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Abstract

De novo motif discovery is a difficult computational task. Historically, dedicated algorithms always reported a high percent-
age of false positives. Their performance did not improve considerably even after they adapted to handle large amounts of
chromatin immunoprecipitation sequencing (ChIP-Seq) data. Several studies have advocated aggregating complementary
algorithms, combining their predictions to increase the accuracy of the results. This led to the development of ensemble
methods. To form a better view on modern ensembles, we review all compound tools designed for ChIP-Seq. After a brief
introduction to basic algorithms and early ensembles, we describe the most recent tools. We highlight their limitations and
strengths by presenting their architecture, the input options and their output. To provide guidance for next-generation
sequencing practitioners, we observe the differences and similarities between them. Last but not least, we identify and
recommend several features to be implemented by any novel ensemble algorithm.
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Introduction

De novo computational DNA motif discovery is central to under-
standing and controlling gene expression. Motifs are typically
short nucleotide sequences [5–20 base pairs (bp) in length] that
are overrepresented statistically. They may appear several
times across or within genes and it is conjectured that they pos-
sess biological significance, as they often represent the se-
quence-specific binding sites for ‘transcription factors’ (TFs)
and other classes of regulatory proteins [1]. Motif finding is a
computationally daunting task: given a collection of sequences,
one must find an unknown but frequent pattern of unknown
length, while taking into account possible mutations, deletions
or insertions. A motif is generally contiguous, found on both
strands of the DNA, and it can also be palindromic or gapped [2].

Before the ‘next-generation sequencing’ (NGS) era, algo-
rithms for motif finding were designed for promoter analysis,
receiving as input a set of a few hundred sequences of co-
regulated genes [3]. The advent of ‘chromatin immunoprecipita-
tion’ (ChIP [4]) combined with high-throughput NGS increased
the accuracy of locating in vivo the ‘transcription factors’

binding sites’ (TFBS), from several thousands of bp down to
300 bp [5]. Also known as ‘ChIP sequencing’ (ChIP-Seq) [6], this
novel method can produce a large amount of data with
increased precision and lower noise (e.g. Illumina HiSeq X TenVR

System can produce over 1 TB of data per run). Nowadays,
ChIP-Seq is the protocol of choice for most genome-wide
investigations related to protein–DNA interactions and holds a
paramount role in epigenetics research (e.g. mapping histone
modifications) [7].

Historically, motif finding algorithms suffered from low-per-
formance issues. Early studies, e.g. [8], showed that even the
best-performing algorithm did not surpass levels of 13% in sen-
sitivity and 35% in precision. A major problem was also a high
rate of false positives, as discussed in [9]. After the introduction
of NGS, with the aid of peak finding preprocessing methods, the
input sequences have become shorter and more likely to be cen-
tered on the actual TFBS, and so the search could be circum-
scribed around 50–200 bp around the peaks [10]. Unfortunately,
because algorithms for de novo motif discovery had to deal with
massive amounts of data, their performance was affected by
too many false positives and long execution times. To overcome
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these obstacles, some algorithms achieved small gains by tak-
ing into account phylogenetic information from closely related
species [11] or by using different motif representations [12–14].
Nevertheless, since 2000s, even before the emergence of NGS
technologies, based on the belief that authentic motifs could be
identified by more than one method, studies have increasingly
encouraged researchers to combine the results of various algo-
rithms [15–18]. ‘Ensemble methods’, implemented as ‘ensemble
tools’, delivered most improvements in motif proficiency.

Despite the widespread usage of ensemble methods in the
NGS community, reviews on de novo motif prediction methods
have focused only on individual algorithms [2] and on related
web applications [19]. We believe that NGS practitioners and
other interested parties may find useful an up-to-date review of
ensembles for de novo motif discovery. To provide guidance in
choosing the right tool, this article analyzes all the ensembles
from scientific literature that, according to our best knowledge,
were specifically designed to operate with data from ChIP-Seq
experiments. First, we outline a set of basic notions regarding
motif prediction along with fundamental algorithms that are
found in most composite systems. Then, we briefly enumerate
several compound methods from the period before the wide-
scale dissemination of NGS technologies. Afterward, we center
our attention on modern ChIP-Seq ensembles. We describe their
structure, the input parameters and how the results are pre-
sented to the user. We show their advantages and disadvan-
tages from a practical point of view and we highlight some
desired characteristics that can be incorporated in future en-
semble methods.

Fundamentals of de novo motif discovery

Motif finding is an NP-complete problem. In a formulation,
known as ‘planted motif search’, it is stated that given n
sequences, one must find an implanted pattern of length l
(a l-mer) with at most d mutations [20]. If no mutations are con-
sidered, for any sequence with length m that contains an l-mer,
there are (m� lþ 1)n possible solutions, thus rendering any brute
force search computationally impracticable.

Motifs are commonly represented using consensuses or pro-
file matrices. Given a set of aligned sequences for a TF, a con-
sensus sequence is built choosing the predominant nucleotide
from each position, while a ‘degenerate consensus’ is built tak-
ing into account the most frequent nucleotides per position and
represented with IUPAC ambiguity codes [21]. The prevalent
representation is based on profiles [22], which are 4� l ‘pos-
itional weight matrices’ (PWM) with four rows for nucleotides
and l columns for motif sites. To construct a PWM, a collection
of aligned sequences and a random background model are
needed. Entries in the matrix represent log-likelihoods of the
site-specific frequency of nucleotides versus the background
model. The ‘PWM score’ (PWMS) indicates how far a sequence is
from a random one and how well it conforms to a given motif
profile. PWMS is computed by summing the elements of PWM
that positionally match a given oligo-sequence [23]. PWMs can
be illustrated with sequence logos [24].

Algorithms for motif detection are classified as ‘word-based’
or ‘profile-based’, depending on the motif representation [3].

The first category comprises consensus algorithms. For each
possible l-mer, they gather from the input sequences its ap-
proximate occurrences with at most e mutations and rank them
based on their overrepresentation. To prune the search space
(4l possible patterns), a typical method like Weeder [25] uses

suffix-trees to hold data and enforces some constraints on loca-
tions where mismatches are allowed.

Profile-based algorithms perform heuristic searches by itera-
tively optimizing an initial PWM. Although the search space
spans across all possible solutions, they avoid an exhaustive
enumeration. Profile-based methods can cater to longer input
sequences. Iteratively, these methods select some positions
from the input set, align their associated sequences, build a
PWM and score the obtained model. An example of such an al-
gorithm is ‘Multiple Expectation Maximization for Motif
Elicitation’ (MEME) [26], a multi-start local method that begins
with separate profiles for each input l-mer, then selects the cur-
rent best profile to be optimized deterministically in further ‘ex-
pectation maximization’ (EM) steps. MEME cannot detect
spaced dyads per se, only as separate motifs. The Gibbs sampler
[27] is another profile-based algorithm that can be seen as
MEME’s stochastic counterpart. Unlike MEME, it overcomes the
generation of too many initial profiles by building only one ran-
dom initial profile that is subsequently improved [23]. Both al-
gorithms have inherent drawbacks: they assume the presence
of a motif in each input sequence or they may prematurely end
in local optima.

Older algorithms for promoter analysis had to adapt to cope
with the massive amount of short reads from ChIP-Seq experi-
ments. Newer Gibbs and MEME variants process only a subset of
the input, while the rest is ignored [28]. For example, ChIPMunk
[29] adopted a greedy optimization strategy combined with EM.
Novel word-based algorithms were also designed for speed, like
‘discriminative regular expression motif elicitation’ (DREME)
[30], that limits its search to motifs of maximum 8 bp.
Nonetheless, MEME and Weeder are still used in predicting
binding sites from ChIP-Seq data, but they require a higher com-
putational effort.

Motif predictions can be checked against experimentally
validated TFBS from dedicated databases (e.g. TRANSFAC [31],
JASPAR [32], UniPROBE [33]) by using tools like TOMTOM [34] or
STAMP [35]. Peak calling tools [36] can preselect ChIP-Seq re-
gions as input for motif finding, but they can also work in paral-
lel to verify the authenticity of predicted motifs.

Assessing the performance of motif discovery algorithms
has always been a challenge. Regardless of the dramatic in-
crease in the amount of data produced by the sequencing ma-
chines, a widely accepted benchmark did not materialize.
Before the emergence of NGS, first attempts to compare the per-
formance of methods for promoter analysis consisted in meas-
uring the ability to find implanted motifs in randomly
generated sequences [37]. Soon, data sets procured from labora-
tory replaced the implantation approach [8, 38]. In the ChIP-Seq
period, algorithms are assessed using hybrid data collections
that still contain some promoters (see [15] or [39]) or using
sequences derived from ChIP-Seq assays like Chen et al.’s data
set [40].

The performance of de novo motif detection algorithms has
been always far from satisfactory [8], being afflicted by false
positives [9]. A ‘receiver operating characteristic’ (ROC) curve,
drawn to examine the relation between sensitivity and specifi-
city [41], can illustrate the problem. In this regard, ensemble
methods emerged as a viable solution.

Ensemble methods before the ChIP-Seq era

Ensemble methods combine different and complementary algo-
rithms to improve the accuracy of prediction, in the same way
any real-life important decision is made relying on advice from
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several experts. Such methods have flourished in the field of
machine learning [42] and, subsequently, in bioinformatics [43,
44]. Although there are many types of aggregate methods
(e.g. bagging [45], boosting [46], mixture of experts [47]), most de
novo motif discovery ensembles are similar, being composed of
several algorithms that process the same input sequences.
They pool together and coalesce their predictions, then select
top-ranking solutions with a higher confidence, as shown in

Figure 1. We follow the same naming convention as in [18] and
[48] and we refer to the above-mentioned approach, also called
‘meta-server’, as ‘ensemble method’. These methods are imple-
mented in practice as ensemble tools that can be accessed as
stand-alone local applications or via the web.

A timeline for de novo motif discovery ensembles, emphasiz-
ing the partition between older tools for promoter analysis and
newer methods for ChIP-Seq, is provided in Figure 2. As shown

Figure 1. Overview of an ensemble method. In this example, the query sequences contain at least one a priori unknown motif. Some of its corresponding oligo-

sequences are highlighted in bold characters for illustrative purposes only. N different algorithms independently process the same input and each generates its own

set of predicted motifs. Afterward, all N sets of obtained motifs are pooled together and combined using a particular clustering and/or voting procedure. Finally, only

significant top motifs are reported in the ensemble’s output. In this illustration, the resulted first most significant motif, corresponding to the binding site of Krueppel-

like factor 1, is represented with its sequence logo.
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in the drawing, even before the rise of ChIP-Seq-capable meth-
ods, there have been a series of endeavors to harness the power
of multiple algorithms (see Table 1). They are briefly described
in the next paragraphs.

RgS-Miner was an earlier integrated system for promoter
analysis [62] that used a k-means algorithm [63] for motif
clustering and reported the closest patterns to centroids. When
battered by false discoveries obtained with individual methods,
Harbison et al. in [15] undertook a similar approach by improv-
ing the predictions of six algorithms using k-medoids [64].
WebMOTIFS [65] used the same clustering procedure as in
Harbison et al.’s study to gather the results of four de novo algo-
rithms (i.e. MEME, AlignACE, MDScan and Weeder). Another at-
tempt was MultiFinder, a pipeline that merged and ranked
motifs using hierarchical clustering with several scoring func-
tions [66]. Ensembles like SCOPE [67] and BEST [68] reported top
motifs from individual methods subject to a common scoring

function. However, Tmod [69] and Melina II [70] were notable
exceptions because, although they could run several
algorithms, they did not automatically cluster the results.

Early investigations on the matter of motif discovery argued
for a mix of methods [17]. An influential study was Tompa et al.
assessment of 13 motif finding algorithms on a eukaryotic data
set. The survey recommended using a collection of complemen-
tary tools to mitigate the low performance of individual algo-
rithms [8]. Accordingly, Hu et al.’s complementary study on
prokaryotes followed the advice [16] and they sketched the ‘con-
sensus ensemble algorithm’ (CEA), which collected motifs from
multiple runs of the same workflow. After being further im-
proved and renamed ‘Ensemble Motif Discovery’ (EMD), it out-
performed by 22.4% in accuracy the best stand-alone method in
a test [18]. EMD clustered and ranked top motifs from several
methods using a voting system. The concept was later
developed by MotifVoter and MProfiler [48, 71].

Figure 2. A timeline for ensemble methods. Ensembles are classified into two categories. The first category comprises early ensembles devised initially for promoter

analysis before the emergence of ChIP-Seq assays. The second category comprises newer ensembles designed to handle massive amounts of read counts from ChIP-

Seq experiments. All methods are plotted based on their publication date.

Table 1. Ensemble methods before ChIP-Seq eraa

Ensemble Components Running time estimations

RgS-Miner Gibbs sampler, MEME, AlignACE 7.77%–64.74%–27.49%
Harbison et al. AlignACE, MEME, MDScan, method from Kellis et al.,

MEME_c, CONVERGE
N/A

BEST AlignACE, BioProspector, CONSENSUS, MEME 0.56%–1.27%–53.04%–45.13%
MultiFinder MDScan, BioProspector, MEME, AlignACE 0.08%–0.71%–93.56%–5.65%
CEA, EMD AlignACE, MEME, BioProspector, MDScan,

MotifSampler
1.21%–77.50%–0.90%–0.12%–20.27%

SCOPE BEAM, PRISM, SPACER N/A
WebMOTIFS MEME, AlignACE, MDScan, Weeder 54.03%–8.31%–0.08%–37.58%
MotifVoter, MProfiler MITRA, Weeder, SPACE, AlignACE, ANN-Spec,

BioProspector, Improbizer, MDScan, MEME, MotifSampler
7.20%–5.54%–14.13%–6.93%–5.17%

–0.09%–5.08%–0.46%–32.50%–22.90%

aFirst appearances in Table 1 with their respective citations: AlignACE [49], MDScan [50], method from Kellis et al. [51], CONSENSUS [52], BioProspector [53],

MotifSampler [54], BEAM [55], PRISM [56], SPACER [57], MITRA [58], SPACE [59], ANN-Spec [60], Improbizer [61].

Aggregate methods are listed along with their component algorithms and the running time percentage for each component. Comma-separated ensembles contain the

same algorithms; however, they are improved versions in terms of the clustering/voting procedure. To show which component has the longest execution time, we

measured the mean running time of each component across the 13 data sets from Chen et al. To fit the input requirements of all algorithms, we used a random sample

of 500 sequences from each of the 13 Chen et al.’s mouse embryonic stem cells ChIP-Seq data sets [40] provided in [30]. Ensembles were run with default parameter

values.
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Ensemble methods for ChIP-Seq data

Older ensemble methods can still be used to find motifs in
ChIP-Seq read counts (e.g. SCOPE in [72]); however, more
suitable tools have been developed.

Most recent ensembles share many common features but
are composed of methods with different strengths and weak-
nesses. They seek to provide additional value other than chain-
ing together third-party modules and they offer a better insight
into data through an augmented visual presentation. For a
user’s convenience, most of the tools are available as online
portals and many parts of the workflow are automated to save
time.

Hereinafter, we describe all the ensembles that were primar-
ily devised to deal with ChIP-Seq data.

‘W-ChIPMotifs’ (2009) [73] is a web server limited to human
or mouse genome analysis. Data can be entered directly in the
browser or through file uploading, with an upper limit of 600 KB.
Between 10 and 2000 sequences in FASTA format are recom-
mended as input, considering that more could pose a problem
to MEME [74], a time and resource consuming algorithm with
O(n2) complexity. The user has the option to conduct differential
analysis. If no control data are provided, then one is generated
using 5000 random promoter sequences automatically picked
from the selected species. W-ChIPMotifs includes MEME,
Weeder and a greedy search strategy that relies on indexing—
‘Mammalian Motif Finder’ (MaMF) [75]. The union of their
results is assessed against a randomized initial input.
The top-scoring motifs are selected in two rounds: the first is
based on profile scores, the second on the Fisher significance
test. Finally, STAMP matches the resulted motifs in TRANSFAC
and JASPAR. The final report contains the predicted patterns
along with their sequence logos, PWMs, scores, P-values.
The web portal automates many steps of the workflow at
the expense of less user control and it also lacks the ability
to predict alternative binding motifs [19]. Neither the source
code nor any installation package is publicly available at
this time.

‘GimmeMotifs’ (2011) [72] is a collection of configurable com-
mand-line utilities that can aggregate up to nine motif-finding
algorithms. Not being an online portal, it requires some com-
puter expertise to install and configure. All algorithms run in
parallel using an ‘inter process communication’ (IPC) solution—
Parallel Python [76]. The only mandatory parameter is the input
file. Optional parameters include the reference genome, the al-
gorithms to be run, the maximum running time, the back-
ground model, the size of desired motifs and a cutoff P-value
along with an enrichment level to select significant motifs.
Large inputs, given in BED or FASTA format, are trimmed to 20%
of their initial size; however, the fraction can be changed.
Obtained motifs are filtered using randomized data generated
from the remaining 80% of the initial sequences and similar
patterns are merged using a clustering procedure based on an
information content metric. Statistics for the validation of the
captured motifs are the hypergeometric P-value, the ROC curve,
the ‘area under receiver operating characteristic’, the ‘mean
normalized conditional probability’ (MNCP) [77] and the abso-
lute enrichment. Two types of background models can be used:
a first-order Markov model with frequencies similar to the input
dinucleotides’ frequencies and another model generated with
frequencies of randomly chosen genes around the ‘transcription
start sites’ of the specified genome. Apart from the regular
sequence logos, PWMs and motif scores, the output provides
a histogram with the motif’s position relative to the peak’s

center [72]. The product is open-source, well documented and
installer packages are available for several Linux distributions.

‘CompleteMOTIFs’ (2011) [78] is a web platform. Alongside
motif discovery, it offers a few useful data set operations, peak
region annotation and BED-FASTA conversion utilities for
mouse (mm9), rat (rn4) and human (hg18, hg19). For motif pre-
diction, the system accepts input data in BED, FASTA and GFF
formats, either directly in the browser or through file uploading
(maximum 100 MB). CompleteMOTIFs incorporates a motif
scanning method Patser [52] and three de novo discovery algo-
rithms: CUDA-MEME [79], Weeder and an advanced version of
ChIPMunk—ChIPHorde. Weeder is using OpenMP for parallel
processing. CUDA-MEME uses the ‘Compute Unified Device
Architecture’ (CUDA) programming model on a ‘graphical pro-
cessing unit’ (GPU) to accelerate MEME’s execution. There are
restrictions depending on the chosen methods to be run: if
ChIPMunk is used alone then the maximum number of input
bases is limited to 5 million, while for MEME, Weeder or Patser
the limit is 500 000. Motif scanning is done by Patser, which uses
TRANSFAC and JASPAR as motif compendia, but it also accepts
user-defined profiles. After scanning, a background random
model is created by shuffling the user’s original input or by
using pre-compiled upstream sequences from the considered
genome. Afterward, this model is involved in calculating a P-
value corrected for ‘false discovery rate’, allowing an estimation
regarding the significance of results. Finally, top 10 motifs from
each of the four methods are collected, ranked and inventoried
with STAMP. User options include setting a P-value cutoff,
choosing a background random sequence type and its nucleo-
tide shuffling parameters, the motif width for MEME, the refer-
ence genome and the motif databases. The final report contains
information in HTML and text formats that is specific to each al-
gorithm involved in prediction [19]. The source code is not pub-
lic, but the product can be downloaded on request. The stand-
alone application requires compiling and manually adding the
motif databases owing to different licensing policies of algo-
rithm and databases. On the online portal, free accounts are
offered to academic users who prefer storing their results on
the server.

‘MEME-ChIP’ (2011) [28, 80] is part of the MEME Suite online
platform [81]. Data, entered directly into the browser or by file
uploading, must be only in FASTA format and should not ex-
ceed 50 MB. It is recommended that the sequences are peak-
centered. However, only the middle 100 bp are actually used in
the prediction. The users can select a reference database from
those available (JASPAR, UniPROBE, etc.) or can provide their
own. For vertebrates, ‘JASPAR Vertebrates and UniPROBE
Mouse’ is appropriate for most cases. The ensemble includes
two algorithms for de novo motif discovery, MEME and DREME,
coupled with an algorithm for enrichment analysis—CentriMo
(‘central motif enrichment analysis’) [82]. MEME performs the
task of finding long motifs (maximum of 30 bp in length) but,
owing to its O(n2) complexity, only at most 600 randomly
sampled input sequences are considered. While default options
for MEME work well in most cases, the user can adjust several
parameters like the maximum and minimum of sites per motif,
motif width or the number of motifs to be returned. The implicit
background model is a first-order Markov model built from the
input sequences, but the user can upload a custom model. The
default expected motif site distribution ‘Zero or one occurrence
per sequence’ suits well the majority of large-scale studies; the
others are ‘One occurrence per sequence’ (fastest) and ‘Any
number of repetitions’ (slowest). To run a parallel version of
MEME, a ‘Message Passing Interface’ (MPI) implementation and
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a batch scheduler are needed. Before processing, MEME-ChIP
trims the input sequences to 100 bp and centers them, forming
the input for DREME, a fast word-based algorithm. Regarding
DREME, the user can specify values for search termination con-
ditions, which are the maximum number of reported motifs
and the estimated statistical significance, represented by the
E-value. DREME and MEME complement each other: ‘MEME is
highly specific but slower, whereas DREME is less specific but
faster’. [80] Because it performs motif enrichment analysis on
‘known’ motifs, CentriMo is not a de novo method. Nonetheless,
using CentriMo’s output graph of motif probability in se-
quences, researchers can also identify co-factors and check the
quality of the ChIP experiment (see [80]). The final output, ob-
tained by ranking the results of the three algorithms, can be
explored in XML, text or interactive HTML forms. Motifs are
ordered by their E-value, grouped by similarity and described in
detail by their sequence logo, occurrence sites, regular expres-
sion, etc. The final report also includes links to other tools, like
TOMTOM, for further analysis. MEME-ChIP can analyze large-
scale data for any genome. Available as a web server, it is also
provided as a web service through the Opal2 platform [83]. It
can be downloaded and installed on a local machine and its
source code is public.

‘RSAT (Regulatory Sequence Analysis Tools) peak-motifs’
(2012) [84] is a web-based toolset for detection of cis-regulatory
elements, that is accessible in the browser or through SOAP
web-services. Alongside motif prediction, it also includes tools
for statistics and genome management. This online workbench
can be used with any type of genome and it accepts several for-
mats, directly in the browser, through file uploading or pasting
a URL of a sequence file from a server. From a BED file, peak-
motifs can return sequences for any organism. An optional but
distinctive feature of RSAT is represented by the possibility to
perform differential analysis: the user can input two sets of se-
quences, run the motif discovery pipeline and assess the re-
sulted enriched motifs. Before de novo discovery, the input peak
sequences can be shrunk and filtered in a facultative step.
Motifs are predicted with at most four word-based algorithms.
Users can select the algorithms to run, the oligomer lengths, the
desired Markov order of the random background model and the
desired number of motifs returned by each algorithm, among
other options. The user can choose from a large list of reference
databases, but can also use a custom one. The predicted sites
can be exported as custom UCSC tracks that can be viewed in
genome browsers. RSAT peak-motifs can be obtained by request
and installed on Unix-like operating systems.

‘MotifLab’ (2013) [85] is a stand-alone Java desktop applica-
tion for analysis of regulatory regions and motif discovery. It is
using Java threads to provide concurrency, but this feature is
not fully used in the current version (as stated in the user’s
manual). An important advantage is the option to include exter-
nal algorithms, either automatically installed from a preconfig-
ured repository or manually added. The application contains
two built-in ensemble methods not meant for ChIP-Seq data.
The first one, ‘Simple Ensemble’, returns the sites and motifs
where at least M different methods predict at least N nucleo-
tides. The second one is Hu et al.’s EMD. However, the user can
add external ensemble methods for ChIP-Seq using XML config-
uration files. Depending on the operating system, the work-
bench currently accepts the following algorithms: ChIPMunk,
MEME, AlignACE, Weeder and BioProspector. After running an
ensemble, the final report highlights the binding sites with their
associated motifs. The consensus representation, the PWM and
the sequence logo are displayed for each motif. Besides the

results, the user is endowed with a toolset to assess the similar-
ities and differences between distinct patterns. At last, the lack
of various and more recent default ensembles in MotifLab and
the effort in manual configuration may represent a drawback,
but the extensive documentation can overcome this. The tool
also runs in command-line mode.

‘Promzea’ (2013) [86] is an online web-server for detecting
motifs in plant species. It is particularly suited for maize (Zea
mays), rice (Oryza sativa) and Arabidopsis thaliana. Sequences can
be entered directly in the browser or through file uploading
(maximum 1 MB). Promoter data can be specified as gene IDs,
microarray probe-set IDs (for maize) or FASTA, while ChIP-Seq
peaks can be introduced in BED format. Information in cDNA
FASTA format is deferred to a BLAST procedure and the system
retrieves a corresponding list of promoters to analyze from the
database of the selected plant genome, with lengths specified
by the user. The ensemble combines three de novo algorithms:
MEME, BioProspector and Weeder. Their results are mixed, then
ranked using the MNCP [77]. MEME contributes with 10 motifs of
a maximum size of 10 each, BioProspector with 10 motifs of size
10 each, while Weeder returns motifs with a size between 6 and
10. The results of each method are filtered. For BioProspector
and Weeder the filtering is based on a binomial distribution P-
value test, while for MEME is based on a hypergeometrical dis-
tribution P-value test. The final report shows each motif along
with its score, the algorithm that predicted it, the sequence logo
and a graph with the motif’s frequency in the input data. Every
motif is presented along with the annotated genes that contain
it. A claimed advantage of Promzea is that it handles internally
the particularities of the three species of interest, like the distri-
bution of the distal cis-acting elements and the high percent of
transposable elements in maize and rice genomes.

As an overview, we provide Table 2, which summarizes in-
formation about the component algorithms, product type, the
availability of their sources, details about installation and the
genomes the method is suited for. It is also concerned with in-
put formats and restrictions, parallelization and acceleration, a
few relevant user options (number of motifs to be returned and
P-value) and which databases can be used for motif
comparison.

Conclusions

We reviewed seven ensemble tools designed to process ChIP-
Seq data and observed their limitations and strengths.

Except RSAT peak-motifs, all tools are a combination of pro-
file-based and word-based algorithms. Three of them, W-
ChIPMotifs, Promzea and CompleteMOTIFs, greatly restrict the
user input to <20 MB, rendering them unfit for large-scale
analysis.

While most tools can be used for any genome, the applicabil-
ity of W-ChIPMotifs and Promzea is limited because the first
can be used only for mouse and human, and the second is a bet-
ter choice for a subset of plant genomes.

MEME-ChIP, followed by RSAT peak-motifs, provides most
options for motifs per se (width, predicted sites, significance),
while W-ChIPMotifs offers the least. RSAT peak-motifs and
MEME-ChIP also offer a multitude of reference databases and
the ability to use a custom motif compendium, while other tools
are either limited to a few (W-ChIPMotifs, GimmeMotifs,
CompleteMOTIFs) or do not offer motif comparison at all
(Promzea, MotifLab).

Higher order background models may improve the predic-
tion ability of algorithms. Except Promzea, MotifLab and
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W-ChIPMotifs, all other tools offer the possibility to use a cus-
tom higher order random model.

Enrichment analysis complements de novo prediction and
may help locating additional secondary motifs. MEME-ChIP is
the only ensemble method that can perform motif discovery
and enrichment analysis altogether. Nonetheless, a differential
analysis toward a control set can only be performed in RSAT
peak-motifs, CompleteMOTIFs and GimmeMotifs.

Parallelization and acceleration technologies can reduce
the running times of motif finding algorithms [79].
CompleteMOTIFs, GimmeMotifs and MEME-ChIP implement dif-
ferent parallel programming models to speed up the computa-
tion. CompleteMOTIFs is the only ensemble tool that uses an
acceleration technology.

Exposing the functionality through web-services is valuable
for programmatic access; however, web portals are better suited
for users with less computer expertise. Except GimmeMotifs
and MotifLab, all other tools are web applications, out of which
only RSAT and MEME-ChIP are available as web-services. The
majority of the platforms can be installed on Unix-like environ-
ments. As seen in Table 2, not all of them provide the source
code. The availability of sources allows verifying the code and
adapting it to particular needs.

De novo motif discovery algorithms of an ensemble may yield
discordant results. Depending on each ensemble’s approach
[48], discrepant results are not always considered false discov-
eries. If the ensemble re-ranks all motifs found by individual
methods using a scoring function (Promzea, W-ChIPMotifs,
MEME-ChIP, etc.), then, depending on their final rank, even the
discrepant results may be accepted as solutions (e.g. as in the
analysis of the SCL ChIP-Seq data set in [28]). However, if the en-
semble relies on the consensus of several motif finders (e.g. the
built-in ensembles from MotifLab), then the discordant patterns
are considered less likely to be real motifs.

Because ensembles have various strengths, but also weak-
nesses, it is recommended to perform parallel analyses with
several ensemble tools. The results of most ensembles are pro-
vided in various text formats that can be further processed or
analyzed (TRANSFAC motif format, Weeder format, MEME min-
imal output format, etc.). To summarize all different outputs
from multiple ensemble methods, we recommend using a tool
like STAMP (also used to compare results from separate meth-
ods in [91]), which accepts formats and mixtures of formats
from different methods [35]. If the output is not accepted by
STAMP, users can convert it with utilities such as ‘convert-
matrix’ from the RSAT suite or write their own conversion
scripts. However, even if there is a strong ‘algorithmic’ consen-
sus on some motifs, it is still required to inspect the results
visually to exclude poor quality motifs.

We conclude that any novel and better ensemble should pro-
cess large input sequences and be suited for any genome. It
should mix profile with word-based methods and allow motif
comparison in a multitude of known databases and also in
user-provided compendia. The tool should have options to use
a higher custom background model and choose motif param-
eters like width, predicted sites and several significance meas-
ures. Other important features to be considered are differential
and enrichment analysis. To shorten the running time, it should
use both parallelization and acceleration technologies (e.g.
mCUDA-MEME [92], that includes MPI, CUDA and OpenMP). It
should be available online, directly in the browser and through
web-services, but it should also offer the possibility to be in-
stalled on a local machine, on any operating system, and should
adhere to an open-source policy. Last but not least, the

graphical interface should be user friendly and should help the
user in exploring and interpreting the results.

Key Points

• Compared with individual algorithms, ensemble
methods for de novo motif finding may reduce false
discoveries.

• Modern ensemble tools that handle ChIP-Seq data in-
clude algorithms with complementary strengths and
aim to provide a user-friendly interface.

• It is recommended to use at least two ensembles for
motif prediction on the same data set because existing
tools have limitations.

• By exposing their strengths and weaknesses, this art-
icle offers a guide on choosing the right ensembles de-
pending on particular needs.

• We advocate a set of features for a better ensemble
tool.
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