with high dimensions to estimate the state accu-
rately. The nonlinear filter is originated from the Spherical-
Radial Cubature rule and Bayesian theory. Cubature Kalman
filter is stable and accurate numerically due to all posi-
tive cubature point weights when propagating the states and
covariance matrix. It ensures the positive definiteness of the
covariance matrix of the filtering process [60], [61]. More-
over, in CKF, unlike the EKF, the Jacobians matrix construc-
tion and calculation are eliminated under the state estimation
procedure. It will be promising for the state estimation of
a nonlinear system [62]. The cubature Kalman filter (CKF)
method is described in the following section. Perdition step
includes:

1) THE CKF USES 2n SIGMA POINTS
The first n sigma points (i = 1, . . . , n) are obtained by:

δi =
√
n.ci (57)

The second n sigma points (i = n + 1, . . . , 2n) are
obtained by:

δi = −
√
n.ci−n (58)

where c1 = [1, 0, 0, . . . , 0]T , c2 = [0, 1, 0, . . . , 0]T , c3 =
[0, 0, 1, . . . , 0]T and so on. It is worth noting that the Cuba-
ture Kalman filter is one kind of filtering algorithm that uses
different forms of numerical integration to handle measure-
ment and process nonlinearities. The set of sigma points is
representative and represents the nonlinearity of the function
and are selected in a reasonable range to increase the accuracy
approximation and, finally, estimation process. The sigma
points in (57) and (59) are selected based on the Spherical-
Radial Cubature rule, which is one by one perpendicular.

2) FORM THE SIGMA POINTS AS

X (i)
k−1 = mk−1 +

√
Pk−1.δi (59)

3) SPREAD THE SIGMA POINTS INTO THE NONLINEAR
DYNAMIC MODEL

X̂ (i)
= f (X (i)

k−1) (60)

4) THE PREDICTED MEAN AND COVARIANCE
ARE CALCULATED AS

m− =
pn∑
i=1

ωi.X̂ (i) (61)

P− =
pn∑
i=1

ωi.(X̂ (i)
− m−).(X̂ (i)

− m−)T + Qk−1 (62)

where wi = 1/(2.n). And updating step includes:

5) CREATE NEW SIGMA POINTS BASED ON THE
PREDICTED MOMENTS AS

X−(i) = m− +
√

P−.δi (63)

FIGURE 5. Flowchart of CKF.

6) SPREAD THE SIGMA POINTS INTO THE NONLINEAR
MEASUREMENT MODEL

ŷ(i) = h(X−(i)) (64)

7) DETERMINE THE POSTERIOR MEAN AND COVARIANCE
FROM CURRENT MEASUREMENT AS

m = m− + K .(y− µ) (65)

P = P− − K .S.KT (66)

where 

µ =
pn∑
i=1
ωi.ŷ(i)

S =
pn∑
i=1
ωi.(ŷ(i) − µ).(ŷ(i) − µ)T + Rk

C =
pn∑
i=1
ωi.(X−

(i)
− m−).(ŷ(i) − µ)T

K = C/S

(67)

The whole estimation procedure of CKF is shown in Fig. 5.
Moreover, an integrated figure is shown in Fig. 6, in which
the difference between different filters is presented. A single
integrated picture compares the nonlinear Kalman filters as an
evolution with the core Kalman filter as the center and other
variants evolving around it. This would illustrate how each of
them is different from the others.
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FIGURE 6. Integrated picture showing the comparison of the nonlinear Kalman filters.

III. DYNAMIC PHASOR ESTIMATION
According to the classical definition of the phasor, it is a
complex envelope of a sinusoidal function with fixed ampli-
tude, phase, and frequency. However, phasor estimation in a
real power system is more challenging, and the parameters
change over time. Dynamic phasor is a more accurate notion
for phasor estimation during the dynamic condition when the
amplitude and phase are not constant values. In this paper,
amplitude and phase have been considered time-dependent
variables [63] in the definition of the phasor, and tests with
the same characteristics are considered for evaluation of the
estimation methods. Since the first and second derivatives
of phasor are used in the dynamic phasor concept, they can
be utilized for further analysis in other fields such as the
protection of power systems. Quick detection of power swing
in a protection system (distance relay) of a transmission
line can be an application of derivatives of the dynamic
phasor. Some methods for power swing detection are
presented in [64]–[67].

Consider a sinusoidal quantity with variable amplitude and
phase as:

y(t) = a(t)sin(ω1t + φ(t)) (68)

where a(t) is amplitude, φ(t) is phase angle of main signal
y(t). ω1 is the angular frequency of the signal. The dynamic
phasor is defined as:

p(t) = a(t)ejφ(t) (69)

According to (69), a new concept of the phasor is not
a constant complex value. Instead, it is a dynamic com-
plex parameter whose amplitude and phase change during
time according to different conditions in the power system.
By considering the time-variant characteristic of amplitude
and phase of the dynamic phasor, a state-space for nonlinear
Kalman filter will be formed in the next section.

FIGURE 7. Main signal under steady-state conditions.

A. STATE SPACE FOR NONLINEAR KALMAN FILTER
State-space is the heart of any Kalman filter. It actually relates
between the system’s dynamics in two consecutive sample
times and the state of system and input measurement in
the current sample. Based on the presented definition for
dynamic phasor and description of non-linear Kalman filter
(presented in the previous section), the filters state spaces
consist of the amplitude and phase as:[
a(k1t)
φ(k1t)

]
=

[
1t 0
0 1t

] [
a((k − 1)1t)
φ((k − 1)1t)

]
+ qk−1 (70)

y(t) =
[
1
0

]T [a(k1t)
φ(k1t)

]
sin(ωt+

[
1
0

]T [a(k1t)
φ(k1t)

]
)+rk

(71)

where ω = 2π f1 is fundamental angular frequency. Equa-
tions (70) and (71) construct the state space of dynamic
phasor estimation. According to these equations, amplitude
and phase are considered time-varying parameters. This state
space is used by five presented nonlinear Kalman filters, and
amplitude and phase of the main signal (dynamic phasor)
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are estimated which their results will be shown in the next
section.

IV. SIMULATION RESULTS
As explained in the IEEE standard, a specific method for
estimation in the phasor measurement unit (PMU) and its
behavior is out of the standard’s scope. However, some simple
tests are proposed in the standard to assess these behaviors.
The nonlinear Kalman filters have been developed in the
previous sections. This section analyzes the performances
for five nonlinear Kalman filters for dynamic phasor esti-
mation by different tests (steady state condition, sinusoidal
amplitude and phase, step change of amplitude and phase,
off-nominal frequency, fault condition, DC component and
harmonic infiltration, simulation time, and noise infiltration).
Moreover, the advantage of the nonlinear Kalman filter com-
pared to the linear Kalman filter will be shown in this section.
Finally, the performance of the nonlinear Kalman filter is
compared with six methods that have already been published
in the literature. All simulations are done in a MATLAB
environment.

A. STEADY-STATE COMPLIANCE
This section deals with measurement compliance tests and
performance limits under steady-state conditions [68], [69].
Steady-state compliance is confirmed by comparing the esti-
mates of synchrophasor under steady-state conditions to the
reference values. Consider the test signal

S(t) = am sin(ω t + φm) (72)

where am = 1 p.u is amplitude, φm = 570 is phase angle,
ω = 2π f is frequency of signal. The main signal is shown in
Fig. 7. The proposed method is applied to the test signal (72)
with sampling frequency 3.84 KHz and nominal frequency of
60Hz. Variance value of process and observation noises are
considered 10−4, whichmatches a signal-to-noise ratio (SNR)
of 37dB, similar to the SNR a 6-bit analog to digital converter.
The initial condition of the state is [0 0]T , and its associated
covariance matrix is P = 3I (where I is the identity matrix).
During the steady-state condition, the amplitude, angle, and
frequency are kept constant. Total Vector Error (TVE) accu-
racy criterion is given by:

TVE = |
Xr − Xe
Xr

| (73)

where Xr is real phasor, and Xe is the estimated phasor.
Five Kalman filters are applied to 1 second of main signal

presented in (72). Fig. 8 shows estimated amplitude, esti-
mated angle and accuracy of estimation (TVE) by five non-
linear Kalman filters during steady-state condition as the first
test case proposed in the IEEE standard for synchrophasor
estimation. According to Fig. 8, all methods meet the accu-
racy requirement (TVE < 1%) in a steady-state condition.

FIGURE 8. Performance of five non-linear Kalman filters under
steady-state conditions.
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FIGURE 9. Main signal under dynamic condition (modulated amplitude
and phase) and the real phasor.

B. DYNAMIC COMPLIANCE MEASUREMENT BANDWIDTH
In this section, the performance of five nonlinear Kalman
filters are compared when the amplitude and phase of the
main signal change sinusoidally. Consider test case (74) as
follows:

S(t) = a(t) sin(ω + φ(t)) (74)

where
a(t) = am + (kxsin(ωosct))
φ(t) = φm + (kasin(ωosct))
am = 1;φm = 570, kx = 0.1, ka = 0.1, ωosc = 10π

where a(t) is the modulated amplitude of, ω is the funda-
mental angular frequency, ωosc = 10π is the modulation
frequency (5Hz oscillation is proposed in the IEEE standard
as a fast modulating frequency), ka = 0.1 and kx = 0.1 are
the amplitude and phase angle modulation factors. sampling
frequency 3.84 KHz and nominal frequency of 60Hz. Pro-
cess and observation noises are considered 10−2 and 10−4

respectively. The initial condition of the state is [0 0]T , and
its associated covariance matrix is P = 3I . Fig. 9 shows
the main signal presented in (74) and its real phasor. This
test case validates application of the dynamic phasor con-
cept since the phasor is changing with time. Five filters are
applied to (74) and the results (estimated phasor and TVE)
are shown in Fig. 10. The maximum allowable value of
TVE (3%) during dynamic condition (modulated amplitude
and phase), proposed by IEEE standard is also specified in
Fig. 10. Fig. 10 shows that the standard’s requirement of TVE
for both P-class and M-class PMU is met in all five nonlinear
Kalman filters.

C. DYNAMIC COMPLIANCE (PERFORMANCE UNDER
STEP CHANGES IN PHASE AND MAGNITUDE)
To evaluate an estimation method’s performance under tran-
sition between two steady-state conditions, step-change in
amplitude and phase are specified in the standard. In this
section, the behavior of five nonlinear Kalman filters is exam-
ined when the amplitude and phase of the main signal change
step-like.

FIGURE 10. Performance of five non-linear Kalman filters under dynamic
conditions (modulated amplitude and phase).

1) AMPLITUDE STEP TEST
Consider the test waveform presented in (75) shown in
Fig. 11. It shows 10% magnitude step at t = 1sec.
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FIGURE 11. Main signal under step change of amplitude.

FIGURE 12. Estimated amplitude and TVE by EKF1 under step change of
amplitude.

Sampling time, process and observation noises, and the initial
condition of state and its associated covariance matrix are
similar to section IV.A. Simulation results of the test case
for five filters are obtained but just the results (estimated
amplitude and TVE) of EKF1 are shown in Fig. 12. Accord-
ing to Fig. 12, the reference amplitude is tracked accurately.
According to the standard and Fig. 12, the response time (the
time when TVE reached less than TVE = 1% after step
change), and maximum value of overshoot are calculated and
tabulated in Table 1. The response times and overshoots of the
rest four filters (EKF2, UKF, GHKF and CKF) are tabulated
in Table 1, section ‘‘amplitude’’. According to Table 1, all
filters meets the overshoot requirement for both P-class (5%)
and M-class PMU (10%). Moreover, all filters meets the
requirement of response time for P class (1.7/f0 = 0.0283s)
and M class of a PMU.

S(t) = am sin(ω t + φm)
am = 1, φm = 0 0 < t < 1sec
am = 1.1, φm = 0 t > 1sec

2) PHASE STEP TEST
Consider the test waveform presented in (76), which shows
100 phase angle step at t = 1sec. Sampling time, process and
observation noises, and the initial condition of state and its

TABLE 1. Overshoots and response times of different filters during step
changes (amplitude and phase).

FIGURE 13. Estimated phase and TVE by EKF1 under step change of
phase angle.

associated covariance matrix are similar to section IV.A.
S(t) = am sin(ω t + φm)
am = 1, φm = 0 0 < t < 1sec
am = 1, φm = 100 t > 1sec

(75)

Simulation results (estimated amplitude and TVE) of
EKF1 are shown in Fig. 13. According to Fig. 13, EKF1
could follow the variation of reference value of phase angle
accurately and based on the IEEE standard, the response
time due to step change is 7.5 ms, which is much smaller
than the requirement for both classes of PMUs. Moreover,
overshoot of estimated angle is 0.85%, which is smaller than
the requirement 5%5. Simulation results of all filters are
tabulated in Table 1, section ‘‘phase’’. According to Table 1,
all filters meets the requirements of standard for both P-class
and M-class of PMUs.
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FIGURE 14. Amplitude and phase estimation under off-nominal
frequency test case.

3) OFF-NOMINAL FREQUENCY
The next test case is a 0.5 Hz frequency deviation from
fundamental frequency f0 = 60Hz. The test waveform is
presented in (77).{

S(t) = sin(2.π.f0.t) 0 < t < 1
S(t) = sin(2.π.(f1 + 0.5).t) t > 1

(76)

Sampling time, process and observation noises, and the
initial condition of state and its associated covariance matrix
are similar to section IV.A. Fig. 14 shows amplitude and
phase estimates when subjected to off-nominal frequency.
According to Fig. 14, amplitude and phase are estimated
accurately by all filters.

D. TYPICAL CASE IN A POWER SYSTEM
In this section a more common waveform in a power system
is evaluated by the five filters. First, the system is under
steady state condition. Then suddenly a fault accrues and
removed after a few milli-seconds. Removing fault creates
DC component and power swing in the measured voltage

TABLE 2. Contingencies generation.

FIGURE 15. Main signal and real phasor in case IV.C.

and current. Additionally, in reality, the signals measured in a
power system may contain harmonics. The same scenario is
presented [22], which is re-simulated inMATALB. Thewave-
form is shown in Fig. 15, which shows behaviour of power
system in different time periods and consists of a funda-
mental frequency component (60Hz), fifth harmonic (300Hz)
component, DC component and power swing. Parameters
involved in the contingency of this section are summarized
in Table 2, second row.

There are 64 samples in one fundamental cycle. Sampling
time, process and observation noises, and the initial condi-
tion of state and its associated covariance matrix for non-
linear Kalman filters are similar to section IV.A. Simulation
results (estimated phasor and TVE) obtained by five non-
linear Kalman filters are shown in Fig. 16. All five filters
track variation of phasor during steady state and dynamic
conditions and accuracy of estimation (TVE) is less than the
requirement for PMU. It is worth to note that TVE exceed
the limit (1%) just at fault incident and fault removing that is
allowable as presented in standard.

11102 VOLUME 10, 2022



J. Khodaparast: Review of Dynamic Phasor Estimation by Non-Linear Kalman Filters

FIGURE 16. Estimated phasor and corresponding TVE for five infiltration
test case IV.C.

E. SIMULATION TIME
Simulation time is a key index in online signal processing
applications, so this index is examined in this section. The
computation time of five nonlinear Kalman filters is exam-
ined in this section when the sample number increases from
8 to 1024 samples per cycle. Process and observation noises,
the initial state condition, and its associated covariancematrix
are considered similar to section IV.A. Simulation result of
this test is shown in Fig. 17. According to Fig. 17, the calcu-
lation time of all methods shows an upward trend when the
sample number increases, and it can be seen that GHKF is
the most time-consuming method. The simulation result of
another test is also shown in Fig. 18. In this test, simulation
time versus state number is examined. According to Fig. 18,
increase in state number causes an increase in simulation
time, and similar to the previous test, GHKF is the most time-
demanding method.

F. NOISE INFILTRATION
Noise phenomena are always present as an unwanted param-
eter which can reduce the quality of parameter estimation
methods. It is helpful to examine the estimation error while
the noise level varies. Fig. 19 shows TVE as a function of
noise level (SNR) for five filters when subjected to Gaussian

FIGURE 17. Computation time comparison.

FIGURE 18. Simulation time comparison versus dimension number.

and Non-Gaussian noise. According to Fig. 19, As the SNR
decrease, higher TVE are obtained by all methods. So there
is an upward trend when the noise level increases. Different
filters have different performances under Gaussian and Non-
Gaussian noises. Under Gaussian noise, the filters exceed the
limit of TVE (1%) when SNR is less than 40 dB but this
critical point is 35 dB under Non-Gaussian noise. Moreover,
EKF1 shows themost accurate performance in low level noise
in both types of noises.

To enrich the noise section, performance of five non-linear
Kalman filters are also evaluated by colored noise (Pink,
White, Brown, Blue and Purple).The colored noise is a signal
with a power spectral density of 1/|f |α over its entire fre-
quency range. The inverse power spectral density component,
α, can be any value in the interval [−2 2]. Pink noise is
equivalent to setting Power of inverse frequency to 1, white
is to zero, brown is to +2, blue is to −1 and purple is to −2.
Performance of five filters are examined in different type of
colored noises and the results are shown in Fig. 20. Down-
ward trends from low SNR to high SNR are evident in Fig. 20,
which demonstrate higher estimation accuracy in lower noise
infiltration. However the filters have different critical points
in different color of noise. In pink noise, the critical point
is approximately 38 dB for all filters, which shows that the
filters can not meet the requirement of IEEE standard if SNR
would be less than 38 dB. The critical point in white noise
is 35 dB, 40 dB in Brown noise, 34 dB in Blue noise and
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FIGURE 19. Impact of Gaussian and Non-Gaussian noise on
accuracy (TVE) of estimates by five filters.

33 dB in Purple noise. The simulation results presented in
Fig. 20 show that the filters show a better performance under
Purple noise. Additionally, EKF1 is the most accurate type of
filter in low level of noise.

G. PERFORMANCE OF NONLINEAR KALMAN FILTERS IN
IEEE 39-BUS SYSTEM SIMULATED IN POWERFACTORY
The IEEE 39-Bus power system shown in Fig. 21 is a standard
for dynamic performance analysis. A dynamic model of the
whole system is simulated in GIgSILENT. In this system,
a distance relay is installed in the transmission line on Bus 14.
A distance relay is performed by measuring the impedance
calculated by the voltage and current phasors. In this section,
the measured current by a distance relay is applied to the five
nonlinear Kalman filters, and the results will be presented.
This section evaluates the nonlinear Kalman filters with mea-
sured current by the distance relay (current in transmission
line 14-04). The power system is simulated in different con-
tingencies with EMT simulation. Parameters involved in the
contingency of this section are summarized in Table 2. Since
the real phasor of signal (used in TVE index) is not avail-
able in a real power system, the index of phasor estimation
error (PEE) is used to evaluate the accuracy of EMD-Prony.
PEE is:

PEE(n) = |s(n)− ŝ(n)|, ŝ(n) = |p̂(n)|cos(nθ + 6 p̂(n))

(77)

where n is sample number, θ = 2π/N , s(n) is measured signal
and ŝ(n) is recomputed sample based on estimated phasor.

FIGURE 20. Impact of colored noise (Pink, White, Brown, Blue and
Purple) on accuracy (TVE) of estimates by five filters.

1) CASE 1: LOW IMPEDANCE FAULT
A three-phase fault with a low impedance (Zf = 0) is applied
to Bus 16 at t = 1sec, and the fault is removed after 0.1 sec.
The system is simulated for 2 sec, and the measured current
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FIGURE 21. IEEE 39-Bus power system.

is shown in Fig. 22 (a). The five nonlinear Kalman filters
are applied to the measured current. Fundamental frequency
component (60Hz). There are 64 samples in one fundamental
cycle. Sampling time, process and observation noises, and
the initial condition of state and its associated covariance
matrix for non-linear Kalman filters are similar to section
IV.A. The PEE of filters are tabulated in Table 3 (second
column). It is worth noting that the maximum value of PEE
during steady-state and dynamic conditions is presented in
Table 3, and the sudden change of PEE during transient con-
ditions is neglected. For page limit, only estimated amplitude
and PEE of CKF are shown in Figure 23, the first column.
Figure 23 and Table 3 show that the filters can appropriately
track amplitude and phase and give the correct phasor for
monitoring and protection systems.

2) CASE 2: HIGH IMPEDANCE FAULT
The second case is related to the evaluation of non-linear
Kalman filters when there is a high impedance fault in the
power system. A high impedance fault (Zf = 10ω) occurred
on Bus 16 at t = 1sec and is removed at 1.1 sec. The
measured current by the distance relay is shown in Fig. 22(b).
Performance of five non-linear Kalman filters in the esti-
mation of phasor of current are shown in Table 3, third
column. Moreover, CKF’s performance (estimated amplitude
and PEE) are shown in Fig. 23, second column.

3) CASE 3: LOAD CHANGE
Load level change is the third contingency considered in this
section. The level of load on Bus 15 suddenly drops to zero
at t = 1sec. Measured current by the distance relay is shown

FIGURE 22. Measured current in Line 04-14 in IEEE power system,
(a) is for case 1, (b) for case 2, and (c) for case 3.

in Fig. 22 (c). The current is evaluated by five filters, and
the corresponding and PEE are presented in Table 3, fourth
column. Estimated amplitude and PEE of CKF are also shown
in Figure 23, third column.

H. COMPARISON WITH OTHER DYNAMIC
PHASOR METHODS
In order to compare the presented methods in this paper
with other presented methods in the literature, six different
methods which are already published in the literature are
programmed in MATLAB and used in this section. The six
methods are based on two general observers, so the first three
of them are least square-based methods, and the others are the
Kalman filter-based methods. These six methods are:
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FIGURE 23. CKF’s performance; Estimated amplitude and PEE
corresponding to three contingencies in section IV.G, the first column is
for case 1, second column for case 2, and the third column for case 3.

TABLE 3. Simulation result of section IV.G; maximum PEE (p.u) of
different filters.

• Traditional: This method employs a Taylor expansion of
dynamic phasor with the order of zero and least square
observer to estimate phasor [22].

• Fourier-Taylor: This method is based on a Taylor expan-
sion of dynamic phasor with the order two and a least
square observer to approximate the dynamic phasor,
which is proposed in [22].

• Shank: This method is based on consecutive delays
of unit response (digital filter theory) and least
square observer to estimate dynamic phasor, which is
proposed in [70].

• Kalman-Taylor: this method is based on second-order
Taylor expansion of dynamic phasor and a linear
Kalman filter to estimate dynamic phasor, which is
proposed in [71].

• Fourier-Kalman-Taylor : The main idea of this method
is based on introducing augmented state space in linear

FIGURE 24. Simulation results of section IV.G (main signal(S(t)),
amplitude estimation and angle estimation).

Kalman filter which can overcome harmonic infiltration
problem [21].

• Modified-Kalman-Taylor: The main contribution of this
method is to modify the modeling process of state space
of linear Kalman filter to decrease error bound [72].

First, the oscillating test signal presented in (74) is
employed to analyze the performance of the six mentioned
methods for the estimation of amplitude and phase. Sam-
pling time, process and observation noises, and the initial
condition of state and its associated covariance matrix are
similar to section IV.A. Except for ‘‘Traditional’’ method
that is modeled by a zeroth-order Taylor, all other methods
are modeled by a second-order Taylor. Estimated ampli-
tude and estimated phase based on dynamic phasor con-
cept are shown in Fig. 24. Reference signals are shown
in dashed lines, and solid lines show the estimated sig-
nals. According to Figs. 24, the created delay is the main
difference between the results of Kalman-based methods
(Methods ‘‘Kalman-Taylor’’, ‘‘Fourier-Kalman-Taylor’’, and
‘‘Modified-Kalman-Taylor’’) and least square-basedmethods
(Methods ‘‘Traditional’’, ‘‘Fourier-Taylor’’, and ‘‘Shank’’).
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TABLE 4. Comparison of different methods (accuracy and speed).

The created delay is caused by the data window utilized in
the least square-based methods. Kalman filter-based meth-
ods can give instantaneous estimations (zero-delay), which
is a favorable outcome in the field of wide-area moni-
toring, protection, and control. A required characteristic
of these kinds of applications is the synchrony which is
granted by Kalman-based methods. As the second result of
this section, dynamic phasor concept (Methods ‘‘Fourier-
Taylor’’, ‘‘Shank’’, ‘‘Kalman-Taylor’’, ‘‘Fourier-Kalman-
Taylor’’, and ‘‘Modified-Kalman-Taylor’’) compared to first
method (Method ‘‘Traditional’’) is more flexible in oscillat-
ing conditions. In Method ‘‘Traditional’’, a slight distortion
appears at estimated amplitude (Fig. 24) while this distortion
disappears in other methods. This improvement is caused due
to relaxing amplitude and phase in dynamic phasor model.
TVEs and simulation times of different methods are tabulated
in Table 4.

V. CONCLUSION
Generally, the Kalman filter calculates the two moments of
the distribution (mean and covariance) recursively, resulting
from its distinctive predictor-corrector structure. One of the
applications of the Kalman filter can be an estimation of the
dynamic phasor. The difficulty facing calculating dynamic
phasor by Kalman filter is its nonlinear function. Therefore,
employing of nonlinear Kalman filter is proposed in this
paper. Implementations of five different nonlinear Kalman
filters for estimating dynamic phasor are developed and
demonstrated in this paper. The appropriate performance of
these methods can be figured out from simulation results
which demonstrate the accurate tracking of amplitude and
phase in all methods. Moreover, the performance of nonlinear
Kalman filters is compared with methods that have already
been published in the simulation section, which shows that

every method has its own advantages and disadvantages.
EKF1 is the most accurate method during steady-state con-
ditions, CKF is in the second position with TVE = 0.06, and
EKF2 is the least accurate with TVE = 0.09%. All five non-
linear Kalman filters show the same bandwidth when ampli-
tude and phase have sinusoidal variation. TVE is approxi-
mately 0.5% for all filters. Overshoot of EKF2 is the least
one (3.2%) when there is an amplitude-step change in the
input signal, and EKF1 has the most significant overshoot
when there is a phase-step change in the input signal. The
longest response time is related to EKF2 (7.6 ms), and the
shortest is for CKF (5.6 ms) during amplitude-step change.
GHKF should be the last solution when there are many states
or samples in the input signal. CKF, EKF1, and EKF2 show
acceptable computation time when the sample number rises.
CKF is the most accurate method in a high level of noise
infiltration, and EKF1 is the best in low noise level spe-
cial SNR>60 dB. Finally, CKF has better performance than
the six dynamic phasor estimation methods extracted from
published papers. TVE of CKF is 0.1101%, and simulation
time is 0.6148 ms. Although EKF1 has a lower computation
burden (0.5491 ms), the estimation accuracy (0.1303%) is
higher.

VI. FUTURE WORK
Phasor estimation is a crucial concept in the operation of
a power system. More efficient estimation methods will
improve monitoring and protection of electrical system
power. Efficiency will be increased by higher speed, lower
computation burden, and higher stability. Digital signal pro-
cessing (DSP) and electrical power engineering are two
wings that facilities this route. The electrical power system is
becoming more complex and needs more sophisticated DSP
methods. Kalman filter with zero delays in the estimation
process is a promising method, and new methods (or aug-
mented methods) should be applied in measured signals in
a complex power system. With progress in the integration of
renewable energies with converter-based technologies, new
phenomena are created in the power system that a better
observer can extract. We are looking for a DSP method that
can give accurate estimates during transient conditions in
the monitoring and protection field. A smoother estimation
during severe fault conditions in power systems is an inter-
esting direction for electrical power engineers. It is worth
noting that besides the noisy data (lack of quality), the PMU-
based monitoring is usually contaminated with communica-
tion failure (unavailability), which is not tackled in this paper.
However, this will be a hot topic in the future with much
more amount of data and communication failure such as GPS
unavailability or even fictitious data by a cyber-attack. This
issue is not answered in this paper because, in this paper,
the focus was on the accuracy of dynamic phasor estimates
by non-linear Kalman filters. However, we are working on
big data and blockchain applications in PMU-based monitor-
ing systems in an electrical power system to address these
issues.
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