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Abstract 

Epilepsy is a serious chronic neurological disorder, can be detected by analyzing the brain signals produced by brain 
neurons. Neurons are connected to each other in a complex way to communicate with human organs and generate 
signals. The monitoring of these brain signals is commonly done using Electroencephalogram (EEG) and Electrocor-
ticography (ECoG) media. These signals are complex, noisy, non-linear, non-stationary and produce a high volume of 
data. Hence, the detection of seizures and discovery of the brain-related knowledge is a challenging task. Machine 
learning classifiers are able to classify EEG data and detect seizures along with revealing relevant sensible patterns 
without compromising performance. As such, various researchers have developed number of approaches to seizure 
detection using machine learning classifiers and statistical features. The main challenges are selecting appropriate 
classifiers and features. The aim of this paper is to present an overview of the wide varieties of these techniques over 
the last few years based on the taxonomy of statistical features and machine learning classifiers—‘black-box’ and 
‘non-black-box’. The presented state-of-the-art methods and ideas will give a detailed understanding about seizure 
detection and classification, and research directions in the future.
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1 Introduction
�e word epilepsy originates from the Latin and Greek 

word ‘epilepsia’ which means ‘seizure’ or ‘to seize upon’. 

It is a serious neurological disorder with unique charac-

teristics, tending of recurrent seizures [1]. �e context of 

epilepsy, found in the Babylonian text on medicine, was 

written over 3000 years ago [2, 3]. �is disease is not lim-

ited to human beings, but extends to cover all species of 

mammals such as dogs, cats and rats. However, the word 

epilepsy does not give any types of clues about the cause 

or severity of the seizures; it is unremarkable and uni-

formly distributed around the world [1, 4].

Several theories about the cause are already available. 

�e main cause is electrical activity disturbance inside 

a brain [1, 5, 6], which could be originated by several 

reasons [7] such as malformations, shortage of oxygen 

during childbirth, and low sugar level in blood [8, 9]. 

Globally, epilepsy affects approximately 50 million peo-

ple, with 100 million being affected at least once in their 

lifetime [5, 10]. Overall, it accounts for 1% of the world’s 

burden of diseases, and the prevalence rate is reported 

at 0.5–1% [4, 11]. �e main symptom of epilepsy is to 

experience more than one seizure by a patient. It causes 

a sudden breakdown or unusual activity in the brain that 

impulses an involuntary alteration in a patient’s behav-

iour, sensation, and loss of momentary consciousness. 

Typically, seizures last from seconds to a few minute(s), 

and can happen at any time without any aura. �is leads 

to serious injuries including fractures, burns, and some-

times death [12].
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1.1  Seizure type

Based on the symptoms, seizures are categorized by 

neuro-experts into two main categories—partial and 

generalized [7, 13]—as shown in Fig.  1. Partial seizure, 

also called ‘focal seizure’, causes only a section of the cer-

ebral hemisphere to be affected. �ere are two types of 

Partial seizure: simple-partial and complex-partial. In the 

simple-partial, a patient does not lose consciousness but 

cannot communicate properly. In the complex-partial, a 

person gets confused about the surroundings and starts 

behaving abnormally like chewing and mumbling; this is 

known as ‘focal impaired awareness seizure’. On the con-

trary, in the generalized seizures, all regions of the brain 

suffer and entire brain networks get affected quickly 

[14]. Generalized seizures are of many types, but they 

are broadly divided into two categories: convulsive and 

non-convulsive.

1.2  Main contributions of the paper

In brief, the contributions of this paper are as follows: 

1. We have done the review according to five main 

dimensions. First, researchers who adopted the 

EEG, ECoG or both for seizure detection; second, 

significant features; third, machine learning classifi-

ers; fourth, the performance of the classifier during 

a seizure, and last, knowledge discovery (e.g., seizure 

localization).

2. �rough study, it has been explored that an ensemble 

of decision trees (i.e., decision forest–random forest) 

classifier outperforms other classifiers (ANN, KNN, 

SVM, single Decision Tree).

3. We also suggest, how decision forest algorithms 

could be more effective for other knowledge discov-

ery tasks besides seizure detection.

4. �is study will help the researchers with their data 

science backgrounds to identify which statistical and 

machine learning classifiers are more relevant for 

further improvement to the existing methods for sei-

zure detection.

5. �e study will also help the readers for understand-

ing about the publicly available epilepsy datasets.

6. In the end, we have provided our observations by the 

current review and suggestions for future research in 

this area.

�e structure of the paper is organized as follows. “Role 

of data scientists in epileptic seizure detection” sec-

tion gives the overview of machine learning experts 

in EEG datasets. �e preliminaries requirements are 

provided in “A framework for seizure detection” sec-

tion; it presents a general model of seizure detection 

and explains each step in a subsequent manner. “Pub-

licly available datasets” section provides the details of 

benchmark datasets with their description. “Seizure 

detection based on statistical features and machine 

learning classifiers” section explains the review of lit-

erature work done on seizure detection using different 

machine learning classifiers, with a detailed compari-

son. “Seizure localization” section reviews the work 

done in identifying the affected lobes of the brain using 

machine learning classifiers. In “Problems identified in 

existing literature” section, we have explored the issues 

in the previous work and highlighted the gap. Over-

all, “observation about capable classifiers and statisti-

cal features” section reports our observations from the 

Fig. 1 Types of seizure. Showing types of seizure and its sub-types
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review about a suitable classifier and feature. “Research 

directions in seizure detection” section emphasizes 

the future directions in this research area, followed by 

“Conclusion” section on the summary of the paper.

2  Role of data scientists in epileptic seizure 
detection

Applications of machine learning are significantly seen 

on health and biological data sets for better outcomes 

[15, 16].  Researchers/scientists on different areas, spe-

cifically, data mining and machine learning, are actively 

involved in proposing solutions for better seizure detec-

tion. Machine learning has been significantly applied to 

discover sensible and meaningful patterns from different 

domain datasets [17, 18]. It plays a significant and poten-

tial role in solving the problems of various disciplines like 

healthcare [17, 19–25]. Applications of machine learn-

ing can also be seen on brain datasets for seizure detec-

tion, epilepsy lateralization, differentiating seizure sates, 

and localization [26–29]. �is has been done by various 

machine learning classifiers such as ANN, SVM, decision 

tree, decision forest, and random forest [26, 28].

Certainly, in the past, numerous reviews have been car-

ried out on seizure detection along with applied features, 

classifiers, and claimed accuracy [27, 30–33] without 

focusing on the challenges faced by the data scientists 

whilst doing research on datasets of neurological disor-

ders. �erefore, this article provides a detailed study of 

machine learning applications on epileptic seizure detec-

tion and other related knowledge discovery tasks. In this 

review, the collected articles are from well-known jour-

nals of their relevant field. �ese references are either 

indexed by SCOPUS or Web of Science (WOS). Besides, 

we also considered some good ranked conference papers. 

Extensive literature is available covering the deep analy-

sis of different features and classifiers applied on EEG 

datasets for seizure detection [31, 34, 35]. Both, feature 

extraction and applying classification techniques are 

challenging tasks. Previous literature reveals that for 

the past few years, interest has been increased in the 

application of machine learning classifiers for extract-

ing meaningful patterns from EEG signals, which helps 

for detecting seizures, its location in the brain, and other 

impressive related knowledge discoveries [28, 36, 37]. 

�ree decades ago, Jean Gotman [6, 38–40], analyzed 

and proposed the model for effective usage of EEG sig-

nals by applying different computational and statistical 

techniques for automatic seizure detection. Furthermore, 

the research has been carried out by different signal pro-

cessing methods and data science methods to provide 

better outcomes [27, 34, 41–47].

3  A framework for seizure detection
In this section, we present a pictorial framework of the 

model used for seizure detection from an EEG/ECoG 

seizure dataset, illustrated in Fig.  2. �e process com-

prises four steps: Data Collection, Data Preparation, 

Applying Machine Learning Classifiers and Performance 

Evaluation.

3.1  Data collection

�e initial requirement is to collect the dataset of brain 

signals. For this, different monitoring tools are used. 

Typically, the mostly used devices are EEG and ECoG, 

because their channels or electrodes are implanted by 

glue on the surface of the scalp as per 10–20 International 

Fig. 2 Basic model of epileptic seizure detection. This explains the basic steps to collect the dataset by EEG medium, display of raw EEG signals, 
transform EEG signals to two-dimensional table, feature selection, prepare the dataset with seizure (S) and non-seizure (NS), apply machine learning 
classifier(s) and seizure detection, or other related tasks
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system [48] at different lobes. Each of them has a wire 

connection to the EEG device, providing timely informa-

tion about the variations in voltage, along with temporal 

and spatial information [49]. As highlighted in Fig. 2, the 

EEG channels are placed on the subject’s scalp, and the 

electrical signals are read by the EEG monitoring tool 

and it displays these raw signals over the screen. Fur-

ther, these raw signals have been carefully monitored by 

the analyst and classified into ‘seizure’ and ‘non-seizure’ 

states.

3.2  Data transformation

After data collection, the next crucial step is to transform 

the signal data into a 2-D Table format. �e reason for 

this is to make it easier for analysis and provide neces-

sary knowledge like seizure detection. �is datum is raw 

because it has not been processed yet. �erefore, it will 

not be suitable to give relevant information. To do the 

processing, different feature selection modalities have 

been applied. �is step also presents the dataset as super-

vised, which means that it provides the class attribute 

with possible class-values.

3.3  Dataset preparation

For data transformation, data processing is a decisive step 

to extract meaningful information from the collected raw 

dataset. As such, different feature extraction techniques 

have been used; as shown in Table 1. �ese methods are 

generally applied to the extracted EEG signal dataset [31, 

34]. �e raw dataset becomes rich in terms of different 

statistical measure values.

After feature extraction processing, the dataset 

becomes more informative that it ultimately helps the 

classifier for retrieving better knowledge.

3.4  Applying machine learning classi�ers 

and performance evaluation

To achieve a high accuracy of seizure detection rate and 

explore relevant knowledge from the EEG processed 

dataset, different supervised and unsupervised machine 

learning have been used.

3.4.1  Classi�cation

In classification, a dataset D has a set of ‘non-class attrib-

utes’, and a ‘class attribute’. �ey are the principal com-

ponents and their pertinent knowledge is very important, 

as both have a strong association for potential classifica-

tion. �e target attribute is defined as the ‘class attrib-

ute’ C, and it comprises more than one class values, 

e.g., seizure and non-seizure. On the contrary, attributes 

A = {A1,A2.A3 . . .An} are known as ‘non-class attributes’ 

or predictors [50, 51]. �e following classifiers have been 

popularly used in seizure detection. Common classifiers 

such as SVM [52], decision tree [53] and decision forest 

[54] are applied to the processed EEG dataset for seizure 

detection.

3.4.2  Performance evaluation

�e accuracy of the obtained results is used to evaluate 

different methods. �e most popular training approach 

is tenfold cross-validation [55], where each fold, i.e., one 

horizontal segment of the dataset is considered to be the 

testing dataset and the remaining nine segments are used 

as the training dataset [56, 57].

Except for the accuracy, the performance of the classifi-

ers is commonly measured by the following metrics such 

as precision, recall, and f-measure [58]. �ese are based 

on four possible classification outcomes—True-Positive 

(TP), True-Negative (TN), False-Positive (FP), and False-

Negative (FN) as presented in Table 2.

Precision is the ratio of true-positives to the total 

number of cases that are detected as positive (TP+FP). 

Table 1 Feature extraction methods and features used on EEG signal dataset

Feature extraction methods Relevant features

Time-domain features Mean, variance, mode, median, skewness, kurtosis, max, min, zero crossing, line length, energy, power, 
Shannon entropy, sample entropy, approximate, entropy, fuzzy entropy, hurst exponent, standard devia-
tion

Frequency-domain features Spectral power, spectral entropy, energy, peak frequency, median frequency

Time–frequency-domain features Line length, min, max, Shannon entropy, approximate entropy, standard deviation, energy, median, root 
mean square

Discrete Wavelet Transformation (DWT) Bounded variation, coefficients, energy, entropy, relative bounded, variation, relative power, relative scale 
energy, variance, standard deviation

Continuous Wavelet Transformation (CWT) Energy’s standard deviation, energy, coefficient z-score, entropy,

Fourier Transformation (FT) Median frequency, power, peak frequency, spectral entropy power, spectral edge frequency, total spectral 
power
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It is the percentage of selected cases that are correct, as 

shown in Eq. 1. High precision means the low false-pos-

itive rate.

Recall is the ratio of true-positive cases to the cases that 

are actually positive. Equation 2 shows the percentage of 

corrected cases that are selected.

Despite getting the high Recall results of the classifier, 

it does not indicate that the classifier performs well in 

terms of precision. As a result, it is mandatory to calcu-

late the weighted harmonic mean of Precision and Recall; 

this measure is known as F-measure score, shown in 

Eq. 3. �e false-positives and the false-negatives are taken 

into account. Generally, it is more useful than accuracy, 

especially when the dataset is imbalanced.

4  Publicly available datasets
For data scientists and researchers, a dataset used is 

important for evaluating the performance of their pro-

posed models. Similarly, in epileptic seizure detection, 

we need to capture the brain signals. EEG recording is 

the most used method for monitoring brain activity. 

�ese recordings play a vital role in machine learning 

classifiers to explore the novel methods for seizure detec-

tion in different ways such as onset seizure detection, 

quick seizure detection, patient seizure detection, and 

seizure localization. �e significance of publicly available 

datasets is that they provide a benchmark to analyze and 

compare the results to others. In the following section, 

we will describe the popular datasets that are widely used 

on epilepsy.

(1)Precision =
TP

TP + FP
× 100%

(2)Recall =
TP

TP + FN
× 100%

(3)F-measure = 2 ×
(Precision · Recall)

Precision + Recall

4.1  Children Hospital Boston, Massachusetts Institute 

of Technology—EEG dataset

�is dataset is publicly available on a physionet server 

and prepared at Children Hospital Boston, Massachu-

setts Institute of Technology (CHB-MIT) [59, 60]. It can 

be collected easily via Cygwin tool which interacts with 

the physionet server. It contains the number of seizure 

and non-seizure EEG recordings for each patient of the 

CHB [61]. �e dataset comprises 23 patients; 5 males, 

aged 3–22 years, and 17 females aged 1.5–19. Each 

patient contains multiple seizure and non-seizure record-

ing files in European data format (.edf ), representing the 

spikes with seizure start and end time, which is easily 

visible at a browser called an ‘EDFbrowser’. �e primary 

datasets are in the 1-D format, containing EEG signals 

that are obtained through the different types of channels 

that were placed on the surface of the brain as per 10-20 

International System. All these signals of the dataset were 

sampled at the frequency of 256Hz.

4.2  ECoG Dataset, Epilepsy Centre, University of California

�is is a publicly available dataset of electrocorticogram 

(ECoG) signals from an epileptic patient, which was col-

lected from the Epilepsy Center, University of California, 

San Francisco (UCSF) [62]. It was originally collected 

by implanting 76 electrodes on the scalp in both inva-

sive (12-electrodes) and non-invasive manner (64-elec-

trodes). It comprises 16 files altogether. Out of these, 

eight files ( F1, F2, · · · F8 ) are classified as ‘pre-ictal’ 

meaning the stage before the seizure. �e rest of the files 

( F9, F10, F11, · · · F16 ) represent the ‘ictal’ stage data. 

�e collected data are sampled at the frequency of 400 

Hz (i.e., 400 cycles/s) and the total duration is 10 s. As a 

result, there are (400 cycles/s × 10 s) 4000 cycles in each 

file [63].

4.3  The Freiburg—EEG dataset

�is dataset was collected from the invasive EEG record-

ings of 21 patients (8 males aged 13–47 years, 13 females 

aged 10–50 years) suffering from medically intractable 

focal epilepsy. It was recorded during an invasive pre-

surgical epilepsy monitoring at the Epilepsy Centre of 

Table 2 Classi�cation outcomes

This table describes each parameter metric considering seizure and non-seizure case

Acronym Detection type Real-world scenario

TP True-positive If a person suffers to ‘seizure’ and also correctly detected as a ‘seizure’

TN True-negative The person is actually normal and the classifier also detected as a ‘non-seizure’

FP False-positive Incorrect detection, when the classifier detects the normal patient as a ‘seizure’ 
case

FN False-negative Incorrect detection, when the classifier detects the person with ‘seizure(s)’ as a 
normal person. This is a severe problem in health informatics research
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the University Hospital of Freiburg, Germany [64]. Out 

of 21 patients, 13 patients had 24 h of recordings, and 8 

patients had less than 24 h. �ese recordings are inter-

ictal, and together they provide 88 seizures.

4.4  Bonn University—EEG dataset

�e dataset comprises five subsets, where each one 

denoted as (A–E) contains 100 single-channels record-

ing, and each of them has a 23.6 s duration, captured by 

the international 10–20 electrode placement scheme. 

All the signals are recorded with the same 128-channel 

amplifier system channel [65].

4.5  BERN-BARCELONA—EEG dataset

�is dataset comprised EEG recordings derived from five 

pharmacoresistant temporal lobe epilepsy patients with 

3750 focal and 3750 non-focal bivariate EEG files. �ree 

patients were seizure-free, with two patients only having 

auras but no other seizures following surgery. �e multi-

channel EEG signals were recorded with an intracranial 

strip and depth electrodes. �e 10–20 positioning was 

used for the electrodes’ implantation. EEG signals were 

either sampled at 512 or 1024 Hz, depending on whether 

they were recorded with more or less than 64 channels. 

According to the intracranial EEG recordings, they were 

able to localize the brain areas where seizures started for 

all five patients [66]. �is dataset is good for the seizure 

localization purpose.

5  Seizure detection based on statistical features 
and machine learning classi�ers

�is section explains the comprehensive detail of work 

on seizure detection using statistical features, classifi-

ers—‘black-box’ and ‘non-black-box’. �ey are illustrated 

in Table  3. In brief, the ‘black-box’ classifiers are those 

which provide the accuracy without mentioning the rea-

sons behind the results such as ANN and SVM [67]. �ey 

are unable to explain their classification steps. Whereas, 

‘non-black-box’ classifiers such as decision forest and 

random forest can able to explain each step of the pro-

cessing, which is human-understandable. As a result, it 

helps in human-interpretable knowledge with high accu-

racy [68].

5.1  Seizure detection based on statistical features

If we apply machine learning classifier(s) directly to raw 

EEG/ECoG datasets, it may not produce enough sensible 

patterns. �erefore, selecting significant and capable sta-

tistical features from EEG and ECoG raw datasets is one 

of the challenges and a crucial task. �e nature of EEG 

and ECoG signals is very complex, non-stationary and 

time-dependent [105–107]. As such, we can apply the 

machine learning classifier(s) to the processed datasets, 

which will ultimately assist to solve various neurological 

problems; for example, identifying seizure’s stages, accu-

rate seizure detection, fast detection, etc. In Table 3, we 

summarize a review of several studies.

�e significant statistical features were extracted by 

different types of transformation techniques; discrete 

wavelet transformations (DWT), continuous wavelet 

transformation (CWT), Fourier transformation (FT), 

discrete cosine transformation (DCT), singular value 

decomposition (SVD), intrinsic mode function (IMF), 

and time–frequency domain from EEG datasets [34, 

71, 79, 108]. Logesparan et  al. [34] used different types 

of feature extraction methods for seizure detection, but 

they reported that two features—‘line length’ and ‘relative 

power’—are the good performers for seizure detection. 

Guerrero-Mosquera [109] applied three time-domain 

features—line length, frequency, and energy on the raw 

EEG dataset. �ese features claim to be suitable for sei-

zure detection and other brain-related applications such 

as computer interface (BCI). �e claimed performance 

was evaluated using the following metrics such as sen-

sitivity, specificity, F-score, receiver operating character-

istics (ROC) curve, and percentile bootstrap measures. 

Duo Chen [84] used DWT with the SVM classifier on 

two benchmark datasets—CHB-MIT and Bonn Univer-

sity, achieved seizure detection accuracies of 92.30% and 

99.33%, respectively. Ramy Hussein et al. [100] proposed 

a new featured L1-penalized robust regression (L1PRR) 

for seizure detection, the issue with their approach is 

computational complexity. Zavid and Paul [99] focused 

on classifying the ‘ictal’ and ‘inter-ictal’ states, where they 

used four features DCT, DCT-DWT, SVD, and IMF; the 

obtained signals are further classified by LS-SVM due to 

less computational cost.

Several researchers have contributed to seizure detec-

tion using a single feature [108, 110]. �e feature ‘line 

length’ [108, 110] was applied to an EEG dataset; approx-

imately 4.1 s of mean detection latency is recorded at a 

false alarm rate of 0.051 Fp/h. Further, Guo et al. [69] also 

used ‘line length’ but with the ANN for classifying the 

records obtained by EEG signals. �eir automated seizure 

detection accuracy is 99.6%. A system was proposed by 

Koolen et al. [70] to detect seizures from EEG recordings. 

�is detection system uses a single feature—‘line length’. 

�e performance of this system shows 84.27% accuracy, 

84.00% sensitivity and 85.70% specificity, which are com-

paratively lower than the results of Guo et al. [69].

After 3 years of study on several of statistical features 

[34], Logesparan et al. [71] proposed the ‘line length’ fea-

ture for normalization and discrimination of class values 

from EEG datasets. It is noted that ‘line length’ could be 

taken as the strongest feature and provides considerable 
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Table 3 Overview of  existing work on  seizure detection using—machine learning classi�ers, features, performance 

score, performance metrics, datasets, and Authors

Classi�er(s) Feature(s) Performance (%) Performance metrics Dataset Authors

SVM Vector 96 Sensitivity (Sen) CHB-MIT Shoeb and Guttag [41]

Random forest Time and frequency 93.8 Senstivity EPILEPSIAE Donos et al. [44]

ANN Line length 99.6 Classification accuracy 
(Class Acc)

BONN Guo et al. [69]

Burst detection algo Line length 84.27, 84,85.7 Acc, Sen, Specificity 
(Spec)

NICU, Belgium Koolen et al. [70]

Normalization Line length 52 ROC CHB-MIT Logesparan et al. [71]

ELM and BPNN SE 95.6 Class Accuracy BONN Song and Lio [72]

SVM and ELM AE and SE 95.58 Class Accuracy BCI Lab, Colarodo Zhang et al. [73]

SVM DWT 94.8 Avg Accuracy CHB-MIT Ahmad et al. [74]

GMM Spectral, hybrid, 
temporal

87.58 Avg Accuracy CHB-MIT Gill et al. [75]

Random forest PCA, STF, Moving Max 97.12, 99.29, 0.77/h Sen, Spec, FPR CHB-MIT Orellana and Cerqueira 
[76]

Random forest and 
k-NN

Spectral power 80.87, 47.45, 2.5/h, 
56.23

Sen, Prec, FPR, F-meas CHB-MIT Birjandtalab et al. [77]

Boosting Stockwell 94.26, 96.34 Sen, Spec Freiburg Yan et al. [78]

SVM, MLP, KNN, Naïve 
bayes

Energy 98.75 Class Acc EPILEPSIAE Amin et al. [79]

Random forest Entropy and DWT 98.45 Class Acc BONN Mursalin et al. [80]

SVM Time–Frequency 90.62, 99.32 Sen, Spec CHB-MIT Zabihi et al. [81]

Random forest Time-domain 96.94 ROC curve Kaggle Truong et al. [82]

SVM, LDA, QDA, LC,PC, 
DT, KNN, UDC, 
PARZEN

Time–frequency 84, 85 Sen, Spec CHB-MIT Fergus et al. [83]

SVM DWT 86.83 Confusion Matrix CHB-MIT Chen et al. [84]

SVM and neural 
network

DWT and CWT 99.1 Overall Acc BONN Satapathy et al. [85]

ELM Time–frequency 97.73, 0.37/h Sen, false alarm rate Freiburg Yuan et al. [86]

SVM DWT 99.38 Class Acc BONN Subasi et al. [87]

LS-SVM FFT and DWT 100 Class Acc BONN Al Ghayab et al. [88]

SVM and Naïve bayes Entropy, RMS, variance, 
energy

96.55, 95.63, 95.7 Sen, Spec, Acc CHB-MIT Selvakumari et al. [89]

LS-SVM 8 types of Entropies 100, 99.4, 99.5 Sen, Spec, Acc BONN Chen S et al. [90]

ANN Spectral power 86 F-meas CHB-MIT Birjandtalab et al. [91]

KNN and GHE - 100 Class Acc BONN Lahmiri and shumel [92]

Random forest DWT 99.74, 0.21/h Sen, FPR BONN and Freiburg Tzimourta et al. [93]

Random forest STFT, mean, energy and 
std dev

96.7 Class Acc BONN Wang et al. [94]

Random forest, SVM, 
KNN, and Adaboost

28 statistical and time–
frequency features

97.6, 94.4, 96.1, 92.9, 
98.8, 0.96

Sen, Spec, Acc, PPR, 
NPR, ROC

Bern-Barcelona Raghu and Sriraam [95]

ANN,KNN,SVM, and 
Random forest

Mean, std dev, power, 
skewness, kurtosis, 
absolute mean

100 Overall Accuracy Freiburg and CHB-MIT Alickovic et al. [96]

SVM Energy 99.5 Class Acc BONN and Barcelona Fasil and Rajesh [97]

SVM and Random 
forest

10-time and frequency 0.98 ROC(AUC) EPILEPSIAE Manzouri et al. [98]

LS-SVM DCT, SVD, IMF, DCT-
DWT,

91.36 Acc, Sen, Spec Freiburg Parvez and Paul [99]

SysFor and Forest CERN 9 statistical features 100 Class Acc Epilepsy Centre UCSF Siddiqui et al. [63]

Random forest L1-penalized robust 
regression (L1PRR)

100 Class Acc BONN Hussein et al. [100]
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output. Based on previous studies, the ‘line length’ can 

be taken with other features, and the result would be 

more promising, specifically in machine learning. �is is 

because the dataset dimension would also increase with 

meaningful statistical information in the attributes.

Some other studies on seizure detection based on a sin-

gle feature, i.e., entropy and its sub-types such as approx-

imate entropy (AE) and sample entropy (SE), have also 

been done [45, 72, 73, 111]. �e entropy feature helps 

to find the random behaviour of EEG signals and takes 

depth benefits in measuring the impurity of the signals 

[112, 113]. �e entropy feature has been used widely 

where data are in the form of signals such as ECG, [114], 

EEG, and ECoG [36]. �is helps in further steps of the 

detection model.

Acharya et  al. [111] used four different types of 

entropy-based features: sample entropy, approximate 

entropy, phase entropy (S1), and phase entropy (S2) 

of the EEG datasets. �e processed dataset from these 

entropy features was used for seizure detection. In 

another study, Chen et al. [90] used eight different kinds 

of entropy feature—approximate, sample, spectral, fuzzy, 

permutation, Shannon, conditional and correction condi-

tional on a raw EEG dataset; further, the processed data 

were classified into three class values: ‘ictal’, ‘inter-ictal’ 

and ‘normal stage’, and their accuracy is 99.50%. A tool 

was proposed by Selvakumari et  al. [89] using four fea-

tures—entropy, root mean square (RMS), variance, and 

energy. Based on these features, the detection was done 

using SVM and naïve Bayesian classifiers with a reported 

accuracy of 95.63%. �e tool is also able to find the sei-

zure region in the brain; however, they did not mention 

the exact percentage of seizure location. Song and Li [72] 

built classification models by two classifiers—Extreme 

Learner Machine (ELM) and the back-propagation neu-

ral network (BPNN). Overall, their findings show 95.6% 

of classification accuracy with less execution time. Yong 

Zhang et  al. [73] applied two entropy features—AE and 

SE on two different classifiers—ELM and SVM for pro-

cessing EEG dataset. �e SE features with ELM provide 

good classification accuracy compared to the AE feature 

whilst detecting the seizure.

�e energy feature has been significantly used in sei-

zure detection [115]. It plays a vital role particularly when 

the seizure is detected by the epoch- or windows-based 

method. �is means that the EEG signals are divided into 

various segments [79, 94]. An exponential energy feature 

has been introduced by Fasil and Rajesh [97], which helps 

in identifying the irregularities in amplitude EEG signals.

Observations �is section has provided an overview of 

the contributions of statistical features to seizure detec-

tion and their importance. Some researchers detect sei-

zures using multiple sets of features, whilst others select 

a single feature such as ‘line length’. We recommend the 

‘line length’ feature to be in the list of the set of suit-

able features for seizure detection because it is helpful in 

measuring the EEG signals complexity. It plays a sensi-

tive role in the changes at the frequency and amplitude 

of signals. As a result, it helps to discriminate against the 

‘seizure’ and ‘non-seizure’ cases. However, from the data 

science point of view, it is very important to see the vari-

ous perspectives of each brain signals by observing other 

statistical features. Furthermore, we also suggest not to 

use the irrelevant feature(s) as they will unnecessarily 

increase the dataset size which results in an increase in 

computational time and gives insensible patterns too. As 

a result, it becomes a hassle to machine learning classi-

fiers and users rather than providing the benefit. Some 

researchers [95, 98, 101] used a large number of features, 

which increases the attribute size, and results in more 

computational time and less accuracy. So, if we take the 

fewer features as previous researchers have done [71, 73, 

79] this will give the low-dimensional dataset, which will 

not be fruitful for the knowledge discovery process. �e 

next section illustrates the seizure detection by ‘black-

box’ classifiers. As far as the classification purpose is con-

cerned, it would be better to take more relevant statistical 

features, which can be integrated into knowledge discov-

ery and a good performance rate.

5.2  Seizure detection based on black-box classi�ers

�e classifiers such as SVM, ANN, and KNN are consid-

ered as prominent ones due to their remarkable perfor-

mances in different domains [67, 116]. Each technique 

Table 3 (continued)

Classi�er(s) Feature(s) Performance (%) Performance metrics Dataset Authors

SVM, NB, KNN, random 
forest, logistic model 
Trees (LMT)

15-features 97.40, 97.40,97.50 Acc, Sen, Spec BONN Mursalin et al. [101]

Random forest IMF 98.4,98.6,96.4 Sen, Spec, Acc BONN Sharma et al. [102]

ANN Time–frequency 100 Overall Acc BONN Tzallas et al. [103]

Decision forest–Ran-
dom forest, Boosting

9 statistical features 96.67,74.36, 84.06 Pre, Rec, F-measure CHB-MIT Siddiqui et al. [104]
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has its pros and cons, and ‘black-box’ methods are not an 

exception to this [104]. Even though these classifiers con-

tribute well to brain datasets, some of the relevant works 

on seizure detection using these classifiers are reported 

here.

�e study of Satapathy et  al. [85] was based on two 

‘black-box’ approaches—SVM and Neural networks 

using different kernel methods for seizure detection 

against a large EEG dataset. �e performance of each 

classifier is measured independently by the majority vot-

ing system, and it was found that SVM was more capable 

than other neural networks. Subasi et  al. [87] proposed 

the solution to detect seizure using a hybrid approach of 

SVM, genetic algorithm (GA), and particle swarm opti-

mization (PSO). �e method achieved impressive accu-

racy, i.e., 99.38%, but the problem is that the classifier 

trains the dataset twice, one for SVM-GA and another for 

SVM-PSO. �is could be a time-consuming.

Shoeb and Guttag [41] performed seizure detection 

on their arranged dataset of Child Hospital Bostan, 

MIT (CHB-MIT) [60] using SVM with the vector fea-

ture and achieved the estimated accuracy of 96%. Dorai 

and Ponnambalam [42] came with an idea of the epoch, 

which means dividing the dataset into smaller time 

frames. Further, they applied an ensemble of four ‘black-

box’ approaches—LDA, KNN, CVE, and SVM on these 

epoch EEG datasets. �is approach provides the predic-

tion of onset seizures 65 s earlier. Classifying the EEG 

data into two class ‘ ‘seizure” and ‘non-seizure’, Birjand-

talab et al. [117] used a Gaussian mixture model (GMM) 

before detecting the seizure, and obtained 90% accu-

racy with 85.1% F-measure. �ey also raised the issue of 

class imbalance in their dataset. Tzallas et al. [103] used 

time–frequency-domain features with ANN for the EEG 

dataset and obtained 100% accuracy for the ‘seizure’ and 

‘non-seizure’ classification problem; with epochs’ data-

sets the accuracy is 97.7% from (A, B, C, and D) for ‘non-

seizure’ and set E for ‘seizure’ epoch classes. Amin et al. 

[79] extracted relative energy features from the DWT 

method, and four classifiers—SVM, MLP, KNN, and 

Naïve Bayes—were applied for the classification purpose, 

the result shows 98% of SVM accuracy, which outper-

forms remaining classifiers. A framework had been pro-

posed by K. Abualsaud et al. [118] using the ensemble of 

‘black-box’ classifiers for automated seizure detection on 

noisy EEG signals, and the reported classification accu-

racy is 95%. However, the ensemble approach did not 

provide good accuracy as desired because all four classi-

fiers were ‘black-box’.

In 2018, Lahmiri et  al. [92] used generalized Hurst 

exponent (GHE) and KNN, to propose a system for 

identifying the ‘seizure’ and ‘non-seizure’ classes from 

intracranial EEG recordings, detection rate, with 100% 

accuracy rate. Further, Lahmiri et al. [43] exploited GHE 

with SVM, to classify the ‘seizure’ and ‘non-seizure’, and 

also they found 100% accuracy in less time. Here, the 

good indication is that authors claim the good accuracy 

in less time for seizure detection. But, the authors did 

not clearly define how many times the seizure can be 

detected. In another study by Al Ghayab et  al. [88], the 

obtained accuracy is 100% as a result of using the con-

cept of Information gain theory, to extract and rank the 

meaningful features from EEG signal dataset. �e least 

square-support vector machine (LS-SVM) is then applied 

to classify the seizure cases. Moreover, due to the ‘black-

box’’s nature of applied classifiers, the authors could not 

explore any other related aspects in terms of Knowledge 

discovery. Zabihi et  al. [81] did patient-specific seizure 

detection using SVM classifier on the processed dataset 

with a good set of features, comprising time-domain, fre-

quency-domain, time–frequency domain, and non-linear 

feature. �e performance of their model has achieved an 

average of 93.78% sensitivity and a specificity of 99.05%. 

Here, it is noteworthy that they skip an important fea-

ture—‘line length’, from the available literature, which 

is prominently used in seizure detection. We also argue 

that CHB-MIT dataset [60] is imbalanced because, in 

an hour(s) of recording, a seizure time span is for a few 

seconds.

Observations

�e main issue with ‘black-box’ classifiers is that they 

only make prediction without providing logic rules or 

patterns. �at is why, they are not recommended for 

extracting sensible knowledge. For example, for class 

imbalance issues in EEG datasets, insufficient related lit-

erature is found, and the researchers who attempted to 

work on this problem did not provide a conceivable solu-

tion as to how to solve the class imbalance issue whilst 

detecting the seizure.

5.3  Seizure detection based on non-black-box classi�ers

‘Black-box’ classifiers are unable to express their classifi-

cation procedure for human interpretation [67, 104, 116]. 

Consequently, there are fewer chances for knowledge dis-

covery and better accuracy performance. �erefore, the 

concept of ‘non-black-box’ classifiers such as decision 

trees, and decision forests came into practice.

Chen et  al. [119] first introduced the decision tree to 

the EEG dataset for seizure detection. Kemal and Saleh 

[120] used a C5.0 decision tree [121] algorithm to explore 

the logic rules for seizure detection, with an average 

accuracy of 75%. When the same C5.0 was applied to the 

same dataset processed by Fourier transformation the 

obtained accuracy with cross-validation was, however, 

98.62%. A few related works are been available, where 

only a decision tree method is applied seizure detection 
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because of less accuracy and a limited number of patterns 

obtained from the logic rules of a decision tree [122]. As 

a result, both the knowledge discovery and accuracy suf-

fer. However, this gap can be filled by applying decision 

forest approaches instead [51, 57, 123].

�rough the literature, it is found that the decision for-

est approaches are more effective than the single decision 

tree [57, 124], because the decision tree often gives a con-

fined set of rules and overfitting issue is also raised [68]. 

�e rules are extracted from training data by a decision 

tree that generates either limited or a single set of logic 

rules (Say, wherever C2_Entropy value ≤ 101.01 then 

Class_value = seizure ) and stops growing the tree further 

records in the training dataset once the rule is accepted. 

However, if we generate a decision forest on the train-

ing data, we can achieve multiple sets of decision trees 

with the combination of sensible logic rules and a higher 

accuracy rate due to the majority voting method [57]. 

Decision forest classifiers [54, 68] are the type of ensem-

ble methods that are used frequently. �ese are also used 

in seizure detection as they provide a high accuracy rate 

which depends on the majority voting method from the 

ensemble of decision trees. Moreover, they produce more 

logic rules as multiple decision trees from the training 

data (D) [123]. �ese logic rules are humanly interpret-

able, and data scientists can easily interrelate them with 

other seizure-related information from EEG datasets.

Siddiqui and Islam [125] used Systematic Forest (SyS-

For) to detect the seizure on ECoG without epoch reduc-

tion. Further, Siddiqui et  al. [63] applied two decision 

forests—Systematic Forest (SysFor) [123] and Forest 

CERN [51] on nine statistical features for quick seizure 

detection using the concept of epoch length reduction. 

It is based on dividing the size of training dataset D into 

D1,D2 , ...Dn and testing the accuracy at every epoch of 

the dataset. �ese sub-datasets are in descending order 

in terms of time duration. If the seizure can be detected 

in a shorter epoch length without a decline in accuracy, 

then we can use the same one, which results in fast sei-

zure detection. �ey achieved 100% accuracy. �e limita-

tion of this work is that authors have taken the dataset 

of a single patient, this could be tested for more patients. 

Several researchers have taken the advantages of ran-

dom forest classifier for detecting the seizures [76, 78, 

82, 126]. Because researchers/data scientists are able to 

see the logic rules and interpret them correspondingly. 

Moreover, it also provides good accuracy [44, 76–78, 80, 

82]. Donos et al. [44] applied decision forest classifier—

random forest, on time and frequency domains’ feature, 

which was extracted from an IEEG (Intra-cranial EEG) 

dataset. It helped in selecting the intra-cranial channels 

for early seizure detection in a closed-loop circuit. �e 

results claimed that the system can detect the seizure 

with 93.8% sensitivity. Wang et  al. [94] developed the 

greedy approach of random forest, i.e., forest-grid search 

optimization (RF-GSO), with this method and they found 

96.7% accuracy. �e shortcoming of this technique is 

that the performance could decline if EEG signals are 

too noisy. Tzimourta et al. [93] applied random forest to 

monitor seizure activities on the two benchmark epilepsy 

datasets [64, 65], the reported performance is 99.74%. 

Pinto-Orellana and Fábio R. Cerqueira [76] also used the 

random forest on the processed CHB-MIT dataset by a 

Spectro-temporal feature, and 70s, and the accuracy of 

each block is 98.30%.

Truong ND et  al. [82] had carried out novel work of 

channel selection whilst detecting the seizure. �eir key 

contribution is that they also focus on channels contrib-

uting mostly to automatic seizure detection. �ey used 

the random forest to solve channel selection and sei-

zure detection, and which achieving 96.94% area under 

the curve (AUC). In another work, Mursalin et  al. [80] 

proposed a method for seizure detection by selecting 

features with an Improved Correlation-based Feature 

Selection(ICFS). Basically it is a fusion of time and fre-

quency domain. �en, a random forest classifier was 

applied for the seizure detection model. �e obtained 

average classification accuracy by this approach was 

98.75%.

Some other works have used an ensemble of ‘non-

black-box’ classifiers such as boosting, bagging and ran-

dom subspace [78, 127]. Yan et al. [78] applied a boosting 

classifier achieving 94.26% of accuracy, although the 

results were not as impressive as the ones obtained by 

[44], which used a random forest classifier. Hosseini [128] 

used Random subspace classifier along with an SVM clas-

sifier, to classify and detect seizures. Here, the benefit of 

applying a subspace on big datasets is to divide them into 

sub-datasets based on the random subspace concept, and 

then the SVM classifier was applied to each sub-dataset. 

Ensemble accuracy (EA) was calculated by the majority 

voting method, which was 95%. Apart from this study, 

the same authors of Hosseini et  al. [126] recently did 

another research using an ensemble of classifiers. First, 

they created bootstrap samples using a random subspace 

method, and then applied classifiers such as SVM, KNN, 

extended nearest neighbor (ENN), and multilayer per-

ceptron (MLP) obtaining 97% accuracy. Hussein et  al. 

[100], proposed a novel feature extraction method, i.e., 

L1-penalized robust regression (L1PRR), which uses 

three common symptoms during seizures—muscles arti-

facts, eyes movement, and white noise. Inputting these 

features help the random forest classifier to obtain 100% 

accuracy.

Observations In comparison to decision trees, decision 

forest classifiers are tremendously used on brain datasets 
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for exploring different research goals. It is difficult to 

suggest a particular classifier whilst dealing with a high-

dimensional dataset, but a random forest classifier can 

be a capable classifier. However, it also criticizes that not 

all the ‘non-black-box’ classifiers are peculiar to detect 

seizures and have also pointed out the objection on the 

drawback of using a single decision tree classifier.

5.4  Seizure detection based on black-box 

and non-black-box machine learning classi�ers

From the literature, it is found that just a single machine 

learning classifier is not sufficient. �erefore, to take 

advantage of both ‘black-box’ and ‘non-black-box’ clas-

sifiers, some researchers utilized them in their experi-

ments. �is section provides a comprehensive review of 

classifiers applied together to detect the seizure.

Acharya et  al. [111] used the ensemble of seven dif-

ferent classifiers—Fuzzy surgeon classifier (FSC), SVM, 

KNN, Probabilistic neural network, GMM, decision tree 

and Naïve Bayes for distinguishing the three states of a 

patient as ‘normal, ‘pre-ictal’ and ‘ictal’. �e overall accu-

racy is 98.1%. Fergus et al. [83] also used distinct classifi-

ers such as linear discriminant analysis (LDA), quadratic 

discriminant classifier (QDC), logistic classifier, uncorre-

lated normal density-based classifier (UDC), polynomial 

classifier, KNN, PARZEN, SVM, and decision tree on 

the processed data with seven features such as entropy, 

RMS, skewness, and variance. �ey contributed that 

the detected patient is suffering from a ‘Generalize sei-

zure’ (means affecting whole brain region) across differ-

ent patients without prior information about the seizure 

focal points. Mursalin et al. [101] proposed a method to 

reduce the data size, statistical sampling technique called 

optimum sample allocation technique, and to reduce the 

features they develop a feature selection algorithm. �e 

analysis was done on the combination of five classifiers—

SVM, KNN, NB, Logistic Model Trees (LMT) and Ran-

dom forest.

Rand and Sriram [95] used four classifiers such as 

SVM, KNN, random forest, and Adaboost on a high-

dimensional dataset prepared by 28 features. �eir result 

shows that SVM outperforms on the cubic kernel. In 

another study, Manzouri et  al. [98] used SVM and ran-

dom forest on the dataset produced by 10-time and fre-

quency features. In comparison to SVM-based detector, 

random forest classifier outperforms. Subasi et  al. [96] 

achieved 100% of accuracy using four machine learning 

classifiers such as ANN, KNN, SVM, and random for-

est on two popular datasets—Freiburg and CHB-MIT 

to classify the three different states of seizures ‘pre-ictal’, 

‘ictal’, and ‘inter-ictal’. Sharma et  al. [102] proposed an 

automated system using iterative filtering and random 

forest for classifying the EEG signals. �is work achieved 

classification accuracies of 99.5% on BONN dataset 

(A-E), for A versus E subsets, 96% for D versus E sub-

sets, and 98.4% for ABCD versus E classes of EEG signals. 

Birjandtalab et  al. [77] used two classifiers for different 

purposes; KNN is used to discriminate the ‘seizure’ and 

‘non-seizure’ classes, whereas random forest is used to 

explore the significant channels. Here, the random forest 

also helps in the dimension reduction problem. �e main 

benefit of selecting suitable channels is that it helps in 

providing relevant required information from the chosen 

channels, and reduces the computational cost of a classi-

fier too. However, the authors did not mention here the 

important information from channel selection like find-

ing the seizure location from the brain scalp. �e main 

critic in [95, 98, 101] is that because of a large number of 

features, the attribute size of dataset will increases, and 

as a result the accuracy and computation time suffer.

5.4.1  Observations

We observe that some work used an ensemble of dis-

tinguished classifiers to take the benefits separately. For 

example, influential channel selection can be indepen-

dently done using decision forest classifiers like a random 

forest. But authors used other classifiers such as SVM 

and KNN for classifying the seizure records with good 

accuracy.

6  Seizure localization
After a successful seizure detection, localization is an 

essential task for epileptic surgery [129–131]. Typi-

cally, localized seizures can be cured by surgery which 

arises either from the left or right region of the brain. 

�e seizure monitoring tools such as ECoG and EEG 

are prominently helpful to identify the seizure location. 

�e electrodes/channels are implanted in a non-invasive 

(for EEG) and an invasive manner (for ECoG). �eir 

positioning is based on the 10/20 (10–20) International 

system, which helps in identifying the seizure location 

[132]. �e concept of seizure localization means identify-

ing the region of the brain affected by a seizure. �ough 

some types of seizures such as ‘tonic-clonic’ are cured by 

anti-epileptic drugs (AED), patients with partial seizures 

in some cases might go for surgery [13]. To solve this 

problem, finding the seizure location is an essential and 

challenging task for neurologists and neurosurgeon [129, 

130]. �e surgical target is to find a point/location/focal 

area from where a seizure is originating. �e 10–20 posi-

tioning system gives some clues for identifying the loca-

tion of a seizure. Recently, computational and machine 

learning methods have been applied to identify a seizure 

location [130, 133].

Acar et al. [133] used trucker and non-linear multi-way 

Trucker kernels, and claimed that other classifiers such as 
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SVD and principal component analysis (PCA) were una-

ble to localize a seizure. Ghannad-Rezaie [134] applied 

an advanced swarm intelligence algorithm to seizure data 

for finding seizure location. �eir study produced some 

appreciable results, and explored whether the patient’s 

temporal lobe was affected by a seizure or not. �ey also 

suggested that SVM might be able to detect the seizure 

location. Moreover, they also focused on the reduction of 

ECoG electrodes. Mansouri et al. [135] proposed an algo-

rithm for Seizure localization, which was tested on 10 sec 

of EEG dataset from Karuniya University. Here, they have 

taken the small-size dataset, because recording usually 

takes several hours. If they had tested on a big dataset, it 

would have been much better. Fakhraei et al. [130] calcu-

lated the sensitivity of each region of the brain. �e confi-

dent prediction rate (CPR) was compared with the AUC of 

ROC plots obtained by six classifiers from the dataset of 79 

patients (31 males, 48 females) with 197 medical features. 

�e study found that CPR was more suitable than ROC. 

�ey also explored that 43 patients had the temporal lobe 

epilepsy (TLE) on their left sides whilst 36 patients had it 

on the right sides of their brains. Likewise, Rai et al. [136] 

proposed a method for identifying the focal points of the 

seizure by applying two entropy-based features—‘renyi 

entropy’ and ‘negentropy’ with the neural network classi-

fier. Siddiqui et al. [63] localize the seizure using two deci-

sion forest classifiers, and their results showed that the left 

hemisphere of a brain was more affected by the seizures.

Observation

It is found that compared to seizure detection, machine 

learning classifiers have not been extensively applied 

for seizure localization. But some literature exist on this 

problem. In these reported works, authors did not men-

tion the percentage of the affected region of the brain 

by a seizure, and they were not able to identify the exact 

location at the lobes such as occipital, frontal, parietal left 

and parietal right. Although, it is not our primary objec-

tive in this review paper, whilst discussing the related 

published research, we found some interesting clues for 

seizure localization.

7  Problems identi�ed in existing literature
One of the most significant and decisive steps is to select 

suitable statistical features because each channel or elec-

trode implanted on the brain provides different statisti-

cal measures. Undoubtedly, earlier researchers made 

their consistent efforts to find the best features. Whilst 

some researchers used many features [34, 79], the others 

applied a few features [31, 36, 108, 112, 137] for detect-

ing the seizure. As a data scientist, it is very important to 

see the different statistical perspectives of each brain sig-

nal by analyzing the statistical properties of the features 

such as entropy, energy, and skewness. And we must not 

focus on taking irrelevant feature(s) as such since it will 

unnecessarily increase the dataset size. Consequently, 

it will be more a burden to machine learning classifiers 

than a benefit, and if we take few features as previous 

researchers did [71, 73, 79], this will give the low-dimen-

sional dataset and it will not be beneficial for an effec-

tive knowledge discovery process. �erefore, we should 

select those potential features that can to provide logical 

results. Hence, it is advisable to select a group of features 

to avoid a burden to the machine learning classifiers and 

to get help in related knowledge discovery.

Each classifier has its own merits and demerits, 

depending on the dataset attributes and requirements 

[138]. In general, it is very difficult to point out which 

classifier was the most effective for brain datasets. To 

identify the capable classifier, several classifiers have 

been tested on EEG datasets and their performance has 

been evaluated, and the one which performs well is to 

be considered in solving seizure detection and imparting 

knowledge discovery. �e literature reveals that previ-

ous researchers had applied different approaches, most 

of which were from ‘black-box’ such as ANN, KNN and 

SVM. �e biggest shortcoming in them is that they are 

unable to provide the appropriate explanations for pat-

terns and the logic rules hidden inside the models. �at 

is why, they are not suggested for remarkable knowl-

edge discovery process. Data scientists may not explore 

the internal processing of patterns [51, 104]. However, 

from the literature, it is noted that the ‘non-black-box’ 

approach, especially, random forest, is widely used for 

seizure detection [44, 76, 77], because of its nature of 

generating bootstrap samples [124, 139] whilst building 

a decision forest. An analysis has been done to estimate 

the performance of machine learning classifiers on EEG 

datasets and has been found that ensemble non-black-

classifiers performs effectively [104]. We argue that 

the random forest is based on bootstrap samples and it 

misses some influential attributes, because it randomly 

selects the attribute and sometimes generates the same 

set of logic rules also. As a result, sometimes, it creates 

irrelevant information too. To overcome this issue, we 

also suggest some other decision forest algorithms such 

as SysFor [123] and Forest CERN [51] methods in seizure 

detection.

All these findings on seizure detection raise few inter-

esting research questions such as selecting suitable statis-

tical features and machine learning classifiers to take less 

computation time as dataset has a high volume with high 

dimension, and the most significant missing information 

from machine learning classifiers is locating the accurate 

point of seizure at the brain lobe(s).
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7.1  Class imbalance issue in seizure detection

Class imbalance is one of the serious problems [140] in 

machine learning and the majority is seen in medical 

datasets [141], particularly in EEG signals. �is is because 

the duration of EEG recording is long, time-consuming 

and seizure duration is for a few seconds, which results 

in being prone to errors [91]. As a result, the dataset 

becomes highly imbalanced. Previous researchers have 

focused on seizure detection. Over the last few years, 

researchers have been focusing on the class imbalance 

challenge whilst detecting the seizures, and attempting 

to solve it by applying different conventional approaches 

with some novelties. Javad Birjandtalab et  al. [91] used 

ANN with a weighted cost function to imbalanced EEG 

dataset, by achieving 86% F-measure. El Saadi et  al. 

[142] obtained 97.3% accuracy using the under-sampling 

method with the SVM classifier. In another work by 

Saadullah and Awais [143], they used a combination of 

SMOTE and RUSTBOST techniques for detecting sei-

zure to imbalance seizure data with 97% accuracy. How-

ever, the research done by Yuan Qi et  al. [86] was very 

close to the satisfactory result as they assigned the heavy 

weights to a minority class of the data to maintain the 

effective balance and solved the biasing issue. �e main 

critique of this work is that the authors did not men-

tioned what weights were assigned and what was their 

threshold level? Here, we argue that despite of EEG data 

are highly imbalanced as a result of their long-hour EEG 

recordings, the recordings continue until the seizure is 

detected. �e seizure(s) time spans from only seconds to 

minute(s). Although researchers [76, 86, 117, 143] made 

their efforts in addressing this issue using both ‘black-

box’ and ‘non-black-box’ classifiers, they did not propose 

any justifiable solutions, in terms of how big weights 

should be assigned to the minority (seizure) classes.

8  Overall observation about capable classi�ers 
and statistical features

It is challenging to suggest that a specific classifier 

should be capable for seizure detection. If we discuss 

classifiers, three constraints are very important whilst 

selecting a classifier—able to handle the high-dimen-

sional dataset, high accuracy of the model, and able to 

retrieve the sensible knowledge. Not all machine learn-

ing classifiers are suitable for seizure detection and 

knowledge discovery tasks, mainly because of their 

black-box nature. �is means that the logic rules/pat-

terns are not visible and understandable to data scien-

tists. In ‘non-black-box’ classifiers amongst decision 

trees [53] and decision forests [54], only decision for-

est algorithms are more capable, because the logic rules 

and knowledge discovered by a single decision tree are 

often limited and insufficient. For example, if we build 

a decision tree on a training dataset—it provides a lim-

ited or single set of logic rules and stops growing the 

tree further as all the data points in the training set 

accept that rule. On the other hand, if we build a deci-

sion forest on the same training set, we get multiple 

decision trees with more sensible logic rules. Siddiqui 

et  al. [104] have done the analysis on CHB-MIT data-

set to know which classifier performs better. For this, 

they applied two black-box (SVM and KNN) and two 

non-black-box (decision tree and ensemble of trees 

i.e., bagging, random subspace, boosting); they found 

non-black box classifier (ensemble) outperforms com-

pared to other classifiers of black-box. Even ensemble 

also performs better than a single decision tree which 

is a non-black box classifier. Siddiqui et al. [63] applied 

two decision forests—Systematic Forest (SysFor) and 

Forest CERN for quick seizure detection using the con-

cept of epoch length reduction. �ey achieved 100% of 

accuracy. Similarly, Hussein et  al. [100] also achieved 

100% accuracy using decision forest–random forest 

approach.

�e literature reveals that in the last few years, ‘non-

black-box’ classifiers, particularly decision forest 

approach, were widely used on brain datasets of EEG and 

ECoG for different research goals [76, 82, 94, 144]. �e 

reasons for using the decision forest for seizure detection 

are as follows: 

1. A decision forest overcomes some of the disadvan-

tages of a decision tree. A decision tree discovers 

only a single set of logic rules from an input dataset. 

�e logic rules that are discovered by a single deci-

sion tree may fail to correctly predict and classify the 

class values;

2. A decision forest can produce more set of logic rules/

patterns compared to a single decision tree and there 

is a high chance of good prediction/classification 

compared to a single decision tree;

3. Able to handle high-dimensional sets;

4. Due to its ensemble nature a decision forest mostly 

produces a high accuracy compared to a single tree 

and other classifiers [54];

5. Less computational time (specifically for Random 

forest);

6. Logic rules are clear and humanly interpretable such 

as analysts/domain experts can easily understand 

and suggest best opinions. For example, affected 

brain lobe by seizure, identifying suitable statistical 

features, etc.

Furthermore, many statistical features have been used for 

seizure detection. However, a comparison between them 
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is difficult because of their heterogeneous nature. Some 

researchers used a single feature such as energy and 

entropy. On the other hand, a combination of statistical 

features such as energy, kurtosis, line length, entropy, 

skewness, max, standard deviation, and min may pro-

duce promising outcomes. Most research [34, 46, 92, 100, 

109, 145] have achieved better results using these fea-

tures. �e novelty of [29, 63, 104, 125] is the selected nine 

statistical features are able to assist in seizure detection 

with high accuracy, i.e., 100%. �is also provides the clue 

about seizure localization with the help of sensible logical 

rules. Hence, the selected group of features will not be a 

burden to the machine learning classifier but it will assist 

in related knowledge discovery.

9  Research directions in seizure detection
In this research analysis, we surveyed different machine 

learning classifiers used for seizure detection. No doubt, 

the progress of the persistent attempt has been found in 

this topic but few interesting research questions are also 

raised. In this section, we identify significant challenges 

which can uplift the future research in this area. 

1. Selecting suitable statistical features and machine 

learning classifiers to take less computation time as 

the dataset has a high volume with a high dimension.

2. Accurate seizure detection on imbalanced datasets of 

long duration EEG recording datasets.

3. Quick seizure detection on long-hour EEG record-

ing.

4. Whilst selecting the machine classifier it should be 

kept in mind that the classifier does not miss any 

necessary EEG channel/electrode.

5. Knowledge discovery from machine learning classi-

fiers such as seizure localization which exactly points 

affected brain lobe(s), channel importance, and based 

on participating channels in seizure a knowledge 

could be provided to neurologist or neurosurgeon for 

suggesting epilepsy category.

10  Conclusion
With the increase of epilepsy, its accurate detection 

becomes increasingly important. A major challenge is 

to detect seizures correctly from a large volume of data. 

Due to the complexity of EEG signals in such datasets, 

machine learning classifiers are suitable for accurate sei-

zure detection. Selecting suitable classifiers and features 

are, however, crucial.

As such, this paper has comprehensively reviewed 

machine learning approaches for seizure detec-

tion. As a result, we conclude that ‘non-black-box’ 

classifiers—decision forest (ensemble of decision trees)—

is most effective. �is is because it can produce multiple 

sensible, explanatory logic rules with high accuracy of 

prediction. Further, it can help discover some relevant 

information such as seizure localization and exploring 

seizure types. On the contrary, ‘black-box’ classifiers can-

not generate logic rules, although they can achieve high 

predictive accuracy. As for selecting suitable features, we 

should select those that can provide logical results. By 

the review of the literature, the use of the features such 

as entropy, line length, energy, skewness, kurtosis, and 

standard deviation can achieve 100% accuracy in the 

classifiers. We suggest not to use the irrelevant features 

as the dimension of the data increases. �is is because 

the computation cost of a classifier will grow high, and 

it may also produce insensible patterns. If we use just 

one or two features such as line length and energy, the 

low-dimensional dataset will be generated. However, this 

dataset will not be fruitful for the knowledge discovery 

process.

�is review paper has provided new perspectives to 

data scientists who are working on epileptic seizure 

detection using EEG signals. In summary, this paper 

focuses on the review of selecting machine learning clas-

sifiers and suitable features.
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