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We summarise various ways of performing dimensionality reduction on high-dimensional microarray data. Many di�erent feature
selection and feature extraction methods exist and they are being widely used. All these methods aim to remove redundant and
irrelevant features so that classi	cation of new instances will be more accurate. A popular source of data is microarrays, a biological
platform for gathering gene expressions. Analysing microarrays can be di
cult due to the size of the data they provide. In addition
the complicated relations among the di�erent genes make analysis more di
cult and removing excess features can improve the
quality of the results. We present some of the most popular methods for selecting signi	cant features and provide a comparison
between them.�eir advantages and disadvantages are outlined in order to provide a clearer idea of when to use each one of them
for saving computational time and resources.

1. Introduction

In machine learning as the dimensionality of the data rises,
the amount of data required to provide a reliable analysis
grows exponentially. Bellman referred to this phenomenon
as the “curse of dimensionality” when considering problems
in dynamic optimisation [1]. A popular approach to this
problem of high-dimensional datasets is to search for a
projection of the data onto a smaller number of variables (or
features) which preserves the information as much as pos-
sible. Microarray data is typical of this type of small sample
problem. Each data point (sample) can have up to 450,000
variables (gene probes) and processing a large number of data
points involves high computational cost [2]. When the
dimensionality of a dataset grows signi	cantly there is an
increasing di
culty in proving the result statistically signif-
icant due to the sparsity of the meaningful data in the dataset
in question. Large datasets with the so-called “large �, small�” problem (where � is the number of features and � is
the number of samples) tend to be prone to over	tting. An
over	ttedmodel canmistake small �uctuations for important
variance in the data which can lead to classi	cation errors.
�is di
culty can also increase due to noisy features. Noise in

a dataset is de	ned as “the error in the variance of a measured
variable” which can result from errors in measurements or
natural variation [3]. Machine learning algorithms tend to
be a�ected by noisy data. Noise should be reduced as much
as possible in order to avoid unnecessary complexity in the
inferred models and improve the e
ciency of the algorithm
[4]. Common noise can be divided into two types [5]:

(1) Attribute noise.

(2) Class noise.

Attribute noise is caused by errors in the attribute values
(wrongly measured variables, missing values) while class
noise is caused by samples that are labelled to belong in more
than one class and/or misclassi	cations.

As the dimensionality increases the computational cost
also increases, usually exponentially. To overcome this prob-
lem it is necessary to 	nd a way to reduce the number of
features in consideration. Two techniques are o�en used:

(1) Feature subset selection.

(2) Feature extraction.

Cancer is among the leading causes of death worldwide
accounting for more than 8 million deaths according to
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theWorld Health Organization. It is expected that the deaths
from cancer will rise to 14 million in the next two decades.
Cancer is not a single disease.�ere aremore than 100 known
di�erent types of cancer and probably many more. �e term
cancer is used to describe the abnormal growth of cells that
can, for example, form extra tissue called mass and then
attack other organs [6].

Microarray databases are a large source of genetic data,
which, upon proper analysis, could enhance our understand-
ing of biology and medicine. Many microarray experiments
have been designed to investigate the genetic mechanisms
of cancer, and analytical approaches have been applied in
order to classify di�erent types of cancer or distinguish
between cancerous and noncancerous tissue. In the last ten
years, machine learning techniques have been investigated in
microarray data analysis. Several approaches have been tried
in order to (i) distinguish between cancerous and noncancer-
ous samples, (ii) classify di�erent types of cancer, and (iii)
identify subtypes of cancer that may progress aggressively.
All these investigations are seeking to generate biologically
meaningful interpretations of complex datasets that are
su
ciently interesting to drive follow-up experimentation.

�is review paper is structured as follows. �e next sec-
tion is about feature selection methods (	lters, wrappers, and
embedded techniques) applied on microarray cancer data.
�en we discuss feature extraction methods (linear and non-
linear) inmicroarray cancer data and the 	nal section is about
using prior knowledge in combination with a feature extrac-
tion or feature selection method to improve classi	cation
accuracy and algorithmic complexity.

2. Feature Subset Selection in
Microarray Cancer Data

Feature subset selection works by removing features that are
not relevant or are redundant. �e subset of features selected
should follow the Occam’s Razor principle and also give the
best performance according to some objective function. In
many cases this is anNP-hard (nondeterministic polynomial-
time hard) problem [7, 8].�e size of the data to be processed
has increased the past 5 years and therefore feature selection
has become a requirement before any kind of classi	cation
takes place. Unlike feature extraction methods, feature selec-
tion techniques do not alter the original representation of the
data [9]. One objective for both feature subset selection and
feature extraction methods is to avoid over	tting the data
in order to make further analysis possible. �e simplest is
feature selection, in which the number of gene probes in an
experiment is reduced by selecting only the most signi	cant
according to some criterion such as high levels of activity.
Feature selection algorithms are separated into three cate-
gories [10, 11]:

(i) �e �lters which extract features from the data with-
out any learning involved.

(ii) �e wrappers that use learning techniques to evaluate
which features are useful.

(iii) �e embedded techniques which combine the feature
selection step and the classi	er construction.

2.1. Filters. Filters workwithout taking the classi	er into con-
sideration. �is makes them very computationally e
cient.
�ey are divided into multivariate and univariate methods.
Multivariate methods are able to 	nd relationships among
the features, while univariate methods consider each feature
separately. Gene ranking is a popular statistical method. �e
following methods were proposed in order to rank the genes
in a dataset based on their signi	cance [12]:

(i) (Univariate) Unconditional Mixture Modelling as-
sumes two di�erent states of the gene on and o� and
checks whether the underlying binary state of the
gene a�ects the classi	cation using mixture overlap
probability.

(ii) (Univariate) Information Gain Ranking approximates
the conditional distribution �(� | �), where � is the
class label and� is the feature vector. Information gain
is used as a surrogate for the conditional distribution.

(iii) (Multivariate)Markov Blanket Filtering 	nds features
that are independent of the class label so that remov-
ing them will not a�ect the accuracy.

In multivariate methods, pair �-scores are used for evaluating
gene pairs depending on how well they can separate two
classes in an attempt to identify genes that work together to
provide a better classi	cation [13]. �eir results for the gene
pair rankings were found to be “at least as interesting as the
single genes found by an independent evaluation.”

Methods based on correlation have also been suggested:

(i) (Multivariate) Error-Weighted Uncorrelated Shrunken
Centroid (EWUSC): this method is based on the
uncorrelated shrunken centroid (USC) and shrunken
centroid (SC). �e shrunken centroid is found by
dividing the average gene expression for each gene
in each class by the standard deviation for that gene
in the same class. �is way higher weight is given to
genes whose expression is the same among di�erent
samples in the same class. New samples are assigned
to the label with the nearest average pattern (using
squared distance). �e uncorrelated shrunken cen-
troid approach removes redundant features by 	nding
genes that are highly correlated in the set of genes
already found by SC. �e EWUSC uses both of these
steps and in addition adds error-weights (based on
within-class variability) so that noisy genes will be
downgraded and redundant genes are removed [14].
A comparison is shown in Figure 1 where the three
di�erent methods are tested on a relatively small
(25000 genes and 78 samples) breast cancer dataset.
�e algorithms perform well when the number of
relevant genes is less than 1000.

(ii) (Multivariate)Minimum Redundancy Maximum Rel-
evance (mRMR): mRMR is a method that maximises
the relevancy of genes with the class label while it
minimises the redundancy in each class. To do so, it
uses several statistical measures. Mutual Information
(MI)measures the information a randomvariable can
give about another, in particular the gene activity and
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the class label. �e method can be applied to both
categorical and continuous variables. For categorical
(discrete) variables, MI is used to 	nd genes that are
not redundant (minimise redundancy) � and are
maximally relevant	with a target label [15] as shown
in (1) and (2), respectively:

� = 1|
|2 ∑�,�∈�� (�, �) , (1)

	 = 1|
|∑�∈�� (ℎ, �) , (2)

where � is the MI, � and � are genes, |
| is the number
of features in 
, and ℎ is a class label.
For continuous variables the �-statistic (ANOVA test
or regression analysis to check whether the means of
two populations are signi	cantly di�erent) is used to
	nd the maximum relevance between a gene and a
class label and then the correlation of the gene pair in
that class is measured tominimise redundancy [15] as
shown in (3) and (4), respectively:

	 = 1|
|∑�∈�� (�, ℎ) , (3)

� = 1|
|2 ∑�,�∈� ����� (�, �)���� , (4)

where � is the �-statistic, � and � are genes, ℎ is a
class label, |
| is the number of features in 
, and � is
the correlation. mRMR can be used in combination
with entropy. Normalised mutual information is used
to measure the relevance and redundancy of clusters
of genes. �en the most relevant genes are com-
bined and LOOCV (leave-one-out cross-validation)
is performed to 	nd the accuracy [16]. For contin-
uous variables linear relationships are used instead
of mutual information. MRMR methods give lower
error accuracies for both categorical and discrete data.

(iii) (Multivariate) Correlation-based feature selection
(CFS) as stated by Hall [17] follows the principal that
“a good feature subset is one that contains features
highly correlated with the class yet uncorrelated with
each other.” CFS evaluates a subset by considering the
predictive ability of each one of its features individ-
ually and also their degree of redundancy (or correla-
tion).�e di�erence between CFS and other methods
is that it provides a “heuristic merit” for a feature
subset instead of each feature independently [18].�is
means that given a function (heuristic), the algorithm
can decide on its next moves by selecting the option
that maximises the output of this function. Heuristic
functions can also be designed to minimise the cost
to the goal.

ReliefF [19] is also widely used with cancer microarray
data. It is a multivariate method that chooses the features
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Figure 1: Comparison between EWUSC, USC, and SC on breast
cancer data [14].

that are the most distinguishable among the di�erent classes.
It repeatedly draws an instance (sample) and, based on its
neighbours, it gives most weight to the features that help dis-
criminate it from the neighbours of a di�erent class [20, 21]. A
method using independent logistic regression with two steps
was also proposed [22]. �e 	rst step is a univariate method
in which the genes are ranked according to their Pearson
correlation coe
cients. �e top genes are considered in the
second phase, which is stepwise variable selection. �is is a
conditionally univariate method based on the inclusion (or
exclusion) of a single gene at a time, conditioned on the
variables already included.

A comparison of ReliefF, Information Gain, Information
Gain Ratio, and �2 is shown in Figure 2. �e methods
perform similarly across the number of genes selected. Infor-
mation Gain Ratio is de	ned as the information gain over the
intrinsic information. It performs normalisation to the infor-
mation gain using split value information. �e Pearson �2

test evaluates the possibility of a value appearing by chance.

Statistical methods o�en assume a Gaussian distribution
on the data.�e central limit theoremcan guarantee that large
datasets are always normally distributed. Even though all
these methods can be highly accurate in classifying informa-
tion there is no biological signi	cance proven with the genes
that are identi	ed by them. None of the above methods have
indicatedwhether the results are actually biologically relevant
or not. In addition 	lter methods are generally faster than
wrappers but do not take into account the classi	er which can
be a disadvantage. Ignoring the speci	c heuristics and biases
of the classi	er might lower the classi	cation accuracy.

2.2. Wrappers. Wrappers tend to perform better in selecting
features since they take the model hypothesis into account
by training and testing in the feature space. �is leads to the
big disadvantage of wrappers, the computational ine
ciency
which is more apparent as the feature space grows. Unlike
	lters, they can detect feature dependencies. Wrappers are
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Figure 2: Comparison between ReliefF, Information Gain, Information Gain Ratio, and�2 test on ALL and MLL Leukaemia datasets [21].

Table 1: Deterministic versus randomised wrappers.

Deterministic Randomised

Small over	tting risk High over	tting risk

Prone to local optima Less prone to local optima

Classi	er dependent Classi	er dependent

— Computationally intensive

Comparison between deterministic and randomised wrappers.

separated in 2 categories: Randomised and Deterministic. A
comparison is shown in Table 1.

2.2.1. Deterministic Wrappers. A number of deterministic
investigations have been used to examine breast cancer such
as a combination of awrapper and sequential forward selection
(SFS). SFS is a deterministic feature selection method that
works by using hill-climbing search to add all possible single-
attribute expansions to the current subset and evaluate them.
It starts from an empty subset of genes and sequentially
selects genes, one at a time, until no further improvement is
achieved in the evaluation function. �e feature that leads to
the best score is added permanently [23]. For classi	cation,
support vector machines (SVMs), �-nearest neighbours, and
probabilistic neural networks were used in an attempt to
classify between cancerous and noncancerous breast tumours
[24]. Very accurate results were achieved using SVMs. �ree
methods based on SVMs are very widely used in microarray
cancer datasets:

(1) Gradient-based-leave-one-out gene selection (GLGS)
[25–28] was originally introduced for selecting
parameters for the SVMs. It starts by applying PCA
on the dataset. A vectorwith scaling factors of the new
low-dimensional space is calculated and optimised
using a gradient-based algorithm.�e pseudo scaling

factors of the original genes are calculated. Genes are
sequentially selected based on a correlation factor.

(2) Leave-one-out calculation sequential forward selection
(LOOCSFS) is a very widely used feature selection
method for cancer data based on sequential forward
selection (SFS). It adds features in an initially empty
set and calculates the leave-one-out cross-validation
error [29]. It is an almost unbiased estimator of
the generalisation error using SVMs and C Bound.
C Bound is the decision boundary and it is used
as a supplementary criterion in the case where dif-
ferent features in the subset have the same leave-
one-out cross-validation error (LOOCVE) [26, 30,
31]. SFS can also add constraints [32] on the size
of the subset to be selected. It can be used in
combination with a recursive support vector machine
(R-SVM) algorithm that selects important genes
or biomarkers [33]. �e contribution factor, based
on minimal error of the support vector machine,
of each gene is calculated and ranked. �e top
ranked genes are chosen for the subset. LOOCSFS
is expected to be an accurate estimator of the gener-
alization error while GLGS scales very well with high-
dimensional datasets. �e number of the genes in the
feature subset for both LOOCSFS andGLGS has to be
given in advance which can be a disadvantage since
the most important genes are not known in advance.
GLGS is said to perform better than LOOCSFS.

2.2.2. RandomisedWrappers. Most randomisedwrappers use
genetic algorithms (GA) (Algorithm 1) and simulated anneal-
ing (Algorithm 2). Best Incremental Ranked Subset (BIRS)
[35] is an algorithm that scores genes based on their value
and class label and then uses incremental ranked usefulness
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Encode Dataset
Randomly Initialise Population
Determine Fitness Of Population Based On A Prede	ned Fitness Function
while Stop Condition Not Reach (Best individual Is Good Enough) do
Create O�spring by Crossover OR Mutation
Calculate Fitness

end while

Algorithm 1: Genetic algorithm.

Initialise State s = S(0)
Initialise Energy e = E(S(0))
Set time to zero k = 0
while k < kmax And e < emax do
Temperature = temperature(k/kmax)
NewState = neighbour(�)
NewEnergy = E(NewState)
if P(e, NewEnergy, Temperature) > random() then
s = NewState
e = NewEnergy

end if

if NewEnergy < EnergyBest then
BestState = NewState
EnergyBest = NewEnergy

end if

k = k + 1
end while

Algorithm 2: Simulated annealing algorithm.

(based on the Markov blanket) to identify redundant genes.
Linear discriminant analysis was used in combination with
genetic algorithms. Subsets of genes are used as chromosomes
and the best 10% of each generation is merged with the
previous ones. Part of the chromosome is the discriminant
coe
cientwhich indicates the importance of a gene for a class
label [36]. Genetic Algorithm-Support Vector Machine (GA-
SVM) [37] creates a population of chromosomes as binary
strings that represent the subset of features that are evaluated
using SVMs. Simulated annealing works by assuming that
some parts of the current solution belong to a better one
and therefore proceeds to explore the neighbours seeking
for solutions that minimise the objective function and there-
fore avoid global optima. Hybrid methods with simulated
annealing and genetic algorithms have also been used [38]. A
genetic algorithm is run as a 	rst step before the simulated
annealing in order to get the 	ttest individuals as inputs to
the simulated annealing algorithm. Each solution is evaluated
using Fuzzy �-Means (a clustering algorithm that uses
coe
cients to describe how relevant a feature is to a cluster
[39, 40]).�eproblemwith genetic algorithms is that the time
complexity becomes�(� log(�)+����), where � is the num-
ber of samples, � is the dimension of the data sets, � repre-
sents the population size, and � is the number of generations.
In order for the algorithm to be e�ective the number of

generations and the population size must be quite large. In
addition like all wrappers, randomised algorithms take up
more CPU time and more memory to run.

2.3. Embedded Techniques. Embedded techniques tend to do
better computationally thanwrappers but theymake classi	er
dependent selections that might not work with any other
classi	er.�at is because the optimal set of genes is built when
the classi	er is constructed and the selection is a�ected by
the hypotheses the classi	er makes. A well-known embedded
technique is random forests. A random forest is a collection
of classi	ers. New random forests are created iteratively by
discarding a small fraction of genes that have the lowest
importance [41]. �e forest with the smallest amount of fea-
tures and the lowest error is selected to be the feature subset.
A method called block diagonal linear discriminant analysis
(BDLDA) [42] assumes that only a small number of genes are
associated with a disease and therefore only a small number
are needed in order for the classi	cation to be accurate. To
limit the number of features it imposes a block diagonal
structure on the covariance matrix. In addition SVMs can
be used for both feature selection and classi	cation. Features
that do not contribute to classi	cation are eliminated in each
round until no further improvement in the classi	cation can
be achieved [43]. Support vector machines-recursive feature
elimination (SVM-RFE) starts with all the features and gradu-
ally excludes the ones that do not identify separating samples
in di�erent classes. A feature is considered useful based on
its weight resulting from training SVMs with the current set
of features. In order to increase the likelihood that only the
“best” features are selected, feature elimination progresses
gradually and includes cross-validation steps [26, 44–46]. A
major advantage of SVM-RFE is that it can select high-quality
feature subsets for a particular classi	er. It is however com-
putationally expensive since it goes through all features one
by one and it does not take into account any correlation the
features might have [30]. SVM-RFE was compared against
two wrappers: leave-one-out calculation sequential forward
selection and gradient-based-leave-one-out. All three of
these methods have similar computational times when
run against a Hepatocellular Carcinoma dataset (7129 genes
and 60 samples). GLGS outperforms the others, with
LOOCSFS and SVM-RFE having similar performance errors
[27].

�e most commonly used methods on microarray data
analysis are shown in Table 2.
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Table 2: Feature selection methods applied on microarray data.

Method Type Supervised Linear Description

�-test feature selection [49] Filter — Yes
It 	nds features with a maximal di�erence of mean value between
groups and a minimal variability within each group

Correlation-based feature
selection (CFS) [50]

Filter — Yes
It 	nds features that are highly correlated with the class but are
uncorrelated with each other

Bayesian networks [51, 52] Filter Yes No
�ey determine the causal relationships among features and remove
the ones that do not have any causal relationship with the class

Information gain (IG) [53] Filter No Yes
It measures how common a feature is in a class compared to all other
classes

Genetic algorithms (GA)
[33, 54]

Wrapper Yes No
�ey 	nd the smaller set of features for which the optimization
criterion (classi	cation accuracy) does not deteriorate

Sequential search [55] Wrapper — —
Heuristic base search algorithm that 	nds the features with the
highest criterion value (classi	cation accuracy) by adding one new
feature to the set every time

SVMmethod of recursive
feature elimination (RFE)
[30]

Embedded Yes Yes
It constructs the SVM classi	er and eliminates the features based on
their “weight” when constructing the classi	er

Random forests [41, 56] Embedded Yes Yes
�ey create a number of decision trees using di�erent samples of the
original data and use di�erent averaging algorithms to improve
accuracy

Least absolute shrinkage
and selection operator
(LASSO) [57]

Embedded Yes Yes
It constructs a linear model that sets many of the feature coe
cients
to zero and uses the nonzero ones as the selected features.

Di�erent feature selection methods and their characteristics.

Figure 3: Linear versus nonlinear classi	cation problems.

3. Feature Extraction in
Microarray Cancer Data

Early methods of machine learning applied to microarray
data included simple clustering methods [47]. A widely used
method was hierarchical clustering. Due to the �exibility of
the clustering methods they became very popular among the
biologists. As the technology advanced however the size of
the data increased and a simple application of hierarchical
clustering became too ine
cient. �e time complexity of
hierarchical clustering is�(log(�2)), where � is the number of
features. Biclustering followedhierarchical clustering as away

of simultaneously clustering both samples and features of a
dataset leading to more meaningful clusters. It was shown
that biclustering performs better than hierarchical clustering
when it comes to microarray data but it is still a computa-
tionally demanding method [48]. Many other methods have
been implemented for extracting only the important infor-
mation from themicroarrays thus reducing their size. Feature
extraction creates new variables as combinations of others to
reduce the dimensionality of the selected features. �ere are
two broad categories for feature extraction algorithms: linear
and nonlinear. �e di�erence between linear and nonlinear
problems is shown is Figure 3.
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Figure 4: Dimensionality reduction using linear matrix factoriza-
tion: projecting the data on a lower-dimensional linear subspace.

3.1. Linear. Linear feature extraction assumes that the data
lies on a lower-dimensional linear subspace. It projects them
on this subspace using matrix factorization. Given a dataset�:�×�, there exists a projectionmatrix�:�×� and a pro-

jection�:�×�, where� = �⋅�. Using��� = � (orthogonal
property of eigenvectors), we get � = � ⋅ ��. A graphical
representation is shown in Figure 4.

�e most well-known dimensionality reduction algo-
rithm is principal component analysis (PCA). Using the
covariance matrix and its eigenvalues and eigenvectors, PCA
	nds the “principal components” in the datawhich are uncor-
related eigenvectors each representing some proportion of
variance in the data. PCA and many variations of it have
been applied as a way of reducing the dimensionality of the
data in cancer microarray data [58–64]. It has been argued
[65, 66] that when computing the principal components
(PCs) of a dataset there is no guarantee that the PCs will be
related to the class variable. �erefore, supervised principal
component analysis (SPCA) was proposed, which selects the
PCs based on the class variables. �ey named this extra step
the gene screening step. Even though the supervised version
of PCA performs better than the unsupervised, PCA has an
important limitation: it cannot capture nonlinear relation-
ships that o�en exist in data, especially in complex biological
systems. SPCA works as follows:

(1) Compute the relation measure between each gene
with outcome using linear, logistic, or proportional
hazards models.

(2) Select genes most associated with the outcome using
cross-validation of the models in step (1).

(3) Estimate principal component scores using only the
selected genes.

(4) Fit regression with outcome using model in step (1).
�e method was highly e�ective in identifying important

genes and in cross-validation tests was only outperformed by
gene shaving, a statistical method for clustering, similar to
hierarchical clustering. �e main di�erence is that the genes
can be part of more than one cluster. �e term “shaving”
comes from the removal or shaving of a percentage of the
genes (normally 10%) that have the smallest absolute inner
product with the leading principal component [67].

A similar linear approach is classical multidimensional
scaling (classical MDS) or Principal Coordinates Analysis
[68] which calculates the matrix of dissimilarities for any

given matrix input. It was used for large genomic datasets
because it is e
cient in combination with Vector Quantiza-
tion or �-Means [69] which assigns each observation to a
class, out of a total of � classes [70].

3.2. Nonlinear. Nonlinear dimensionality reduction works in
di�erent ways. For example, a low-dimensional surface can
be mapped on a high-dimensional space so that a nonlinear
relationship among the features can be found. In theory, a
li�ing function  (!) can be used to map the features onto a
higher-dimensional space. On a higher space the relationship
among the features can be viewed as linear and therefore
is easily detected. �is is then mapped back on the lower-
dimensional space and the relationship can be viewed as
nonlinear. In practice kernel functions can be designed to
create the same e�ect without the need to explicitly compute
the li�ing function. Another approach to nonlinear dimen-
sionality reduction is by using manifolds. It is based on the
assumption that the data (genes of interest) lie on an embed-
ded nonlinear manifold which has lower dimension than the
raw data space and lies within it. Several algorithms exist
working in the manifold space and applied to microarrays. A
commonly used method of 	nding an appropriate manifold,
Isomap [71], constructs the manifold by joining each point
only to its nearest neighbours. Distances between points are
then taken as geodesic distances on the resulting graph.Many
variants of Isomap have been used; for example, Balasub-
ramanian and Schwartz proposed a tree connected version
which di�ers in the way the neighbourhood graph is con-
structed [72]. �e �-nearest points are found by constructing
a minimum spanning tree using an "-radius hypersphere.
�is method aims to overcome the drawbacks expressed by
Orsenigo and Vercellis [73] regarding the robustness of the
Isomap algorithm when it comes to noise and outliers. �ese
could cause potential problems with the neighbouring graph,
especially when the graph is not fully connected. Isomap has
been applied onmicroarray data with some very good results
[73, 74]. Compared to PCA, Isomap was able to extract more
structural information about the data. In addition, other
manifold algorithms have been used with microarray data
such as Locally Linear Embedding (LLE) [75] and Laplacian
Eigenmaps [76, 77]. PCA and similar manifold methods are
used also for data visualisation as shown in Figure 5. Clusters
can o�en be better separated usingmanifold LLE and Isomap
but PCA is far faster than the other two.

Another nonlinear method for classi	cation is Kernel
PCA. It has been widely used [78, 79] since dimensionality
reduction helps with the interpretability of the results. It does
have an important limitation in terms of space complexity
since it stores all the dot products of the training set and
therefore the size of the matrix increases quadratically with
the number of data points [80].

Neural methods can also be used for dimensionality
reduction like Self Organizing Maps [81] (SOMs) or Kohonen
maps that create a lower-dimensional mapping of an input by
preserving its topological characteristics. �ey are composed
of nodes or neurons and each node is associated with
its own weight vector. SOMs training is considered to be
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Figure 5: Visualisation of a Leukaemia dataset with PCA, manifold LLE, and manifold Isomap [34].

“competitive” since when a training example is fed to the
network its Euclidean distance with all nodes is calculated
and it is assigned to that node with the smallest distance
(Best Matching Unit (BMU)). �e weight of that node
along with its neighbouring nodes is adjusted to match the
input. Another neural networks method for dimensionality
reduction (and dimensionality expansion) uses autoencoders.
Autoencoders are feed-forward neural networks which are
trained to approximate a function by which data can be
classi	ed. For every training input the di�erence between the
input and the output ismeasured (using square error) and it is

back-propagated through the neural network to perform the
weight updates to the di�erent layers. In a paper that com-
pares stacked autoencoders with PCAwithGaussian SVMon
13 gene expression datasets, it was shown that autoencoders
performbetter on themajority of datasets [82]. Autoencoders
use 	ne-tuning, a back-propagation method for adjusting
their parameters. Without back-propagation the autoen-
coders get very low accuracies. A general problem with the
stacked autoencoders method is that a large number of inter-
nal layers can easily “memorise” the training data and create a
model with zero error which will over	t the data and so be
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unable to classify future test data. SOMs have been used as
a method of dimensionality reduction for gene expression
data [77, 83] but it was never broadly adopted for analysis
because it needs just the right amount of data to perform
well. Insu
cient or extraneous data can cause randomness to
the clusters. Independent component analysis is also widely
used in microarrays [84, 85] in combination with a clustering
method.

Independent Components Analysis (ICA) 	nds the corre-
lation among the data and decorrelates the data by maximiz-
ing or minimizing the contrast information. �is is called
“whitening.”�ewhitenedmatrix is then rotated tominimise
the Gaussianity of the projection and in e�ect retrieve sta-
tistically independent data. It can be applied in combination
with PCA. It is said that ICA works better if the data has been
preprocessed with PCA [86]. �is could merely be due to the
decrease in computational load caused by the high dimen-
sion.

�e advantages and disadvantages of feature extraction
and feature selection are shown in Table 3 and in (5).

Feature Selection and Feature Extraction: Di�erence between
Feature Selection (Top) and Feature Extraction (Bottom).
Consider

[[[[[[[[[[

�1�2...��−1��

]]]]]]]]]]
-→ [[[[[[[

��...���	
]]]]]]]

[[[[[[[[[[

�1�2...��−1��

]]]]]]]]]]
-→ [[[[[

01...0

]]]]]
=  (((

(

[[[[[[[[[[

�1�2...��−1��

]]]]]]]]]]
)))
)

.
(5)

4. Prior Knowledge

Prior knowledge has previously been used in microarray
studies with the objective of improving the classi	cation
accuracy. One early method for adding prior knowledge in
a machine learning algorithm was introduced by Segal et al.
[87]. It 	rst partitions the variables into modules, which are
gene sets that have the same statistical behaviour (share the
same parents in a probabilistic network), and then uses this
information to learn patterns.�emodules were constructed
using Bayesian networks and a Bayesian scoring function
to decide how well a variable 	ts in a module. �e parents
for each module were restricted to only some hundreds of
possible genes since those genesweremost likely to play a reg-
ulatory role for the other genes. To learn themodule networks
Regression Trees were used. �e gene expression data were
taken from yeast in order to investigate how it responds to

di�erent stress conditions. �e results were then veri	ed
using the Saccharomyces Genome Database. Adding prior
knowledge reduces the complexity of the model and the
number of parametersmaking analysis easier. A disadvantage
however of this method is that it relies only on gene expres-
sion data, which is noisy. Many sources of external biological
information are available and can be integrated withmachine
learning and/or dimensionality reduction methods. �is will
help overcoming one of the limitations of machine learning
classi	cation methods which is that they do not provide
the necessary biological connection with the output. Adding
external information in microarray data can give an insight
on the functional annotation of the genes and the role they
play in a disease, such as cancer.

4.1. Gene Ontology. GeneOntology (GO) terms are a popular
source of prior knowledge since they describe known func-
tions of genes. Protein information found in the genes’ GO
indices has been combined with their expressions in order to
identifymoremeaningful relationships among the genes [88].
A study infused GO information in a dissimilarity matrix
[89] using Lin’s similarity measure [90]. GO terms were also
used as a way of weighting the longest partial path shared
by two genes [91]. �is was used with expression data in
order to produce clusters using a pairwise similaritymatrix of
gene expressions and the weight of the GO paths. GO terms
information integrated with gene expression was used by
Chen and Wang [92], similar genes were clustered together,
and SPCA was used to 	nd the PCs. GO terms have been
used to derive information about the biological similarity of a
pair of genes. �is similarity was used as a modi	ed distance
metric for clustering [93]. Using a similar idea in a later
publication, similarity measures were used to assign prior
probabilities for genes to belong in speci	c clusters [94] using
an expectationmaximisationmodel. Not all of thesemethods
have been compared to other forms of dimensionality reduc-
tion such as PCA or manifold which is a serious limitation as
to their actual performance. It is however the case that in all
of those papers an important problem regarding GO terms is
described. Some genes do not belong in a functional group
and therefore cannot be used. Additionally GO terms tend
to be very general when it comes to the functional categories
and this leads to bigger gene clusters that are not necessarily
relevant in microarray experiments.

4.2. Protein-Protein Interaction. Other studies have used
protein-protein interaction (PPI) networks for the same pur-
pose [95]. Subnetworks are identi	ed using PPI information.
Iteratively more interactions are added to each subnetwork
and scored usingmutual information between the expression
information and the class label in order to 	nd the most
signi	cant subnetwork. �e initial study showed that there is
potential for using PPI networks but there is a lot ofwork to be
done. Prior knowledge methods tend to use prior knowledge
in order to 	lter data out or even penalise features. �ese
features are called outliers and normally are the ones that vary
from the average. �e Statistical-Algorithmic Method for
Bicluster Analysis (SAMBA) algorithm [96] is a biclustering
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Table 3: Advantages and disadvantages between feature selection and feature extraction.

Method Advantages Disadvantages

Selection Preserving data characteristics for interpretability

Discriminative power

Lower shorter training times

Reducing over	tting

Extraction
Higher discriminating power Loss of data interpretability

Control over	tting when it is unsupervised Transformation maybe expensive

A comparison between feature selection and feature extraction methods.

framework that combines PPI and DNA binding informa-
tion. It identi	es subsets that jointly respond in a subset of
conditions. It creates a bipartite graph that corresponds to
genes and conditions. A probabilistic model is created based
on weights assigned on the signi	cant biclusters. �e results
for lymphoma microarray showed that the clusters produced
were highly relevant to the disease. A positive feature of the
SAMBA algorithms is that it can detect overlapping subsets
but it has important limitations in the weighting process. All
sources are assigned equal weights and they are not penalised
according to their importance or reliability of the source.

4.3. Gene Pathways. �emost promising results were shown
when using pathway information as prior knowledge. Many
databases containing information on networks of molecular
interaction in di�erent organisms exist (KEGG, Pathway
Interaction Database, Reactome, etc.). It is widely believed
that these lower level interactions can be seen as the building
blocks of genetic systems and can be used to understand high-
level functions of the biological systems. KEGG pathways
have been quite popular in network constrained methods
which use networks to identify gene relations to diseases. Not
many methods used pathway knowledge but most of them
treat pathways as networks with directed edges. A network-
based penalty function for variable selection has been
introduced [97]. �e framework used penalised regression,
a�er imposing a smoothness assumption on the regression
coe
cients based on their location on the gene network. �e
biological motivation of this penalty is that the genes that are
linked on the networks are expected to have similar func-
tions and therefore bigger coe
cients. �e weights are also
penalised using the sum of squares of the scaled di�erence of
the coe
cients between neighbour vertices in the network in
order to smooth the regression coe
cients. �e results were
promising in terms of identifying networks and subnetworks
of genes that are responsible for a disease. However the
authors only used 33 networks and not the entire set of avail-
able networks. A similar approach also exists. It is theoretical
model which according to the authors can be applied to
cancermicroarray data but to date has not been explored [98].
�e proposed method was based on Fourier transformation
and spectral graph analysis.�e gene expression pro	les were
reconstructed using prior knowledge to modify the distance
from gene networks. �ey use the assumption that the infor-
mation lies in the low frequency component of the expres-
sion while the high frequency component is mostly noise.
Using spectral decomposition the smaller eigenvalues and

corresponding eigenvectors are kept (the smaller the eigen-
value the smoother the graph). A linear classi	er can be
inferred by penalising the regression coe
cients based on
network information. �e biological Pathway-Based Feature
Selection (BPFS) algorithm [99] also utilizes pathway infor-
mation formicroarray classi	cation. It uses SVMs to calculate
the marginal classi	cation power of the genes and puts those
genes in a separate set. �en the in�uence factor for each of
the genes in the second set is calculated. �is is an indication
of the interaction of every gene in the second set with the
already selected genes. If the in�uence factor is low the genes
are added to the set of the selected genes.�e in�uence factor
is the sum of the shortest pathway distances that connect the
gene to be added with each other gene in the set.

5. Summary

�is paper has presented di�erent ways of reducing the
dimensionality of high-dimensional microarray cancer data.
�e increase in the amount of data to be analysed has
made dimensionality reduction methods essential in order
to get meaningful results. Di�erent feature selection and
feature extraction methods were described and compared.
�eir advantages and disadvantages were also discussed. In
addition we presented several methods that incorporate prior
knowledge from various biological sources which is a way
of increasing the accuracy and reducing the computational
complexity of existing methods.
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[9] Y. Saeys, I. Inza, and P. Larrañaga, “A review of feature selection
techniques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp.
2507–2517, 2007.

[10] A. L. Blum and P. Langley, “Selection of relevant features and
examples inmachine learning,”Arti�cial Intelligence, vol. 97, no.
1-2, pp. 245–271, 1997.

[11] S. Das, “Filters, wrappers and a boosting-based hybrid for
feature selection,” in Proceedings of the 18th International Con-
ference on Machine Learning (ICML ’01), pp. 74–81, Morgan
Kaufmann Publishers, San Francisco, Calif, USA, 2001.

[12] E. P. Xing, M. I. Jordan, and R. M. Karp, “Feature selection for
high-dimensional genomic microarray data,” in Proceedings of
the 18th International Conference onMachine Learning, pp. 601–
608, Morgan Kaufmann, 2001.

[13] T. Bø and I. Jonassen, “New feature subset selection procedures
for classi	cation of expression pro	les,” Genome biology, vol. 3,
no. 4, 2002.

[14] K. Yeung and R. Bumgarner, “Correction: multiclass classi	-
cation of microarray data with repeated measurements: appli-
cation to cancer,” Genome Biology, vol. 6, no. 13, p. 405, 2005.

[15] C. Ding and H. Peng, “Minimum redundancy feature selection
from microarray gene expression data,” in Proceedings of the
IEEE Bioinformatics Conference (CSB ’03), pp. 523–528, IEEE
Computer Society, Washington, DC, USA, August 2003.

[16] X. Liu, A. Krishnan, and A. Mondry, “An entropy-based gene
selection method for cancer classi	cation using microarray
data,” BMC Bioinformatics, vol. 6, article 76, 2005.

[17] M. A.Hall, “Correlation-based feature selection for discrete and
nu- meric class machine learning,” in Proceedings of the 17th
International Conference on Machine Learning (ICML ’00), pp.
359–366, Morgan Kaufmann, San Francisco, Calif, USA, 2000.

[18] Y. Wang, I. V. Tetko, M. A. Hall et al., “Gene selection from
microarray data for cancer classi	cation—a machine learning
approach,” Computational Biology and Chemistry, vol. 29, no. 1,
pp. 37–46, 2005.

[19] M. A. Hall and L. A. Smith, “Practical feature subset selection
for machine learning,” in Proceedings of the 21st Australasian
Computer Science Conference (ACSC ’98), February 1998.

[20] G. Mercier, N. Berthault, J. Mary et al., “Biological detection
of low radiation doses by combining results of two microarray
analysis methods,” Nucleic Acids Research, vol. 32, no. 1, article
e12, 2004.

[21] Y. Wang and F. Makedon, “Application of relief-F feature
	ltering algorithm to selecting informative genes for cancer
classi	cation using microarray data,” in Proceedings of IEEE
Computational Systems Bioinformatics Conference (CSB ’04), pp.
497–498, IEEE Computer Society, August 2004.

[22] G. Weber, S. Vinterbo, and L. Ohno-Machado, “Multivariate
selection of genetic markers in diagnostic classi	cation,” Arti-
�cial Intelligence in Medicine, vol. 31, no. 2, pp. 155–167, 2004.
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