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Machine learning has shown utility in detecting patterns within large, unstructured, and
complex datasets. One of the promising applications of machine learning is in precision
medicine, where disease risk is predicted using patient genetic data. However, creating an
accurate prediction model based on genotype data remains challenging due to the so-
called “curse of dimensionality” (i.e., extensively larger number of features compared to the
number of samples). Therefore, the generalizability of machine learning models benefits
from feature selection, which aims to extract only the most “informative” features and
remove noisy “non-informative,” irrelevant and redundant features. In this article, we
provide a general overview of the different feature selection methods, their advantages,
disadvantages, and use cases, focusing on the detection of relevant features (i.e., SNPs)
for disease risk prediction.
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1 INTRODUCTION

1.1 Precision Medicine and Complex Disease Risk Prediction
The advancement of genetic sequencing technology over the last decade has re-ignited interest in
precision medicine and the goal of providing healthcare based on a patient’s individual genetic
features (Spiegel and Hawkins, 2012). Prediction of complex disease risk (e.g., type 2 diabetes,
obesity, cardiovascular diseases, etc. . .) is emerging as an early success story. Successful prediction of
individual disease risk has the potential to aid in disease prevention, screening, and early treatment
for high-risk individuals (Wray et al., 2007; Ashley et al., 2010; Manolio, 2013).

Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs)
within the human genome that are associated with complex diseases at the population level (Altshuler
et al., 2008; Donnelly, 2008; Hindorff et al., 2009). However, most of the SNPs that have been associated
with phenotypes have small effect sizes (Visscher et al., 2017), and collectively they only explain a fraction
of the estimated heritability for each phenotype (Makowsky et al., 2011). This is known as the missing
heritability problem. One possible explanation for the missing heritability is that GWAS typically utilize
univariate filter techniques (such as the χ2 test) to evaluate a SNP’s association with a phenotype SNP
separately (Han et al., 2012).While univariate filter techniques are popular because of their simplicity and
scalability, they do not account for the complex interactions between SNPs (i.e., epistasis effects). Ignoring
interactions amongst genetic features might explain a significant portion of the missing heritability of
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complex diseases (Maher, 2008; König et al., 2016). Furthermore,
being population-based, GWAS do not provide a model for
predicting individual genetic risk. Thus, translation of GWAS
association to individualized risk prediction requires
quantification of the predictive utility of the SNPs that are
identified. Typically, genetic risk prediction models are built by:
1) Polygenic risk scoring; or 2) Machine learning (ML) (Abraham
and Inouye, 2015).

1.2 Machine Learning for Individualized
Complex Disease Risk Prediction
ML-based approaches are a potentially effective way of predicting
individualized disease risk (Figure 1). Unlike other popular
predictive models (e.g., Polygenic Risk Scores, which use a fixed
additive model), ML has the potential to account for complex
interactions between features (i.e. SNP-SNP interaction) (Ho
et al., 2019). ML algorithms utilize a set of advanced function-
approximation algorithms (e.g., support-vector machine, random
forests, K-nearest neighbor, artificial neural network, etc. . .) to create
a model that maps the association between a set of risk SNPs and a
particular phenotype (Kruppa et al., 2012; Mohri et al., 2018; Uddin
et al., 2019). Thus, a patient’s genotype data can be used as an input
to the predictive ML algorithm to predict their risk for developing a
disease (Figure 1B).

The prediction of disease risk using SNP genotype data can be
considered as a binary classification problem within supervised
learning. There is a generalized workflow for creating a predictive

ML model from a case-control genotype dataset (Figure 1A). The
first step is data pre-processing, which includes quality control and
feature selection (Figure 1A, step 1). Quality control includes, but is
not limited to, removing low-quality SNPs (e.g., those with low call
rates or that deviate from the Hardy-Weinberg Equilibrium), and
samples (e.g. individuals with missing genotypes). SNPs with low
minimum allele frequency (e.g., less than 0.01) can also be removed.
Feature selection reduces the training dataset’s dimensionality by
choosing only features that are relevant to the phenotype. Feature
selection is crucial in order to produce a model that generalizes well
to unseen cohorts (see Section 1.3). The goal of data pre-processing
is to produce a high-quality dataset with which to train the
prediction model.

The second step in a generalized predictive ML modelling
workflow is the selection of the specific learning algorithm and
setting the learning parameters (i.e. the “hyperparameters”)
(Figure 1A, step 2). Hyperparameters are algorithm-specific
parameters whose values are set before training. Examples
include the number of trees in a random forest, the type of
kernel in an SVM, or the number of hidden layers in an artificial
neural network. Different learning algorithms use different
hyperparameters, and their values affect the complexity and
learning behaviour of the model.

Once the hyperparameters have been set, the pre-processed dataset
is used to train the chosen algorithm (Figure 1A, step 3). This training
step allows the algorithm to “learn” the association between the
features (i.e., SNPs) and the class labels (i.e., phenotype status).
Once learnt, the trained model’s predictive performance (e.g.

FIGURE 1 | (A)Generalized workflow for creating a predictive ML model from a genotype dataset. (B) The final model can then be used for disease risk prediction.
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accuracy, precision, AUC) is validated (Figure 1A, step 4). This is
typically performed by K-fold cross-validation to estimate the model’s
performance on unseen data. Cross-validation on unseen data ensures
that the trainedmodel does not overfit the training data. During cross-
validation, the training dataset is equally split into K parts, and each
part will be used as a validation/testing set. For example, in 5-fold (K =
5) cross-validation, the dataset is divided into 5 equal parts. Themodel
is then trained on four of these parts and the performance is tested on
the one remaining part. This process is repeated five times until all
sections have been used as the testing set. The average performance of
the model across all testing sets is then calculated.

The estimated model performance from cross-validation can
be used as a guide for iterative refinement. During iterative
refinement different aspects of the model building process
(step 1–4) are repeated and refined. For example, different:
hyperparameters (hyperparameter tuning); learning algorithms,
feature selection methods, or quality control thresholds can all be
tried. The combination that produces the best average
performance (in cross-validation) is chosen to build the final
classification model. The process of selecting the best model
development pipeline is known as model selection. The final
classification model can then be tested against an independent
(external) dataset to confirm the model’s predictive performance,
and finally be used for disease risk prediction (Figure 1B).

1.3 Feature Selection to Reduce SNP Data
Dimensionality
Overcoming the curse of dimensionality is one of the biggest
challenges in building an accurate predictive ML model from

high dimensional data (e.g. genotype or GWAS data). For
example, a typical case-control genotype dataset used in a GWAS
can contain up to a million SNPs and only a few thousands of
samples (Szymczak et al., 2009). Using such data directly to train the
ML classification algorithms is likely to generate an overfittedmodel,
which performs well on the training data but poorly on unseen data.
Overfitting happens when the model picks up the noise and random
fluctuations in the training data as a learned concept. Furthermore,
the excessive number of features increases the learning and
computational time significantly because the irrelevant and
redundant features clutter the learning algorithm (Yu and Liu, 2004).

Feature selection is a common way to minimize the problem of
excessive and irrelevant features (Figure 2). Generally, feature
selection methods reduce the dimensionality of the training data
by excluding SNPs that: 1) have low or negligible predictive power
for the phenotype class; and 2) are redundant to each other
(Okser et al., 2014). Effective feature selection can increase
learning efficiency, predictive accuracy, and reduce the
complexity of the learned results (Koller and Sahami, 1996;
Kohavi and John, 1997; Hall, 2000). Furthermore, the SNPs
that are incorporated into the predictive model (following
feature selection) are typically assumed to be associated with
loci that are mechanistically or functionally related to the
underlying disease etiology (Pal and Foody, 2010; López et al.,
2018). Therefore, extracting a subset of the most relevant features
(through feature selection) could help researchers to understand
the biological process(es) that underlie the disease (Cueto-López
et al., 2019). In this context, feature selection can be said to be
analogous to the identification of SNPs that are associated with
phenotypes in GWAS.

FIGURE 2 | Illustration of feature selection process. (A) The original dataset may contain an excessive number of features and a lot of irrelevant SNPs. (B) Feature
selection reduces the dimensionality of the dataset by excluding irrelevant features and including only those features that are relevant for prediction. The reduced dataset
contains relevant SNPs (rSNPs) which can be used to train the learning algorithm. No: original number of features, Nr: number of remaining relevant SNPs.
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1.4 The Problem of Feature Redundancy
and Feature Interaction in SNP Genotype
Dataset
GWAS typically identify multiple SNPs close to each other within
a genetic window to be associated with a disease (Broekema et al.,
2020). This occurs because of linkage disequilibrium (LD), which
is the correlation between nearby variants such that they are
inherited together within a population more often than by
random chance (Figure 3). In ML and prediction contexts,
these highly correlated SNPs can be considered redundant
because they carry similar information and can substitute for
each other. The inclusion of redundant features has been shown
to degrade ML performance and increase computation time
(Kubus, 2019; Danasingh et al., 2020). Therefore, ideally,
feature selection techniques should select one SNP (e.g., the
SNP with the highest association score) to represent the entire
LD cluster as a feature for prediction. However, since the SNP
with the highest association signal is not necessarily the causal
variant of that locus (Onengut-Gumuscu et al., 2015), geneticists
often link an association signal to the locus they belong to rather
than the SNP itself (Brzyski et al., 2017). If a researcher aims to
identify the true causal variant within an association locus then
fine-mapping techniques must be employed (see (Spain and
Barrett, 2015; Broekema et al., 2020))

Relevant features may appear irrelevant (or weakly relevant)
on their own but are highly correlated to the class in the presence
of other features. This situation arises because these features are
only relevant to the phenotype when they interact with other
features (i.e., they are epistatic). Figure 4 shows a simplified
example of a feature interaction that arises because of epistasis. In
this example, there is an equal number of SNP 1 = AA, Aa, or aa
in cases and controls, which means that SNP 1 does not affect the
distribution of the phenotype class. The same is true for SNP 2.
However, the allele combinations between SNP1 and SNP2 does
affect phenotype distribution. For example, there are more
combinations of SNP1 = AA and SNP2 = AA in cases than

controls, consistent with this allele combination conferring
increased risk (Figure 4B).

It is generally advisable to consider both feature redundancy
and feature interaction during feature selection. This is especially
true when dealing with genotype data, where linkage
disequilibrium (LD) and the non-random association of alleles
create redundant SNPs within loci. Moreover, complex epistatic
interactions between SNPs can account for some of the missing
heritability of complex diseases and should be considered when
undertaking feature selection. Indeed, studies have demonstrated
the benefits to predictive power of ML approaches that consider
feature interactions when compared to those that only consider
simple additive risk contributions (Couronné et al., 2018; Ooka
et al., 2021). However, searching for relevant feature interactions
undoubtedly comes with additional computational costs. As such,
deciding whether different aspects of it must be done
(i.e., searching for relevant interactions) is a problem-specific
question that depends upon the nature of the input data and the a
priori assumptions of the underlying mechanisms of the disease.
For example, if the genetic data originates from whole-genome
sequencing (WGS), or a genotyping array, and the target
phenotype is a complex disease (i.e. best explained by non-
linear interactions between loci) then using a feature selection
approach that considers interactions will be beneficial. By
contrast, if the input genetic data does not uniformly cover
the genome (i.e., the density of the SNPs is much higher in
known disease associated loci; e.g. Immunochip genotyping
array) then interactions may not aid the selection as the lack
of data leads to potentially important interactions with SNPs
outside known disease associated loci being missed. Furthermore,
not all diseases are recognized as involving complex epistatic
effects. In such cases, searching for feature interactions might lead
to additional computation complexity without obvious predictive
benefits. For example, Romagnoni et al. (Romagnoni et al., 2019)
reported that searching for possible epistatic interactions did not
yield a significant increase in predictive accuracy for Crohn’s
disease. Notably, the authors concluded that epistatic effects
might make limited contributions to the genetic architecture
of Crohn’s disease, and the use of the Immunochip
genotyping array might have caused interaction effects with
SNPs outside of the known autoimmune risk loci to have been
missed.

The goal of feature selection is to select a minimum subset of
features (which includes individually relevant and interacting
features) that can be used to explain the different classes with as
little information loss as possible (Yu and Liu, 2004). It is possible
that there are multiple possible minimum feature subsets due to
redundancies. Thus, this is “a minimum subset” and not “the
minimum set.”

In the remainder of this manuscript we discuss the
advantages and disadvantages of representative filter,
wrapper, and embedded methods of feature selection
(Section 2). We then assess expansions of these feature
selection methods (e.g. hybrid, ensemble, and integrative
methods; Sections 3.1–3.2) and exhaustive search methods
for higher-order (≥3) SNP-SNP interaction/epistasis effects
(Section 4).

FIGURE 3 | Lead SNPs in GWAS studies need not be the causal variant
due to linkage disequilibrium. Illustration of GWAS result where SNPs (circles)
are colored according to linkage disequilibrium (LD) strength with the true
causal variant within the locus (indicated with a black star). Due to LD,
several SNPs near the true causal variant may show a statistically significant
association with the phenotype. In ML, these highly correlated SNPs can be
considered redundant to each other, therefore only one representative SNP
for this LD cluster is required as a selected feature. In this example, the causal
variant is not the variant with the strongest GWAS association signal.
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2 FEATURE SELECTION TECHNIQUES

The feature selectionmethods that are routinely used in classification
can be split into three methodological categories (Guyon et al., 2008;

Bolón-Canedo et al., 2013): 1) filters; 2) wrappers; and 3) embedded
methods (Table 1). These methods differ in terms of 1) the feature
selection aspect being separate or integrated as a part of the learning
algorithm; 2) evaluation metrics; 3) computational complexities; 4)

FIGURE 4 | The functional impacts of SNPs can interact and may be epistatic. (A) Individually, neither SNP1 nor SNP2 affect phenotype distribution. (B) Taken
together, allele combinations between SNP1 and SNP2 can affect phenotype distribution (marked with yellow star).

TABLE 1 | Strengths, weaknesses, and examples of the three main feature selection categories.

Feature Selection
Method

Strengths Weaknesses Examples

Filter—Univariate - Fast and scalable - Feature dependencies not
modeled

- χ2/chi-squared test

- Independent of classifier - Interaction with classifer not
modeled

- Fisher’s exact test

- Reduce risk of overfitting - Pearson correlation
- Information gain
- t-test
- Mann-Whitney U test

Filter—Multivariate - Can model feature
dependencies

- Slower and not as scalable as
univariate filters

- Fast correlation-based filter (FCBF) (Yu and Liu, 2004)

- Independent of the
classifier

- Interaction with classifier not
modeled

- Minimal-redundancy-maximal-relevance (mRMR) (Peng et al., 2005)

- Less risk of overfitting - Relief-based algorithms (Kira and Rendell, 1992; Kononenko, 1994; Moore
and White, 2007; Greene et al., 2009; Greene et al., 2010;
Granizo-Mackenzie and Moore, 2013; Urbanowicz et al., 2018a)

Wrapper - Model feature
dependencies

- Slower than filter and embedded
methods

- Sequential forward and backward selection (Kittler, 1978)

- Better performance than
filter method

- More prone to overfitting - Randomized hill climbing (Skalak, 1994)

-Model interaction with
classifier

- Selected features are classifier
dependent

- Genetic algorithm (Hayes-Roth, 1975)

- Recursive feature elimination

Embedded - Model feature
dependencies

- Slower than filter methods - Random forest (Breiman, 2001)

- Faster than wrapper
method

- Selected features are classifier
dependent

- Lasso (L1) or elastic net regression

- Model interaction with
classifier
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the potential to detect redundancies and interactions between
features. The particular strengths and weaknesses of each
methodological category mean they are more suitable for
particular use cases (Saeys et al., 2007; Okser et al., 2013; De
et al., 2014; Remeseiro and Bolon-Canedo, 2019) (Table 1).

2.1 Filter Methods for Feature Selection
Filter methods use feature ranking as the evaluation metric for
feature selection. Generally, features are ranked based on their
scores in various statistical tests for their correlation with the
class. Features that score below a certain threshold are removed,

FIGURE 5 | Generalized illustrations of methods. (A) Schematic of filter method, where feature selection is independent of the classifier. (B)The wrapper method.
Feature selection relies on the performance of the classifier algorithm on the various generated feature subsets. (C) The embedded method. In embedded methods,
feature selection is integrated as a part of the classifier algorithm. (D) Hybrid methods. In hybrid methods, features are reduced through the application of a filter method
before the reduced feature set is passed through a wrapper or embeddedmethod to obtain the final feature subset. (E) Integrative methods. In integrativemethods,
external information is used as a filter to reduce feature search space before the reduced feature set is passed through a wrapper or embeddedmethod to obtain the final
feature subset.
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while features that score above it are selected. Once a subset of
features is selected, it can then be presented as an input to the
chosen classifier algorithm. Unlike the other feature selection
methods (wrapper and embedded), filter methods are
independent/separate from the classifier algorithm
(Figure 5A). This separation means that filter methods are
free from classifier’s bias which reduces overfitting. However,
this independence also means that interaction with the classifier is
not considered during feature selection (John et al., 1994). Thus,
the selected feature set is more general and not fine-tuned to any
specific classifier (Zhang et al., 2013). This lack of tuning means
that filter methods tend to produce models that have reduced
predictive performance compared to those produced by wrapper
or embedded methods. The main advantage of filter methods
over other feature selection methods is that they are generally less
computationally demanding, and thus can easily be scaled to very
high dimensional data (e.g. SNP genotype datasets).

Existing filter methods can be broadly categorized as either
univariate or multivariate. Univariate methods test each feature
individually, while multivariate methods consider a subset of
features simultaneously. Due to their speed and simplicity,
univariate methods (e.g., χ2 test, Fisher’s exact test,
information gain, Euclidean distance, Pearson correlation,
Mann-Whitney U test, t-test, etc...) have attracted the most
attention in fields that work with high dimensional datasets
(Saeys et al., 2007; Bolón-Canedo et al., 2014). However, since
each feature is considered separately, univariate methods only
focus on feature relevance and cannot detect feature redundancy,
or interactions. This decreases model predictor performance
because: 1) the inclusion of redundant features makes the
feature subset larger than necessary; and 2) ignoring feature
interactions can lead to the loss of important information.

More advanced multivariate filter techniques, including
mutual information feature selection (MIFS) (Battiti, 1994),
minimal-redundancy-maximal-relevance (mRMR) (Peng et al.,
2005), conditional mutual information maximization (CMIM)
(Schlittgen, 2011), and fast correlation-based filter (FCBF), (Yu
and Liu, 2004), have been developed to detect relevant features
and eliminate redundancies between features without
information loss. Other algorithms like BOOST (Wan et al.,
2010), FastEpistasis (Schüpbach et al., 2010), and TEAM
(Zhang et al., 2010) have been designed to exhaustively search
for all possible feature interactions. However, they are restricted
to two-way (pairwise) interactions and they cannot eliminate
redundancy. More recent algorithms (e.g., the feature selection
based on relevance, redundancy and complementarity [FS-RRC]
(Li et al., 2020), Conditional Mutual Information-based Feature
Selection considering Interaction [CMIFSI] (Liang et al., 2019))
have been demonstrated to be able to detect feature interactions
and eliminate redundancies. However, again, they are mostly
constrained to pair-wise feature interactions. Another popular
family of filter algorithms is the Relief-based algorithm (RBA)
family (e.g., Relief (Kira and Rendell, 1992), ReliefF (Kononenko,
1994), TURF (Moore and White, 2007), SURF (Greene et al.,
2009), SURF* (Greene et al., 2010), MultiSURF (Urbanowicz
et al., 2018a), MultiSURF* (Granizo-Mackenzie and Moore,
2013), etc. . .). Relief does not exhaustively search for feature

interactions. Instead, it scores the importance of a feature
according to how well the feature’s value distinguishes samples
that are similar to each other (e.g., similar genotype) but belong to
different classes (e.g., case and control). Notably, RBAs can detect
pair-wise feature interactions, some RBAs (e.g., ReliefF,
MultiSURF) can even detect higher order (>2 way)
interactions (Urbanowicz et al., 2018a). However, RBAs
cannot eliminate redundant features. Different RBAs have
been reviewed and compared previously (Urbanowicz et al.,
2018a; Urbanowicz et al., 2018b).

Despite its advantages, it should be noted that multivariate
methods are more computationally heavy than univariate
methods and thus cannot as effectively be scaled to very high
dimensional data. Furthermore, multivariate filters still suffer
from some of the same limitations as univariate filters due to their
independence from the classifier algorithm (i.e., it ignores
interaction with the classifier). In this context, wrapper and
embedded methods represent an alternative way to perform
multivariate feature selection while allowing for interactions
with the classifier although again there is a computational cost
(see Sections 2.2, 2.3).

2.1.1 The Multiple Comparison Correction Problem
and Choosing the Appropriate Filter Threshold
Filter methods often return a ranked list of features rather than an
explicit best subset of features (as occurs in wrapper methods).
For example, univariate statistical approaches like χ2 test and
fisher exact test rank features based on p value. Due to the large
number of hypothesis tests made, relying on the usual statistical
significance threshold of p < 0.05 will result in a preponderance of
type 1 errors (false positive). As an illustration, if we perform
hypothesis tests on 1 million SNPs at a p value threshold <0.05,
we can expect around 50,000 false positives, which is a
considerable number. Therefore, choosing an appropriate
threshold for relevant features adds a layer of complexity to
predictive modelling when using feature selection methods that
return ranked feature lists.

For methods that return a p value, the p value threshold is
commonly adjusted by controlling for FWER (family-wise error
rate) or FDR (false discovery rate). FWER is the probability of
making at least one type 1 error across all tests performed (i.e., 5%
FWER means there is 5% chance of making at least one type 1
error across all hypothesis tests). FWER can be controlled below a
certain threshold (most commonly <5%) by applying a
Bonferroni correction (Dunn, 1961). The Bonferroni
correction works by dividing the desired probability of type 1
error p (e.g., p < 0.05) by the total number of independent
hypotheses tested. This is a relatively conservative test that
assumes that all the hypotheses being tested are independent
of each other. However, this assumption is likely to be violated in
genetic analyses where SNPs that are close to each other in the
linear DNA sequence tend to be highly correlated due to LD
(Figure 3). Thus, the effective number of independent hypothesis
tests is likely to be smaller than the number of SNPs examined.
Not taking LD into account will lead to overcorrection for the
number of tests performed. For example, the most commonly
accepted p value threshold used in GWAS (p < 5 × 10−8) is based
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on a Bonferroni correction on all independent common SNPs
after taking account of the LD structure of the genome
(Dudbridge and Gusnanto, 2008; Xu et al., 2014). Despite its
widespread use in GWAS, this threshold has been criticized for
being too conservative, leading to excessive false negatives
(Panagiotou and Ioannidis, 2012). Panagiotou et al.
(Panagiotou and Ioannidis, 2012) noted that a considerable
number of legitimate and replicable associations can have p
values just above this threshold; therefore, a possible relaxation
of this commonly accepted threshold has been suggested.

Alternatively, one can apply p value adjustment to control for
FDR instead of FWER. Controlling for FDR is a less stringent
metric than controlling for FWER because it is the allowed
proportion of false positives among all positive findings
(i.e., 5% FDR means that approximately 5% of all positive
findings are false). Despite potentially including more false
positives in the selected features, FDR has been shown to be
more attractive if prediction (rather than inference) is the end
goal (Abramovich et al., 2006).

FDR can be controlled by applying the Benjamini-Hochberg
(B-H) procedure (Benjamini and Hochberg, 1995). However, like
the Bonferroni correction, the B-H procedure assumes
independent hypothesis tests. To satisfy this assumption, for
example, Brzyski et al. (2017) proposed a strategy that clusters
tested SNPs based on LD before applying B–H. Alternatively,
there also exist procedures that control FDR without making any
assumptions such as the Benjamini-Yekutieli (B-Y) procedure
(Benjamini and Yekutieli, 2001). However, the B-Y procedure is
more stringent, leading to less power compared to procedures
that assume independence like B-H (Farcomeni, 2008).

The question remains, when applying a Bonferroni, B-H or
B-Y correction, which FWER/FDR threshold is optimum (e.g., 5,
7, or 10%)? In a ML context, this threshold can be viewed as a
hyperparameter. Thus, the optimum threshold that produces the
best performance can be approximated by cross-validation as a
part of the model selection process (Figure 1A, step 5). The
threshold for feature selection methods that do not directly
produce a p value (e.g., multivariate algorithms like mRMR
(Peng et al., 2005)) can also be chosen using cross validation
(e.g. by taking the top n SNPs as the selected features).

2.2 Wrapper Methods for Feature Selection
In contrast to filter methods, wrapper methods use the
performance of the chosen classifier algorithm as a metric to
aid the selection of the best feature subset (Figure 5B). Thus,
wrapper methods identify the best-performing set of features for
the chosen classifier algorithm (Guyon and Elisseeff, 2003;
Remeseiro and Bolon-Canedo, 2019). This is the main
advantage of wrapper methods, and has been shown to result
in higher predictive performance than can be obtained with filter
methods (Inza et al., 2004; Wah et al., 2018; Ghosh et al., 2020).
However, exhaustive searches of the total possible feature
combination space are computationally infeasible (Bins and
Draper, 2001). Therefore, heuristic search strategies across the
space of possible feature subsets must be defined (e.g.,
randomized (Mao and Yang, 2019), sequential search (Xiong
et al., 2001), genetic algorithm (Yang and Honavar, 1998; Li et al.,

2004), ant colony optimization (Forsati et al., 2014), etc. . .) to
generate a subset of features. A specific classification algorithm is
then trained and evaluated using the generated feature subsets.
The classification performances of the generated subsets are
compared, and the subset that results in the best performance
[typically estimated using AUC (area under the receiver operating
characteristic curve)] is chosen as the optimum subset.
Practically, any search strategy and classifier algorithm can be
combined to produce a wrapper method.

Wrapper methods implicitly take into consideration feature
dependencies, including interactions and redundancies, during
the selection of the best subset. However, due to the high number
of computations required to generate the feature subsets and
evaluate them, wrapper methods are computationally heavy
(relative to filter and embedded methods) (Chandrashekar and
Sahin, 2014). As such, applying wrapper methods to SNP
genotype data is usually not favored, due to the very high
dimensionality of SNP data sets (Kotzyba - Hibert et al., 1995;
Bolón-Canedo et al., 2014).

Wrapper methods are dependent on the classifier used.
Therefore, there is no guarantee that the selected features will
remain optimum if another classifier is used. In some cases, using
classifier performance as a guide for feature selection might
produce a feature subset with good accuracy within the
training dataset, but poor generalizability to external datasets)
(i.e., more prone to overfitting) (Kohavi and John, 1997).

Unlike filter methods which produce a ranked list of features,
wrapper methods produce a “best” feature subset as the output.
This has both advantages and disadvantages. One advantage of
this is that the user does not need to determine the most optimum
threshold or number of features selected (because the output is
already a feature subset). The disadvantage is that it is not
immediately obvious which features are relatively more
important within the set. Overall, this means that although
wrapper methods can produce better classification
performance, they are less useful in exposing the relationship
between the features and the class.

2.3 Embedded Methods for Feature
Selection
In an embedded method, feature selection is integrated or built
into the classifier algorithm. During the training step, the
classifier adjusts its internal parameters and determines the
appropriate weights/importance given for each feature to
produce the best classification accuracy. Therefore, the search
for the optimum feature subset and model construction in an
embedded method is combined in a single step (Guyon and
Elisseeff, 2003) (Figure 5C). Some examples of embedded
methods include decision tree-based algorithms (e.g., decision
tree, random forest, gradient boosting), and feature selection
using regularization models (e.g., LASSO or elastic net).
Regularization methods usually work with linear classifiers
(e.g., SVM, logistic regression) by penalizing/shrinking the
coefficient of features that do not contribute to the model in a
meaningful way (Okser et al., 2013). It should be noted that like
many filter methods, decision tree-based and regularization
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methods mentioned above also return a ranked list of features.
Decision tree-based algorithms rank feature importance based on
metrics like the Mean Decrease Impurity (MDI) (Louppe et al.,
2013). For regularization methods, the ranking of features is
provided by the magnitude of the feature coefficients.

Embedded methods are an intermediate solution between
filter and wrapper methods in the sense that the embedded
methods combine the qualities of both methods (Guo et al.,
2019). Specifically, like filter methods, embedded methods are
computationally lighter than wrapper methods (albeit still more
demanding than filter methods). This reduced computational
load occurs even though the embedded method allows for
interactions with the classifier (i.e., it incorporates classifier’s
bias into feature selection, which tends to produce better
classifier performance) as is done for wrapper methods.

Some embedded methods (i.e. . ., random forest and other
decision tree-based algorithms) do allow for feature interactions.
Notably, unlike most multivariate filters, tree-based approaches
can consider higher-order interactions (i.e., more than two).
Historically, random forest is rarely applied directly to whole-
genome datasets due to computational and memory constraints
(Szymczak et al., 2009; Schwarz et al., 2010). For example, it has
been shown that the original Random Forest algorithm
(developed by Breiman and Cutler, 2004) can be applied to
analyze no more than 10,000 SNPs (Schwarz et al., 2010).
Indeed, many applications of random forest have been focused
on low-dimensional dataset. For example, Bureau et al. (Bureau
et al., 2005), identified relevant SNPs from a dataset of just 42
SNPs. Lopez et al. (López et al., 2018) implemented a random
forest algorithm to identify relevant SNPs from a dataset that
contains a total of 101 SNPs that have been previously associated
with type 2 diabetes.

Nevertheless, recent advances in computational power, together
with optimizations and modifications of the random forest
algorithm (e.g., the Random Jungle (Schwarz et al., 2010)) have
resulted in efficiency gains that enable it to be applied to whole-
genome datasets. However, studies have indicated that the
effectiveness of random forest to detect feature interactions
declines as the number of features increases, thus limiting the

useful application of random forest approaches to highly
dimensional datasets (Lunetta et al., 2004; Winham et al., 2012).
Furthermore, the ability of standard random forest to detect feature
interactions is somewhat dependent on strong individual effects,
potentially losing epistatic SNPs with a weak individual effect.
Several modified random forest algorithms have been developed
to better account for epistatic interactions between SNPs with weak
individual effect (e.g., T-tree (Botta et al., 2014), GWGGI (Wei and
Lu, 2014)). These modified algorithms are still less sensitive than
exhaustive search methods (Section 4).

Unlike somemultivariate filters (Section 2.1), random forest does
not automatically eliminate redundant features. Indeed, Mariusz
Kubus (Kubus, 2019) showed that the presence of redundant
features decreases the performance of the random forest
algorithm. A potential solution to this problem includes filtering
out the redundant features before applying random forest [see
hybrid method (Section 3.1)]. Another possible solution might
be aggregating the information carried by these redundant
features (e.g., using haplotypes instead of SNPs to build the
model). Some software packages like T-tree (Botta et al., 2014)
have a built-in capability to account for redundancy by transforming
the input SNPs into groups of SNPs in high-LD with each other.

In contrast to decision tree-based algorithms, penalized methods
(e.g., LASSO) can discard redundant features, but it have no built-in
ability to detect feature interactions (Barrera-Gómez et al., 2017).
Instead, interaction terms must be explicitly included in the analysis
(Signorino and Kirchner, 2018). This is commonly achieved by
exhaustively including all (usually pairwise) interaction terms for the
features. While this approach can be effective for data with low
dimensionality, it can be inaccurate and computationally prohibitive
in highly dimensional data settings. Two-stage or hybrid strategies
that result in reduced search spaces are potential solutions to this
problem (Section 3.1).

2.4 Which Feature Selection Method Is
Optimal?
The “no free lunch” theorem states that in searching for a
solution, no single algorithm can be specialized to be optimal

FIGURE 6 | (A)Generalized illustration of ensemble methods. In ensemble methods, the outputs of several feature selection methods are aggregated to obtain the
final selected features. FS = feature selection. (B)Generalized illustration of majority voting systemwhere the different generated feature subsets are used to train and test
a specific classifier. The final output is the class predicted by the majority of the classifiers.
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for all problem settings (Wolpert and Macready, 1997). This is
true for feature selection methods, each of which has its own
strengths and weaknesses (Table 1), relying on different metrics
and underlying assumptions. Several studies have compared the
predictive performance of the different feature selection methods
(Forman, 2003; Bolón-Canedo et al., 2013; Aphinyanaphongs
et al., 2014; Wah et al., 2018; Bommert et al., 2020). These
comparative studies have resulted in the widely held opinion
that there is no such thing as the “best method” that is fit for all
problem settings.

Which feature selection method is best is a problem-specific
question that depends on the dataset being analyzed and the specific
goals that the researcher aims to accomplish. For example, suppose
the aim is to identify which features are relatively themost important
(which can be useful to help uncover the biological mechanism
behind the disease). In that case, filter methods are better because
they produce a ranked list of features and are the most
computationally efficient. If the dataset contains a relatively low
number of features (e.g., tens to hundreds), applying wrapper
methods likely results in the best predictive performance. Indeed,
in this case, model selection algorithms can be applied to identify
which wrapper algorithm is the best. By contrast, for the typical SNP
genotype dataset with up to a million features, computational
limitations mean that directly applying wrapper or embedded
methods might not be computationally practical even though
they model feature dependencies and tend to produce better
classifier accuracy than filter methods.

New feature selection strategies are emerging that either: 1),
use a two-step strategy with a combination of different feature
selection methods (hybrid methods); or 2), combine the output of
multiple feature selection methods (ensemble methods). These
strategies take advantage of the strengths of the different feature
selection methods that they include.

3 HYBRID METHODS—COMBINING
DIFFERENT FEATURE SELECTION
APPROACHES
Hybrid methods combine different feature selection methods in a
multi-step process to take advantage of the strengths of the
component methods (Figure 5D). For example, univariate
filter-wrapper hybrid methods incorporate a univariate filter
method as the first step to reduce the initial feature set size,
thus limiting the search space and computational load for the
subsequent wrapper step. In this instance, the filter method is
used because of its simplicity and speed. By contrast, the wrapper
method is used because it can model feature dependencies and
allow interactions with the classifier, thus producing better
performance. Typically, a relaxed scoring threshold is used for
the filtering step because the main goal is to prioritize a subset of
SNPs for further selection by the wrapper method. For example,
when using the univariate χ2 test in the initial feature selection
step, instead of the genome-wide significance threshold
commonly used in GWAS (p > 5 × 10–8), one might choose a
less stringent threshold (e.g., p > 5 × 10–4), or adjust by FDR
instead. While this might result in more false positives, these can
be further eliminated and SNPs with weak individual effects, but
strong interacting effects will be able to survive the filtering step
and thus can be detected by the wrapper method in the
subsequent step. Practically, any filter, wrapper, or embedded
method can be combined to create a hybrid method.

In a hybrid method, implementing the filter step reduces the
feature search space thus allowing for the subsequent use of
computationally expensive wrapper or embedded methods for
high-dimensional datasets (which might otherwise be
computationally unfeasible). For example, Yoshida and Koike
(Yoshida and Koike, 2011) presented a novel embedded method

TABLE 2 | Summary of algorithms reviewed to detect epistasis along with datasets applications, computational time, and memory requirements. Data are taken from three
comparative studies, each of which are colour coded differently. N/A, not available.

Method Algorithm/
software

Exhaustive
search ?

Detects Higher-
order Interaction ?

Dataset No.
SNPs

Time Mem References

Filter (multivariate) BOOST Yes No Colorectal cancer SNPs
(CORRECT study)

253,657 5 h N/A Kafaie et al.
(2021)FastEpistasis Yes No 253,657 98.5 h N/A

TEAM Yes No 253,657 271 h N/A
Filter (multivariate) MDR (pair-wise) Yes No Obesity SNPs (MyCode

DiscovEHR study)
100,000 25 h 10 Gb Verma et al.

(2018)MultiSURF + TURF No Yes 100,000 2.3 h 28 Gb
Embedded
(Decision tree-
based)

Random Forest
(Ranger R package)

No Yes 100,000 Not
feasible

—

500 11.4 min 8 Gb
Gradient Boosting No Yes 100,000 Not

feasible
—

500 7.8 min 8 Gb
Filter (multivariate) MDR (up to 5 order

interactions)
Yes Yes WTCCC—T1D 2,184 Not

feasible
— Wei and Lu

(2014)
20 2 min 56 Mb

BOOST Yes No 2,184 14 s 5 Mb
Embedded
(Decision tree-
based)

Random Jungle No Yes WTCCC—T1D 2,184 12 min 110 Mb
GWGGI-TAMW No Yes WTCCC—T1D 2,184 3 min 7 Mb

WTCCC—CAD 459,000 10 h 738 Mb
GWGGI-LRMW No Yes WTCCC—T1D 2,184 1.5 min 7 Mb

WTCCC –CAD 459,000 3.5 h 731 Mb
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to detect interacting SNPs associated with rheumatoid arthritis
called SNPInterForest (a modification of random forest
algorithm). To accommodate the computational load of the
proposed algorithm, the authors first narrowed the feature size
from 500,000 SNPs to 10,000 SNPs using a univariate filter before
further selection using SNPInterForest.

Wei et al. (2013) built a Crohn’s disease prediction model that
employed a single SNP association test (a univariate filter
method), followed by logistic regression with L1 (LASSO)
regularization (an embedded method). The first filtering step
reduced the original feature size from 178,822 SNPs to 10,000
SNPs for further selection with LASSO. The final predictive
model achieved a respectable AUC of 0.86 in the testing set.

There is always a trade-off between computational complexity and
performance in feature selection. In this context, hybrid methods can
be considered a “middle ground” solution between the simple filter
method and the more computationally complex but performant
wrapper and embedded methods. Indeed, many examples in the
literature have shown that a hybrid method tends to produce better
performance than a simple filter while also being less computationally
expensive than a purely wrapper method. For example, Alzubi et al.
(2017) proposed a feature selection strategy using a hybrid of the

CMIM filter and RFE-SVM wrapper method to classify healthy and
diseased patients. They used SNP datasets for five conditions (thyroid
cancer, autism, colorectal cancer, intellectual disability, and breast
cancer). The authors showed that generally, the SNPs selected by the
hybrid CMIM+RFE-SVMproduce better classification performance
than using any single filter method like mRMR (Peng et al., 2005),
CMIM (Schlittgen, 2011), FCBF (Yu and Liu, 2004), and ReliefF
(Urbanowicz et al., 2018b), thus showing the superiority of the hybrid
method.

Ghosh et al. (2020) demonstrated that a hybrid filter-wrapper
feature selection technique, based on ant colony optimization,
performs better than those based solely on filter techniques. The
proposed hybrid method was less computationally complex than
those based on the wrapper technique while preserving its
relatively higher accuracy than the filter technique. Similarly,
Butler-Yeoman et al. (2015) proposed a novel filter-wrapper
hybrid feature selection algorithm that was based on particle
swarm optimisation (FastPSO and RapidPSO). The authors
further showed that the proposed hybrid method performs
better than a pure filter algorithm (FilterPSO), while being less
computationally complex than a pure wrapper algorithm
(WrapperPSO).

TABLE 3 | Advantages, limitations, and references for the feature selection algorithms reviewed in this paper.

Method Algorithms/softwares Advantages Limitaitons References

Filter
(multivariate)

MIFS, mRMR, CMIM, FCBF - Can remove redundant
features

- Ignores feature interaction Battiti, (1994), Peng et al. (2005), Yu and Liu
(2004), Schlittgen, (2011)

- Can be used for high-
dimensional data

- Not exhaustive

FS-RRC, CMIFSI - Can detect pair-wise feature
interaction

- Not exhaustive Liang et al. (2019), Li et al. (2020)

- Can remove redundant
features

BOOST, FastEpistasis, TEAM - Performs exhaustive search - Cannot remove redundant features Schüpbach et al. (2010), Wan et al. (2010),
Zhang et al. (2010)- Can detect pair-wise feature

interaction
- Computationally expensive (relative to
non-exhaustive filters)

Relief-based Algorithms: Relief,
ReliefF, TURF, SURF, SURF*,
MultiSURF, MultiSURF*

- Can detect pair-wise feature
interactions

- Not exhaustive Kira and Rendell, (1992), Kononenko, (1994),
Moore and White, (2007), (Greene et al.,
2009), Granizo-Mackenzie and Moore,
(2013), Greene et al. (2010), Urbanowicz
et al. (2018a)

- Some algorithms (ReliefF,
MultiSURF) can detect
higher-order interactions

- Cannot remove redundant features

MDR, CPM - Performs exhaustive search - Computationally very expensive for
higher-order interactions (Cannot be
applied to high-dimensional data)

Ritchie et al. (2001), Nelson et al. (2001)
- Can detect higher-order
interactions

DCHE, EDCF - Performs exhaustive search -Potentially lose feature interactions
that do not have significant pair-wise
effect

Xie et al. (2012), Guo et al. (2014)
- Can detect higher-order
interactions

- Can remove redundant
features

Embedded Random Jungle, GWGGI - Can detect higher-order
interactions

- Not exhaustive Schwarz et al. (2010), Wei and Lu, (2014)

- Feature selection and
prediction model are made
simultaneously

- Cannot remove redundant features

T-Tree - Can detect higher-order
interactions

- Not exhaustive Botta et al. (2014)

- Feature selection and
prediction model are made
simultaneously

- Can remove redundant
features
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Hybrid methods still have limitations despite their advantages
when compared to purely filter, embedded, and wrapper
methods. For example, relevant interacting SNPs with no
significant individual effects (i.e., exclusively epistatic) can
potentially be lost during the filtering step. This is because
most filter methods cannot model feature-feature interactions.
This can be mitigated by using filter algorithms that can model
feature interactions (Section 2.1).

3.1 Integrative Method—Incorporating
External Knowledge to Limit Feature Search
Space
Integrative methods incorporate biological knowledge as an a
priori filter for SNP pre-selection (Figure 5E). This enables the
researcher to narrow the search space to “interesting” SNPs that
are recognized as being relevant to the phenotype of interest.
Limiting the search space means limiting the computational
complexity for downstream analysis.

To integrate external knowledge, one can obtain information
from public protein-protein interaction databases (e.g., IntAct,
ChEMBLOR, BioGRID) or pathway databases (KEGG,
Reactome). Software (e.g., INTERSNP (Herold et al., 2009)) has
also been developed to help select a combination of “interesting”
SNPs based on a priori knowledge (e.g., genomic location, pathway
information, and statistical evidence). This information enables a
reduction in the search space to only those SNPs that are mapped to
genes that researchers contend are involved in relevant protein
interactions or pathways of interest. For example, Ma et al.
(2015) successfully identified SNP-SNP interactions that are
associated with high-density lipoprotein cholesterol (HDL-C)
levels. The search space was reduced by limiting the search to
SNPs that have previously been associated with lipid levels, SNPs
mapped to genes in known lipid-related pathways and those that are
involved in relevant protein-protein interactions. In other examples,
the SNP search space has been limited to SNPs that are located
within known risk loci. For example, D’angelo et al. (D’Angelo et al.,
2009) identified significant gene-gene interactions that are associated
with rheumatoid arthritis (RA) by restricting their search to
chromosome 6 (a known as risk locus for RA (Newton et al.,
2004)) and using a combined LASSO-PCA approach.

An obvious limitation with these types of integrative
approaches is the fact that online databases and our current
biological knowledge are incomplete. Therefore, relying on
external a priori knowledge will hinder the identification of
novel variants outside our current biological understanding.

3.2 Ensemble Method—Combining the
Output of Different Feature Selections
Ensemble feature selection methods are based on the assumption
that combining the output of multiple algorithms is better than
using the output of a single algorithm (Figure 6) (Bolón-Canedo
et al., 2014). In theory, an ensemble of multiple feature selection
methods allows the user to combine the strengths of the different
methods while overcoming their weaknesses (Pes, 2020). This is
possible because different feature selection algorithms can retain

complementary but different information. Several studies have
shown that ensemble feature selection methods tend to produce
better classification accuracy than is achieved using single feature
selection methods (Seijo-Pardo et al., 2015; Hoque et al., 2017;
Wang et al., 2019; Tsai and Sung, 2020). Furthermore, ensemble
feature selection can improve the stability of the selected feature
set (i.e., it is more robust to small changes in the input data) (Yang
and Mao, 2011). Stability and reproducibility of results is
important because it increase the confidence of users when
inferring knowledge from the selected features (Saeys et al., 2008).

When designing an ensemble approach, the first thing to
consider is the choice of individual feature selection
algorithms to be included. Using more than one feature
selection method will increase the computation time, therefore
filter and (to a lesser extent) embedded methods are usually
preferred. By contrast, wrappers are generally avoided.
Researchers must also make sure that the included algorithms
will output diverse feature sets because there is no point in
building an ensemble of algorithms that all produce the same
results. Several metrics can be used to measure diversity (e.g. pair-
wise Q statistics (Kuncheva et al., 2002)).

It is also important to consider how to combine the partial
outputs generated by each algorithm into one final output; this is
known as the aggregationmethod. Several aggregationmethods have
been proposed, the simplest works by taking the union or
intersection of the top-ranked outputs of the different algorithms.
While taking the intersection seems logical (i.e., if all algorithms
select a feature, it might be highly relevant), this approach results in a
restrictive set of features and tends to produce worse results than
selecting the union (Álvarez-Estévez et al., 2011). To overcome this,
other popular aggregation methods assign each feature the mean or
median position it has achieved among the outputs of all algorithms
and use these positions to produce a final ranked feature subset. The
final fusion rank of each feature can also be calculated as a weighted
sum of the ranks assigned by the individual algorithms, where the
weight of each algorithm is determined based on metrics such as the
classification performance of the algorithm (Long et al., 2001).
Alternatively, majority voting systems (Bolón-Canedo et al., 2012)
(Figure 6B) can be used to determine the final class prediction. In
majority voting systems, the different feature subsets generated by
each algorithm are used to train and test a specific classifier. The final
predicted output is the class that is predicted by the majority of the
classifiers (see (Guan et al., 2014; Bolón-Canedo and Alonso-
Betanzos, 2019) for reviews about ensemble methods).

Verma et al. (2018) proposed the use of a collective feature
selection approach that combined the union of the top-ranked
outputs of several feature selection methods (MDR, random
forest, MultiSURFNTuRF). They applied this approach to
identify SNPs associated with body mass index (BMI) and
showed that the ensemble approach could detect epistatic
effects that were otherwise missed using any single individual
feature selection method.

Bolón-Canedo et al. (2012) applied an ensemble of five filter
methods (CFS, Consistency-based, INTERACT, Information Gain
and ReliefF) to ten high dimensional microarray datasets. The
authors demonstrated that the ensemble of five filter methods
achieved the lowest average error for every classifier tested (C4.5,
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IB1, and naïve Bayes) across all datasets, confirming the advantage of
using the ensemble method over individual filters.

4 EXHAUSTIVE SEARCHES FOR
HIGHER-ORDER SNP-SNP INTERACTIONS

There are instances where scientists are mainly interested in
inference, not prediction (e.g., the research interest lies in
interpreting the biology of the selected SNPs). Recently,
researchers within the GWAS field have recognized the
importance of identifying significant SNP-SNP interactions,
especially for complex diseases. The wrapper and embedded
methods (e.g., decision tree-based algorithms) that can detect
feature interactions (see Section 2.2–2.3) have some limitations:
1). Despite modifications that enable epistasis detection (Section
2.3), random forest-based algorithms are not exhaustive and are
still prone to miss epistatic SNPs with low individual effects; 2)
wrapper methods return a subset of features but do not identify
which are relatively more important than others.

In theory, the most reliable (albeit naïve) way to detect relevant
SNP-SNP interactions is by exhaustively testing each possible
SNP combination and how it might relate to the phenotype class.
Indeed, several exhaustive filter methods have been proposed (see
(Cordell, 2009; Niel et al., 2015)). Some examples include,
BOolean Operation-based Screening and Testing” (BOOST),
FastEpistasis (Schüpbach et al., 2010), and Tree-based Epistasis
Association Mapping (TEAM) (Zhang et al., 2010). However,
these methods are restricted to testing and identifying pair-wise
SNP interactions. Therefore, any epistatic effects of ≥3 orders will
be missed. This contrasts with random forest (and many of its
modifications), which despite its lower sensitivity (compared to
exhaustive filters), can identify higher order interactions.

For higher-order interactions, exhaustive filter methods have
been developed (e.g., Multifactor Dimensionality Reduction
(MDR) (Ritchie et al., 2001) or the Combinatorial Partitioning
Method (CPM) (Nelson et al., 2001)) and shown to be able to
detect SNP-SNP interactions across ≥3 orders. However, due to
the computational complexity of these analyses, these methods
are effectively constrained to a maximum of several hundred
features and they cannot be applied to genome-wide datasets
(Lou et al., 2007). Goudey et al. (Goudey et al., 2015) estimated
that evaluating all three-way interactions in a GWAS dataset of
1.1 Million SNPs could take up to 5 years even on a parallelized
computing server with approximately 262,000 cores.

The application of exhaustive methods to genome-wide data can
be achieved using an extended hybrid approach (i.e., applying a filter
method as a first step, followed by an exhaustive search), or an
integrative approach (incorporating external knowledge) that
reduces the search space for the exhaustive methods (Pattin and
Moore, 2008). For example, Greene et al. (Greene et al., 2009)
recommended the use of SURF (a Relief-based filter algorithm) as a
filter before using MDR to exhaustively search for relevant SNP
interactions. Collins et al. (2013) used MDR to identify significant
three-way SNP interactions that are associated with tuberculosis
from a dataset of 19 SNPs mapped to candidate tuberculosis genes.
Similarly, algorithms that incorporate two-stage strategies to detect

high-order interactions have been developed (e.g., dynamic
clustering for high-order genome-wide epistatic interactions
detecting (DCHE) (Guo et al., 2014) and the epistasis detector
based on the clustering of relatively frequent items (EDCF) (Xie
et al., 2012)). DCHE and EDCF work by first identifying significant
pair-wise interactions and using them as candidates to search for
high-order interactions. More recently, swarm intelligence search
algorithms have been proposed as an alternative way to look for
candidate higher-order feature interactions, prior to application of
an exhaustive search strategy. For example, Tuo et al. (2020)
proposed the use of multipopulation harmony search algorithm
to identify candidate k-order SNP interactions to reduce
computation load before applying MDR to verify the interactions.
Notably, the multi-stage algorithm (MP-HS-DHSI) that Tuo et al.
developed is scalable to high-dimensional datasets (>100,000 SNPs),
much less computationally demanding than purely exhaustive
searches, and is sensitive enough to detect interactions where the
individual SNPs have no individual effects (Tuo et al., 2020).

Despite being time demanding, the exhaustive search for pair-
wise SNP interaction is possible (Marchini et al., 2005). However,
exhaustive searches for higher-order interactions are not yet
available. Researchers must resort to hybrid, integrative, or
two-stage approaches to reduce the feature space prior to
exhaustive search (Table 2). Several (non-exhaustive)
embedded methods (e.g., approaches based on decision tree
algorithms) have been proposed as viable options to identify
SNP interactions and increase the best predictive power of the
resulting information. However, the need for an efficient and
scalable algorithm to detect SNP-SNP interactions remains,
especially for higher-order interactions.

5 CONCLUSION

Supervised ML algorithms can be applied to genome-wide SNP
datasets. However, this is often not ideal because the curse of
dimensionality leads to long training times and production of an
overfitted predictive model. Therefore, the reduction of the total
feature numbers to a more manageable level by selection of the
most informative SNPs is essential before training the model.

Currently, no single feature selection method stands above the
rest. Each method has its strengths and weaknesses (Table 1,
Table 3, discussed in Section 2.4). Indeed, it is becoming rarer for
researchers to depend on just a single feature selection method.
Therefore, we contend that the use of a two-stage approach or
hybrid approach should be considered “best practice.” In a typical
hybrid approach, a filter method is used in the first stage to reduce
the number of candidate SNPs to a more manageable level, so that
more complex and computationally heavy wrapper, embedded,
or exhaustive search methods can be applied. Depending on the
available resources, the filter used should be multivariate and able
to detect feature interactions. Alternatively, biological knowledge
can be used as an a priori filter for SNP pre-selection. Multiple
feature selection methods can also be combined in a parallel
scheme (ensemble method). By exploiting strengths of the
different methods, ensemble methods allow better accuracy
and stability than relying on any single feature selection method.

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 92731213

Pudjihartono et al. Feature Selection for Risk Prediction

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


AUTHOR CONTRIBUTIONS

NP conceived and wrote the review. TF, AK, and JOS conceived
and commented on the review.

FUNDING

NP received a University of Auckland PhD Scholarship. TF and
JOS were funded by a grant from the Dines Family Foundation.

REFERENCES

Abraham, G., and Inouye, M. (2015). Genomic Risk Prediction of Complex Human
Disease and its Clinical Application. Curr. Opin. Genet. Dev. 33, 10–16. doi:10.
1016/j.gde.2015.06.005

Abramovich, F., Benjamini, Y., Donoho, D. L., and Johnstone, I. M. (2006).
Adapting to Unknown Sparsity by Controlling the False Discovery Rate.
Ann. Stat. 34, 584–653. doi:10.1214/009053606000000074

Altshuler, D., Daly, M. J., and Lander, E. S. (2008). Genetic Mapping in Human
Disease. Science 322, 881–888. doi:10.1126/science.1156409

Álvarez-Estévez, D., Sánchez-Maroño, N., Alonso-Betanzos, A., and Moret-
Bonillo, V. (2011). Reducing Dimensionality in a Database of Sleep EEG
Arousals. Expert Syst. Appl. 38, 7746–7754.

Alzubi, R., Ramzan, N., Alzoubi, H., and Amira, A. (2017). A Hybrid Feature
Selection Method for Complex Diseases SNPs. IEEE Access 6, 1292–1301.
doi:10.1109/ACCESS.2017.2778268

Aphinyanaphongs, Y., Fu, L. D., Li, Z., Peskin, E. R., Efstathiadis, E.,
Aliferis, C. F., et al. (2014). A Comprehensive Empirical Comparison
of Modern Supervised Classification and Feature Selection Methods for
Text Categorization. J. Assn Inf. Sci. Tec. 65, 1964–1987. doi:10.1002/asi.
23110

Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E., et al.
(2010). Clinical Assessment Incorporating a Personal Genome. Lancet 375,
1525–1535. doi:10.1016/S0140-6736(10)60452-7

Barrera-Gómez, J., Agier, L., Portengen, L., Chadeau-Hyam,M., Giorgis-Allemand,
L., Siroux, V., et al. (2017). A Systematic Comparison of Statistical Methods to
Detect Interactions in Exposome-Health Associations. Environ. Heal. A Glob.
Access Sci. Source 16, 74. doi:10.1186/s12940-017-0277-6

Battiti, R. (1994). Using Mutual Information for Selecting Features in Supervised
Neural Net Learning. IEEE Trans. Neural Netw. 5, 537–550. doi:10.1109/72.
298224

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B
Methodol. 57, 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x

Benjamini, Y., and Yekutieli, D. (2001). The Control of the False Discovery Rate in
Multiple Testing under Dependency. Ann. Stat. 29, 1165–1188. doi:10.1214/
aos/1013699998

Bins, J., and Draper, B. A. (2001). Feature Selection from Huge Feature Sets. Proc.
IEEE Int. Conf. Comput. Vis. 2, 159–165. doi:10.1109/ICCV.2001.937619

Bolón-Canedo, V., and Alonso-Betanzos, A. (2019). Ensembles for Feature
Selection: A Review and Future Trends. Inf. Fusion 52, 1–12. doi:10.1016/j.
inffus.2018.11.008

Bolón-Canedo, V., Sánchez-Maroño, N., and Alonso-Betanzos, A. (2013). A
Review of Feature Selection Methods on Synthetic Data. Knowl. Inf. Syst.
34, 483–519.

Bolón-Canedo, V., Sánchez-Maroño, N., and Alonso-Betanzos, A. (2012). An
Ensemble of Filters and Classifiers for Microarray Data Classification. Pattern
Recognit. 45, 531–539.

Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J. M., and
Herrera, F. (2014). A Review of Microarray Datasets and Applied Feature
Selection Methods. Inf. Sci. (Ny) 282, 111–135.

Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., and Lang, M. (2020). Benchmark
for Filter Methods for Feature Selection in High-Dimensional Classification
Data. Comput. Statistics Data Analysis 143, 106839. doi:10.1016/j.csda.2019.
106839

Botta, V., Louppe, G., Geurts, P., and Wehenkel, L. (2014). Exploiting SNP
Correlations within Random Forest for Genome-wide Association Studies.
PLoS One 9, e93379. doi:10.1371/journal.pone.0093379

Breiman, L. (2001). Random Forests. Mach. Learn. 45, 5–32. doi:10.1023/a:
1010933404324

Broekema, R. V., Bakker, O. B., and Jonkers, I. H. (2020). A Practical View of Fine-
Mapping and Gene Prioritization in the Post-genome-wide Association Era.
Open Biol. 10, 190221. doi:10.1098/rsob.190221

Brzyski, D., Peterson, C. B., Sobczyk, P., Candès, E. J., Bogdan, M., and Sabatti, C.
(2017). Controlling the Rate of GWAS False Discoveries. Genetics 205, 61–75.
doi:10.1534/genetics.116.193987

Bureau, A., Dupuis, J., Falls, K., Lunetta, K. L., Hayward, B., Keith, T. P., et al.
(2005). Identifying SNPs Predictive of Phenotype Using Random Forests.
Genet. Epidemiol. 28, 171–182. doi:10.1002/gepi.20041

Butler-Yeoman, T., Xue, B., and Zhang, M. (2015). “Particle Swarm Optimisation
for Feature Selection: A Hybrid Filter-Wrapper Approach,” in 2015 IEEE
Congress on Evolutionary Computation (CEC), Sendai, Japan, 25-28 May
2015, 2428–2435. doi:10.1109/CEC.2015.7257186

Chandrashekar, G., and Sahin, F. (2014). A Survey on Feature Selection Methods.
Comput. Electr. Eng. 40, 16–28. doi:10.1016/j.compeleceng.2013.11.024

Collins, R. L., Hu, T.,Wejse, C., Sirugo, G.,Williams, S. M., andMoore, J. H. (2013).
Multifactor Dimensionality Reduction Reveals a Three-Locus Epistatic
Interaction Associated with Susceptibility to Pulmonary Tuberculosis.
BioData Min. 6, 4–5. doi:10.1186/1756-0381-6-4

Cordell, H. J. (2009). Detecting Gene-Gene Interactions that Underlie Human
Diseases. Nat. Rev. Genet. 10, 392–404. doi:10.1038/nrg2579

Couronné, R., Probst, P., and Boulesteix, A.-L. (2018). Random Forest versus
Logistic Regression: a Large-Scale Benchmark Experiment. BMC Bioinforma.
19, 270. doi:10.1186/s12859-018-2264-5

Cueto-López, N., García-Ordás, M. T., Dávila-Batista, V., Moreno, V., Aragonés,
N., and Alaiz-Rodríguez, R. (2019). A Comparative Study on Feature Selection
for a Risk Prediction Model for Colorectal Cancer. Comput. Methods Programs
Biomed. 177, 219–229. doi:10.1016/j.cmpb.2019.06.001

Danasingh, A. A. G. S., Subramanian, A. a. B., and Epiphany, J. L. (2020).
Identifying Redundant Features Using Unsupervised Learning for High-
Dimensional Data. SN Appl. Sci. 2, 1367. doi:10.1007/s42452-020-3157-6

D’Angelo, G. M., Rao, D., and Gu, C. C. (2009). Combining Least Absolute
Shrinkage and Selection Operator (LASSO) and Principal-Components
Analysis for Detection of Gene-Gene Interactions in Genome-wide
Association Studies. BMC Proc. 3, S62. doi:10.1186/1753-6561-3-S7-S62

De, R., Bush, W. S., and Moore, J. H. (2014). Bioinformatics Challenges in
Genome-wide Association Studies (Gwas). Methods Mol. Biol. 1168, 63–81.
doi:10.1007/978-1-4939-0847-9_5

Donnelly, P. (2008). Progress and Challenges in Genome-wide Association Studies
in Humans. Nature 456, 728–731. doi:10.1038/nature07631

Dudbridge, F., and Gusnanto, A. (2008). Estimation of Significance Thresholds for
Genomewide Association Scans. Genet. Epidemiol. 32, 227–234. doi:10.1002/
gepi.20297

Dunn, O. J. (1961). Multiple Comparisons Among Means. J. Am. Stat. Assoc. 56,
52–64. doi:10.1080/01621459.1961.10482090

Farcomeni, A. (2008). A Review of Modern Multiple Hypothesis Testing, with
Particular Attention to the False Discovery Proportion. Stat. Methods Med. Res.
17, 347–388. doi:10.1177/0962280206079046

Forman, G. (2003). An Extensive Empirical Study of Feature Selection Metrics for
Text Classification. J. Mach. Learn. Res. 3, 1289–1305. doi:10.5555/944919.
944974

Forsati, R., Moayedikia, A., Jensen, R., Shamsfard, M., and Meybodi, M. R. (2014).
Enriched Ant Colony Optimization and its Application in Feature Selection.
Neurocomputing 142, 354–371. doi:10.1016/j.neucom.2014.03.053

Ghosh, M., Guha, R., Sarkar, R., and Abraham, A. (2020). A Wrapper-Filter
Feature Selection Technique Based on Ant Colony Optimization. Neural
Comput. Applic 32, 7839–7857. doi:10.1007/s00521-019-04171-3

Goudey, B., Abedini, M., Hopper, J. L., Inouye, M., Makalic, E., Schmidt, D. F., et al.
(2015). High Performance Computing Enabling Exhaustive Analysis of Higher
Order Single Nucleotide Polymorphism Interaction in Genome Wide
Association Studies. Health Inf. Sci. Syst. 3, S3. doi:10.1186/2047-2501-3-S1-S3

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 92731214

Pudjihartono et al. Feature Selection for Risk Prediction

https://doi.org/10.1016/j.gde.2015.06.005
https://doi.org/10.1016/j.gde.2015.06.005
https://doi.org/10.1214/009053606000000074
https://doi.org/10.1126/science.1156409
https://doi.org/10.1109/ACCESS.2017.2778268
https://doi.org/10.1002/asi.23110
https://doi.org/10.1002/asi.23110
https://doi.org/10.1016/S0140-6736(10)60452-7
https://doi.org/10.1186/s12940-017-0277-6
https://doi.org/10.1109/72.298224
https://doi.org/10.1109/72.298224
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1109/ICCV.2001.937619
https://doi.org/10.1016/j.inffus.2018.11.008
https://doi.org/10.1016/j.inffus.2018.11.008
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.1371/journal.pone.0093379
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1098/rsob.190221
https://doi.org/10.1534/genetics.116.193987
https://doi.org/10.1002/gepi.20041
https://doi.org/10.1109/CEC.2015.7257186
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1186/1756-0381-6-4
https://doi.org/10.1038/nrg2579
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1016/j.cmpb.2019.06.001
https://doi.org/10.1007/s42452-020-3157-6
https://doi.org/10.1186/1753-6561-3-S7-S62
https://doi.org/10.1007/978-1-4939-0847-9_5
https://doi.org/10.1038/nature07631
https://doi.org/10.1002/gepi.20297
https://doi.org/10.1002/gepi.20297
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1177/0962280206079046
https://doi.org/10.5555/944919.944974
https://doi.org/10.5555/944919.944974
https://doi.org/10.1016/j.neucom.2014.03.053
https://doi.org/10.1007/s00521-019-04171-3
https://doi.org/10.1186/2047-2501-3-S1-S3
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Granizo-Mackenzie, D., and Moore, J. H. (2013). “Multiple Threshold Spatially
Uniform ReliefF for the Genetic Analysis of Complex Human Diseases,” in
Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) (Berlin,
Heidelberg: Springer), 7833, 1–10. doi:10.1007/978-3-642-37189-9_1

Greene, C. S., Penrod, N. M., Kiralis, J., and Moore, J. H. (2009). Spatially Uniform
ReliefF (SURF) for Computationally-Efficient Filtering of Gene-Gene
Interactions. BioData Min. 2, 5–9. doi:10.1186/1756-0381-2-5

Greene, C. S., Himmelstein, D. S., Kiralis, J., and Moore, J. H. (2010). “The
Informative Extremes: Using Both Nearest and Farthest Individuals Can
Improve Relief Algorithms in the Domain of Human Genetics,” in Lecture
Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) (Berlin, Heidelberg:
Springer), 6023, 182–193. doi:10.1007/978-3-642-12211-8_16

Guan, D., Yuan, W., Lee, Y. K., Najeebullah, K., and Rasel, M. K. (2014). “A Review
of Ensemble Learning Based Feature Selection,” in IETE Technical Review
(India): Institution of Electronics and Telecommunication Engineers), 31,
190–198. doi:10.1080/02564602.2014.906859

Guo, X., Meng, Y., Yu, N., and Pan, Y. (2014). Cloud Computing for Detecting
High-Order Genome-wide Epistatic Interaction via Dynamic Clustering. BMC
Bioinforma. 15, 102–116. doi:10.1186/1471-2105-15-102

Guo, Y., Chung, F.-L., Li, G., and Zhang, L. (2019). Multi-Label Bioinformatics
Data Classification with Ensemble Embedded Feature Selection. IEEE Access 7,
103863–103875. doi:10.1109/access.2019.2931035

Guyon, I., and Elisseeff, A. (2003). An Introduction to Variable and Feature
Selection. J. Mach. Learn. Res. 3, 1157–1182. doi:10.5555/944919.944968

Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. (2008). Feature Extraction:
Foundations and Applications, 207. Berlin: Springer.

Hall, M. (2000). “Correlation-based Feature Selection of Discrete and Numeric
Class Machine Learning,” in Proceedings of the Seventeenth International
Conference on Machine Learning (ICML 2000), Stanford University, Stanford,
CA, USA, June 29 - July 2, 2000.

Han, B., Chen, X. W., Talebizadeh, Z., and Xu, H. (2012). Genetic Studies of
Complex Human Diseases: Characterizing SNP-Disease Associations Using
Bayesian Networks. BMC Syst. Biol. 6 Suppl 3, S14. doi:10.1186/1752-0509-6-
S3-S14

Hayes-Roth, F. (1975). Review of "Adaptation in Natural and Artificial Systems by
John H. Holland", the U. Of Michigan Press, 1975. SIGART Bull. 53, 15. doi:10.
1145/1216504.1216510

Herold, C., Steffens, M., Brockschmidt, F. F., Baur, M. P., and Becker, T. (2009).
INTERSNP: Genome-wide Interaction Analysis Guided by A Priori
Information. Bioinformatics 25, 3275–3281. doi:10.1093/bioinformatics/btp596

Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins,
F. S., et al. (2009). Potential Etiologic and Functional Implications of Genome-
wide Association Loci for Human Diseases and Traits. Proc. Natl. Acad. Sci. U.
S. A. 106, 9362–9367. doi:10.1073/pnas.0903103106

Ho, D. S. W., Schierding, W., Wake, M., Saffery, R., and O’Sullivan, J. (2019).
Machine Learning SNP Based Prediction for Precision Medicine. Front. Genet.
10, 267. doi:10.3389/fgene.2019.00267

Hoque, N., Singh, M., and Bhattacharyya, D. K. (2017). EFS-MI: an Ensemble
Feature Selection Method for Classification. Complex Intell. Syst. 4, 105–118.
doi:10.1007/s40747-017-0060-x

Inza, I., Larrañaga, P., Blanco, R., and Cerrolaza, A. J. (2004). Filter versus Wrapper
Gene Selection Approaches in DNAMicroarray Domains. Artif. Intell. Med. 31,
91–103. doi:10.1016/j.artmed.2004.01.007

John, G. H., Kohavi, R., and Pfleger, K. (1994). “Irrelevant Features and the Subset
Selection Problem,” in Machine Learning Proceedings 1994 (Burlington, MA:
Morgan Kaufmann Publishers), 121–129, 121–129. doi:10.1016/b978-1-55860-
335-6.50023-4

Kafaie, S., Xu, L., and Hu, T. (2021). Statistical Methods with Exhaustive Search in
the Identification of Gene-Gene Interactions for Colorectal Cancer. Genet.
Epidemiol. 45, 222–234. doi:10.1002/gepi.22372

Kira, K., and Rendell, L. A. (1992). “Feature Selection Problem: Traditional
Methods and a New Algorithm,” in Proceedings Tenth National Conference
on Artificial Intelligence 2, 129–134.

Kittler, J. (1978). “Feature Set Search Alborithms,” in Pattern Recognition and
Signal Processing. Dordrecht, Netherlands: Springer Dordrecht, 41–60. doi:10.
1007/978-94-009-9941-1_3

Kohavi, R., and John, G. H. (1997). Wrappers for Feature Subset Selection. Artif.
Intell. 97, 273–324. doi:10.1016/s0004-3702(97)00043-x

Koller, D., and Sahami, M. (1996). “Toward Optimal Feature Selection,” in
International Conference on Machine Learning. Stanford, CA: Stanford
InfoLab, 284–292.

König, I. R., Auerbach, J., Gola, D., Held, E., Holzinger, E. R., Legault, M. A., et al.
(2016). Machine Learning and Data Mining in Complex Genomic Data-Aa
Review on the Lessons Learned in Genetic Analysis Workshop 19. BMC Genet.
17, 1. BioMed Central. doi:10.1186/s12863-015-0315-8

Kononenko, I. (1994). “Estimating Attributes: Analysis and Extensions of
RELIEF,” in Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Berlin,
Heidelberg: Springer), 784, 171–182. doi:10.1007/3-540-57868-4_5710.1007/3-
540-57868-4_57

Kotzyba-Hibert, F., Kapfer, I., and Goeldner, M. (1995). Recent Trends in
Photoaffinity Labeling. Angewandte Chemie Int. Ed. Engl. 34, 1296–1312.

Kruppa, J., Ziegler, A., and König, I. R. (2012). Risk Estimation and Risk Prediction
Using Machine-Learning Methods. Hum. Genet. 131, 1639–1654. doi:10.1007/
s00439-012-1194-y

Kubus, M. (2019). The Problem of Redundant Variables in Random Forests. Folia
Oeconomica 6, 7–16. doi:10.18778/0208-6018.339.01

Kuncheva, L. I., Skurichina, M., and Duin, R. P. W. (2002). An Experimental Study
on Diversity for Bagging and Boosting with Linear Classifiers. Inf. Fusion 3,
245–258. doi:10.1016/s1566-2535(02)00093-3

Li, C., Luo, X., Qi, Y., Gao, Z., and Lin, X. (2020). A New Feature Selection
Algorithm Based on Relevance, Redundancy and Complementarity.
Comput. Biol. Med. 119, 103667. Elsevier. doi:10.1016/j.compbiomed.
2020.103667

Li, L., Umbach, D. M., Terry, P., and Taylor, J. A. (2004). Application of the GA/
KNNMethod to SELDI Proteomics Data. Bioinformatics 20, 1638–1640. doi:10.
1093/bioinformatics/bth098

Liang, J., Hou, L., Luan, Z., and Huang, W. (2019). Feature Selection with
Conditional Mutual Information Considering Feature Interaction. Symmetry
11, 858. doi:10.3390/sym11070858

Long, A. D., Mangalam, H. J., Chan, B. Y., Tolleri, L., Hatfield, G. W., and Baldi, P.
(2001). Improved Statistical Inference from DNA Microarray Data Using
Analysis of Variance and A Bayesian Statistical Framework. Analysis of
Global Gene Expression in Escherichia coli K12. J. Biol. Chem. 276,
19937–19944. doi:10.1074/jbc.M010192200

López, B., Torrent-Fontbona, F., Viñas, R., and Fernández-Real, J. M. (2018). Single
Nucleotide Polymorphism Relevance Learning with Random Forests for Type 2
Diabetes Risk Prediction. Artif. Intell. Med. 85, 43–49. doi:10.1016/j.artmed.
2017.09.005

Lou, X. Y., Chen, G. B., Yan, L., Ma, J. Z., Zhu, J., Elston, R. C., et al. (2007). A
Generalized Combinatorial Approach for Detecting Gene-By-Gene and
Gene-By-Environment Interactions with Application to Nicotine
Dependence. Am. J. Hum. Genet. 80 (6), 1125–1137. Elsevier. doi:10.
1086/518312

Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. (2013). “Understanding
Variable Importances in Forests of Randomized Trees,” in Advances in Neural
Information Processing Systems 26.

Lunetta, K. L., Hayward, L. B., Segal, J., and van Eerdewegh, P. (2004). Screening
Large-Scale Association Study Data: Exploiting Interactions Using Random
Forests. BMC Genet. 5, 32. doi:10.1186/1471-2156-5-32

Ma, L., Keinan, A., and Clark, A. G. (2015). Biological Knowledge-Driven Analysis
of Epistasis in Human GWAS with Application to Lipid Traits. Methods Mol.
Biol. 1253, 35–45. doi:10.1007/978-1-4939-2155-3_3

Maher, B. (2008). Personal Genomes: The Case of the Missing Heritability. Nature
456, 18–21. doi:10.1038/456018a

Makowsky, R., Pajewski, N. M., Klimentidis, Y. C., Vazquez, A. I., Duarte, C.
W., Allison, D. B., et al. (2011). Beyond Missing Heritability: Prediction of
Complex Traits. PLoS Genet. 7, e1002051. doi:10.1371/journal.pgen.
1002051

Manolio, T. A. (2013). Bringing Genome-wide Association Findings into Clinical
Use. Nat. Rev. Genet. 14, 549–558. doi:10.1038/nrg3523

Mao, Y., and Yang, Y. (2019). A Wrapper Feature Subset Selection Method Based
on Randomized Search and Multilayer Structure. Biomed. Res. Int. 2019,
9864213. doi:10.1155/2019/9864213

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 92731215

Pudjihartono et al. Feature Selection for Risk Prediction

https://doi.org/10.1007/978-3-642-37189-9_1
https://doi.org/10.1186/1756-0381-2-5
https://doi.org/10.1007/978-3-642-12211-8_16
https://doi.org/10.1080/02564602.2014.906859
https://doi.org/10.1186/1471-2105-15-102
https://doi.org/10.1109/access.2019.2931035
https://doi.org/10.5555/944919.944968
https://doi.org/10.1186/1752-0509-6-S3-S14
https://doi.org/10.1186/1752-0509-6-S3-S14
https://doi.org/10.1145/1216504.1216510
https://doi.org/10.1145/1216504.1216510
https://doi.org/10.1093/bioinformatics/btp596
https://doi.org/10.1073/pnas.0903103106
https://doi.org/10.3389/fgene.2019.00267
https://doi.org/10.1007/s40747-017-0060-x
https://doi.org/10.1016/j.artmed.2004.01.007
https://doi.org/10.1016/b978-1-55860-335-6.50023-4
https://doi.org/10.1016/b978-1-55860-335-6.50023-4
https://doi.org/10.1002/gepi.22372
https://doi.org/10.1007/978-94-009-9941-1_3
https://doi.org/10.1007/978-94-009-9941-1_3
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1186/s12863-015-0315-8
https://doi.org/10.1007/3-540-57868-4_5710.1007/3-540-57868-4_57
https://doi.org/10.1007/3-540-57868-4_5710.1007/3-540-57868-4_57
https://doi.org/10.1007/s00439-012-1194-y
https://doi.org/10.1007/s00439-012-1194-y
https://doi.org/10.18778/0208-6018.339.01
https://doi.org/10.1016/s1566-2535(02)00093-3
https://doi.org/10.1016/j.compbiomed.2020.103667
https://doi.org/10.1016/j.compbiomed.2020.103667
https://doi.org/10.1093/bioinformatics/bth098
https://doi.org/10.1093/bioinformatics/bth098
https://doi.org/10.3390/sym11070858
https://doi.org/10.1074/jbc.M010192200
https://doi.org/10.1016/j.artmed.2017.09.005
https://doi.org/10.1016/j.artmed.2017.09.005
https://doi.org/10.1086/518312
https://doi.org/10.1086/518312
https://doi.org/10.1186/1471-2156-5-32
https://doi.org/10.1007/978-1-4939-2155-3_3
https://doi.org/10.1038/456018a
https://doi.org/10.1371/journal.pgen.1002051
https://doi.org/10.1371/journal.pgen.1002051
https://doi.org/10.1038/nrg3523
https://doi.org/10.1155/2019/9864213
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Marchini, J., Donnelly, P., and Cardon, L. R. (2005). Genome-wide Strategies for
Detecting Multiple Loci that Influence Complex Diseases. Nat. Genet. 37,
413–417. doi:10.1038/ng1537

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of Machine
Learning. Cambridge, MA: MIT Press.

Moore, J. H., and White, B. C. (2007). “Tuning ReliefF for Genome-wide Genetic
Analysis,” in Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Berlin,
Heidelberg: Springer), 4447, 166–175.

Nelson, M. R., Kardia, S. L., Ferrell, R. E., and Sing, C. F. (2001). A Combinatorial
Partitioning Method to Identify Multilocus Genotypic Partitions that Predict
Quantitative Trait Variation. Genome Res. 11, 458–470. doi:10.1101/gr.172901

Newton, J. L., Harney, S. M., Wordsworth, B. P., and Brown, M. A. (2004). A
Review of the MHC Genetics of Rheumatoid Arthritis. Genes. Immun. 5,
151–157. doi:10.1038/sj.gene.6364045

Niel, C., Sinoquet, C., Dina, C., and Rocheleau, G. (2015). A Survey about Methods
Dedicated to Epistasis Detection. Front. Genet. 6, 285. doi:10.3389/fgene.2015.
00285

Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., and Aittokallio, T.
(2014). Regularized Machine Learning in the Genetic Prediction of Complex
Traits. PLoS Genet. 10, e1004754. doi:10.1371/journal.pgen.1004754

Okser, S., Pahikkala, T., and Aittokallio, T. (2013). Genetic Variants and Their
Interactions in Disease Risk Prediction - Machine Learning and Network
Perspectives. BioData Min. 6, 5. doi:10.1186/1756-0381-6-5

Onengut-Gumuscu, S., Chen, W. M., Burren, O., Cooper, N. J., Quinlan, A. R.,
Mychaleckyj, J. C., et al. (2015). Fine Mapping of Type 1 Diabetes Susceptibility
Loci and Evidence for Colocalization of Causal Variants with Lymphoid Gene
Enhancers. Nat. Genet. 47, 381–386. doi:10.1038/ng.3245

Ooka, T., Johno, H., Nakamoto, K., Yoda, Y., Yokomichi, H., and Yamagata, Z.
(2021). Random Forest Approach for Determining Risk Prediction and
Predictive Factors of Type 2 Diabetes: Large-Scale Health Check-Up Data in
Japan. Bmjnph 4, 140–148. doi:10.1136/bmjnph-2020-000200

Pal, M., and Foody, G. M. (2010). Feature Selection for Classification of
Hyperspectral Data by SVM. IEEE Trans. Geosci. Remote Sens. 48,
2297–2307. doi:10.1109/tgrs.2009.2039484

Panagiotou, O. A., and Ioannidis, J. P. (2012). What Should the Genome-wide
Significance Threshold Be? Empirical Replication of Borderline Genetic
Associations. Int. J. Epidemiol. 41, 273–286. doi:10.1093/ije/dyr178

Pattin, K. A., and Moore, J. H. (2008). Exploiting the Proteome to Improve the
Genome-wide Genetic Analysis of Epistasis in Common Human Diseases.
Hum. Genet. 124, 19–29. doi:10.1007/s00439-008-0522-8

Peng, H., Long, F., and Ding, C. (2005). Feature Selection Based on Mutual
Information: Criteria of Max-Dependency, Max-Relevance, and Min-
Redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238. doi:10.
1109/TPAMI.2005.159

Pes, B. (2020). Ensemble Feature Selection for High-Dimensional Data: a Stability
Analysis across Multiple Domains. Neural Comput. Applic 32, 5951–5973.
doi:10.1007/s00521-019-04082-3

Remeseiro, B., and Bolon-Canedo, V. (2019). A Review of Feature Selection
Methods in Medical Applications. Comput. Biol. Med. 112, 103375. doi:10.
1016/j.compbiomed.2019.103375

Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., et al.
(2001). Multifactor-dimensionality Reduction Reveals High-Order Interactions
Among Estrogen-Metabolism Genes in Sporadic Breast Cancer. Am. J. Hum.
Genet. 69, 138–147. doi:10.1086/321276

Romagnoni, A., Jégou, S., Van Steen, K., Wainrib, G., and Hugot, J. P. (2019).
Comparative Performances of Machine Learning Methods for Classifying
Crohn Disease Patients Using Genome-wide Genotyping Data. Sci. Rep. 9,
10351. doi:10.1038/s41598-019-46649-z

Saeys, Y., Inza, I., and Larrañaga, P. (2007). A Review of Feature Selection
Techniques in Bioinformatics. Bioinformatics 23, 2507–2517. doi:10.1093/
bioinformatics/btm344

Saeys, Y., Abeel, T., and Van De Peer, Y. (2008). “Robust Feature Selection Using
Ensemble Feature Selection Techniques,” in Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (Berlin, Heidelberg: Springer), 5212, 313–325. doi:10.1007/978-
3-540-87481-2_21

Schlittgen, R. (2011). A Weighted Least-Squares Approach to Clusterwise
Regression. AStA Adv. Stat. Anal. 95, 205–217. doi:10.1007/s10182-011-
0155-4

Schüpbach, T., Xenarios, I., Bergmann, S., and Kapur, K. (2010). FastEpistasis: a
High Performance Computing Solution for Quantitative Trait Epistasis.
Bioinformatics 26, 1468–1469. doi:10.1093/bioinformatics/btq147

Schwarz, D. F., König, I. R., and Ziegler, A. (2010). On Safari to Random Jungle: a
Fast Implementation of Random Forests for High-Dimensional Data.
Bioinformatics 26, 1752–1758. doi:10.1093/bioinformatics/btq257

Seijo-Pardo, B., Bolón-Canedo, V., Porto-Díaz, I., and Alonso-Betanzos, A. (2015).
“Ensemble Feature Selection for Rankings of Features,” in Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (Cham: Springer-Verlag), 9095, 29–42.
doi:10.1007/978-3-319-19222-2_3

Signorino, C. S., and Kirchner, A. (2018). Using LASSO to Model Interactions
and Nonlinearities in Survey Data. Surv. Pract. 11, 1–10. doi:10.29115/sp-
2018-0005

Skalak, D. B. (1994). “Prototype and Feature Selection by Sampling and Random
Mutation Hill Climbing Algorithms,” in Machine Learning Proceedings 1994.
Burlington, MA: Morgan Kauffmann, 293–301. doi:10.1016/b978-1-55860-
335-6.50043-x

Spain, S. L., and Barrett, J. C. (2015). Strategies for Fine-Mapping Complex Traits.
Hum. Mol. Genet. 24, R111–R119. doi:10.1093/hmg/ddv260

Spiegel, A. M., and Hawkins, M. (2012). ’Personalized Medicine’ to Identify
Genetic Risks for Type 2 Diabetes and Focus Prevention: Can it Fulfill its
Promise? Health Aff. (Millwood) 31, 43–49. doi:10.1377/hlthaff.2011.1054

Szymczak, S., Biernacka, J. M., Cordell, H. J., González-Recio, O., König, I. R.,
Zhang, H., et al. (2009). Machine Learning in Genome-wide Association
Studies. Genet. Epidemiol. 33 Suppl 1, S51–S57. doi:10.1002/gepi.20473

Tsai, C.-F., and Sung, Y.-T. (2020). Ensemble Feature Selection in High Dimension,
Low Sample Size Datasets: Parallel and Serial Combination Approaches.
Knowledge-Based Syst. 203, 106097. doi:10.1016/j.knosys.2020.106097

Tuo, S., Liu, H., and Chen, H. (2020). Multipopulation Harmony Search Algorithm
for the Detection of High-Order SNP Interactions. Bioinformatics 36,
4389–4398. doi:10.1093/bioinformatics/btaa215

Uddin, S., Khan, A., Hossain, M. E., and Moni, M. A. (2019). Comparing Different
Supervised Machine Learning Algorithms for Disease Prediction. BMC Med.
Inf. Decis. Mak. 19, 281. doi:10.1186/s12911-019-1004-8

Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., and Moore, J. H. (2018b).
Relief-based Feature Selection: Introduction and Review. J. Biomed. Inf. 85,
189–203. doi:10.1016/j.jbi.2018.07.014

Urbanowicz, R. J., Olson, R. S., Schmitt, P., Meeker, M., and Moore, J. H. (2018a).
Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data
Mining. J. Biomed. Inf. 85, 168–188. doi:10.1016/j.jbi.2018.07.015

Verma, S. S., Lucas, A., Zhang, X., Veturi, Y., Dudek, S., Li, B., et al. (2018).
Collective Feature Selection to Identify Crucial Epistatic Variants. BioDataMin.
11, 5. doi:10.1186/s13040-018-0168-6

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A.,
et al. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation.
Am. J. Hum. Genet. 101, 5–22. doi:10.1016/j.ajhg.2017.06.005

Wah, Y. B., Ibrahim, N., Hamid, H. A., Abdul-Rahman, S., and Fong, S. (2018).
Feature Selection Methods: Case of Filter and Wrapper Approaches for
Maximising Classification Accuracy. Pertanika J. Sci. Technol. 26, 329–340.

Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., Tang, N. L. S., et al. (2010). BOOST: A
Fast Approach to Detecting Gene-Gene Interactions in Genome-wide Case-
Control Studies. Am. J. Hum. Genet. 87 (3), 325–340. Elsevier. doi:10.1016/j.
ajhg.2010.07.021

Wang, J., Xu, J., Zhao, C., Peng, Y., and Wang, H. (2019). An Ensemble Feature
Selection Method for High-Dimensional Data Based on Sort Aggregation. Syst.
Sci. Control Eng. 7, 32–39. doi:10.1080/21642583.2019.1620658

Wei, C., and Lu, Q. (2014). GWGGI: Software for Genome-wide Gene-Gene
Interaction Analysis. BMC Genet. 15, 101. doi:10.1186/s12863-014-0101-z

Wei, Z., Wang, W., Bradfield, J., Li, J., Cardinale, C., Frackelton, E., et al.
(2013). Large Sample Size, Wide Variant Spectrum, and Advanced
Machine-Learning Technique Boost Risk Prediction for Inflammatory
Bowel Disease. Am. J. Hum. Genet. 92, 1008–1012. doi:10.1016/j.ajhg.
2013.05.002

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 92731216

Pudjihartono et al. Feature Selection for Risk Prediction

https://doi.org/10.1038/ng1537
https://doi.org/10.1101/gr.172901
https://doi.org/10.1038/sj.gene.6364045
https://doi.org/10.3389/fgene.2015.00285
https://doi.org/10.3389/fgene.2015.00285
https://doi.org/10.1371/journal.pgen.1004754
https://doi.org/10.1186/1756-0381-6-5
https://doi.org/10.1038/ng.3245
https://doi.org/10.1136/bmjnph-2020-000200
https://doi.org/10.1109/tgrs.2009.2039484
https://doi.org/10.1093/ije/dyr178
https://doi.org/10.1007/s00439-008-0522-8
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1109/TPAMI.2005.159
https://doi.org/10.1007/s00521-019-04082-3
https://doi.org/10.1016/j.compbiomed.2019.103375
https://doi.org/10.1016/j.compbiomed.2019.103375
https://doi.org/10.1086/321276
https://doi.org/10.1038/s41598-019-46649-z
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1093/bioinformatics/btm344
https://doi.org/10.1007/978-3-540-87481-2_21
https://doi.org/10.1007/978-3-540-87481-2_21
https://doi.org/10.1007/s10182-011-0155-4
https://doi.org/10.1007/s10182-011-0155-4
https://doi.org/10.1093/bioinformatics/btq147
https://doi.org/10.1093/bioinformatics/btq257
https://doi.org/10.1007/978-3-319-19222-2_3
https://doi.org/10.29115/sp-2018-0005
https://doi.org/10.29115/sp-2018-0005
https://doi.org/10.1016/b978-1-55860-335-6.50043-x
https://doi.org/10.1016/b978-1-55860-335-6.50043-x
https://doi.org/10.1093/hmg/ddv260
https://doi.org/10.1377/hlthaff.2011.1054
https://doi.org/10.1002/gepi.20473
https://doi.org/10.1016/j.knosys.2020.106097
https://doi.org/10.1093/bioinformatics/btaa215
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1016/j.jbi.2018.07.014
https://doi.org/10.1016/j.jbi.2018.07.015
https://doi.org/10.1186/s13040-018-0168-6
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1016/j.ajhg.2010.07.021
https://doi.org/10.1016/j.ajhg.2010.07.021
https://doi.org/10.1080/21642583.2019.1620658
https://doi.org/10.1186/s12863-014-0101-z
https://doi.org/10.1016/j.ajhg.2013.05.002
https://doi.org/10.1016/j.ajhg.2013.05.002
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Winham, S. J., Colby, C. L., Freimuth, R. R., Wang, X., de Andrade, M., Huebner,
M., et al. (2012). SNP Interaction Detection with Random Forests in High-
Dimensional Genetic Data. BMC Bioinforma. 13, 164. doi:10.1186/1471-2105-
13-164

Wolpert, D. H., and Macready, W. G. (1997). No Free Lunch Theorems for
Optimization. IEEE Trans. Evol. Comput. 1, 67–82. doi:10.1109/4235.
585893

Wray, N. R., Goddard, M. E., and Visscher, P. M. (2007). Prediction of Individual
Genetic Risk to Disease from Genome-wide Association Studies. Genome Res.
17, 1520–1528. doi:10.1101/gr.6665407

Xie, M., Li, J., and Jiang, T. (2012). Detecting Genome-wide Epistases Based on the
Clustering of Relatively Frequent Items. Bioinformatics 28, 5–12. doi:10.1093/
bioinformatics/btr603

Xiong, M., Fang, X., and Zhao, J. (2001). Biomarker Identification by Feature
Wrappers. Genome Res. 11, 1878–1887. doi:10.1101/gr.190001

Xu, C., Tachmazidou, I., Walter, K., Ciampi, A., Zeggini, E., and Greenwood, C. M.
T. (2014). Estimating Genome-Wide Significance for Whole-Genome
Sequencing Studies. Genet. Epidemiol. 38, 281–290. Wiley Online Libr.
doi:10.1002/gepi.21797

Yang, F., and Mao, K. Z. (2011). Robust Feature Selection for Microarray Data
Based on Multicriterion Fusion. IEEE/ACM Trans. Comput. Biol. Bioinform 8,
1080–1092. doi:10.1109/TCBB.2010.103

Yang, J., and Honavar, V. (1998). Feature Subset Selection Using a Genetic
Algorithm. IEEE Intell. Syst. 13, 44–49. doi:10.1109/5254.671091

Yoshida, M., and Koike, A. (2011). SNPInterForest: a New Method for Detecting
Epistatic Interactions. BMC Bioinforma. 12, 469. doi:10.1186/1471-2105-12-469

Yu, L., and Liu, H. (2004). Efficient Feature Selection via Analysis of Relevance and
Redundancy. J. Mach. Learn. Res. 5, 1205–1224. doi:10.5555/1005332.1044700

Zhang, X., Huang, S., Zou, F., and Wang, W. (2010). TEAM: Efficient Two-Locus
Epistasis Tests in Human Genome-wide Association Study. Bioinformatics 26,
i217–27. doi:10.1093/bioinformatics/btq186

Zhang, Y., Li, S., Wang, T., and Zhang, Z. (2013). Divergence-based Feature
Selection for Separate Classes. Neurocomputing 101, 32–42. doi:10.1016/j.
neucom.2012.06.036

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Pudjihartono, Fadason, Kempa-Liehr and O’Sullivan. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 92731217

Pudjihartono et al. Feature Selection for Risk Prediction

https://doi.org/10.1186/1471-2105-13-164
https://doi.org/10.1186/1471-2105-13-164
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1101/gr.6665407
https://doi.org/10.1093/bioinformatics/btr603
https://doi.org/10.1093/bioinformatics/btr603
https://doi.org/10.1101/gr.190001
https://doi.org/10.1002/gepi.21797
https://doi.org/10.1109/TCBB.2010.103
https://doi.org/10.1109/5254.671091
https://doi.org/10.1186/1471-2105-12-469
https://doi.org/10.5555/1005332.1044700
https://doi.org/10.1093/bioinformatics/btq186
https://doi.org/10.1016/j.neucom.2012.06.036
https://doi.org/10.1016/j.neucom.2012.06.036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction
	1 Introduction
	1.1 Precision Medicine and Complex Disease Risk Prediction
	1.2 Machine Learning for Individualized Complex Disease Risk Prediction
	1.3 Feature Selection to Reduce SNP Data Dimensionality
	1.4 The Problem of Feature Redundancy and Feature Interaction in SNP Genotype Dataset

	2 Feature Selection Techniques
	2.1 Filter Methods for Feature Selection
	2.1.1 The Multiple Comparison Correction Problem and Choosing the Appropriate Filter Threshold

	2.2 Wrapper Methods for Feature Selection
	2.3 Embedded Methods for Feature Selection
	2.4 Which Feature Selection Method Is Optimal?

	3 Hybrid Methods—Combining Different Feature Selection Approaches
	3.1 Integrative Method—Incorporating External Knowledge to Limit Feature Search Space
	3.2 Ensemble Method—Combining the Output of Different Feature Selections

	4 Exhaustive Searches for Higher-Order SNP-SNP Interactions
	5 Conclusion
	Author Contributions
	Funding
	References


