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A Review of Explicit Approximations of 
Colebrook’s Equation 
 

The most common explicit correlations for estimation of the friction factor 

in rough and smooth pipes are reviewed in this paper. Comparison of any 

friction factor equation with the Colebrook’s equation was expressed 

trough the mean relative error, the maximal positive error, the maximal 

negative error, correlation ratio and standard deviation. The statistical 

comparison of different equations was also carried out using the “Model 

selection criterion” and “Akaike Information Criterion”. It was found that 

the equation of Zigrang and Sylvester provides the most accurate value of 

friction factor, and that Haaland’s equation is most suitable for hand 

calculations. 
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1. INTRODUCTION 

 

The determination of a single-phase friction factor of 

pipe is essential to a variety of industrial applications, 

such as single-phase flow systems, two-phase flow 

systems and supercritical flow systems. Typically, the 

method of choice for computing friction factor is the 

Colebrook’s equation. 

This equation is a combination of Prandtl-von 

Karman-Nikuradse smooth-pipe equation 

 

 ( )1
2log 0.08Re f

f
= −  (1) 

and rough-pipe equation 

 ( )1
1.14 2log

f
ε= −  (2) 

where Re is the Reynolds number and ε is the relative 

pipe roughness. Equations (1) and (2) are known as 

PKN equations [1]. Using these equations and his own 

data gathered on commercial pipes, Colebrook [2] 

formed the following equation that covers the whole 

turbulent flow region 

 
1 2.51

2log
3.7f Re f

ε⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (3) 

that became widely accepted design formula for turbulent 

friction in the range of Re = 4000 – 108 and ε = 0 – 0.05. 

Due to its demonstrated applicability, the 

Colebrook’s equation (3) has become the acceptable 

standard for calculation of the friction factor in turbulent 

regimes. It should be noted that Rouse [3] was the first 

to confirm Colebrook’s equation (3) by his own 

measurements. 

Equation (3) was plotted in 1944 by Moody [4] into 

what is now called the Moody chart for pipe friction 

(this chart is probably the most famous and useful figure 

in engineering fluid mechanics). The implicit form of 

(3) disables the quick estimation of friction factor in 

hand calculations. For this reason, a number of 

approximate explicit counterparts have been proposed in 

the last 60 years and a most recent and very good 

overview of these equations is given in [5-7]. 

The basic idea of these efforts is to introduce more 

parameters in equation, in order to obtain as good 

results as possible, or more precisely as close prediction 

as possible of a Colebrook’s equation. These explicate 

equations were compared with Colebrook’s equation as 

shown in Section 3. 

 
2. EXPLICIT EQUATIONS FOR CALCULATION OF 

THE FRICTION FACTOR IN TURBULENT FLOW 

 

The most widely used explicit approximations for the 

Colebrook’s equation postulated since 1947 are 

synthesized in Table 1, in the order of publication. 

Additionally, this table contains the range of validity for 

each approximation cited as defined in the original 

paper. 

Most of these approximations are typically valid 

over only a limited range of the Re and ε values 

encountered in practice. 
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Table 1. Various approximations of the Colebrook’s equation 

Eq. 

num. 
Equation Range Ref. 

Authors 

(year) 

(4) 

1/ 3
610

0.0055 1 20000f
Re

ε
⎡ ⎤⎛ ⎞⎢ ⎥= + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 Re = 4000 – 5 · 108 

ε = 0 – 0.01 
[8] 

Moody 

(1947) 

(5) 
0.25

68
0.11f

Re
ε⎛ ⎞= +⎜ ⎟

⎝ ⎠
 Not specified [9] 

Altshul 

(1952) 

(6) 
0.1340.225 0.44 1.620.53 0.094 88f Re

εε ε ε −= + +  
Re = 4000 – 5 · 107 

ε = 0.00001 – 0.04 
[10] 

Wood 

(1966) 

(7) 

2

0.9

7
2log

3.7
f

Re

ε
−

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 Not specified [11] 

Churchill 

(1973) 

(8) 

2

0.9

21.25
1.14 2logf

Re
ε

−
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 
Re = 5000 – 107 

ε = 0.00004 – 0.05 
[12] 

Jain 

(1976) 

(9) 

2

0.9

5.74
2log

3.7
f

Re

ε
−

⎡ ⎤⎛ ⎞
= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

Re = 5000 – 108 

ε = 0.000001 – 0.05 
[13] 

Swamee, 

Jain 

(1976) 

(10) 

2
1.1098

0.8981

5.0452 5.8506
2log log

3.7065 2.8257
f

Re Re

ε ε
−
⎫⎤⎛ ⎞⎧ ⎪⎡= − − + ⎥⎜ ⎟⎨ ⎬⎢ ⎜ ⎟⎣ ⎥⎩ ⎪⎝ ⎠⎦⎭

 Re = 4000 – 4 · 108 [14] 
Chen 

(1979) 

(11) 

2
6.5

1.8log 0.135f
Re

ε
−

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

Re = 4000 – 4 · 108 

ε = 0 – 0.05 
[15] 

Round 

(1980) 

(12) 

2
5.02 5.02 13

2log log log
3.7 3.7

f
Re Re Re

ε εε
−
⎫⎧ ⎤⎡ ⎞ ⎪⎛ ⎛ ⎞= − − − +⎨ ⎬⎥⎟⎜ ⎜ ⎟⎢ ⎝ ⎝ ⎠⎣ ⎠ ⎪⎩ ⎦⎭

 
Re = 4000 – 108 

ε = 0.00004 – 0.05 
[16] 

Zigrang, 

Sylvester 

(1982) 

(13) 

2
1.11

6.9
1.8log

3.7
f

Re

ε
−

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= − ⎢ + ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 
Re = 4000 – 108 

ε = 0.000001 – 0.05 
[17] 

Haaland 

(1983) 

(14) 

0.25
68

0.11A
Re

ε⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

If 0.018A ≥  then f A=  and if 0.018A <  then 0.0028 0.85f A= +  

Re = 4000 – 108 

ε = 0 – 0.05 
[18] 

Tsal 

(1989) 

(15) 

2

0.983

95 96.82
2log

3.70
f

ReRe

ε
−

⎡ ⎤⎛ ⎞
= − + −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

Re = 4000 – 108 

ε = 0 – 0.05 
[19] 

Manadilli 

(1997) 

(16) 

        5.0272 4.567
2log log

3.7065 3.827
f

Re Re

ε ε ⎞⎞ ⎟
⎧ ⎡⎪ ⎛⎢= − − − ⋅⎨ ⎜⎢⎣

⎟
⎠⎝ ⎟
⎠⎪⎩

 

2
0.9924 0.9345

5.3326
log

7.79 208.82 Re

ε
−
⎫⎤⎞⎛ ⎞ ⎪⎛ ⎞ ⎛ ⎞ ⎥⎟⎜ ⎟⋅ + ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎟+ ⎥⎝ ⎠ ⎝ ⎠ ⎪⎝ ⎠⎠⎦⎭

 

Re = 3000 – 1.5 · 108 

ε = 0 – 0.05 
[20] 

Romeo, 

Rоyo, 

Мonzon 

(2002) 

(17) 

2
1.1007

1.1105 1.0712

60.525 56.291
1.613 ln 0.234f

Re Re
ε

−
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 
Re = 3000 – 108 

ε = 0 – 0.05 
[21] 

Fang 

(2011) 

(18) 

( )

ln
1.1

1.816ln
ln 1 1.1

Re

Re

Re

β =
⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

, 
2

0.43432log 10
3.71

f β ε −
−⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 
Not specified [7] Brkić (2011)

(19) 

( )

ln
1.1

1.816ln
ln 1 1.1

Re

Re

Re

β =
⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

, 
2

2.18
2log

3.71
f

Re

β ε −
⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 
Not specified [7] Brkić (2011)
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3. STATISTICAL COMPARISON OF THE 

EQUATIONS 

 

The statistical comparison of any friction factor 

equation with the Colebrook’s equation can be done by 

the following procedure: 

• Divide the range of possible Re and ε using 

appropriate pitch into n nodes. 

• Calculate the friction factor fpred,i by the 

individual approximate equation. 

• Calculate friction factor value fC,i calculated with 

the Colebrook’s equation (fC,i was calculated 

numerically within the range of error ± 10–8). 

• Calculate the following parameters: 

o the mean relative error 

 
C, pred,

C,1

1 n
i i

ii

f f
meanRE

n f=

−
= ∑  (20) 

o the maximal positive error 

 
C, pred,

C,

max
i i

i

f f
maxRE

f

+ ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (21) 

o the maximal negative error 

 
pred, C,

C,

max
i i

i

f f
maxRE

f

− ⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (22) 

o Θ, correlation ratio 

 

( )

( )

2

C, pred,
1

2

C, C,av
1

1

n

i i

i

n

i

i

f f

f f

Θ =

=

−

= −

−

∑

∑
 (23) 

 

o ∆av, standard deviation 

 

2
C, pred,

C,1
av

n
i i

ii

f f

f

n
∆ =

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠=

∑
 (24) 

where fC,av is the average value of fC for complete set of 
nods 

 

C,

1
C,av

n

i

i

f

f
n

==
∑

. (25) 

In this paper, we will use the range of Re = 4000 – 

108 and ε = 0 – 0.05 and a net will be formed using 
linear scale with 106 nods. 

Three ways were used to produce the number of 
nods, presented in Table 2. 

Table 2. Three ways for forming the net with 10
6
 nods 

 Range Nods Linear step 

Re = 4000 – 108 1000 99996 
I 

ε = 0 – 0.05 1000 50 · 10–6 

Re = 4000 – 108 10000 9999.6 
II 

ε = 0 – 0.05 100 500 · 10–6 

Re = 4000 – 108 100 999960 
III 

ε = 0 – 0.05 10000 5 · 10–6 

 
It should be noted that similar analysis covering the 

observed range (Re = 4000 – 108 and ε = 0 – 0.05) with 
a much lesser number of points (about 500 points in 
[20], 1000 points in [21], 10000 points in [5] and [22], 
740 points in the recent one [7]). 

The statistical comparison of different equations was 
also carried out using the “Model selection criterion” 
(MSC) and “Akaike Information Criterion” (AIC). 

Table 3. Statistical parameters for observed equations 

Eq. num. meanRe [%] maxRe
+ [%] maxRe

– [%] Θ [%] ∆av [%] MSC AIC · 10–6 NP NC 

(4) 7.517 15.90 – 12.532 84.22 8.853 – 29.92 3.493 4 5 

(5) 16.42 46.83 – 2.622 30.26 18.34 – 30.72 4.864 3 4 

(6) 3.647 100 – 6.241 99.02 10.37 – 1.040 7 11 

(7) 0.0818 0 – 0.00121 100 0.685 – – 1.882 5 8 

(8) 0.181 0.790 – 3.185 100 0.335 – 25.95 – 3.212 5 8 

(9) 0.0406 0.708 – 3.358 100 0.315 – – 3.305 5 8 

(10) 0.0676 0.316 – 0.324 100 0.0686 – 25.16 – 6.514 8 14 

(11) 90.21 94.45 0 0 90.33 – 32.33 7.857 4 7 

(12) 0.000612 0.114 – 0.0496 100 0.00615 – – 14.087 7 16 

(13) 0.207 1.420 – 1.314 100 0.222 – – 4.393 5 8 

(14) 16.16 27.30 – 2.622 30.26 17.99 – 30.71 4.864 4 5 

(15) 0.0324 0.00404 – 2.729 100 0.245 – – 3.755 6 10 

(16) 0.0680 0.0815 – 0.146 100 0.069 – 25.00 – 6.511 11 20 

(17) 0.0550 0.441 – 0.491 100 0.077 – 22.96 – 6.769 8 11 

(18) 0.118 3.374 – 1.655 100 0.220 – 25.37 – 4.590 9 16 

(19) 0.123 0.124 – 2.856 100 0.280 – 25.33 – 3.530 9 16 
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The MSC and AIC attempt to represent the 

“information content” of a given set of parameter 

estimates by relating the coefficient of determination to 

the NP (or equivalently, the number of degrees of 

freedom) that were required to obtain the fit. When 

comparing two models (equation) with different 

numbers of parameters, this criterion places a burden on 

the model with more parameters not only to have a 

better coefficient of determination, but quantifies how 

much better it must be for the model to be deemed more 

appropriate. 

MSC criterion is given in the form 

 

( )

( )

C, C,av
1

C, pred,
1

2
ln

n

i

i

n

i i

i

f f
NP

MSC
n

f f

=

=

⎡ ⎤
−⎢ ⎥

⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

∑

∑
 (26) 

where NP is the number of parameters in proposed 

equation. 

For this criterion, the most appropriate model will be 

that with the largest MSC, because we want to maximize 

information content of the model. 

AIC is defined by the following expression 

 ( )2C, pred,
1

ln 2
n

i i

i

AIC n f f NP

=

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ . (27) 

The AIC as defined above is dependent on the 

magnitude of the data points as well as the number of 

observations. According to this criterion, the most 

appropriate model is the one with the smallest values of 

the AIC. Statistical comparison of equations (4) – (19) 

with Colebrook’s equation (3) is given in Table 3, 

where NC is the number of mathematical calculations in 

a given equation. 

The numbers from Table 3 speak for themselves. 

Equation (12) is the best one according to most 

important criterions ∆av and Θ, and maximal relative 

errors are quite low. The only shortcoming of the (12) is 

the number of calculations (mathematical operations) 

that have to be done in order to obtain the result. It is 

interesting to compare, for example, (10) and (16). They 

have almost the same standard ∆av and Θ, as well as 

other statistical parameters. Equation (10) should be 

given the advantage, in hand calculations, because it has 

much lesser NP and NC compared to (16). 

Another interesting equation is (13). Although it is 

published 28 years ago, it provides very fine statistical 

parameters and needs only NC = 8 mathematical 

operations. 

Altshul’s equation (5) and Tsal’s correction (14) of 

Altshul’s equation is cited in one of the most significant 

engineering handbooks [22]. The citation from [22] is 

interesting: “Friction factors obtained from the Altshul-

Tsal equation are within 1.6 % of those obtained by 

Colebrook’s equation.” 

Our analysis shows that both equations do not 

predict friction factor well. Maximal relative error of 

(14) is 27.30 %, standard deviation is about 18 %. 

Alshul’s, equation shows even worse parameters: 

maximal error 46.83 % is highly unacceptable. 

Although NC is small, these equations cannot be 

recommended for engineering practice. Equation (11) is 

the worst one among the cited equations. 

 
4. CONCLUSION 

 

As stated by many engineers and scientists, famous 

Colebrook’s equation is still the best equation that 

provides a link between the friction factor, Reynolds 

number and relative roughness. Its only disadvantage is 

the implicit form of equation, and many authors 

reported their explicit approximations. 

After the statistical analysis given in this paper, two 

equations can be recommended: 

• equation (12) of Zigrang and Sylvester [16] 

provides the most accurate value of friction 

factor using 16 calculations to obtain the result; 

• equation (13) of Haaland [17] provides 

reasonably good statistical parameters but needs 

only 8 calculations, which is more convenient for 

hand calculation. 

Equations (4) – (6), (11) and (14) should be avoided 

in engineering practice. 
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NOMENCLATURE 

ε relative pipe roughness 

f friction factor 

n number of nodes (points) 

NC number of mathematical calculations 

NP number of parameters 

Re Reynolds number 

Greek symbols 

β nondimensional parameter 

∆ standard deviation 

Θ correlation ratio 

Subscripts 

av average 

C Colebrook 

pred predicted 

 

 

ПРЕГЛЕД ЕКСПЛИЦИТНИХ 

АПРОКСИМАЦИЈА КОЛБРУКОВЕ 

ЈЕДНАЧИНЕ ЗА КОЕФИЦИЈЕНТ ТРЕЊА 

 

Србислав Генић, Иван Аранђеловић, Петар 

Колендић, Марко Јарић, Никола Будимир, 

Војислав Генић 

 

У раду је дат преглед најчешће коришћених 
експлицитних једначина за одређивање 
коефицијента трења у глатким и храпавим цевима. 
Одступање наведених једначина од Колбрукове 
једначине изражено је преко средње релативне 
грешке, максималне позитивне грешке, максималне 
негативне грешке, средњег одступања и 

корелационог односа. Осим наведених критеријума, 
поређењe једначина је извршено и коришћењем 

„Model selection criterion“ (MSC) и „Akaike 

Information Criterion“ (AIC). Наведеном анализом 

установљено је да су одступања једначине коју су 
предложили Зигранг и Силвестер најмања у односу 
на Колбрукову релацију, а да је Халандова 
једначина најпогоднија за инжењерску употребу. 

 

 

 

 


