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Abstract

Although expert systems have been in use for
many years, evaluation techniques are neither fre-
quently applied nor widely known. Our research
group has been investigating techniques for evalu-
ating expert systems since 1989, and we have de-
veloped a methodology for the systematic design
and implementation of expert systems of many dif-
ferent kinds. Our method begins with the prepa-
ration of a specification that captures the needs of
the application. During the implementation of the
expert system, we recommend verification, to de-
tect internal inconsistencies in the knowledge base,
and validation, to check that the system is behav-
ing in accordance with the specification. Verifica-
tion can be partly automated: we review our own
tool, COVER, and its application to verification
of working expert systems.

Introduction

A large number of expert systems are now being used
every day for a great variety of applications. Many of
them have been successfully deployed in practice and
enormous financial savings have been reported by their
users.

As expert systems have become more widely used,
their complexity has grown substantially. Many expert
systems derive their knowledge base from multiple hu-
man experts, while others consist of clusters of different
expert systems, each of which contains its own knowl-
edge base performing a specific task. Some expert sys-
tems have become so complex that it is not possible
to evaluate their performance without reliable and ro-
bust techniques. As a result, evaluation has become an
active area of research and a number of manual and au-
tomatic techniques have been proposed and developed
in recent years. Indeed, during the past five years, this
subject has attracted the attention of a large number
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of researchers around the world, leading to the publi-
cation of numerous papers ([Grogono et al., 1991] is a
recent survey). However, in spite of all these efforts,
techniques for evaluating expert systems are still in
their infancy when compared with those developed in
the field of software engineering.

From the technical point of view, the use of software
engineering processes such as modularization, object-
oriented design, and formal specification, has lead to
products with the desirable properties of maintainabil-
ity, reusability, verifiability and, hence, correctness and
reliability. However, direct application of such tech-
niques to expert systems is not straightforward. We
have investigated and developed some new techniques
for specifying, verifying, and validating expert systems.
In this paper, we summarize our findings and view-
points.

Specifying an Expert System

The traditional role of the specification in engineering
is to act as a contract between suppliers and clients.
The assumption that underlies this role is that a spec-
ification can state exactly what the system is supposed
to do without saying too much about how the neces-
sary tasks are to be accomplished. Thus the clients are
satisfied that they are getting what they need and the
suppliers have the greatest possible freedom for imple-
mentation.

The role of the specification of an expert system
is different because much of the ’how’ component of
an expert system is typically contained in the infer-
ence engine. The ’what’ component is contained in
the knowledge base which, to a large extent, is the
expert system. To accomodate the revised role, we be-
lieve that an expert system specification should contain
both declarative and procedural components: it should
serve as both a contract between suppliers and clients,
and as a blueprint for designers and implementors.

There is, however, a tension between these two roles.
To the extent that a specification is a contract, it
should stabilize early in the development cycle, so that
suppliers and clients agree about what is being de-
veloped. But the specification as a blueprint should
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be allowed to change as implementors gain experience
from prototype implementations. We therefore advo-
cate splitting the specification into two parts, called
the problem specification and the solution specifica-
tion, that provide a contract and a blueprint, respec-
tively. Baaed on these considerations, Figure 1 shows
our proposed structure for an expert system specifica-
tion [Batarekh et al., 1990]. A small expert system
may not require all of the components shown in this
diagram.

The Problem Specification
The problem specification must define the problem
that is to be solved and the constraints that an ac-
ceptable solution must satisfy. It should not state, ex-
plicitly or implicitly, how the solution is to be obtained.
We divide the problem specification into two compo-
nents: the problem description and the constraints.

The problem deseriptlon should usually contain
at least the terms of reference of the problem; the
objectives of the project; and the inputs and out-
puts of the proposed system.

The terms of reference in the specification must pro-
vide accurate definitions for the specialized vocabulary,
or jargon, of the problem domain as well as other terms
used in the description of the problem and its solution.
The objectives of the system include the needs of both
the client and the end-users of the expert system. Each
input of the expert system should be defined according
to its source and its content. Similarly, output should
be defined according to destination and content.

Every project is subject to constraints: the budget,
the number of people available, the available machine
capacity, and so on. In practice, it may be unrealistic
to specify an absolute level of performance which the
expert system must achieve to be accepted. Instead,
performance constraints may be divided into minimum
performance constraints, which must be met by the
system, and desired performance constraints, which
may be negotiated [Rushby, 1988]. For example, a
minimum performance constraint for a medical expert
system might stipulate that the system must never pre-
scribe an overdose of any drug; a desired performance
constraint for the same system might state that the
system should give accurate diagnoses (according to
some stated criteria for accuracy) in at least 90% of
cases. If the delivered system achieved only 89.5% ac-
curacy, it may still be accepted, but it would not be if
it violated any minimum performence constraint.

The Solution Specification

The solution specification is the blueprint for the ex-
pert system; it should contain all the information that
the design and implementation teams will need to com-
plete the final product. Unlike the problem specifica-
tion, which treats the expert system aa a ’black box’,
the solution specification treats the expert system as a
’glass box’: it makes the interior of the expert system

visible. As shown in Figure 1, we divide the solution
specification into two parts: the conceptual model and
the design model. The conceptual model explains the
proposed solution from the viewpoint of a human ex-
pert. The design model shows how the human exper-
tise can be incorporated into a computer program.

The conceptual model is obtained by acquiring
knowledge of the target domain, usually by discussions
with a human expert or by generalizing from solutions
obtained by experts in the past. It describes the knowl-
edge that the expert system will contain, not how it
will be represented. We have identified four compo-
nents, or submodels, of the conceptual model.

The problem-solving submodel contains all of
the knowledge needed to solve the problem. The dia-
log generator submodel describes the way in which
the expert system interacts with the people who use
it. The cooperation submodel describes the way in
which the expert system interacts with other hardware
and software systems. The upgrading submodel de-
scribes ways in which the system can be enhanced.

The conceptual model incorporates four kinds of
knowledge. Static knowledge consists of relevant
facts, descriptions, entities, relations, and implications
drawn from the problem domain. Primitive infer-
ence steps enable the expert system to infer new
knowledge from its static knowledge. Primitive infer-
ence steps are combined to form task procedures.
Finally, strategic knowledge selects task procedures
that appear to be appropriate for the current problem.

The design model is a plan for the implementation
of the expert system. In conventional software engi-
neering, design is a separate phase that ideally follows
specification. With expert systems, at least at the cur-
rent state of technology, we believe that specification
and design are closely interwoven and that it would be
unrealistic and undesirable to separate them.

The architecture component of the design model
describes the overall structure of the expert system in
terms of software components. The knowledge rep-
resentation component determines the ways in which
the knowledge can be used. Moreover, the knowledge
representation and the inference engine must be com-
patible with one another. The design model should
contain specifications for utilities that are needed by
the system.

Specification and Evaluation

Every expert system is eventually evaluated. The
amount of evaluation that is performed, and the im-
portance attached to it, depend on the size, complex-
ity, criticality, and other aspects of the expert system.
Since the purpose of evaluation is to check that the ex-
pert system does what it is supposed to do, we can eval-
uate an expert system only if we already know what to
expect. Thus evaluation and specification are closely
related: the specification effectively tells us what to
look for in evaluation. Evaluation has two aspects,
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Figure 1: The Structure of an Expert System Specification

verification and validation, described in the next two
sections.

Verification of Knowledge Bases
Just as English sentences must respect grammatical
principles, the inference engine and the knowledge base
of expert systems must respect certain syntactic princi-
ples. To verify the inference engine and the knowledge
base is to check that they have indeed obeyed these
principles. The inference engine is usually a conven-
tional software component, and it can be verified by
techniques described in the software engineering litera-
ture. Being non-procedural, however, knowledge bases
cannot be verified by conventional techniques. In this
section, we focus on the verification of knowledge bases,
assuming that the inference engine has already been
verified.

A knowledge base can be conceptually represented
by a set of production rules. Each rule is a logic im-
plication of the form

L1A L2 A " " A Ln ---* H

in which the L’s and the H are literais. The L’s consti-
tute the antecedent of the rule, and H, the hypothesis,
is the consequent of the rule. A knowledge base imple-
mented as frames or semantic nets, can, for verification
purposes, be converted to a set of rules in this form.
This gives the knowledge base the clear semantics of
logic, without being obscured by the details of imple-
mentation.

When formulating the rules of a knowledge base,
the system designers must specify the following three
sets in addition to the rules. The first set contains se-
mantic constraints. Each constraint is a set of literals,
{L1, L2,..., Ln}. A constraint is satisfied if and only
if not all of its literals are simultaneously true. The
second set, labdata, is the set of literals from which,
in any given situation, a user can select a subset E
to be input to the system, provided that E does not

contain a semantic constraint. Each such E is called
an environment for that situation. (We use the term
labdata as an abbreviation for data used during labora-
tory validation, as described in Section .) The last set
contains final hypotheses. For any given environment,
the output of the system is a subset of this set. The set
of final hypotheses is a subset of all the hypotheses in
the knowledge base. The labdata and the set of final
hypotheses will typically be disjoint sets.

When an environment E is input to an expert sys-
tem, we expect that some or all of the literals in E will
unify with the literals in the antecedent of some rule
R. The rule R fires, and we infer the hypothesis in the
consequent of R. This inference may cause another
rule to fire, which, in turn, can cause more rules to
fire. The inference chain (that is, the sequence of rule
firings), which is controlled by the inference engine ap-
plying logical deduction, terminates with the inferring
of one or more final hypotheses.

Knowledge bases reflect the domain expertise of one
or more human experts. This expertise may be imper-
fect, or it may be flawed by the heuristics, often fal-
lible, employed by the experts in their working. Fur-
thermore, the knowledge base designers may unwit-
tingly misrepresent the expertise. As a result, when a
knowledge base is built, it may contain anomalies. An
anomaly is not necessarily an error, but it is desirable
to check for anomalies, because they may indicate er-
rors. There are four kinds of anomaly: ambivalence,
circularity, redundancy and deficiency.

We illustrate the various kinds of anomaly using the
following simple knowledge base. We suppose that the
labdata is the set {A, B, C} and that one of the seman-
tic constraints is {D, F}.

RI: A ~ B R4: A --+ F
R2: B -~ D R~: D --* A
R3: A -~ D R6: G ~ F

A knowledge base is ambivalent if, for some environ-
ment, the set of final hypotheses inferred contains a
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semantic constraint. In the example, the environment
{A} leads to the inferences B, D, and F (by rules RI,
R3, and R4). Since (D, F} is a semantic constraint,
these rules are ambivalent. Ambivalence may arise
because the human experts hold incompatible views
or because mistakes were made in entering the rules.
Ambivalence may be acceptable if the rules contain cer-
tainty factors. Algorithms exist to compute the overall
certainty even when complementary hypotheses are in-
ferred [Shinghal, 1992].

Circularity exists in a knowledge base if, for some
environment, we loop indefinitely in firing the rules.
In the example, the rules R1, R~, and R5 produce a
loop A --* B --* D --* A --* ... with environment {A}.
Although circularity probably indicates a problem in
the knowledge base, it need not be excluded altogether
if the inference engine is smart enough to avoid firing
rules whose consequents are known to be true.

A literal or rule is redundant if its omission from the
knowledge base makes no difference to the inferences
that can be made. In the example, rule Ra is redun-
dant because its effect (inferring D from A) can 
achieved by applying rule R1 and then rule R2. Also,
rule R6 is redundant because its antecedent, G, can
never be inferred. Redundancy is often acceptable in
a knowledge base. Rule R3, for instance, improves the
efficiency of the knowledge base slightly by inferring D
in one rule-firing rather than two. If the rules contain
certainty factors, different paths to a conclusion may
yield different certainty values.

A knowledge base is deficient when, for some envi-
ronment, we infer no final hypotheses although accord-
ing to the system specifications we should have inferred
some final hypotheses. The sample knowledge base is
deficient because it can make no inferences from the
environment {C}.

Although an anomaly does not necessarily indicate
an error in the knowledge base, it is nevertheless im-
portant to detect anomalies. In many cases, the cause
of the anomaly turns out to be a simple clerical error,
such as entering the same rule twice or misspelling the
name of a literal. For this reason, checking tools do
not usually attempt to repair anomalies: their task is
simply to detect the anomalies and report them to the
system designers.

Manual verification is impractical, for all but the
smallest knowledge bases. Consequently, we need au-
tomated verification tools. A number of such tools
have been proposed recently: we have compared some
of them in [Preece et al., 1992a].

COVER is a tool developed within our group. It is
written in Prolog and C and runs on SUN workstations.
The rules of the knowledge base must be written in,
or converted to, a language based on first-order logic.
For verifying a given knowledge base, COVER needs
to be supplied with the set of semantic constraints, the
labdata, and the set of final hypotheses associated with
the knowledge base. COVER can be applied flexibly

since its user, the system designers, can choose the
level at which the knowledge base is to be checked for
anomalies.

At the first level, integrity checking, COVER checks
single rules to detect unfirable rules, dead-end rules,
and missing values. The computational complexity is
O(N), where N is the number of rules examined. At
the second level, COVER needs O(N2) time to look
for pairs of rules that introduce redundancy or am-
bivalence into the knowledge base. At the third level,
COVER traces inference chains to detect more gen-
eral cases of ambivalence, circularity, redundancy and
deficiency. The time required for this check is O(ba),
where b is the average number of literals in a rule (the
"breadth" of search) and d is the average length of
a chain (the "depth" of search). Third-level checking
is therefore slower than first- and second-level check-
ing. Accordingly, whereas we may check single rules
and rule pairs frequently during the various stages of
the developmel~t of a knowledge base, inference chains
are usually traced less frequently. The algorithms for
the three levels of COVER are given in [Preece et al.,
1992b].

Validation of Expert Systems

Conventionally, validation is defined as the process of
ensuring that a software system satisfies the require-
ments of its users. How validation is applied to ex-
pert systems depends chiefly upon the nature of the
requirements specifications for these systems. In the
past, expert system requirements were vague or merely
implicit, often stating in general terms only the tasks
that the system should perform--for example, that the
system should emulate a human expert in a certain
domain. In a case such as this, validation would in-
volve comparing the human expert to the expert sys-
tem, with the system being accepted if it were at least
as competent as the human. Setting up such a compar-
ison is not easy, however. One difficulty lies in choosing
a set of test problems upon which to measure the com-
petence of humans and machine. Ideally, we would
want to select a set of problems which is representative
of the domain in which we require the expert system to
perform, without being too large [O’Keefe et al., 1987].
Such a set is hard to create without a detailed speci-
fication of the expert system requirements. Therefore,
one of the roles assigned to our expert system problem
specification is to provide a test plan for validation.

There are at least two independent aspects to the
test plan for an expert system. It is generally agreed
in the literature on expert system validation [Gupta,
1990] that expert system must be subjected to two
types of validation: Laboratory validation measures
the performance of the system in an artificial envi-
ronment, typically with the developers supplying test
cases to the system in lieu of actual users. The expert
system output is evaluated and, if it is unacceptable,
the system is refined until it is satisfactory. Field
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validation occurs once a system is deemed accept-
able in the laboratory. A controlled field study is con-
ducted, with real users and real or synthetic problem
cases [Adelman, 1991].

While laboratory validation tends to reveal problem
with the knowledge base of the expert system, field
validation often reveals problems with the interface as-
pects of the system [Preece, 1990]. The test plan in the
expert system problem specification needs to specify
how both aspects of validation will be conducted. For
the remainder of this section, we focus on laboratory
validation.

Expert System Testing Issues
In testing expert systems, we seek to find the smallest
possible representative set of test cases. Assuming that
it will rarely be possible to test every possible case, we
want to test a sufficiently wide range of distinct cases,
while minimizing the size of the test set. Several fac-
tors make it difficult to cosntruct such a set. First, a
representative set of cases may need to be large, due to
the diversity of situations in which an expert system
must perform. A well-known technique for minimizing
this set is to look for equivalence classes within the
input domain (that is, sets of cases each member of
which will be treated similarly by the system, so that
only one case from each equivalence class need actually
be tested). Second, in many application domains, suf-
ficient documented past cases will not be available for
use in testing. In these cases, synthetic test cases must
be created. Finally, expert system test cases tend to
be complex, because the tasks that expert systems per-
form are inherently complex. Therefore, it will often
be difficult to define each case in terms of an input-
output relation: the input may be large and complex,
and the ’correct’ (or acceptable) output may be hard
to determine.

Expert Systems Testing Approach
Some of the above difficulties are common to all soft-
ware, and there are no ’magic solutions’. The approach
we recommend is a combination of functional testing
and structural testing, supported by software tools. An
initial test set is developed according to functional test-
ing criteria (described below). This set is run on the
expert system, and a post hoc analysis is performed to
examine the extent to which the testing has exercised
all structural components of the system--any deficien-
cies are pin-pointed, and test cases are generated ac-
cording to structural criteria (also described below) 
’fill the gaps’. This procedure is described in detail
in [Zlatareva and Preece, 1993].

Functional testing bases the generation of test
cases upon the requirements stated in the problem
specification of the system. Test cases must be created
for each task that the system is required to perform,
and at each one of several possible levels of difficulty,

where appropriate. Particular attention will be paid to
testing critical functions of the system, such as those
concerned with the protection of users.

Structural testing involves choosing a set of test
cases which exercise as many structural components of
the system as possible. Methods proposed for struc-
tural testing of rule-based systems are based on the
notion of an execution path through the rule base--
this is related to the notion of an inference chain, but
more general in that it applies to knowledge bases ex-
pressed using procedural representation languages as
well as those expressed using declarative ones.

Expert System Test Standards

The above techniques do not address the problem of
choosing an appropriate level of performance for the
system to achieve in order to be accepted. Another
facet of this problem is the difficulty in defining a stan-
dard against which to judge the acceptability of the
system. One of our objectives in separating the notions
of minimum level of performance and desired level of
performance in the problem specification was to recog-
nize this difficulty so that there is some flexibility built
into the acceptance testing process.

Two standard approaches may be used for defin-
ing the validation standard [O’Keefe el al., 1987]. In
some domains, it is possible to define a so-called gold
standard--a generally-accepted ’correct’ response for
each test case. If a gold standard is available, then
each test produces a boolean result, depending on
whether the output of the system matches the gold
standard or not. An agreement method must be em-
ployed when there is no gold standard--the perfor-
mance of the system is compared with that of other
performers (humans or other systems), and the sys-
tem is deemed to be acceptable if it ’agrees’ sufficiently
closely with the other performers [O’Keefe et al., 1987;
Reggia, 1985].

Conclusion
We have outlined techniques for specifying, verifying,
and validating expert systems. The specification of an
expert system is important because validation is mean-
ingless without it. Our approach to specification re-
flects the differences between expert systems and con-
ventional software.

Verification checks the internal consistency of the
knowledge base but cannot establish the correctness of
its procedural component. The principal difficulty of
validating an expert system is the acquisition of a suffi-
cient set of problems and and corresponding solutions.
In most cases, validation should include field testing.

In conclusion, our work to date has consisted of lay-
ing down a framework to guide practitioners in speci-
fying, verifying, and validating expert systems. So far,
certain aspects of the framework (in particular, auto-
mated verification and structural validation) have been
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developed more fully than others. Our future work will
aim to develop the other areas, with the ultimate goal
of creating an integrated methodology and set of tools
for building high-quality expert systems.
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