ResearchOnline@JCU

This is the Accepted Version of a paper published in the journal: The Veterinary Journal

Jones, K., Ariel, E., Burgess, G. and Read, M. (2015) *A review of fibropapillomatosis in green turtles (Chelonia mydas)*. The Veterinary Journal, available online 21 October 2015.

http://dx.doi.org/10.1016/j.tvjl.2015.10.041

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

Title: A review of fibropapillomatosis in green turtles (Chelonia mydas)

Author: K. Jones, E. Ariel, G. Burgess, M. Read

PII:	S1090-0233(15)00452-9
DOI:	http://dx.doi.org/doi:10.1016/j.tvjl.2015.10.041
Reference:	YTVJL 4679

To appear in: The Veterinary Journal

Accepted date: 16-10-2015

Please cite this article as: K. Jones, E. Ariel, G. Burgess, M. Read, A review of fibropapillomatosis in green turtles (*Chelonia mydas*), *The Veterinary Journal* (2015), http://dx.doi.org/doi:10.1016/j.tvjl.2015.10.041.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Review
2 3	
4 5	A review of fibropapillomatosis in Green turtles (Chelonia mydas)
6 7 8	K. Jones ^{a,*} , E. Ariel ^a , G. Burgess ^a , M. Read ^b
9 10 11 12	^a College of Public Health, Medical and Veterinary Sciences, James Cook University, 4811 Townsville, Queensland, Australia ^b Reef Recovery Group, Great Barrier Reef Marine Park Authority, 2-68 Flinders Street, Townsville 4810, Queensland, Australia
13 14 15 16	
17 18	 * Corresponding author. Tel.: +61 7 47816915. <i>E-mail address:</i> <u>karina.jones@my.jcu.edu.au</u> (K. Jones).
	LCCOR COR

19 Highlights

- Fibropapillomatosis (FP), an emerging disease in green turtles, is reviewed
- Chelonid herpesvirus 5 is the likely aetiological agent of FP
- The route of transmission and conditions facilitating lesion development are uncertain
- High prevalence of FP is observed in areas of reduced water quality
- A multi-factorial interplay between a range of factors is likely to be occurring
- 25

26 Abstract

Despite being identified in 1938, many aspects of the pathogenesis and epidemiology of fibropapillomatosis (FP) in marine turtles are yet to be fully uncovered. Current knowledge suggests that FP is an emerging infectious disease, with the prevalence varying both spatially and temporally, even between localities in close proximity to each other. A high prevalence of FP in marine turtles has been correlated with residency in areas of reduced water quality, indicating that there is an environmental influence on disease presentation.

33

Chelonid herpesvirus 5 (ChHV5) has been identified as the likely aetiological agent of 34 FP. The current taxonomic position of ChHV5 is in the family Herpesviridae, subfamily 35 Alphaherpesvirinae, genus Scutavirus. Molecular differentiation of strains has revealed that a 36 viral variant is typically present at specific locations, even within sympatric species of marine 37 turtles, indicating that the disease FP originates regionally. There is uncertainty surrounding the 38 exact path of transmission and the conditions that facilitate lesion development, although recent 39 research has identified atypical genes within the genome of ChHV5 that may play a role in 40 41 pathogenesis. This review discusses emerging areas where researchers might focus and theories behind the emergence of FP globally since the 1980s, which appear to be a multi-factorial 42 interplay between the virus, the host and environmental factors influencing disease expression. 43 44

45 *Keywords:* Fibropapillomatosis; Marine turtle; Herpesvirus; Chelonid herpesvirus 5; Green turtle

46 Introduction

47 The Green turtle (*Chelonia mydas*) is one of seven species of marine turtle and is internationally recognised as endangered by the International Union for the Conservation of 48 Nature (Seminoff, 2004). Eleven discrete population segments of Green turtles have been 49 identified, each of which is considered biologically and ecologically significant (NMFS and 50 USFWS, 2014). Green turtles also hold great cultural significance for many indigenous peoples 51 52 and are of economic interest, playing a significant role in ecotourism (Dobbs, 2001; Gulko, 2004). The species has a global distribution and a complex life history, occupying a range of 53 habitats. Hatchling turtles have a pelagic existence and recruit into benthic inshore waters at the 54 age of 3-5 years (Reich et al., 2007). With the exception of migration for breeding, turtles 55 typically remain in these inshore environments, which are commonly associated with seagrass 56 meadows or coral reefs, for the remainder of their life (Musick and Limpus, 1997) (Fig. 1). 57

58

Green turtles are exposed to a number of threats including ingestion of marine debris, 59 degradation, urbanisation and pollution of nesting habitats and foraging areas, nest and hatchling 60 depredation by wild, feral and domestic animals, boat strike, traditional hunting and egg harvest, 61 the impacts of climate change on the marine and terrestrial environment, and entanglement in 62 fishing nets and lines (Bjorndal, 1995; Herbst and Klein, 1995a; Lutz, 2002; Van Houtan et al., 63 2010). Conservation efforts which aim to abate many of these threats have assisted in the 64 recovery of some of the major Green turtle populations (Chaloupka et al., 2008a). However, 65 66 outbreaks of disease are also contributing to morbidity and mortality in this already vulnerable species (Foley et al., 2005; Chaloupka et al., 2008; Flint et al., 2010c). 67 68

Fibropapillomatosis (FP) is a disease that has now been reported in every species of
marine turtle; Green (Smith and Coates, 1938), Loggerhead (*Caretta caretta*) (Harshbarger,

1991), Kemp's Ridley (*Lepidochelys kempii*) (Barragan and Sarti, 1994), Hawksbill

72 (Eretmochelys imbricata) (D'Amato and Moraes-Neto, 2000), Olive Ridley (Lepidochelys

73 *olivacea*) (Aguirre et al., 1999), Flatback (*Natator depressus*) (Limpus et al., 1993), and

74 Leatherback (*Dermochelys coriacea*) (Huerta et al., 2002) turtles. FP is of greatest concern in

- 75 Green turtles as it has only reached a panzootic status in this species (Williams et al., 1994).
- 76

FP is a neoplastic condition which may lead to the growth of lesions on the skin, oral 77 cavity, shell, eyes and internal organs of the affected turtle, which in severe cases reduces the 78 probability of survival (Flint et al., 2010a; Herbst, 1995; Work et al., 2004). The disease was first 79 80 identified in a Green turtle with multiple wart-like lesions on display at the New York Aquarium, although originally from Key West, Florida (Smith and Coates, 1938). Despite being described 81 in 1938 (Lucke, 1938; Smith and Coates, 1938), FP did not reach epizootic proportions until the 82 83 1980s (Herbst et al., 1994, 2004) and has now been reported from every major ocean basin that Green turtles inhabit (Herbst, 1994). 84

85

This review covers the epidemiology and proposed aetiology of FP in Green turtles, with considerable emphasis on the primary candidate for the aetiological agent, chelonid herpesvirus 5 (ChHV5).

89

90 **Disease presentation**

FP can be identified in marine turtles by the presence of single or multiple benign
fibroepithelial lesions. The characteristic lesions are easily noticed and are pathognomonic for
FP, often limiting or obstructing the vision, feeding and locomotive ability of the affected turtle
(Herbst, 1994, 1995; Work et al., 2004; Flint et al., 2010a). Cutaneous lesions are typically
present on the external soft tissue of the turtle, but may grow on the carapace, plastron (Smith
and Coates, 1938; Jacobson et al., 1989; Balazs and Pooley, 1991; Brooks et al., 1994; Herbst,

1994) and cornea of affected turtles (Brooks et al., 1994; Flint et al., 2010a). The lesions can be 97 98 observed on all visceral organs (Herbst 1994; Work et al., 2004; Foley et al. 2005) and are thought to develop during later stages of the disease (Herbst et al. 1999; Wyneken et al. 2006). 99 100 However, as most visceral lesions are observed during post mortem investigations, the data available on the prevalence of this type of lesion are skewed. Individual lesions can range from 101 102 0.1 to 30 cm in diameter and can be sessile or pedunculated. The appearance of these lesions can 103 vary from smooth to vertucous and the colour is dependent on the pigment at the site of origin (Herbst, 1994) (Fig. 2). 104

105

Myxofibromas, fibrosarcomas, papillomas, fibromas and fibropapillomas have all been 106 found to be associated with FP (Norton et al., 1990; Work et al., 2004). Three of these lesions are 107 thought to be linked with different stages of lesion development (Herbst, 1994; Kang et al., 108 109 2008). The early development phase is associated with papilloma lesions, proliferation of epidermal cells, with little or no involvement of the dermal layer. The chronic phase of lesion 110 development is marked by the presence of fibromas, with proliferation of the dermal layer, while 111 the epidermal layer remains normal. Fibropapillomas represent the intermediate phase of lesion 112 development and consist of characteristics of both the papillomas and fibromas (Herbst, 1994; 113 Kang et al., 2008). 114

115

Histological studies on FP lesions have observed orthokeratotic hyperkeratosis and
varying degrees of epidermal hyperplasia. Key features observed in FP lesions include
cytoplasmic vacuolation and ballooning degeneration of superficial epidermal cells (Jacobson et
al., 1989, 1991; Herbst, 1994; Adnyana et al., 1997).

121	Haematological and biochemical signs of immunosuppression, chronic stress, and
122	chronic inflammation such as anaemia, lymphocytopenia, neutrophilia, monocytosis,
123	hypoproteinaemia and hyperglobulinaemia have been observed in turtles with clinical signs of
124	FP (Aguirre et al., 1995; Work et al., 2001; dos Santos et al., 2010; Page-Karjian et al. 2014).
125	Although it is still unclear whether the immunosuppression occurs as a result of or as a precursor
126	to FP development, it has been suggested that immunosuppression occurs as a result of FP
127	(Work et al., 2001). While further study is essential to confirm the relationship between
128	immunosuppression and FP infection, it is clear that immunosuppression leaves turtles with FP
129	lesions susceptible to secondary infections and opportunistic pathogens (Work et al., 2001, 2003;
130	Stacey et al., 2008; dos Santos et al., 2010). Impacts of such secondary infections, combined
131	with FP in marine turtles, are a major cause for concern in an already vulnerable species.
132	
133	Epidemiology of fibropapillomatosis in marine turtles
133 134	Epidemiology of fibropapillomatosis in marine turtles FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas
134	FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas
134 135	FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas (Herbst, 1994; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005). The disease is most
134 135 136	FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas (Herbst, 1994; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005). The disease is most frequently observed in juvenile turtles; FP has also been reported in sub-adults and less
134 135 136 137	FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas (Herbst, 1994; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005). The disease is most frequently observed in juvenile turtles; FP has also been reported in sub-adults and less commonly in adults (Herbst, 1994; Herbst and Klein, 1995b; Adnyana et al., 1997; Work et al.,
134 135 136 137 138	FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas (Herbst, 1994; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005). The disease is most frequently observed in juvenile turtles; FP has also been reported in sub-adults and less commonly in adults (Herbst, 1994; Herbst and Klein, 1995b; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005; Patrício et al., 2012; Page-Karjian et al., 2014). This apparent age
134 135 136 137 138 139	FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas (Herbst, 1994; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005). The disease is most frequently observed in juvenile turtles; FP has also been reported in sub-adults and less commonly in adults (Herbst, 1994; Herbst and Klein, 1995b; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005; Patrício et al., 2012; Page-Karjian et al., 2014). This apparent age differentiation in certain locations may indicate that affected juveniles perish from the population
134 135 136 137 138 139 140	FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas (Herbst, 1994; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005). The disease is most frequently observed in juvenile turtles; FP has also been reported in sub-adults and less commonly in adults (Herbst, 1994; Herbst and Klein, 1995b; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005; Patrício et al., 2012; Page-Karjian et al., 2014). This apparent age differentiation in certain locations may indicate that affected juveniles perish from the population altogether or recover with acquired immunity that protects them as adults (Van Houtan et al.,
134 135 136 137 138 139 140 141	FP typically occurs in marine turtles inhabiting neritic tropical and sub-tropical areas (Herbst, 1994; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005). The disease is most frequently observed in juvenile turtles; FP has also been reported in sub-adults and less commonly in adults (Herbst, 1994; Herbst and Klein, 1995b; Adnyana et al., 1997; Work et al., 2004; Ene et al., 2005; Patrício et al., 2012; Page-Karjian et al., 2014). This apparent age differentiation in certain locations may indicate that affected juveniles perish from the population altogether or recover with acquired immunity that protects them as adults (Van Houtan et al.,

145 contributing factor, as no significant difference has been observed in prevalence between males146 and females (Work et al., 2004).

147

148 Disease prevalence and impact

Smith and Coates (1938) reported a prevalence of 1.5% in the Florida Keys region. The 149 disease was not documented in the area again until the 1980s, where the prevalence was then 150 reported to range between 20-60% throughout the subsequent decade. The early to mid-1990s 151 saw FP emerge in the Eastern Pacific, Hawaiian Islands, Indonesia and Australia. As the disease 152 reached epizootic status in several locations globally, it is now considered a panzootic (Williams 153 et al., 1994). Due to the conspicuous presentation of FP, any prior presence would have been 154 noticed in a region where it currently occurs. The incidence of turtles with FP lesions as a 155 percentage of total turtles captured is reported in the Appendix (Supplementary Table 1). 156 157 Although age class is a risk factor, not all reports of FP prevalence have been corrected by demographic proportions and future reports would benefit from making this distinction. 158

159

The prevalence of FP varies both spatially and temporally - see Appendix 160 (Supplementary Table 1). The sporadic reports of the disease over time, in combination with a 161 lack of oral history prior to the 1980s, indicate that FP is globally emerging (Greenblatt et al., 162 2005b; Duarte et al., 2012). In several cases, a significantly different prevalence of the disease in 163 nearby regions has been observed. In Florida, a prevalence of approximately 50% was observed 164 in Green turtle aggregations in the Indian River region. However, less than 1 km away at the 165 Sabellariid worm reef, FP was not observed at all (Herbst, 1994). At Pala'au, Molokai, FP was 166 not observed at all until 1985, with the prevalence increasing from 1% in 1987 to 60.7% in 1995 167 - see Appendix (Supplementary Table 1). 168

170	A shift in FP prevalence at two closely monitored sites in Puerto Rico has been observed
171	in recent years; FP prevalence began decreasing Puerto Manglar and increasing at Tortuga Bay
172	in 2009 (Patrício et al., 2011). In Australia, FP has been reported in a number of locations since
173	it was first observed in Queensland in the early 1970s (C. Limpus, personal communication).
174	
175	The contribution of this disease to morbidity and mortality in affected turtles has also
176	been widely discussed (Herbst, 1994; Ene et al., 2005; Foley et al., 2005; Chaloupka et al., 2008,
177	2009; Flint et al., 2010c). A study on Green turtles at Palaau, Hawaii found that this population
178	was already recovering from previous overharvesting at the time of the FP outbreak in this
179	region. The FP prevalence in this region has also been in decline since the mid-1990s
180	(Chaloupka et al., 2009).
181	
182	Studies on regions in Australia (Flint et al., 2010c), Puerto Rico (Patrício et al., 2011) and
183	Florida (Hirama and Ehrhart, 2007) have all concluded that FP is not a significant factor in
184	mortality of turtles. Conversely, a study conducted on data accumulated over 21 years from
185	Hawaii implicated FP as the primary cause of strandings (Chaloupka et al., 2008).
186	
187	Despite some conflicting conclusions, the overwhelming consensus is that FP does not
188	significantly impact the survival of turtle populations. However, Hamann et al. (2010) highlights
189	that understanding and managing this disease is a priority research area for sea turtle
190	conservation. Without a more complete understanding of the fundamental elements of this
191	disease, FP cannot be discounted as a threat to the survival of this species.
192	
193	Actiology of fibropapillomatosis in marine turtles

194	Research to date suggests that FP is associated with a herpesvirus infection (Herbst et al.,
195	1995; Quackenbush et al., 1998, 2001; Lackovich et al., 1999). Despite ongoing research, this
196	virus cannot be cultured in vitro and therefore Koch's postulates have not been fulfilled (Herbst,
197	1994, 1995; Moore et al., 1997; Lu et al., 1999; Work et al., 2009). Molecular techniques
198	(Quackenbush et al. 1998, 2001; Lackovich et al. 1999) have proven a strong association
199	between FP and a herpesvirus and, according to the criteria established by Hill (1965), the
200	relationship seems to be that of cause and effect. Chelonid herpesvirus 5 (ChHV5) is now the
201	primary focus of research in this area and belongs to the subfamily Alphaherpesvirinae, genus
202	Scutavirus (Davison and McGeoch, 2010). However, there are still some uncertainties
203	surrounding the transmission of the virus, the circumstances that lead to lesion development and
204	the role of environmental factors in the development of this disease.
205	
206	Infectious nature of fibropapillomatosis
206 207	Infectious nature of fibropapillomatosis The epizootic nature of FP and the significant variation in the prevalence of FP between
207	The epizootic nature of FP and the significant variation in the prevalence of FP between
207 208	The epizootic nature of FP and the significant variation in the prevalence of FP between different populations of marine turtles, even between nearby localities, led to speculation that FP
207 208 209	The epizootic nature of FP and the significant variation in the prevalence of FP between different populations of marine turtles, even between nearby localities, led to speculation that FP
207 208 209 210	The epizootic nature of FP and the significant variation in the prevalence of FP between different populations of marine turtles, even between nearby localities, led to speculation that FP was primarily caused by an infectious agent.
207 208 209 210 211	The epizootic nature of FP and the significant variation in the prevalence of FP between different populations of marine turtles, even between nearby localities, led to speculation that FP was primarily caused by an infectious agent. Herbst et al. (1995) successfully transferred FP between animals by using cell-free lesion
207 208 209 210 211 212	The epizootic nature of FP and the significant variation in the prevalence of FP between different populations of marine turtles, even between nearby localities, led to speculation that FP was primarily caused by an infectious agent. Herbst et al. (1995) successfully transferred FP between animals by using cell-free lesion extracts from turtles with lesions to inoculate young captive-reared turtles that were theoretically
207 208 209 210 211 212 212 213	The epizootic nature of FP and the significant variation in the prevalence of FP between different populations of marine turtles, even between nearby localities, led to speculation that FP was primarily caused by an infectious agent. Herbst et al. (1995) successfully transferred FP between animals by using cell-free lesion extracts from turtles with lesions to inoculate young captive-reared turtles that were theoretically naive to FP. All turtles in 3/4 experimental groups developed FP lesions. Control animals, which
207 208 209 210 211 212 213 214	The epizootic nature of FP and the significant variation in the prevalence of FP between different populations of marine turtles, even between nearby localities, led to speculation that FP was primarily caused by an infectious agent. Herbst et al. (1995) successfully transferred FP between animals by using cell-free lesion extracts from turtles with lesions to inoculate young captive-reared turtles that were theoretically naive to FP. All turtles in 3/4 experimental groups developed FP lesions. Control animals, which were housed in the same facility and conditions as the experimental turtles, did not develop FP

Although in their initial description of FP, Smith and Coates (1938) did not identify any viral elements in histological examination of FP lesions, modern theories have focused on viruses as the primary aetiological agent of FP. A range of viruses are capable of producing neoplasms such as those seen in Green turtle FP. As a result, papillomavirus (Herbst, 1994), papova-like virus (Lu et al., 2000a), retrovirus (Casey et al., 1997) and herpesviruses (Jacobson et al., 1991; Quackenbush et al., 1998; Herbst et al., 1994, 2004) have all been proposed as potential candidates for the aetiological agents of FP in marine turtles.

226

Current research suggests that FP is associated with ChHV5 infection. Early molecular 227 studies tested a range of tissues from turtles both with and without FP lesions and all concluded 228 that while ChHV5 could be detected in lesion biopsies from turtles with FP, the virus was rarely 229 detected in normal skin samples from the same turtles (Quackenbush et al., 1998; Lackovich et 230 231 al., 1999). Samples from turtles without FP lesions did not react in any of the PCR assays conducted in these early studies (Quackenbush et al., 1998; Lackovich et al., 1999; Lu et al., 232 2000b). These results support a strong association between the presence of ChHV5 and the 233 presence of FP lesions. 234

235

Quackenbush et al. (2001) first successfully amplified ChHV5 from skin samples 236 collected from turtles without FP lesions. Although only a subset of samples from turtles without 237 FP lesions reacted in the assay, the results showed that the virus may be present in turtles despite 238 a lack of clinical signs of disease. More recently, ChHV5 sequences have been amplified from 239 skin samples of turtles without FP lesions with greater success (Page-Karjian et al., 2012; 240 Alfaro-Núñez et al., 2014). These results indicate that early or latent infection with ChHV5 is 241 more common than previously thought. The prevalence of turtles with FP lesions may be small 242 relative to the number of turtles infected with ChHV5. Therefore, an absence of FP lesions does 243

not imply absence of ChHV5 infection. As latency is a typical feature of herpesviruses (Fields et
al., 2013), such results are to be expected. The improved sensitivity and specificity of the assays
used in these studies have revealed a feature of the disease that was undetectable using earlier
assays.

248

If disease presentation is not dependent on viral infection alone, other factors contributing 249 to lesion development must be considered. An interaction between host, pathogen and the 250 environment (García-Sastre and Sansonetti, 2010) which tips the balance in favour of lesion 251 development may be at play. Differences in host immunity may be preventing certain turtles 252 from mounting a response to the virus (Griffin et al., 2010). Studies on other viral infections 253 have shown that variants of a virus can have different levels of virulence and as such, disease 254 presentation and severity may differ with each variant (Laegreid et al., 1993; Kaashoek et al., 255 256 1996; Berumen et al., 2001; Zhang et al., 2001; Yunis et al., 2004).

257

258 It is possible that the development of FP lesions is dependent on which viral variant a turtle is infected with. It is also possible that turtles infected with the virus only develop lesions 259 when the viral load surpasses a certain threshold. While the relationship between viral titre and 260 lesion development has not been resolved for ChHV5, this relationship has been described in 261 other viral infections (Brodie et al., 1992; Liu et al., 2000; Zhang et al., 2000; Rosell et al., 2000; 262 Quintana et al., 2001; Ladekjær-Mikkelsen et al., 2002; Rovira et al., 2002; Olvera et al., 2004; 263 Islam et al., 2006; Ravazzolo et al., 2006; Nsubuga et al., 2008; Haralambus et al., 2010). The 264 consistent association of high viral load and lesion development provides support for the theory 265 that this may be the case for ChHV5. 266

267

268 Chelonid herpesvirus 5

269 *Nomenclature and taxonomy*

270	There are currently six herpesviruses documented in chelonids, named chelonid
271	herpesvirus 1 to 6 (ChHV1-6). Chelonid herpesvirus 1, 5 and 6 are described in marine turtles
272	whilst the others have been reported in freshwater turtles (Tidona and Darai, 2011). In the
273	absence of sequence data, ChHV1, ChHV2, ChHV3 and ChHV4 remain unrecognised by the
274	International Committee on Taxonomy of Viruses (ICTV) and their taxonomic place is unclear
275	(Davison and McGeoch, 2010). With respect to the marine turtle herpesviruses, ChHV1 is
276	described in association with grey patch disease (Haines et al., 1974; Rebell et al., 1975),
277	ChHV5 is associated with FP and ChHV6 is known to be associated with lung-eye-trachea
278	disease (Jacobson et al., 1986; Curry et al., 2000; Coberley et al., 2001a, 2002).
279	
280	Chelonid fibropapilloma-associated herpesvirus (CFPHV) or ChHV5 (Davison and
281	McGeoch, 2010) is now the more commonly used name for this virus. However, it should be
282	noted that previous studies have used a range of names for this virus – see Appendix
283	(Supplementary Table 2). This review refers to the virus as ChHV5.
284	
285	Histological investigations of FP lesions showed indications of herpesvirus infection and
286	subsequent studies using electron microscopy concluded that the virus-like particles that were
287	observed were likely to belong to the family Herpesviridae based on location, size and
288	morphology (Jacobson et al., 1989, 1991; Herbst et al., 1995).
289	
290	More recent studies using a range of molecular techniques have confirmed herpesviral
291	elements are present in FP lesions (Quackenbush et al., 1998, 2001; Lackovich et al., 1999; Lu et
292	al., 2000a, b, 2003; Yu et al., 2000, 2001; Nigro et al., 2004a, b). Phylogenetic analysis of the
293	ChHV5 genes DNA polymerase and DNA binding protein sequences revealed that ChHV5

clusters closely with, but separate to, other members of the Alphaherpesvirinae subfamily 294 295 (Greenblatt et al., 2005b; McGeoch and Gatherer, 2005). Davison and McGeoch (2010) targeted the single-stranded DNA-binding protein, glycoprotein B, the major capsid protein, DNA 296 297 polymerase and two subunits of the DNA packaging terminase (genes UL29, UL27, UL19, UL30, UL15 and UL28, respectively). The resulting Bayesian phylogenetic tree shows that 298 299 ChHV5 exists as an out-group, clearly separate from the current genera. A Minimum Evolution 300 phylogenetic tree of Alphaherpesvirinae based on full length DNA polymerase sequence further supports this result (Fig. 3). Consequently, it has been proposed that ChHV5 be placed in its own 301 genus. The proposed genus, Scutavirus, sits within the Alphaherpesvirinae subfamily of 302 303 Herpesviridae.

304

305 Variants of chelonid herpesvirus 5

Based on nucleotide sequence diversity, four viral variants of ChHV5 have been recorded in waters around Florida. At present, they are known as A, B, C and D (Herbst et al., 2004; Ene et al., 2005). Variant A is the most prevalent in the region, yet there is variation in relative prevalence of variants at each site. Co-infection with variants A and B was also found in one Green turtle (Ene et al., 2005). Perhaps even more significantly, different species of marine turtle shared the same variant if they were present in the same locality (Herbst et al., 2004; Ene et al., 2005). This indicates a strong geographic role in the transmission of the virus.

313

In a recent study, ChHV5 was examined using samples from a variety of locations in order to create a global phylogeography of the virus. Four phylogeographical groups of ChHV5 were identified: eastern Pacific, western Atlantic/eastern Caribbean, mid-west Pacific and Atlantic (Patrício et al., 2012). The results of the study showed that the viral variant is similar between nearby foraging grounds while distant regions are considerably divergent. The study by

Patrício et al. (2012) also found that sympatric species of marine turtle were infected with the same viral variant, further supporting the results of Herbst et al. (2004) and Ene et al. (2005). These findings indicate that individual turtles are likely to be infected with the virus through horizontal transmission in neritic bays (Patrício et al., 2012).

323

324 Co-evolution of virus and host

Herbst et al. (2004) suggested that the virus diverged prior to the separation of avian and 325 mammalian alphaherpesviruses. This would mean that ChHV5 became specific to marine turtles 326 approximately 300 million years ago (mya). In addition, it was estimated that the two most 327 328 divergent clades were separated approximately 1.6-4.0 mya. These results led to speculation that the rise of the Isthmus of Panama (3.1-3.5 mya) was responsible for the divergence as it 329 prevented genetic exchange between these clades. Patrício et al. (2012) found that the most 330 331 recent common ancestor of the currently known variants of this virus existed 193-430 years ago. This estimate is considerably more recent than the work of Herbst et al. (2004) but both studies 332 demonstrate that ChHV5 has evolved with marine turtles and, in either case, it is likely ChHV5 333 has undergone region specific co-evolution with its host. 334

335

While further research is needed to resolve the time of divergence, there is one clear conclusion; it is not a new virus, or even recent mutations in an old virus, that is causing lesions to develop. This evidence further supports the theory that the recent emergence of FP is linked to modern day extrinsic environmental factors promoting lesion development.

340

341 *Genome organisation*

The herpesvirus genome is divided into two unique regions, one composed of a unique long (UL) sequence and the other region is composed of a unique short (US) sequence. These

344	unique sequences are flanked by repeat sequences. The number, position and direction of these
345	sequences can vary and as a result, there are multiple types of herpesvirus genome structures.
346	Current literature lists between four and six known herpesvirus genome types. Fauquet et al.
347	(2005) recognised four herpesvirus genome types (denoted Type 1-4) while Pellet and Roizmann
348	(2007) described six different genome types (denoted Type A-F).
349	
350	A recent study has described the entire genome of ChHV5 (Ackermann et al., 2012). The
351	extensive sequence data generated from this study showed a clear division of the genome into
352	UL and US regions. Inverted repeat sequences (IRS) were also found to flank the US sequence.
353	This configuration is consistent with ChHV5 having a type D genome (Ackermann et al., 2012).
354	
355	Ackermann et al. (2012) also described four genes that are atypical for an
356	alphaherpesvirus genome. Two members of the C-type lectin-like domain superfamily (F-lec1,
357	F-lec2), an orthologue to the mouse cytomegalovirus M04 (F-M04) and a viral sialyltransferase
358	(F-sial) were all found to be present in the ChHV5 genome (Ackermann et al., 2012). While the
359	products of these genes may not be critical for viral replication, each one has a potential role in
360	pathogenesis or immune deviation (Ackermann et al., 2012). Orthologues to these genes have
361	been described in other viral families and host cells (Neilan et al., 1999; Wilcock et al., 1999;
362	Voigt et al., 2001; Markine-Goriaynoff et al., 2004). However, until now, none of these genes
363	has ever been reported in the genome of an alphaherpesvirus. Two of these atypical genes (F-sial
364	and F-M04) were found to be expressed in the FP lesions and it has been suggested that these
365	genes may play a role in FP pathogenesis (Ackermann et al., 2012).
366	

367 Transmission of chelonid herpesvirus 5

As this disease has not been observed in pelagic juveniles, it is thought that turtles are 368 369 exposed to ChHV5 upon recruitment to neritic zones, indicating horizontal transmission (Herbst, 1994; Ene et al., 2005; Patrício et al., 2012). These new recruits may be exposed to several 370 stressors associated with migration, adaptation to a new environment, and changes in population 371 density, diet and pathogen exposure, which may all combine to reduce the efficacy of the 372 immune system and make these juveniles more susceptible to infection (Ritchie, 2006) with 373 374 ChHV5 and development of FP. It is also possible that these stressors combine to enhance transmission or elicit herpesviral recrudescence in latently infected turtles (Ritchie, 2006) 375 leading to the development of FP lesions. Alternatively, direct transmission may be occurring 376 377 between co-habiting turtles via interactions such as mating and aggression.

378

Researchers have speculated on means of transmission of FP as an infectious disease and 379 380 possible vectors. Marine turtles host a range of parasites and correlations have been made between parasite load and individual health. Spirorchid trematodes (Jacobson et al., 1989, 1991; 381 Norton et al., 1990; Aguirre et al., 1994, 1998b; Williams et al., 1994), coral reef cleaner fish 382 (Booth and Peters, 1972; Losey et al., 1994; Lu et al., 2000c), saddleback wrasse (Thalassoma 383 duperrey) (Lu et al., 2000c) and marine leeches (Ozobranchus spp.) (Greenblatt et al., 2004) 384 have all been proposed as potential vectors of ChHV5. Significantly higher viral loads were 385 detected in marine leeches when compared with the other parasites examined (Greenblatt et al., 386 2004) and they are currently the leading candidate for a mechanical vector. Although 387 Ozobranchus leeches are the most likely candidates for transmission vectors of ChHV5, their 388 exact role has not yet been confirmed. This is partly due to the possible latent state of the virus 389 and involvement of other co-factors in disease expression of FP (Greenblatt et al., 2004). 390

Other marine turtle epibiota, including bladder parasites (*Pyelosomum longicaecum*), barnacles (*Platylepas* spp.), amphipods of the skin and oral cavity (order *Talitroidea*) and blood flukes of the genera *Carretacola*, *Hapalotrema* and *Laeredius* have been ruled out as potential vectors (Greenblatt et al., 2004).

396

397 Environmental factors

398 Marine turtles are particularly susceptible to changes in their environment as they are long-lived animals with a complex life history (Aguirre and Lutz, 2004). A marine turtle will 399 access a range of habitat types during its lifetime, but exhibits a high degree of site fidelity once 400 recruited into a near shore foraging area. Mature female turtles are known to return to the natal 401 area from which they originated as hatchlings in order to lay their eggs (Limpus, 2008). Due to 402 this site fidelity, marine turtles are likely to persist in, or return to, their chosen localities despite 403 404 unfavourable changes to the environment. As a result, any damage to or destruction of these sites could have extremely detrimental effects on populations that inhabit them (Hawkes et al., 2009; 405 406 Poloczanska et al., 2010; GBRMPA, 2014).

407

It has been suggested that environmental factors may play a role in the development of
FP (Herbst, 1994; Herbst and Klein, 1995a; Adnyana et al., 1997; Aguirre and Lutz, 2004;
Chaloupka et al., 2009; dos Santos et al., 2010; Van Houtan et al., 2014). Moreover, the presence
of chemical contaminants may be part of a multifactorial problem that leads to FP (Herbst,
1994). Early proponents of a possible relationship between degraded water quality and the
presence of FP proposed that chemical contaminants present in the water acted as immunotoxins
or were causing damage at the cellular or genetic level (Herbst, 1994).

Indirect disturbances to the immune system may occur if the chemical contaminants 416 417 create a disruption of neuroendocrine function (Zeeman and Brindley, 1981; Anderson et al., 1984; Dean et al., 1990; Colborn et al., 1993; Arkoosh et al., 1994; Dunier, 1994). Herbst (1994) 418 demonstrated that a positive correlation exists between the prevalence of FP in Green turtle 419 populations adjacent to regions associated with agriculture, industry and urban development. 420 Subsequent studies have observed the same correlation (Adnyana et al., 1997; Foley et al., 2005; 421 dos Santos et al., 2010; Van Houtan et al., 2010). Although initial reports in Puerto Rico 422 observed the same relationship, this trend was reversed after several years; the prevalence of FP 423 at the more pristine site is now considerably higher than at the site which is subjected to high 424 levels of human activity (Patrício et al., 2011; Page-Karjian et al., 2012). Researchers attempted 425 to quantify this relationship in Hawaii by developing an information-rich index of eutrophication 426 from the analysis of 82 different watersheds. The results showed a strong association between FP 427 428 rates, nitrogen-footprints and macroalgae consumed by turtles (Van Houtan et al. 2010). Different quantification studies were also undertaken in waters around Brazil and found that 429 430 Green turtles residing in areas with degraded water quality had a higher prevalence of FP. However, this study based the assessment of water quality on the presence of benthic 431 macrophytes and nutrient levels; pollution and the presence of chemical contaminants were not 432 considered (dos Santos et al., 2010). 433

434

Only very low concentrations of persistent organic pollutants (Keller et al., 2014) and selected trace metals and organic pollutants (Aguirre et al., 1994) have been detected in turtles with FP lesions. Although these results suggest that the pollutants examined do not significantly contribute to FP development, it is possible that further investigations will uncover a relationship between this disease and other environmental contaminants (Keller et al., 2014).

Water temperature may also be a factor in lesion development and growth rate. It is
possible that warmer water temperatures during summer promote lesion growth, resulting in
lesions of a debilitating size by autumn (Herbst, 1994; Herbst et al., 1995). This seasonal trend
has been observed in Florida, where a higher rate of FP is observed in turtles that strand in winter
(Herbst, 1994). However, no seasonal trends have been observed in Hawaii (Murakawa et al.,
2000), which may be because there is less seasonal fluctuation in water temperature in this
region (Foley et al., 2005).

448

Natural biotoxins have also been implicated as a co-factor involved in FP development. 449 Landsberg et al. (1999) identified a correlation between high-risk FP areas in the Hawaiian 450 Islands and prevalence of Prorocentrum, a species that produces okadaic acid, a known tumour 451 promoter (Suganuma et al., 1988; Haystead et al., 1989; Cohen et al., 1990; Huynh et al., 1997). 452 453 Similarly, tissue concentrations of lyngbyatoxin A, produced by Lyngbya majuscula, have been correlated with the presence of FP lesions in dead Green turtles (Arthur et al., 2006, 2008). 454 455 However, this species constituted less than 2% of total dietary intake and subsequently, any biotoxins would be at a low concentration in the turtles (Arthur et al., 2008). If the dietary items 456 containing these biotoxins form a natural component of the diet of Green turtles and the amount 457 being consumed was not altered, these toxins should have no influence on the development of 458 459 FP.

460

An increased concentration of arginine in the diet of Green turtles as a result of invasive macroalgae blooms has also been linked to an increasing prevalence of FP (van Houtan et al., 2010). Arginine is a regulator of immune activity (Peranzoni et al., 2008) and is known to promote herpesviruses and contribute to tumour formation (Mannick et al., 1994). This amino

acid is also a major component of glycoproteins on the viral envelope of herpesviruses (van
Houtan et al. 2010; van Houtan et al. 2014).

467

The results of a subsequent study found an association between eutrophication and 468 arginine content of macroalgae, with the intake of arginine in turtles at eutrophied sites being up 469 to 14 times the background level. This increased arginine content may metabolically promote 470 ChHV5, leading to FP lesion development (Van Houtan et al., 2014). Although the conclusions 471 from this study were subsequently challenged (Work et al., 2014), the epidemiological link 472 between the prevalence of disease and feeding ecology found in Van Houtan et al. (2014) 473 provides strong support that environmental factors play a role in the development of this disease. 474 However, the environmental factors leading to the bloom of macroalgae may be causing the 475 development of FP lesions directly, and the algal blooms may not be involved in lesion 476 477 development at all. If this is the case, it is difficult to link cause and effect.

478

479 Despite there being a strong positive correlation between the prevalence of FP in Green turtle populations and areas with degraded water quality, it is difficult to identify one specific 480 causal contaminant or a combination of such working synergistically to the detriment of the 481 turtles. Studies on toxicity usually focus on chemicals that are persistent in the environment or 482 can bio-accumulate. Genetic damage as a result of a toxin may occur as a consequence of 483 transient exposure and as such, future studies would need to be expanded to include transient 484 chemicals that could have this effect on Green turtles. The practicality of such investigations is 485 daunting considering the vast marine environment and the known and unknown possible causes 486 of FP (Herbst, 1994; Herbst and Klein, 1995a). 487

One way that potential links between FP and anthropogenic contaminants might be 489 490 identified is to develop a monitoring program that records and compares contaminant residue levels, genetic changes and viral load in blood and/or tissue samples collected from turtles with 491 492 and without FP lesions over a wide geographic area and across several seasons. Such a program could be integrated into existing turtle monitoring activities. Controlled laboratory studies in a 493 closed experimental system may be needed to conclusively evaluate the roles of various 494 495 environmental factors in FP development (Herbst and Klein 1995a). Alternatively, results from both field and laboratory based studies may work synergistically to fully resolve this 496 relationship. 497

498

499 Direction of future research

The longevity of marine turtles, coupled with their close association with inshore habitats 500 501 and seagrass meadows and coral reefs in these habitats, has led to the proposal that they may act as sentinel indicators of marine ecosystem health (Aguirre and Lutz, 2004). Gaining a better 502 503 understanding of the health and prevalence of diseases in marine turtle populations provides a critical link between ecosystem health and turtle health. Effective management of both the 504 habitat and the species that rely on it is critical for effective species conservation. As FP has been 505 found to be associated with turtles resident in areas exposed to poor water quality (Herbst, 1994; 506 507 dos Santos et al., 2010; Van Houtan et al., 2010, 2014), FP prevalence may be a vital tool in monitoring inshore marine habitats. Many of these marine environments are also utilised by 508 humans and consequently, research into the epidemiology of this disease could be mutually 509 510 beneficial for Green turtles, other species in these ecosystems and humans alike (Aguirre and Lutz, 2004; Flint et al., 2010c). Long term monitoring of populations will allow researchers to 511 512 more accurately establish disease prevalence, corrected by demographic proportions.

514	Whether the development of FP lesions is a result of a single agent or the interaction
515	between multiple factors is yet to be determined. It is clear that it is an infectious disease with a
516	strong link to ChHV5. In addition, the strong influence of different geographic regions on the
517	prevalence of FP and each of the viral variants indicate that FP is geographically specific (Herbst
518	et al., 2004; Ene et al., 2005; Patrício et al., 2012). The results from molecular studies targeting
519	ChHV5 in samples from turtles show that the virus is present in turtles with and without FP
520	lesions (Quackenbush et al., 2001; Page-Karjian et al., 2012; Alfaro-Núñez et al., 2014). Future
521	molecular studies targeting ChHV5 should consider these results and screen all samples for
522	ChHV5, not only those from turtles with FP lesions. Biosecurity and potential zoonosis should
523	always be considered by those handling marine turtles in both field and captive situations.
524	However, future research should prioritise understanding the triggers for lesion development.
525	
526	Conclusions
527	There are many aspects of FP in marine turtles that are yet to be resolved and future

research needs to target those gaps which will ultimately aid in managing the disease. 528 529 Understanding how ChHV5 is transmitted between turtles and between regions is a key priority. Molecular epidemiology is a useful tool for revealing genetic differences in this virus between 530 regions; possible relationships between host lineage and viral strain and the genes responsible for 531 pathogenesis and viral replication. Molecular investigations on ChHV5 from different regions 532 are essential to improve our understanding of the epidemiology and pathogenesis of this virus 533 which will in turn inform the management and conservation of a vulnerable species, the Green 534 535 turtle.

536

537 Acknowledgements

538	We gratefully acknowledge the anonymous reviewers of this paper for providing
539	constructive comments which helped to improve this manuscript. We also thank Dr Colette
540	Thomas for assistance with water quality information.
541	
542	Appendix: Supplementary material
543	Supplementary data associated with this article can be found in the online version
544	atsetters please insert doi number
545	
546	Conflict of interest statement
547	None of the authors of this paper has a financial or personal relationship with other
548	people or organisations that could inappropriately influence or bias the content of the paper.
549	
550	References
551 552 553	Ackermann, M., Leong, JA.C., Koriabine, M., Hartmann-Fritsch, F., de Jong, P.J., Lewis, T.D., Schetle, N., Work, T.M., Dagenais, J., Balazs, G.H., 2012. The genome of chelonid herpesvirus 5 harbors atypical genes. Public Library of Science 7, e46623.
554 555 556 557	Adnyana, W., Ladds, P.W., Blair, D., 1997. Observations of fibropapillomatosis in Green turtles (<i>Chelonia mydas</i>) in Indonesia. Australian Veterinary Journal 75, 737-742.
558 559 560 561	Aguirre, A.A., Balazs, G.H., Spraker, T.R., Gross, T.S., 1995. Adrenal and hematological responses to stress in juvenile Green turtles (<i>Chelonia mydas</i>) with and without fibropapillomas. Physiological Zoology 68, 831-854.
562 563 564 565	Aguirre, A.A., Balazs, G.H., Zimmerman, B., Galey, F.D., 1994. Organic contaminants and trace metals in the tissues of Green turtles (<i>Chelonia mydas</i>) afflicted with fibropapillomas in the Hawaiian Islands. Marine pollution bulletin 28: 109-114
566 567 568 569	Aguirre, A.A., Balazs, G.H., Zimmerman, B., Spraker, T.R., 1994. Evaluation of Hawaiian Green turtles (<i>Chelonia mydas</i>) for potential pathogens associated with fibropapillomas. Journal of Wildlife Diseases 30, 8.
570 571 572 573	Aguirre, A.A., Limpus, C.J., Spraker, T.R., Balazs, G.H., 1998a. Survey of fibropapillomatosis and other potential diseases in marine turtles from Moreton Bay, Queensland, Australia. Proceedings of the 19th Annual Symposium on Sea Turtle Conservation and Biology, South Padre Island, Texas, USA, 2-6 March 1999. U.S. Department of Commerce,

574 575 576	National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, United States, p. 36.
577 578 579	Aguirre, A.A., Lutz, P.L., 2004. Marine turtles as sentinels of ecosystem health: Is fibropapillomatosis an indicator? EcoHealth 1, 275-283.
580 581 582 583	Aguirre, A.A., Spraker, T.R., Balazs, G.H., Zimmerman, B., 1998b. Spirorchidiasis and fibropapillomatosis in Green turtles from the Hawaiian Islands. Journal of Wildlife Diseases 34, 91.
584 585 586 587	Aguirre, A.A., Spraker, T.R., Chaves, A., Toit, L., Eure, W., Balazs, G.H., 1999. Pathology of fibropapillomatosis in Olive Ridley turtles <i>Lepidochelys olivacea</i> nesting in Costa Rica. Journal of Aquatic Animal Health 11, 283-289.
588 589 590 591	Alfaro-Nunez, A., Bertelsen, M.F., Bojesen, A.M., Rasmussen, I., Zepeda-Mendoza, L., Olsen, M.T., Gilbert, M.T.P., 2014. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles. BMC Evolutionary Biology 14.
592 593 594 595	Alfaro-Núñez, A., Gilbert, T.P., 2014. Validation of a sensitive PCR assay for the detection of chelonid fibropapilloma-associated herpesvirus in latent turtle infections. Journal of Virological Methods 206, 38-41.
596 597 598 599	Anderson, D.P., van Muiswinkel, W.B., Roberson, B.S., 1984. Effects of chemically induced immune modulation on infectious diseases of fish. Progress in Clinical and Biological Research 161, 187-211.
600 601	Ariel, E., 2011. Viruses in reptiles. Veterinary Research 42, 100.
601 602 603 604 605 606	Arkoosh, M.R., Stein, J.E., Casillas, E., 1994. Immunotoxicology of an anandromous fish: field and laboratory studies of B-cell mediated immunity. In: Modulators of Fish Immune Responses: Models for Environmental Toxicology-Biomarkers, Immunostimulators. SOS Publications, Fair Haven, New Jersey, pp. 33-48.
607 608 609 610 611	Arthur, K., Limpus, C., Balazs, G., Capper, A., Udy, J., Shaw, G., Keuper-Bennett, U., Bennett, P., 2008. The exposure of Green turtles (<i>Chelonia mydas</i>) to tumour promoting compounds produced by the cyanobacterium <i>Lyngbya majuscula</i> and their potential role in the aetiology of fibropapillomatosis. Harmful Algae 7, 114-125.
612 613 614 615	Arthur, K., Shaw, G., Limpus, C., Udy, J., 2006. A review of the potential role of tumour- promoting compounds produced by <i>Lyngbya majuscula</i> in marine turtle fibropapillomatosis. African Journal of Marine Science 28, 441-441.
616 617 618 619 620 621 622	 Balazs, G.H., Duclley, W.C., Hallacher, L.E., Coney, J.P., Koga, S.K., 1994. Ecology and culture significance of sea turtles at Punalu'u, Hawaii. Proceedings of the 14th Annual Symposium on Sea Turtle Biology and Conservation, Hilton Head, South Carolina, 1-5 March 1994. U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Centre, Miami, Florida, pp. 10-13.

623 624 625 626 627	Balazs, G.H., Murakawa, S.K.K., Ellis, D.M., Aguirre, A.A., 2000. Manifestation of fibropapillomatosis and rates of growth of Green turtles at Kaneohe Bay in the Hawaiian Islands. In: Proceedings of the 18th International Sea Turtle Symposium, Mazatlán, Sinaloa, Mexico, Mazatlán, Sinaloa Mexico, 3-7 March 1998, pp. 112-113.
628 629 630	Balazs, G.H., Pooley, S.G., 1991. Research plan for marine turtle fibropapilloma: Results of a December 1990 workshop. NOAA-TM-NMFSSWFSC-156, Honolulu, Hawaii.
631 632 633 634 635	Balazs, G.H., Puleloa, W., Medeiros, E., Murakawa, S.K.K., Ellis, D.M., 1998. Growth rates and incidence of fibropapillomatosis in Hawaiian Green turtles utilizing coastal foraging pastures at Palaau, Molokai. Proceedings of the 17th Annual Sea Turtle Symposium, Orlando, Florida, USA, 4-8 March 1997, pp. 141-143.
636 637 638 639 640 641 642	 Baptistotte, C., Scalfoni, J.T., Gallo, B.M.G., dos Santos, A.S., de Castilhos, J.C.L., Lima, E. H. S. M., Bellini, C., Barata, P.C.R., 2005. Prevalence of sea turtle fibropapillomatosis in Brazil. Proceedings of the 21st Annual Symposium on Sea Turtle Biology and Conservation, Philadelphia, Pennsylvania, USA, 24-28 February 2001. U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Centre, United States pp. 111-113.
643 644 645	Barragan, A.R., Sarti, M.L., 1994. A possible case of fibropapilloma in Kemp's Ridley turtle (<i>Lepidochelys kempii</i>). Marine Turtle Newsletter 67.
646 647 648 649	Bell, I., 2003. Turtle Population Dynamics in the Hay Point, Abbot Point and Lucinda Port Areas. A report to Ports Corporation of Queensland by Queensland Parks and Wildlife Service., Queensland, Australia.
650 651 652 653 654	Berumen, J., Ordoñez, R.M., Lazcano, E., Salmeron, J., Galvan, S.C., Estrada, R.A., Yunes, E., Garcia-Carranca, A., Gonzalez-Lira, G., Madrigal-de la Campa, A., 2001. Asian- American variants of human papillomavirus 16 and risk for cervical cancer: a case- control study. Journal of the National Cancer Institute 93, 1325-1330.
655 656 657	Bjorndal, K.A., 1995. Biology and Conservation of Sea Turtles. Smithsonian Institution Press, Washington.
658 659 660	Booth, J., Peters, J.A., 1972. Behavioural studies on the Green turtle (<i>Chelonia mydas</i>) in the sea. Animal Behaviour 20, 808-812.
661 662 663 664	Brodie, S.J., Marcom, K.A., Pearson, L.D., Anderson, B.C., de la Concha-Bermejillo, A., Ellis, J.A., DeMartini, J.C., 1992. Effects of virus load in the pathogenesis of lentivirus-induced lymphoid interstitial pneumonia. Journal of Infectious Diseases 166, 531-541.
665 666 667	Brooks, D.E., Ginn, P.E., Miller, T.R., Bramson, L., Jacobson, E.R., 1994. Ocular fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 31, 335-339.
668 669 670 671	Casey, R.N., Quackenbush, S.L., Work, T.M., Balazs, G.H., Bowser, P.R., Casey, J.W., 1997. Evidence for retrovirus infections in Green turtles <i>Chelonia mydas</i> from the Hawaiian islands. Diseases of Aquatic Organisms 31, 1-7.

672 673 674	Chaloupka, M., Balazs, G.H., Work, T.M., 2009. Rise and fall over 26 years of a marine epizootic in Hawaiian green sea turtles. Journal of Wildlife Diseases 45, 1138.
675 676 677 678 679	Chaloupka, M., Bjorndal, K.A., Balazs, G.H., Bolten, A.B., Ehrhart, L.M., Limpus, C.J., Suganuma, H., Troëng, S., Yamaguchi, M., 2008a. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Global Ecology and Biogeography 17, 297-304.
680 681 682 683	Chaloupka, M., Work, T.M., Balazs, G.H., Murakawa, S.K.K., Morris, R., 2008b. Cause-specific temporal and spatial trends in green sea turtle strandings in the Hawaiian Archipelago (1982-2003). Marine Biology 154, 887-898.
684 685 686	Coberley, S.S., Condit, R.C., Herbst, L.H., Klein, P.A., 2002. Identification and expression of immunogenic proteins of a disease-associated marine turtle herpesvirus. Journal of Virology 76, 10553-10558.
687 688 689 690 691 692	Coberley, S.S., Herbst, L.H., Brown, D.R., Ehrhart, L.M., Bagley, D.A., Schaf, S.A., Moretti, R.H., Jacobson, E.R., Klein, P.A., 2001a. Detection of antibodies to a disease-associated herpesvirus of the Green turtle, <i>Chelonia mydas</i> . Journal of Clinical Microbiology 39, 3572-3577.
692 693 694 695 696	Coberley, S.S., Herbst, L.H., Ehrhart, L.M., Bagley, D.A., Hirama, S., Jacobson, E.R., Klein, P.A., 2001b. Survey of Florida Green turtles for exposure to a disease-associated herpesvirus. Diseases of Aquatic Organisms 47, 159.
697 698	Cohen, P., Holmes, C.F., Tsukitani, Y., 1990. Okadaic acid: A new probe for the study of cellular regulation. Trends in Biochemical Sciences 15, 98-102.
699 700 701	Colborn, T., vom Saal, F.S., Soto, A.M., 1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives 101, 378-384.
 702 703 704 705 706 707 	Cope, K., Redfoot, W.E., Bagley, D.A., Ehrhart, L.M., 2013. Long-term marine turtle population and fibropapillomatosis trends in the Indian River Lagoon system, Florida, Proceedings of the 33rd Annual Symposium on Sea Turtle Biology and Conservation, Baltimore, Maryland, USA, 5-8 February 2013, pp. 132-133.
708 709 710 711	Curry, S.S., Brown, D.R., Gaskin, J.M., Jacobson, E.R., Ehrhart, L.M., Blahak, S., Herbst, L.H., Klein, P.A., 2000. Persistent infectivity of a disease-associated herpesvirus in Green turtles after exposure to seawater. Journal of Wildlife Diseases 36, 792.
712 713 714	D'Amato, A.F., Moraes-Neto, M., 2000. First documentation of fibropapillomas verified by histopathology in <i>Eretmochelys imbricata</i> . <i>Marine Turtle Newsletter</i> : 12-13
715 716 717 718 719 720	Davison, A.J., McGeoch, D.J., 2010. Create genus <i>Scutavirus</i> (type species: the currently unassigned species chelonid herpesvirus 5) in subfamily Alphaherpesvirinae, family Herpesviridae [ICTV proposal]. <u>http://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/v</u> <u>ertebrate-official/4176.aspx</u> (accessed 21 November 2013).

721 722 723 724 725 726	de Maye, C., Bresette, M.J., Bagley, D.A., Welch, L., 2007. Population assessment of sea turtles in the Lake Worth lagoon. Proceedings of the 27th Annual Symposium on Sea Turtle Biology and Conservation, 22-28 February 2007. U.S. Department of Commerce, National Oceanographic, Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Centre, Myrtle Beach, South Carolina, USA, p. 217.
727 728 729	Dean, J.H., Cornacoff, J.B., Luster, M.I., 1990. Toxicity to the immune system. A review. Immunopharmacology Reviews. Plenum Press, New York, USA, pp. 377-408.
730 731	Dobbs, K., 2001. Marine Turtles in the Great Barrier Reef World Heritage Area, Queensland.
732 733 734 735 736	dos Santos, R.G., Martins, A.S., Torezani, E., Baptistotte, C., da Nóbrega, F.J., Horta, P.A., Work, T.M., Balazs, G.H., 2010. Relationship between fibropapillomatosis and environmental quality: A case study with <i>Chelonia mydas</i> off Brazil. Diseases of Aquatic Organisms 89, 87-95.
737 738 739 740	Duarte, A., Faísca, P., Loureiro, N.S., Rosado, R., Gil, S., Pereira, N., Tavares, L., 2012. First histological and virological report of fibropapilloma associated with herpesvirus in <i>Chelonia mydas</i> at Príncipe Island, West Africa. Archives of Virology 157, 1155-1159.
741 742 743 744 745	Dunier, M.B., 1994. Effects of environmental contaminants (pesticides and metal ions) on fish immune systems. In: Modulators of Fish Immune Responses: Models for Environmental Toxicology-Biomarkers, Immunostimulators. SOS Publications, Fair Haven, New Jersey, pp. 123-139.
746 747 748 749	Eaton, C., McMichael, E., Witherington, B., Foley, A., Hardy, R., Meylan, A., 2008. In-water sea turtle monitoring and research in Florida: review and recommendations. NOAA Technical Memorandum NMFS-OPR-38.
750 751 752 753	Ehrhart, L.M., 1991. Fibropapillomas in Green turtles of the Indian River lagoon, Florida: Distribution over time and area. Research Plan for Marine Turtle Fibropapilloma: Results of a December 1990 Workshop, Honolulu, Hawaii, pp. 59-56.
754 755 756	Ehrhart, L.M., Redfoot, W.E., 1995. Composition and status of the marine turtle assemblage of the Indian River Lagoon System. Bulletin of Marine Science 57, 279-285.
757 758 759 760 761 762	Ehrhart, L.M., Sindler, R.B., Witherington, B.E., 1986. Preliminary investigation of papillomatosis in Green turtles: Phase I - frequency and effects on turtles in the wild and in captivity. Contract No. 40-GENF-6-0060I, Final Report to U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Miami Laboratory.
762 763 764 765 766 767	Ene, A., Su, M., Lemaire, S., Rose, C., Schaff, S., Moretti, R., Lenz, J., Herbst, L.H., 2005. Distribution of chelonid fibropapillomatosis-associated herpesvirus variants in Florida: Molecular genetic evidence for infection of turtles following recruitment to neritic developmental habitats. Journal of Wildlife Diseases 41, 489.
768 769 770	Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A., 2005. Virus taxonomy: Classification and nomenclature of viruses. Eighth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego, California, USA.

771	
772	Fields, B.N., Knipe, D.M., Howley, P.M., 2013. Fields' Virology, 6th Edn. Lippincott Williams
773	and Wilkins, Philadelphia, USA.
774	and winkins, I initadelpina, OSA.
775	Flint, M., Limpus, C.J., Patterson-Kane, J.C., Murray, P.J., Mills, P.C., 2010a. Corneal
776	fibropapillomatosis in green sea turtles (<i>Chelonia mydas</i>) in Australia. Journal of
777	Comparative Pathology 142, 341-346.
778	Comparative ratiology 142, 541-540.
779	Flint, M., Limpus, C.J., Patterson-Kane, J.C., Murray, P.J., Mills, P.C., 2010b. Corneal
780	fibropapillomatosis in green sea turtles (<i>Chelonia mydas</i>) in Australia. Journal of
781	Comparative Pathology 142, 341-346.
782	
783	Flint, M., Patterson-Kane, J.C., Limpus, C.J., Mills, P.C., 2010c. Health surveillance of stranded
784	Green turtles in southern Queensland, Australia (2006-2009): An epidemiological
785	analysis of causes of disease and mortality. EcoHealth 7, 135-145.
786	
787	Flint, M., Patterson-Kane, J.C., Limpus, C.J., Work, T.M., Blair, D., Mills, P.C., 2009.
788	Postmortem diagnostic investigation of disease in free-ranging marine turtle populations:
789	A review of common pathologic findings and protocols. Journal of Veterinary Diagnostic
790	Investigation 21, 733-759.
791	
792	Foley, A.M., Schroeder, B.A., Redlow, A.E., Fick-Child, K.J., Teas, W.G., 2005.
793	Fibropapillomatosis in stranded Green turtles (Chelonia mydas) from the eastern United
794	States (1980-98): Trends and associations with environmental factors. Journal of Wildlife
795	Diseases 41, 29-41.
796	
797	Formia, A., Balazs, G.H., Spraker, T.R., Deem, S., Billes, A., Ngouessono, S., Parnell, R.,
798	Collins, T., Sounguet, G.P., Gibudi, A., Villarubia, A., 2007. Fibropapillomatosis
799	confirmed in Chelonia mydas in the Gulf of Guinea, West Africa. Marine Turtle
800	Newsletter, 20-22.
801	
802	Gamache, N., Horrocks, J., 1991. Fibropapilloma disease in Green turtles, Chelonia mydas
803	around Barbados' West Indies. Proceedings of the 11th Annual Workshop on Sea Turtle
804	Biology and Conservation, Jekyll Island, Georgia, 26 February-2 March 1991. U.S.
805	Department of Commerce, National Oceanographic and Atmospheric Administration,
806	National Marine Fisheries Service, pp. 158-160.
807	
808	García-Sastre, A., Sansonetti, P.J., 2010. Host-pathogen interactions. Current Opinion in
809	Immunology 22, 425-427.
810	CDDMDA 2014 A sector shill the sector set for the Caset Dentise Deef. Marine Torothe
811	GBRMPA, 2014. A vulnerability assessment for the Great Barrier Reef: Marine Turtles,
812	Townsville.
813 814	Circred A NDambé H Bréharat N 2013 Eibronanillamatosis in Graan turtlas along the coast
814 815	Girard, A., NDembé, H., Bréheret, N., 2013. Fibropapillomatosis in Green turtles along the coast of the Congo-Brazzaville. Seven years of observations give an insight into a rising issue
815 816	in central Africa. Proceedings of the 33rd Annual Symposium on Sea Turtle Biology and
817	Conservation, 5-8 February 2013. U.S. Department of Commerce, National
818	Oceanographic and Atmospheric Administration, National Marine Fisheries Service,
819	Southeast Fisheries Science Centre, Baltimore, Maryland, USA, p. 8.
820	Soundast i isheries Science Centre, Butimore, Maryland, OSA, p. 0.
020	

821 822 823	Glazebrook, J.S., Campbell, R.S.F., 1990. A survey of the diseases of marine turtles in northern Australia. 2. Oceanarium-reared and wild turtles. Diseases of Aquatic Organisms 9, 97- 104.
824 825 826 827 828	Greenblatt, R.J., Balazs, G.H., Casey, J.W., Work, T.M., Dutton, P., Sutton, C.A., Spraker, T.R., Casey, R.N., Diez, C.E., Parker, D., et al., 2005a. Geographic variation in marine turtle fibropapillomatosis. Journal of Zoo and Wildlife Medicine 36, 527-530.
829 830 831 832 833	Greenblatt, R.J., Quackenbush, S.L., Casey, R.N., Rovnak, J., Balazs, G.H., Work, T.M., Casey, J.W., Sutton, C.A., 2005b. Genomic variation of the fibropapilloma-associated marine turtle herpesvirus across seven geographic areas and three host species. Journal of Virology 79, 1125-1132.
834 835 836 837	Greenblatt, R.J., Work, T.M., Balazs, G.H., Sutton, C.A., Casey, J.W., Casey, R.N., 2004. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian Green turtles (<i>Chelonia mydas</i>). Virology 321, 101-110.
838 839 840	Griffin, B.D., Verweij, M.C., Wiertz, E.J., 2010. Herpesviruses and immunity: The art of evasion. Veterinary Microbiology 143, 89-100.
841 842	Gulko, D., Eckert, K, 2004. Sea Turtles: An Ecological Guide. Mutual Publishing, Hawaii, USA.
843 844 845 846 847	Haines, H.G., Rywlin, A., Rebell, G., 1974. A herpesvirus disease of farmed Green turtles (<i>Chelonia mydas</i>). Proceedings of a Workshop of the World Mariculture Society 5, 183- 195.
848 849 850 851	Hamann, M., Godfrey, M., Seminoff, J., Arthur K, Barata, P., Bjorndal, K., Bolten, A., Broderick, A., Campbell, L., Carreras, C., et al., 2010. Global research priorities for sea turtles: Informing management and conservation in the 21st century. Endangered Species Research 11, 245-269.
852 853 854 855	Hamann, M., Schäuble, C.S., Simon, T., Evans, S., 2006. Demographic and health parameters of green sea turtles <i>Chelonia mydas</i> foraging in the Gulf of Carpentaria, Australia. Endangered Species Research 2, 81-88.
856 857 858 859	Haralambus, R., Burgstaller, J., Klukowska-Rötzler, J., Steinborn, R., Buchinger, S., Gerber, V., Brandt, S., 2010. Intralesional bovine papillomavirus DNA loads reflect severity of equine sarcoid disease. Equine Veterinary Journal 42, 327-331.
860 861 862 863 864	Harshbarger, J.C., 1991. Sea turtle fibropapilloma cases in the registry of tumors in lower animals. Research plan for marine turtle fibropapilloma: results of a December 1990 workshop NOAA Technical Memorandum. United States of America
865 866 867	Hawkes, L.A., Broderick, A.C., Godfrey, M.H., Godley, B.J., 2009. Climate change and marine turtles. Endangered Species Research 7, 137-154.
868 869 870	Haystead, T.A.J., Sim, A.T.R., Carling, D., Honnor, R.C., Tsukitani, Y., Cohen, P., Hardie, D.G., 1989. Effects of the tumor promoter okadaic acid on intracellular protein- phosphorylation and metabolism. Nature 337, 78-81.

 Herbst, L.H., 1994. Fibropapillomatosis of marine turtles. Annual Review of Fish Diseases 4, 389-425. Herbst, L.H. 1995. The etiology and pathogenesis of Green turtle fibropapillomatosis. Dissertation/Thesis. Herbst, L.H., Chakrabarti, R., Klein, P.A., Achary, M., 2001. Differential gene expression associated with tumorigenicity of cultured Green turtle fibropapilloma-derived fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998, Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free turnor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1955. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J. 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis-associated herpesvirus and its relationship to the prevalence of fibropapillomatosis-associated herpesvirus and its relationship to the prevalence of fibropapillom	871	
 Herbst, L.H. 1995. The etiology and pathogenesis of Green turtle fibropapillomatosis. Dissertation/Thesis. Herbst, L.H., Chakrabarti, R., Klein, P.A., Achary, M., 2001. Differential gene expression associated with tumorigenicity of cultured Green turtle fibropapilloma-derived fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Scrological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Enrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assesse exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- a	872	Herbst, L.H., 1994. Fibropapillomatosis of marine turtles. Annual Review of Fish Diseases 4,
 Herbst, L.H. 1995. The etiology and pathogenesis of Green turtle fibropapillomatosis. Dissertation/Thesis. Herbst, L.H., Chakrabarti, R., Klein, P.A., Achary, M., 2001. Differential gene expression associated with tumorigenicity of cultured Green turtle fibropapilloma-derived fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis: Unagenetic of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunopathology 46, 317-335. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1995. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 	873	389-425.
 Dissertation/Thesis. Herbst, L.H., Chakrabarti, R., Klein, P.A., Achary, M., 2001. Differential gene expression associated with tumorigenicity of cultured Green turtle fibropapilloma-derived fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis associated herpesvirus and its relationship to the prevalence of fibropapillomatosis asso	874	
 Herbst, L.H., Chakrabarti, R., Klein, P.A., Achary, M., 2001. Differential gene expression associated with tumorigenicity of cultured Green turtle fibropapilloma-derived fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis associated herpesvirus and its relationship to the prevalence of fibropapillomatosis associated herpesvirus and its rel	875	Herbst, L.H. 1995. The etiology and pathogenesis of Green turtle fibropapillomatosis.
 Herbst, L.H., Chakrabarti, R., Klein, P.A., Achary, M., 2001. Differential gene expression associated with tumorigenicity of cultured Green turtle fibropapilloma-derived fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A.	876	Dissertation/Thesis.
 Herbst, L.H., Chakrabarti, R., Klein, P.A., Achary, M., 2001. Differential gene expression associated with tumorigenicity of cultured Green turtle fibropapilloma-derived fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A.	877	
 associated with tumorigenicity of cultured Green turtle fibropapilloma-derived fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		Herbst, L.H., Chakrabarti, R., Klein, P.A., Achary, M., 2001. Differential gene expression
 fibroblasts. Cancer Genetics and Cytogenetics 129, 35-39. Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 195b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissibel Green 		
 Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, J., 2004. Tumor outbreaks in marine turtles are not due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 due to recent herpesvirus mutations. Current Biology 14, R697-R699. Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998, Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		Herbst, L., Ene, A., Su, M., Desalle, R., Lenz, L. 2004. Tumor outbreaks in marine turtles are not
 Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998, Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. 		
 Herbst, L.H., Greiner, E.C., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 1998. Serological association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		ade to recent herpestinas matations. Carrent Biology 14, 1057 1059.
 association between spirorchidiasis, herpesvirus infection, and fibropapillomatosis in Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		Herbst I H Greiner F C Ebrhart I M Bagley D A Klein P A 1998 Serological
 Green turtles from Florida. Journal of Wildlife Diseases 34, 496. Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvir		
 Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		1 1 1
 Herbst, L.H., Jacobson, E.R., Klein, P.A., Balazs, G.H., Moretti, R., Brown, T., Sundberg, J.P., 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		Green turties from Fiorida. Journal of Whatne Diseases 34, 470.
 1999. Comparative pathology and pathogenesis of spontaneous and experimentally induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		Harbet I. H. Jacobson F. D. Vlain D. A. Dalaza C. H. Maratti D. Prown T. Sundharg J.D.
 induced fibropapillomas of Green turtles (<i>Chelonia mydas</i>). Veterinary Pathology 36, 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis-associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 551-564. Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 Herbst, L.H., Jacobson, E.R., Moretti, R., Brown, T., Sundberg, J.P., Klein, P.A., 1995. Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		551-504.
 Experimental transmission of Green turtle fibropapillomatosis using cell-free tumor extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 extracts. Diseases of Aquatic Organisms 22, 1-12. Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		-
 Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		1 0
 Herbst, L.H., Klein, P.A., 1995a. Green turtle fibropapillomatosis: Challenges to assessing the role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		extracts. Diseases of Aquatic Organisms 22, 1-12.
 role of environmental cofactors. Environmental Health Perspectives 103, 27-30. Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 900 901 Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific 902 antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and 903 Immunopathology 46, 317-335. 904 905 Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 906 Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked 907 immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- 908 associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea 909 turtles. Clinical and Vaccine Immunology 15, 843-851. 910 911 Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 Herbst, L.H., Klein, P.A., 1995b. Monoclonal antibodies for the measurement of class-specific antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		role of environmental cofactors. Environmental Health Perspectives 103, 27-30.
 antibody responses in the Green turtle, <i>Chelonia mydas</i>. Veterinary Immunology and Immunopathology 46, 317-335. Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 903 Immunopathology 46, 317-335. 904 905 Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 906 Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked 907 immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- 908 associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea 909 turtles. Clinical and Vaccine Immunology 15, 843-851. 910 911 Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 904 905 Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., 906 Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked 907 immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- 908 associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea 909 turtles. Clinical and Vaccine Immunology 15, 843-851. 910 911 Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 Herbst, L.H., Lemaire, S., Ene, A.R., Heslin, D.J., Ehrhart, L.M., Bagley, D.A., Klein, P.A., Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		Immunopathology 46, 317-335.
 Lenz, J., 2008. Use of baculovirus-expressed glycoprotein H in an enzyme-linked immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 907 immunosorbent assay developed to assess exposure to chelonid fibropapillomatosis- 908 associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea 909 turtles. Clinical and Vaccine Immunology 15, 843-851. 910 911 Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 associated herpesvirus and its relationship to the prevalence of fibropapillomatosis in sea turtles. Clinical and Vaccine Immunology 15, 843-851. Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 909 turtles. Clinical and Vaccine Immunology 15, 843-851. 910 911 Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
 910 911 Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green 		
Herbst, L.H., Moretti, R., Brown, T., Klein, P.A., 1996. Sensitivity of the transmissible Green	909	turtles. Clinical and Vaccine Immunology 15, 843-851.
	910	
912 turtle fibropapillomatosis agent to chloroform and ultracentrifugation conditions.	911	
	912	turtle fibropapillomatosis agent to chloroform and ultracentrifugation conditions.
913 Diseases of Aquatic Organisms 25, 225-228.	913	Diseases of Aquatic Organisms 25, 225-228.
914	914	
Hill, A.B., 1965. The environment and disease: Association or causation. Proceedings of the	915	Hill, A.B., 1965. The environment and disease: Association or causation. Proceedings of the
916 Royal Society of Medicine 58, 295-300.	916	Royal Society of Medicine 58, 295-300.
917	917	
Hirama, S., Ehrhart, L.M., 2002. Epizootiology of Green turtle fibropapillomatosis on the	918	Hirama, S., Ehrhart, L.M., 2002. Epizootiology of Green turtle fibropapillomatosis on the
919 Florida Atlantic coast. Proceedings of the 20th Annual Symposium on Sea Turtle Biology	919	Florida Atlantic coast. Proceedings of the 20th Annual Symposium on Sea Turtle Biology
and Conservation, Orlando, Florida, USA, 29 February-4 March 2000. U.S. Department	920	and Conservation, Orlando, Florida, USA, 29 February-4 March 2000. U.S. Department

921 922 923	of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Miami, Florida, p. 51.
924 925 926 927	Hirama, S., Ehrhart, L.M., 2007. Description, prevalence and severity of Green turtle fibropapillomatosis in three developmental habitats on the east coast of Florida. Florida Scientist 70: 435-448
928 929 930 931 932 933 934	 Huerta, P., Pineda, H., Agutrre, A., Spraker, T., Sarti, L., Barragan, A., 2002. First Confirmed Case of Fibropapilloma in a Leatherback Turtle (<i>Dermochelys coriacea</i>). Proceedings of the 20th Annual Symposium on Sea Turtle Biology and Conservation, Orlando, Florida, USA, 29 February-4 March 2000. U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Miami, Florida, p.193
935 936 937 938	Huynh, C., Pinelli, E., Puiseux-Dao, S., Pfohl-Leszkowicz, A., 1997. Okadaic acid DNA adduct formation. VIII International conference on Harmful algae - Abstracts and Posters Classification U6
939 940 941 942 943	Islam, A.F.M.F., Walkden-Brown, S.W., Islam, A., Underwood, G.J., Groves, P.J., 2006. Relationship between Marek's disease virus load in peripheral blood lymphocytes at various stages of infection and clinical Marek's disease in broiler chickens. Avian Pathology 35, 42-48.
944 945 946 947	Jacobson, E.R., Buergelt, C., Williams, B., Harris, R.K., 1991. Herpesvirus in cutaneous fibropapillomas of the Green turtle Chelonia mydas. Diseases of Aquatic Organisms 12, 1-6.
948 949 950	Jacobson, E.R., Gaskin, J.M., Roelke, M., Greiner, E.C., Allen, J., 1986. Conjunctivitis, tracheitis, and pneumonia associated with herpesvirus infection in green sea turtles. Journal of the American Veterinary Medical Association 189, 1020-1023.
951 952 953 954	Jacobson, E.R., Mansell, J.L., Sundberg, J.P., Hajjar, L., Reichmann, M.E., Ehrhart, L.M., Walsh, M., Murru, F., 1989. Cutaneous fibropapillomas of Green turtles (<i>Chelonia</i> <i>mydas</i>). Journal of Comparative Pathology 101, 39-52.
955 956 957 958 959	Kaashoek, M.J., Straver, P.J., van Rooij, E.M.A., Quak, J., van Oirschot, J.T., 1996. Virulence, immunogenicity and reactivation of seven bovine herpesvirus 1. 1 strains: clinical and virological and aspects. Veterinary Record 139, 416-421.
960 961 962 963 964	Kang, K.I., Torres-Velez, F.J., Zhang, J., Moore, P.A., Moore, D.P., Rivera, S., Brown, C.C., 2008. Localization of fibropapilloma-associated turtle herpesvirus in Green turtles (<i>Chelonia mydas</i>) by in-situ hybridization. Journal of Comparative Pathology 139, 218- 225.
965 966 967	Keller, J.M., Balazs, G.H., Nilsen, F., Rice, M., Work, T.M., Jensen, B.A., 2014. Investigating the potential role of persistent organic pollutants in Hawaiian green sea turtle fibropapillomatosis. Environmental Science and Technology 48: 7807-7816
968 969 970	Lackovich, J.K., Jacobson, E.R., Curry, S.S., Klein, P.A., Brown, D.R., Homer, B.L., Garber, R.L., Mader, D.R., Moretti, R.H., Patterson, A.D., et al., 1999. Association of herpesvirus

971	with fibropapillomatosis of the Green turtle <i>Chelonia mydas</i> and the loggerhead turtle
972	Caretta caretta in Florida. Diseases of Aquatic Organisms 37, 89-97.
973	
974 075	Ladekjær-Mikkelsen, A.S., Nielsen, J., Stadejek, T., Storgaard, T., Krakowka, S., Ellis, J.,
975	McNeilly, F., Allan, G., Bøtner, A., 2002. Reproduction of postweaning multisystemic
976	wasting syndrome (PMWS) in immunostimulated and non-immunostimulated 3-week-
977	old piglets experimentally infected with porcine circovirus type 2 (PCV2). Veterinary
978	Microbiology 89, 97-114.
979 080	Lagrand WW Skowmanak A. Stone Manahat M. Dumaga T. 1002 Characterization of
980 081	Laegreid, W.W., Skowronek, A., Stone-Marschat, M., Burrage, T., 1993. Characterization of
981 082	virulence variants of African Horsesickness Virus. Virology 195, 836-839.
982	Landshara III Dalara CII Staidingan KA Dadan D.C. Wark T.M. Dussell D.I. 1000
983	Landsberg, J.H., Balazs, G.H., Steidinger, K.A., Baden, D.G., Work, T.M., Russell, D.J., 1999.
984 005	The potential role of natural tumor promoters in marine turtle fibropapillomatosis.
985 086	Journal of Aquatic Animal Health 11, 199-210.
986	Lanvon IM Limpus C.I. Marsh II 1090 Dugongs and turtlage programs in the second
987 088	Lanyon, J.M., Limpus, C.J., Marsh, H., 1989. Dugongs and turtles - grazers in the seagrass
988	system, In: Biology of Seagrasses. Elsevier, New York, USA, pp. 610-634.
989	Limmus C. L. 2008. A high-gigal newiow of Australian maning turtle species 2. Cross turtle
990 001	Limpus, C.J., 2008. A biological review of Australian marine turtle species. 2. Green turtle, <i>Chelonia mydas</i> (Linnaeus). Queensland Environmental Protection Agency, Queensland,
991 002	Australia.
992 002	Australia.
993	Limnus C.I. Couper B.I. Couper K.I.D. 1002 Creb Island revisited: Bassassment of the
994 005	Limpus, C.J., Couper, P.J., Couper, K.L.D., 1993. Crab Island revisited: Reassessment of the
995 006	world's largest Flatback turtle rookery after twelve years. Memoirs of the Queensland Museum 33, 227-289.
996 997	Wiuseulli 55, 227-269.
997 998	Limpus, C.J., Couper, P.J., Read, M.A., 1994. The Green turtle, <i>Chelonia mydas</i> , in Queensland:
999 999	Population structure in a warm temperature feeding area. Memoirs of the Queensland
1000	Museum 35, 139-154.
1000	Wiuseum 55, 159-154.
1001	Limpus, C.J., Limpus, D.J., Arthur, K.E., Parmenter, C.J., 2005. Monitoring Green turtle
1002	population dynamics in Shoalwater Bay: 2000-2004. Research Publication No.83 Great
1003	Barrier Reef Marine Park Authority.
1004	Darner Reef Warme Fark Autority.
1005	Limpus, C.J., Miller, J.D., 1994. The occurrence of cutaneous fibropapillomas in marine turtles
1000	in Queensland. In: James, R. (Ed.). Proceedings of the Australian Marine Turtle
1008	Conservation Workshop. Queensland Department of Environment and Heritage and
1000	Australian Nature Conservation Agency, Canberra, Australia.
1010	Australian Auture Conservation Agency, Canoerra, Australia.
1010	Liu, Q., Wang, L., Willson, P., Babiuk, L.A., 2000. Quantitative, competitive PCR analysis of
1011	porcine circovirus DNA in serum from pigs with postweaning multisystemic wasting
1012	syndrome. Journal of Clinical Microbiology 38, 3474-3477.
1013	syndrome. Journal of ennieur viterobiology 30, 3474 3477.
1014	Losey, G.S., Balazs, G.H., Privitera, L.A., 1994. Cleaning symbiosis between the Wrasse,
1015	<i>Thalassoma duperry</i> , and the Green turtle, <i>Chelonia mydas</i> . Copeia 1994, 684-690.
1010	
1017	Loureiro, N.S., Matos, D., 2009. Presence of fibropapillomatosis in Green turtles Chelonia
1010	<i>mydas</i> at Príncipe Island in the Gulf of Guinea. Arquipélago: Life and Marine Sciences,
1020	79-83.

1021	
1022	Lu, Y., Aguirre, A.A., Work, T.M., Balazs, G.H., Nerurkar, V.R., Yanagihara, R., 2000a.
1023	Identification of a small, naked virus in tumor-like aggregates in cell lines derived from a
1024	Green turtle, Chelonia mydas, with fibropapillomas. Journal of Virological Methods 86,
1025	25-33.
1026	
1027	Lu, Y., Nerurkar, V.R., Aguirre, A.A., Work, T.M., Balazs, G.H., Yanagihara, R., 1999.
1028	Establishment and Characterization of 13 Cell Lines from a Green Turtle (Chelonia
1029	<i>mydas</i>) with Fibropapillomas. In Vitro Cellular and Developmental Biology - Animal 35:
1030	389-393
1031	
1032	Lu, Y., Wang, Y., Yu, Q., Aguirre, A.A., Balazs, G.H., Nerurkar, V.R., Yanagihara, R., 2000b.
1033	Detection of herpesviral sequences in tissues of Green turtles with fibropapilloma by
1034	polymerase chain reaction. Archives of Virology 145, 1885-1893.
1035	
1036	Lu, Y.A., Wang, Y., Aguirre, A.A., Zhao, Z.S., Liu, C.Y., Nerurkar, V.R., Yanagihara, R., 2003.
1037	RT-PCR detection of the expression of the polymerase gene of a novel reptilian
1038	herpesvirus in tumor tissues of Green turtles with fibropapilloma. Archives of Virology
1039	148, 1155-1163.
1040	
1041	Lu, Y., Yu, Q., Zamzow, J.P., Wang, Y., Losey, G.S., Balazs, G.H., Nerurkar, V.R., Yanagihara,
1042	R., 2000c. Detection of Green turtle herpesviral sequence in saddleback wrasse
1043	<i>Thalassoma duperrey</i> : A possible mode of transmission of Green turtle fibropapilloma.
1044	Journal of Aquatic Animal Health 12, 58-63.
1045	
1046	Lucke, B., 1938. Studies on tumors in cold-blooded vertebrates. Annual Report of the Tortugas
1047	Laboratory of the Carnegie Institute, Washington, DC, USA, pp. 92-94.
1048	
1049	Lutz, P.L., 2002. The Biology of Sea Turtles, Volume II. CRC Press, Hoboken, USA.
1050	
1051	Machado Guimarães, S., Mas Gitirana, H., Vidal Wanderley, A., Lobo-Hajdu, G., 2011.
1052	Evidence of regression of fibropapillomas in Green turtles (<i>Chelonia mydas</i>) captured in
1053	Itaipu costal region, Niteroi, Rio de Janeiro state, Brazil. Proceedings of the 31st Annual
1054	Symposium on the Sea Turtle Biology and Conservation, 10-16 April 2011. U.S.
1055	Department of Commerce, National Oceanographic and Atmospheric Administration,
1056	National Marine Fisheries Service, Southeast Fisheries Science Centre, San Diego,
1057	California, USA, pp. 265-266.
1058	
1059	Mannick, J.B., Asano, K., Izumi, K., Kieff, E., Stamler, J.S., 1994. Nitric oxide produced by
1060	human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79:
1061	1137-1146
1062	
1063	Markine-Goriaynoff, N., Gillet, L., Van Etten, J.L., Korres, H., Verma, N., Vanderplasschen, A.,
1064	2004. Glycosyltransferases encoded by viruses. Journal of General Virology 85, 2741-
1065	2754.
1066	_,
1067	McGeoch, D.J., Gatherer, D., 2005. Integrating reptilian herpesviruses into the Family
1068	Herpesviridae. Journal of Virology 79, 725-731.
1069	r 0, ··, · ·

1070 1071 1072	McGowin, A.E., Truong, T.M., Corbett, A.M., Bagley, D.A., Ehrhart, L.M., Bresette, M.J., Weege, S.T., Clark, D., 2011. Genetic barcoding of marine leeches (<i>Ozobranchus</i> spp.) from Florida sea turtles and their divergence in host specificity. Molecular Ecology
1073	Resources 11, 271-278.
1074 1075	Moncada, F., Prieto, A., 1998. Incidence of fibropapillomas in the Green turtle (<i>Chelonia mydas</i>)
1075	in Cuban Waters. Proceedings of the 19th Annual Symposium on Sea Turtle
1070	Conservation and Biology, South Padre Island, Texas, USA, 2-6 March 1999. U.S.
1077	Department of Commerce, National Oceanographic and Atmospheric Administration,
1078	National Marine Fisheries Service, United States pp. 40-41.
1080	National Marine Fisheries Service, Oniced States pp. 40 41.
1081	Moore, M.K., Work, T.M., Balazs, G.H., Docherty, D.E., 1997. Preparation, cryopreservation,
1082	and growth of cells prepared from the Green turtle (<i>Chelonia mydas</i>). Methods in Cell
1083	Science 19: 161-168
1084	
1085	Murakawa, S.K.K., Balazs, G.H., Ellis, D.M., Hau, S., Eames, S.M., 2000. Trends in
1086	fibropapillomatosis among Green turtles stranded in the Hawaiian Islands, 1982-98.
1087	Proceedings of the Nineteenth Annual Symposium on Sea Turtle Biology and
1088	Conservation, South Padre Island, Texas, U.S.A., 2-6 March 1999. Department of
1089	Commerce, National Oceanographic and Atmospheric Administration, National Marine
1090	Fisheries Service, United States pp. 239-241.
1091	
1092	Musick, J.A., Limpus, C. (1997) Habitat utilization and migration in juvenile sea turtles. In: P.L.
1093	Lutz and J.A. Musick (Eds), The biology of sea turtles, pp. 137-163. Vol. 1. CRC Press,
1094	United States of America.
1095	
1096	Neilan, J.G., Borca, M.V., Lu, Z., Kutish, G.F., Kleiboeker, S.B., Carrillo, C., Zsak, L., Rock,
1097	D.L., 1999. An African swine fever virus ORF with similarity to C-type lectins is non-
1098	essential for growth in swine macrophages in vitro and for virus virulence in domestic
1099	swine. Journal of General Virology 80, 2693-2697.
1100	
1101	Nigro, O., Alonso Aguirre, A., Lu, Y., 2004a. Nucleotide sequence of an ICP18.5 assembly
1102	protein (UL28) gene of Green turtle herpesvirus pathogenically associated with Green
1103	turtle fibropapilloma. Journal of Virological Methods 120, 107-112.
1104	
1105	Nigro, O., Yu, G., Aguirre, A.A., Lu, Y., 2004b. Sequencing and characterization of the full-
1106	length gene encoding the single-stranded DNA binding protein of a novel chelonian
1107	herpesvirus. Archives of Virology 149, 337-347.
1108	NIMES (NI-tional Marine Eichenice Samiler) LISEWS (LIS Eichend Wildliffe Samiler) 2014
1109	NMFS (National Marine Fisheries Service), USFWS (US Fish and Wildlife Service), 2014.
1110	Green turtle (Chelonia mydas) Status Review under the U.S. Endangered Species Act.
1111	Report of the Green Turtle Status Review Team, p. 567.
1112 1113	Norton, T.M., Jacobson, E.R., Sundberg, J.P., 1990. Cutaneous fibropapillomas and renal
1113	myxofibroma in a Green turtle, <i>Chelonia mydas</i> . Journal of Wildlife Diseases 26, 265.
1114 1115	myxonoronia in a Oreen turde, <i>Chetonia mytuus</i> . Journal or whunte Diseases 20, 203.
1115	Nsubuga, M.M., Biggar, R.J., Combs, S., Marshall, V., Mbisa, G., Kambugu, F., Mehta, M.,
1117	Biryahwaho, B., Rabkin, C.S., Whitby, D., et al., 2008. Human herpesvirus 8 load and
1118	progression of AIDS-related Kaposi sarcoma lesions. Cancer Letters 263, 182-188.
1119	

1120 1121	Olvera, A., Sibila, M., Calsamiglia, M., Segalés, J., Domingo, M., 2004. Comparison of porcine circovirus type 2 load in serum quantified by a real time PCR in postweaning
1122	multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome
1123	naturally affected pigs. Journal of Virological Methods 117, 75-80.
1124	natarany arreeted pigs. vournar or virologicar interious 117, 70 00.
1125	Page-Karjian, A., Norton, T.M., Krimer, P., Groner, M., Steven, E.N., Jr., Gottdenker, N.L.,
1125	2014. Factors influencing survivorship of rehabilitating green sea turtles (<i>Chelonia</i>
1120	<i>mydas</i>) with fibropapillomatosis. <i>Journal of Zoo and Wildlife Medicine</i> 45 : 507-519
1127	myaas) with horopaphioniatosis. Journal of 200 and whatige medicine 43. 307-319
	Page-Karjian, A., Torres, F., Zhang, J., Rivera, S., Diez, C., Moore, P.A., Moore, D., Brown, C.,
1129	
1130	2012. Presence of chelonid fibropapilloma-associated herpesvirus in tumored and non-
1131	tumored Green turtles, as detected by polymerase chain reaction, in endemic and non-
1132	endemic aggregations, Puerto Rico. SpringerPlus 1, 1-8.
1133	
1134	Patrício, A.R., Herbst, L.H., Duarte, A., Vélez-Zuazo, X., Loureiro, N.S., Pereira, N., Tavares,
1135	L., Toranzos, G.A., 2012. Global phylogeography and evolution of chelonid
1136	fibropapilloma-associated herpesvirus. Journal of General Virology 93, 1035.
1137	
1138	Patrício, A.R., Velez-Zuazo, X., Diez, C.E., Van Dam, R., Sabat, A.M., 2011. Survival
1139	probability of immature Green turtles in two foraging grounds at Culebra, Puerto Rico.
1140	Marine Ecology Progress Series 440: 217-227
1141	
1142	Pellet, P., Roizmann, B., 2007. The family Herpesviridae: A brief introduction. In: Fields'
1143	Virology. Lippincott Williams and Wilkins, Philadelphia, USA.
1144	
1145	Pepi, V.E., Woodward, L., Work, T.M., Balazs, G.H., Carpenter, J.R., Atkinson, S., 2005.
1146	Tracking the migration in oceanic waters of two olive ridley turtles Lepidochelys olivacea
1147	after they nested at La Escobilla Beach, Oaxaca, Mexico. Proceedings of the 21st Annual
1148	Symposium on Sea Turtle Biology and Conservation, Philadelphia, Pennsylvania, USA,
1149	24-28 February 2001. U.S. Department of Commerce, National Oceanographic and
1150	Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries
1151	Science Centre, United States pp. 270-271.
1152	
1153	Peranzoni, E., Marigo, I., Dolcetti, L., Ugel, S., Sonda, N., Taschin, E., Mantelli, B., Bronte, V.,
1154	Zanovello, P., 2008. Role of arginine metabolism in immunity and immunopathology.
1155	Immunobiology 212: 795-812
1156	
1157	Poloczanska, E.S., Limpus, C.J., Hays, G.C., 2010. Vulnerability of marine turtles to climate
1158	change. Advances in Marine Biology 56, 151-211.
1159	
1160	Quackenbush, S.L., Aguirre, A.A., Spraker, T.R., Horrocks, J.A., Vermeer, L.A., Balazs, G.H.,
1161	Casey, J.W., Casey, R.N., Murcek, R.J., Paul, T.A., et al., 2001. Quantitative analysis of
1162	herpesvirus sequences from normal tissue and fibropapillomas of marine turtles with real-
1163	time PCR. Virology 287, 105-111.
1164	
1165	Quackenbush, S.L., Bowser, P.R., Work, T.M., Balazs, G.H., Casey, R.N., Casey, J.W., Rovnak,
1166	
	J., Chaves, A., duToit, L., Baines, J.D., Parrish, C.R., 1998. Three closely related
1167	J., Chaves, A., duToit, L., Baines, J.D., Parrish, C.R., 1998. Three closely related herpesviruses are associated with fibropapillomatosis in marine turtles. Virology 246,
1167 1168	

1170 1171 1172 1173 1174	Quintana, J., Segalés, J., Rosell, C., Calsamiglia, M., Rodríguez-Arrioja, G.M., Chianini, F., Folch, J.M., Maldonado, J., Canal, M., Plana-Durán, J., Domingo, M., 2001. Clinical and pathological observations on pigs with postweaning multisystemic wasting syndrome. Veterinary Record 149, 357-357.
1174 1175 1176 1177 1178 1179 1180	Quiros, A.C., du Toit, L.A., Eure, W., 2000. Fibropapilloma in the Ostional Olive Ridley (<i>Lepidochelys olivacea</i>) population. Proceedings of the 18th International Sea Turtle Symposium, 3-7 March 1998. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center, Mazatlán, Sinaloa, Mexico, p. 114.
1180 1181 1182 1183	Raidal, S., Prince, R.I.T., 1996. First confirmation of multiple fibropapilloma in a Western Australian Green turtle (<i>Chelonia mydas</i>). Marine Turtle Newsletter 74, 7-9.
1183 1184 1185 1186 1187 1188	Ravazzolo, A.P., Nenci, C., Vogt, HR., Waldvogel, A., Obexer-Ruff, G., Peterhans, E., Bertoni, G., 2006. Viral load, organ distribution, histopathological lesions, and cytokine mRNA expression in goats infected with a molecular clone of the caprine arthritis encephalitis virus. Virology 350, 116-127.
1180 1189 1190 1191 1192	Rebell, G., Rywlin, A., Haines, H., 1975. A herpesvirus-type agent associated with skin lesions of green sea turtles in aquaculture. American Journal of Veterinary Research 36, 1221-1224.
1193 1194 1195	Reich, K.J., Bjorndal, K.A., Bolten, A.B. (2007) The 'lost years' of Green turtles: using stable isotopes to study cryptic lifestages. Biology Letters 3 : 712-714
1196 1197	Ritchie, B., 2006. Chapter 24 - Virology, In: Reptile Medicine and Surgery (Second Edition). W.B. Saunders, Saint Louis, pp. 391-417.
1198 1199 1200 1201 1202 1203	Rodenbusch, C.R., Baptistotte, C., Werneck, M.R., Pires, T.T., Melo, M.T.D., de Ataíde, M.W., Testa, P., Alieve, M.M., Canal, C.W., 2014. Fibropapillomatosis in Green turtles <i>Chelonia mydas</i> in Brazil: characteristics of tumors and virus. Diseases of aquatic organisms 111, 207-217.
1204 1205 1206 1207	Rosell, C., Segalés, J., Ramos-Vara, J.A., Folch, J.M., Rodríguez-Arrioja, G.M., Duran, C.O., Balasch, M., Plana-Durán, J., Domingo, M., 2000. Identification of porcine circovirus in tissues of pigs with porcine dermatitis and nephropathy syndrome. Veterinary Record 146, 40-43.
1208 1209 1210 1211 1212	Rossi, S., Zwarg, T., Sanches, T.C., Cesar, M.d.O., Werneck, M.R., Matushima, E.R., 2009. Hematological profile of <i>Chelonia mydas</i> (Testudines, Cheloniidae) according to the severity of fibropapillomatosis or its absence. Pesquisa Veterinária Brasileira 29.
1213 1214 1215 1216	Rovira, A., Balasch, M., Segalés, J., García, L., Plana-Durán, J., Rosell, C., Ellerbrok, H., Mankertz, A., Domingo, M., 2002. Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. Journal of Virology 76, 3232-3239.
1217 1218 1219	Schroeder, B.A., Foley, A.M., 1995. Population studies of marine turtles in Florida Bay. NOAA Technical Memorandum NMFS SEFSC U6 pp. 117-117.

1220	
1220	Schroeder, B.A., Foley, A.M., Witherington, B.E., Mosier, A.E., 1998. Ecology of marine turtles
1222	in Florida Bay: Population structure, distribution, and occurrence of fibropapilloma.
1223	Proceedings of the 17th Annual Sea Turtle Symposium, Orlando, Florida, USA, 4-8
1224	March 1997, pp. 281-283.
1225	11 million 1997, pp. 201 2001
1226	Seminoff, J.A., 2004. Chelonia mydas (accessed 30 May 2014).
1227	
1228	Smith, G.M., Coates, C.W., 1938. Fibro-epithelial growths of the skin in large marine turtles,
1229	Chelonia mydas (Linnaeus). Zoologica 23, 93-98.
1230	
1231	Speirs, M., 2002. A study of marine turtle populations at the Julian Rocks Aquatic Reserve,
1232	northern New South Wales. Honours Thesis, Southern Cross University, Lismore.
1233	
1234	Stacy, B.A., Jacobson, E.R., Wellehan, J.F.X., Foley, A.M., Coberley, S.S., Herbst, L.H.,
1235	Manire, C.A., Garner, M.M., Brookins, M.D., Childress, A.L., 2008. Two herpesviruses
1236	associated with disease in wild Atlantic loggerhead sea turtles (Caretta caretta).
1237	Veterinary Microbiology 126: 63-73
1238	
1239	Stringell, T.B., Calosso, M.C., Claydon, J.A.B., Clerveaux, W., Godley, B.J., Phillips, Q.,
1240	Ranger, S., Richardson, P.B., Sanghera, A., Broderick, A.C., 2011. Fibropapillomatosis
1241	and fisher choice in the harvest of green sea turtles. Proceedings of the 31st Annual
1242	Symposium on the Sea Turtle Biology and Conservation, 10-16 April. U.S. Department
1243	of Commerce, National Oceanographic and Atmospheric Administration, National
1244	Marine Fisheries Service, Southeast Fisheries Science Centre, San Diego, California,
1245	USA, p. 205.
1246	
1247	Suganuma, M., Sugimura, T., Fujiki, H., Suguri, H., Yoshizawa, S., Hirota, M., Nakayasu, M.,
1248	Ojika, M., Wakamatsu, K., Yamada, K., 1988. Okadaic acid: An additional non-phorbol-
1249	12-tetradecanoate-13-acetate-type tumor promoter. Proceedings of the National Academy
1250	of Sciences of the United States of America 85, 1768-1771.
1251	
1252	Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular
1253	Evolutionary Genetics Analysis Version 6.0. Molecular biology and evolution 30, 2725-
1254	2729.
1255	
1256	Teas, W.G., 1991. Sea turtle stranding and salvage network: Green turtles, <i>Chelonia mydas</i> , and
1257	fibropapillomas. Research Plan for Marine Turtle Fibropapilloma: Results of a December
1258	1990 Workshop, Honolulu, Hawaii, pp. 89-93.
1259	
1260	Tidona, C., Darai, G., 2011. The Springer Index of Viruses. Springer, New York. pp. 735
1261	
1262	Troëng, S., 1998. Implementation of a new monitoring protocol at Tortuguero, Costa Rica.
1263	Proceedings of the 19th Annual Symposium on Sea Turtle Conservation and Biology,
1264	South Padre Island, Texas, USA, 2-6 March 1999, p. 275.
1265	
1266	Van Houtan, K.S., Hargrove, S.K., Balazs, G.H., 2010. Land use, macroalgae, and a tumor-
1267	forming disease in marine turtles. PloS One 5, e12900.
1268	

1269 1270 1271	Van Houtan, K.S., Smith, C.M., Dailer, M.L., Kawachi, M., 2014. Eutrophication and the dietary promotion of sea turtle tumors. PeerJ 2, e602.
1271 1272 1273 1274 1275 1276 1277 1278	 Vasconcelos, J., Albavera, E., López, E.M., Hernández, P., Peñaflores, C., 2000. First assessment on tumors incidence in nesting females of Olive Ridley sea turtle, <i>Lepidochelys olivacea</i>, at la Escobilla Beach, Oaxaca, Mexico. Proceedings of the 18th International Sea Turtle Symposium, Mazatlán, Sinaloa, 3-7 March 1998. U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, México, pp. 276-278.
1279 1280 1281 1282 1283 1283 1284 1285	Velez-Zuazo, X., Diez, C.E., van Dam, R.P., Torres-Velez, F.J., 2010. Genetic structure and origin of a juvenile aggregation affected by fibropapillomatosis: Potential impact on adult recruitment. Proceedings of the 28th Annual Symposium on Sea Turtle Biology and Conservation, Loreto, Baja California Sur, Mexico, 22-26 January 2008. U.S. Department of Commerce, National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Centre, United States, p. 156.
1286 1287 1288 1289	Voigt, S., Sandford, G.R., Ding, L., Burns, W.H., 2001. Identification and characterization of a spliced C-type lectin-like gene encoded by rat cytomegalovirus. Journal of Virology 75, 603-611.
1290 1291 1292 1293	Wilcock, D., Duncan, S.A., Traktman, P., Zhang, W.H., Smith, G.L., 1999. The vaccinia virus A4OR gene product is a nonstructural, type II membrane glycoprotein that is expressed at the cell surface. Journal of General Virology 80, 2137-2148.
1293 1294 1295 1296 1297 1298	 Williams, E.H., Rueda-Almonacid, J.V., Sybesma, J., De Calventi, I.B., Boulon, R.H., Bunkley-Williams, L., Peters, E.C., Pinto-Rodriguez, B., Matos-Morales, R., Mignucci-Giannoni, A.A., et al., 1994. An epizootic of cutaneous fibropapillomas in Green turtles <i>Chelonia mydas</i> of the Caribbean: Part of a panzootic? Journal of Aquatic Animal Health 6, 70-78.
1299 1300	Wood, F., Wood, J., 1993. Release and recapture of captive-reared green sea-turtles, <i>Chelonia mydas</i> , in the waters surrounding the Cayman Islands. Herpetological Journal 3, 84-89.
1301 1302 1303 1304 1305	Work, T.M., Ackermann, M., Casey, J.W., Chaloupka, M., Herbst, L., Lynch, J.M., Stacy, B.A., 2014. The story of invasive algae, arginine, and turtle tumors does not make sense. PeerJ PrePrints 2, e539v531.
1306 1307 1308 1309	Work, T.M., Balazs, G.H., Rameyer, R.A., Morris, R.A., 2004. Retrospective pathology survey of Green turtles <i>Chelonia mydas</i> with fibropapillomatosis in the Hawaiian Islands, 1993-2003. Diseases of Aquatic Organisms 62, 163-176.
1310 1311 1312 1313	Work, T.M., Balazs, G.H., Wolcott, M., Morris, R., 2003. Bacteraemia in free-ranging Hawaiian Green turtles <i>Chelonia mydas</i> with fibropapillomatosis. Diseases of Aquatic Organisms 53, 41-46.
1314 1315 1316 1317 1318	Work, T.M., Dagenais, J., Balazs, G.H., Schumacher, J., Lewis, T.D., Leong, JA.C., Casey, R.N., Casey, J.W., 2009. In vitro biology of fibropapilloma-associated turtle herpesvirus and host cells in Hawaiian Green turtles (<i>Chelonia mydas</i>). Journal of General Virology 90, 1943.

1319	Work, T.M., Rameyer, R.A., Balazs, G.H., Cray, C., Chang, S.P., 2001. Immune status of free-
1320	ranging Green turtles with fibropapillomatosis from Hawaii. Journal of Wildlife Diseases
1321	37, 574.
1322	
1323	Wyneken, J., Mader, D.R., Weber, E.S., Merigo, C. 2006. Chapter 76 - Medical Care of
1324 1325	Seaturtles. In: D.R. Mader (Ed), Reptile Medicine and Surgery (Second Edition), pp. 972-1007. W.B. Saunders, Saint Louis.
1326	1007. W.D. Saunders, Saint Louis.
1327	Yu, Q., Hu, N., Lu, Y., Nerurkar, V.R., Yanagihara, R., 2001. Rapid acquisition of entire DNA
1328	polymerase gene of a novel herpesvirus from Green turtle fibropapilloma by a genomic
1329	walking technique. Journal of Virological Methods 91, 183-195.
1330	
1331	Yu, Q., Lu, Y., Nerurkar, V.R., Yanagihara, R., 2000. Amplification and analysis of DNA
1332	flanking known sequences of a novel herpesvirus from Green turtles with fibropapilloma.
1333	Archives of Virology 145, 2669.
1334	
1335	Yunis, R., Jarosinski, K.W., Schat, K.A., 2004. Association between rate of viral genome
1336	replication and virulence of Marek's disease herpesvirus strains. Virology 328, 142-150.
1337	
1338	Zeeman, M.G., Brindley, W.A., 1981. Effects of toxic agents upon fish immune systems: A
1339	review, In: Immunologic Considerations in Toxicology. CRC Press, Boca Raton, Florida,
1340	USA, pp. 1-60.
1341	
1342	Zhang, L., Marriott, K.A., Harnish, D.G., Aronson, J.F., 2001. Reassortant Analysis of Guinea
1343	Pig Virulence of Pichinde Virus Variants. Virology 290, 30-38.
1344	
1345	Zhang, Z., Watt, N.J., Hopkins, J., Harkiss, G., Woodall, C.J., 2000. Quantitative analysis of
1346	maedi-visna virus DNA load in peripheral blood monocytes and alveolar macrophages.
1347	Journal of Virological Methods 86, 13-20.

1348 1349	Figure legends
1350	
1351	Fig. 1. The complex life history of Green turtles. Adapted from Lanyon et al. (1989).
1352	
1353	Fig. 2. The plastron and hind flippers of a Green turtle severely affected by fibropapillomatosis
1354	highlighting the diverse range of lesion appearance.
1355	
1356	Fig. 3. A Minimum Evolution phylogenetic tree of Alphaherpesvirinae based on full length DNA
1357	polymerase sequence retrieved from GenBank (Accession numbers provided in tree). Bootstrap
1358	values for each node are provided (1000 replicates). The analysis involved 27 nucleotide
1359	sequences resulting in a total of 2593 positions in the final dataset. Evolutionary analyses were
1360	conducted in MEGA6 (Tamura et al., 2013)
1361	
1362	Acceptero