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Abstract: Recent advances in unmanned aerial vehicles (UAVs), or drones, have made them able to
communicate and collaborate, forming flying ad hoc networks (FANETs). FANETs are becoming
popular in many application domains, including precision agriculture, goods delivery, construction,
environment and climate monitoring, and military surveillance. These interesting new avenues for
the use of UAVs are motivating researchers to rethink the existing research on FANETs. Therefore,
this paper provides a comprehensive and thorough review of the different types of UAVs used in
FANETs, their mobility models, main characteristics, and applications, as well as the routing protocols
used in this type of network. Other important contributions of this paper include the investigation of
emerging technologies integrated with FANETs.

Keywords: unmanned aerial vehicles; UAVs; drones; flying ad hoc network; cloud-based UAV
systems; cellular networks

1. Introduction

Recently, Unmanned Aerial Vehicles (UAVs), or drones, which can be either remotely
piloted by a human on the ground or autonomously controlled by on-board computers,
have been widely used for wireless communication objectives [1,2]. UAVs perform many
different missions, ranging from military tasks to agricultural applications. An ad hoc
network can be created with a group of flying UAVs; this is called a Flying Ad hoc Net-
work (FANETs) of UAVs [3]. The different types of UAVs employed in various FANET
scenarios can be classified based on such different factors as UAV size, weight, range,
endurance, altitude, application, flying mechanism, ownership, airspace class, level of
control (autonomy), and type of engine [4]. Recently, several studies have shown the
importance of FANETs by investigating the integration of FANETs of UAVs with different
technologies, including Virtual Reality (VR), [5–9], IoT [10–12], flying edge computing [13],
flying fog computing [10,14,15], cellular networks [16–19], and flying cloud computing [20].
Although such integration brings many advantages, many issues may arise as well, ranging
from UAV deployment issues to regulations on using these devices. These interesting new
avenues for the use of UAVs and the growth of the UAV market ae motivating researchers
to rethink existing studies on FANETs. Therefore, this paper provides a comprehensive
overview of the main aspects of FANETs, the different types of UAVs used in FANETs, their
mobility models, their main characteristics and applications, the routing protocols used in
this type of network, and the main technologies integrated with FANETs which can open
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new perspectives for the use of these devices. The main contributions of this paper can be
summarized as follows:

• In addition to an extensive study of the existing academic research, this paper presents
a comprehensive UAV classification taxonomy covering gaps not considered in previ-
ous surveys.

• A comprehensive effort specifically discusses FANET characteristics and applications,
connecting them to the most commonly used routing protocols, UAV mobility models,
and Cloud-based UAV Managing Systems (CBUMS).

• A prospective discussion is presented on current investigations of emerging technolo-
gies integrated with FANETs and the possibilities they can open for future applications.

The overall structure of this paper is as follows: A comprehensive UAV classification
based on UAV size, weight, range and endurance, altitude, flying mechanism, airspace
class, degree of autonomy, engine, and applications is provided in Section 2. Section 3
discusses the main characteristics of FANETs. Sections 4–6 address the main applications of
FANETs, routing protocols in FANETs, and UAV mobility models, respectively. The main
technologies integrated with UAV-networked systems and the main components of cloud-
based UAV-networks are discussed in Sections 7 and 8, respectively. Section 9 discusses the
various simulation tools used to design UAV-based networks. Section 10 discusses possible
future directions, including the challenges of new technologies integrated with FANETs.
Finally, Section 11 concludes the paper by highlighting the main findings of this review.

2. UAV Classification

There are different types of UAV classifications in the literature. As shown in Figure 1,
in this SLR, a comprehensive UAV classification is provided based on different factors
such as UAV size and weight, altitude, range, application, flying mechanism, ownership,
airspace class, level of control autonomy, and engine type [21], all of which are shown in
Figure 1. Size is often a major factor in deciding which UAV is appropriate for a mission.
As shown in Figure 1, box A, UAVs can be classified into Very small sizes with very light
weight, such as Micro Aerial Vehicles (mUAVs) and Nano Aerial Vehicles (NAVs), Small
sizes such as Mini-UAVs, and Medium and Large UAVs that are heavy or super heavy [22].
The classification of UAVs based on weight, endurance, and altitude is provided in Figure 1,
boxes B, C, and D, respectively. Table 1 classifies types of UAVs by their different sizes,
altitudes [23–28], weight, range, and Eendurance.

Depending on their flying mechanisms, as shown in Figure 1, box E, UAVs can be
classified into Fixed-wing drones, Multi-rotor UAVs (rotary-wing), and Hybrid fixed/rotary
wing UAVs [16].

Fixed-wing UAVs that can be controlled either autonomously using onboard comput-
ers or remotely by the pilot can fly using wings in the same way as aeroplanes. Multi-rotor
UAVs have at least four rotors to keep them flying, and hybrid models combines the
benefits of two.

Another possible classification of UAVs is that shown in Figure 1, box F, which is based
on the airspace class; very low altitude UAVs operate in Class G airspace, with the possibil-
ity of the aircraft being flown beyond the line of sight of the operator. Medium and very
high altitude UAVs operate in Class A through E airspace and Class E airspace, respectively.

The International Civil Aviation Organization (ICAO) classifies UAVs based on the
degree of autonomy in their flight operations into two main categories, namely, fully
autonomous and remotely piloted aircraft, as shown in Figure 1—box G.

As shown in Figure 1, box H, UAVs can be classified based on their ownership as
public or private, that is, whether they are operated and owned by public parties such as
local law enforcement and federal agencies or by private entities or industry.
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Figure 1. UAV Classification based on different features such as size, weight, range and en-
durance, altitude, flying mechanism, airspace class, degree of autonomy, ownership, type of engine,
and application.



Remote Sens. 2022, 14, 4459 4 of 25

Table 1. UAV Classification based on size, weight, altitude, coverage, range, and endurance.

Type Size (inch) Weight (gram) Max Altitude Coverage Range
(kilometer) Endurance (hour)

Nano around 3 W ≤ 0.2 h ≤ 15 0.05 < r < 0.1 E < 0.6

Micro s ≤ 4 0.2 < W ≤ 2 h ≤ 15 0.1 < r < 0.5 E < 1

Mini 4 ≤ s ≤ 12 2 < W ≤ 20 h ≤ 30 0.5 < r < 1 E < 1

Very Small 12 ≤ s ≤ 20 around 20 h ≤ 300 1 < r < 5 1 < E < 3

Small 20 ≤ s ≤ 80 20 ≤ W ≤ 150 300 ≤ h ≤ 1500 10 < r < 100 0.5 < E < 2

Medium 200 ≤ s ≤ 400 50 ≤ W ≤ 200 3000 ≤ h ≤ 4500 500 < r < 2000 3 < E < 10

Large 900 ≤ s ≤ 2500 4500 ≤ W ≤ 13,000 6000 ≤ h ≤ 12,000 1000 < r < 5000 10 < E < 200

Tactical 4000 ≤ s ≤ 11,000 150 ≤ W ≤ 600 3000 ≤ h ≤ 1000 500 < r < 2000 5 < E < 12

MALE 600 ≤ s ≤ 1500 W > 2000 4500 ≤ h ≤ 9000 20,000 < r < 40,000 10 < E < 200

HALE 800 ≤ s ≤ 2000 450 ≤ W ≤ 4500 15,000 ≤ h ≤ 21,000 2000 < r < 4000 30 < E < 50

In addition, according to Figure 1, box I, UAVs can be categorized based on the
different types of engines they have, including turbofan, two-strike, electric, piston-driven
internal combustion, rotary, turboprop, push–pull, and propeller. Out of these engine types,
piston and electric engines are the most commonly used types, especially for small UAVs
and heavier UAVs, respectively.

According to Figure 1, box J, UAVs can be classified based on their applications.
Figure 2 presents several applications in which UAVs are employed that can be used for
classification, as detailed below.

• Military (Figure 2, box A): With continuing advancements in UAVs technology, defence
forces around the world increasingly use UAVs for a variety of applications, including
logistics, surveillance, communications, attack, and combat. Figure 2, box A shows
military applications of UAVs. Famous drone types used in military applications
include the RQ-4 Global Hawk, RQ-2A PioneerRQ-2A Pioneer, QF-4 Aerial TargetQF-
4 Aerial Target, R-MQ-8 Fire ScoutR/MQ-8 Fire Scout, RQ-7B ShadowRQ-7B Shadow,
RQ-11B RavenRQ-11B Raven, MQ-9 ReaperMQ-9 Reaper, and MQ-1B Predator (https:
//www.military.com/equipment/drones accessed on 21 July 2022).

• Medical Applications (Figure 2, box B): Recently, UAVs have begun to be employed
in medical startups. According to Figure 2, box B, they have been used for search
and rescue when a natural disaster suddenly happens, for transport and delivery
of medications, first aid kits, and laboratory samples, and for remote telemedicine
and teleradiology services [29–33]. The most promising UAVs for near-future applica-
tions in healthcare are Seattle’s VillageReach (https://www.villagereach.org/ accessed
on 21 July 2022), used for transportation of blood samples from one hospital to an-
other; Flirtey (https://getskydrop.com/ accessed on 21 July 2022), used for delivery of
first aid kits; EHang (https://www.ehang.com/index.html accessed on 21 July 2022),
used to transport donated organs to people for use in emergency situations; ZipLine
(https://flyzipline.com/ accessed on 21 July 2022), used for blood transportation; TU
Delft (https://www.tudelft.nl/io/onderzoek/research-labs/applied-labs/ambulance-
drone accessed on 21 July 2022), which is an ambulance UAV sent to bystanders near a
patient to teach them how to perform CPR and use its in-built automatic defibrillator
until emergency services arrive to take over; and Google Drones, which can provide
people in distress with medical aid before an ambulance can arrive there; other au-
tonomous UAVs for use in healthcare applications include Project Wing (https://x.
company/projects/wing/ accessed on 21 July 2022), Healthcare Integrated Rescue Op-
erations (HiRO) (https://ieee-aess.org/hiro-healthcare-integrated-rescue-operations

https://www.military.com/equipment/drones
https://www.military.com/equipment/drones
https://www.villagereach.org/
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https://www.ehang.com/index.html
https://flyzipline.com/
https://www.tudelft.nl/io/onderzoek/research-labs/applied-labs/ambulance-drone
https://www.tudelft.nl/io/onderzoek/research-labs/applied-labs/ambulance-drone
https://x.company/projects/wing/
https://x.company/projects/wing/
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accessed on 21 July 2022), and Vayu Drones (https://www.engineeringforchange.org/
solutions/product/vayu-drones-for-medical-delivery/ accessed on 21 July 2022).

• Agriculture (Figure 2, box C): Recently, UAVs integrated with the IoT paradigm have
found wide use in intelligent agriculture. As shown in to Figure 2, box C, UAVs are
employed in many agriculture applications. UAVs equipped with flight planning
software automatically take pictures using onboard sensors and the built-in camera
to allow users to perform mapping analyses of an area. UAVs are capable of plant-
ing seeds and seedlings, harvesting crops, and detecting infestations and weed. In
addition, they can spray crops more accurately than a traditional tractor [34–36]. By
applying ML techniques to real-time data gathered by UAVs, parameters such as plant
disease detection and soil moisture [37], minimum and maximum temperatures at field
level [38], and the level of phosphorus in the soil [39] can be predicted. Using UAVs in
agriculture can reduce costs as well as potential pesticide exposure to workers. Of the
numerous types of agricultural drones on the market, among the most widely used are
the PrecisionHawk DJI Matrice 200 v2 (https://www.dji.com/br/matrice-200-series-v2
accessed on 21 July 2022), the senseFly eBee SQ (https://www.sensefly.com/blog/
talking-ebee-sq-agriculture-drone/ accessed on 21 July 2022), and the Sentera PHX
Complete System (https://sentera.com/data-capture/phx/ accessed on 21 July 2022).

• Wireless Coverage (Figure 2, box D): UAVs that are equipped with directional antennae
are used to provide wireless coverage for both indoor and outdoor users in dense envi-
ronments or when terrestrial BSs are out of service due to bad weather conditions [40].
However, there are outstanding issues, such as finding the minimum number and
optimal deployment of aerial wireless BSs or cellular-connected UAVs to maximize the
total coverage area. Moreover, providing an optimal A2G path loss model is required
for aerial wireless BSs [41–43].

• Environment and Climate (Figure 2, box E): UAVs can be used to help the environment in
a wide variety of way; Figure 2, box E shows applications of UAVs in the mining indus-
try [44,45], aerial mapping, nature monitoring [46–48], wildlife protection [49,50], forest
fire detection [51], prediction of rising sea levels [52,53], renewable energy maintenance,
disaster relief [54], climate change forecasting [55], the potential of space drones for explor-
ing other planets [56], marine drones that can study marine organisms and identify the
location of oil spills [57], tree-planting, clean energy, and solar power generation [58,59].

• Delivery and transportation (Figure 2, box F): As shown in Figure 2, box F, delivery
UAVs can be used to transport food, medical supplies, household items, and packages,
as well as for ship resupply [40,60]. The Federal Aviation Administration (FAA) has
proposed airworthiness criteria for type certification of delivery drones for commercial
operations, which in 2020 covered ten drone manufacturers, Amazon Prime Air,
Zipline, and Wingcopter among them (https://www.faa.gov/newsroom/faa-moving-
forward-enable-safe-integration-drones?newsId=96138 accessed on 21 July 2022).

• Construction (Figure 2, box G): In construction applications, UAVs can be utilized for
technical inspection, painting, safety, and delivery. Inspector UAVs equipped with high-
resolution digital cameras are employed for progress monitoring, technical inspection
of construction sites and buildings, and quality control [60,61]. Delivery UAVs with
high-performance rotors and robust frames are used to carry material, tools, and
payloads to workers at heights. Builder UAVs can be connected to paint reservoirs and
onboard compression pumps for painting applications, and Safety UAVs with infrared
and visual sensors are used to monitor and detect safety issues in construction [62–64].

The type of UAV for a selected particular application must meet various requirements,
such as energy capacity, endurance, payload, and compliance with local regulations.

https://www.engineeringforchange.org/solutions/product/vayu-drones-for-medical-delivery/
https://www.engineeringforchange.org/solutions/product/vayu-drones-for-medical-delivery/
https://www.dji.com/br/matrice-200-series-v2
https://www.sensefly.com/blog/talking-ebee-sq-agriculture-drone/
https://www.sensefly.com/blog/talking-ebee-sq-agriculture-drone/
https://sentera.com/data-capture/phx/
https://www.faa.gov/newsroom/faa-moving-forward-enable-safe-integration-drones?newsId=96138
https://www.faa.gov/newsroom/faa-moving-forward-enable-safe-integration-drones?newsId=96138
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Figure 2. UAV Classification based on application domain: delivery, construction, military, agricul-
ture, wireless coverage, and environmental monitoring.

3. Main Characteristics of FANETs

As shown in Figure 3, the main characteristics of FANETs are node density, node
mobility, changing network topology, communication range, radio propagation model,
localization, power consumption, frequency band, cost efficiency, versatility, agility, and
network lifetime [65–68], as detailed below.

• Node Density: The average number of UAVs per unit volume is the node density.
The node density of UAVs in FANETs is less than in other ad hoc networks such as
MANET and VANET. The node density can be varied according to the objective of the
UAVs mission.

• Node Mobility: Node mobility is one of the main features of FANETs; it is very high
compared to VANET and MANET. UAV speed varies from 30 to 460 km/h depending
on the type of UAV. This can causes issues, including disruptions, link failure, and
more [69].

• Changing network topology: The network topology in FANETs undergoes frequent
changes due to the rapid movements of UAVs. Possible FANET topologies under
conditions of frequent topological fluctuation include star topology, in which all UAVs
directly communicat with the ground control station (GCS), and mesh topology, in
which dynamic routing is necessary. Both the star and mesh network topologies
have advantages and disadvantages; for example, with star network topologies, the
dedicated link between each UAV and GCS fluctuates due to the high speed of UAVs,
which can affects data exchange [66,70,71].

• Radio propagation model: A crucial element when designing and simulating any com-
munications system is the radio propagation model employed in the network. The
simplest and most popular propagation model used in simulation tests is the Friis free
space model. This model only uses the distance and frequency of the signal, which
has corresponding limitations [72]. A UAV-to-Ground (U2G) communication channel
is a widely used channel model in the literature. The different types of propagation
models can be categorized [73] as follows:
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– Theoretical models: These models provide a detailed propagation model of U2G or
U2U channels for UAV network scenarios.

– Empirical models: These models are obtained from a series of measurements made
in various rural or urban scenarios.

– Semi-empirical models: These models are initiated as theoretical models and then
varied according to a set of measures to match reality.

– Well-known models: These models attempt to verify the sufficiency of already-
known propagation models in UAV network scenarios.

• Localization: FANETs take advantage of low-latency global positing (GPS) to locate
UAVs to compensate for their high speed and mobility and the resulting network
topology changes. Localization in FANETs can be based on network positioning,
height, assisted GPS (AGPS), or differential GPS (DGPS) [66,74] .

• Power consumption and network lifetime: Energy constraints represent a critical issue in
ad hoc networks. Power consumption in FANETs depends on the size of the UAVs, the
distances involved, the communication hardware of the FANET and the link, and other
hindrances. Sensor and actuator nodes play a vital role in the power consumption of
FANETs; lowering the requirements of power-sensitive devices in FANETs can directly
improve network lifetime and reduce network breakdowns [66,74].

• Frequency band: Unlicensed bands such as 0.9 GHz and 2.4 GHz are widely used
in UAV communication systems. However, using these bands can cause congestion.
The frequency of 5 GHz integrated with IEEE 802.11a provides the best result for
UAV-to-Ground links. Avoiding interference with other bands is best at 5.9 GHz with
IEEE 802.11p [66].

Figure 3. FANET characteristics, including localization, power consumption, frequency band, radio
propagation model, changing network topology, node mobility, and node density.

4. Main Applications of FANETs

Three main applications of FANETs can be distinguished as follows [40]:

• Multi-UAV cooperation: Figure 4, box A shows the following applications, which can
be categorized as multi-UAV cooperation:
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– Target detection: Target detection technologies such as thermal and vision cameras
can be employed in UAVs to detect objects and persons [43,75].

– Tracking and monitoring in disaster situations: UAVs can help to assess the direction
in which a flood is moving, then predict what buildings are exposed to damage.
Similarly, they can be used for rescue operations in the aftermath of earthquakes,
identifying collapsed population-dense buildings such as hospitals and schools
so that these areas are given a higher priority in rescue operations [76,77].

– Emergency situations: UAVs are used in the construction industry to check safety
and to monitor the progress of construction and buildings. UAVs can be used
to provide temporary wireless coverage in cellular networks during emergen-
cies when the ground base stations are out of service, as well as in many other
emergency scenarios [33,54].

• UAV-to-Ground tasks: Figure 4, box B shows the following applications for UAV-to-
ground cooperation:

– Public and civilian applications: UAVs have been widely used for public and civilian
domain applications, especially in the form of small quadcopters, as their cost
effectiveness and flexibility provide advantages over ground-based infrastruc-
ture [78].

– Search and rescue missions: UAVs play a vital role in search and rescue missions
(SAR). FANETs are considered an immense advantage in guaranteeing public
safety, performing SAR missions, and managing man-made or natural disasters
such as floods, earthquakes, forest fires, tsunamis, terrorist attacks, and checking
the safety of critical infrastructure such as power and water utilities. It is impor-
tant to provide communications coverage in such situations. In situations when
public communications networks are disrupted, UAVs can provide timely disaster
warnings and help to speed up rescue and recovery operations. UAVs can carry
medical equipment to inaccessible regions. They can make SAR operation much
faster in situations such as avalanches, wildfires, searching for missing persons,
and more.

• UAV-to-VANET collaborations between UAVs and vehicles: As shown in Figure 4,
box C, the following applications involve cooperation between UAVs and vehicles:

– Roadway traffic monitoring: FANETs can be employed instead of intensive labour
and complex observational infrastructure to carry out road traffic monitoring.
In roadway traffic monitoring, UAVs are able to detect traffic crashes and then
report these incidents easily. Using UAVs is much faster than using the incident
commander’s vehicle. In addition, UAVs can be used to provide road safety by
capturing real-time videos from various security scenarios and situations in road
networks [79].

– Data packet delivery: Data delivery to mobile ad hoc nodes is a challenging task,
as it is difficult to find a reliable forwarding path to ensure that data is delivered
from one user to another. In this respect, UAVs are widely used as airborne
communication relays to deliver data collected by ground devices to distant
control centres. In other words, UAVs deliver packet data based on the load-carry-
and-delivery (LCAD) paradigm, in which data is loaded from the source node
and forwarded to the destination node utilizing multiple UAVs [80,81].

– Route guidance: In VANETs, the high mobility of vehicles leads to inadequate
routing. In UAV-assisted VANETs, vehicles and UAVs transmit data to each other
using multi-hop relays. UAVs are used to provide route guidance and routing
improvement in VANETs [82,83].
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Figure 4. FANET applications: Multi-UAV cooperation, UAV-to-Ground cooperation, and UAV-to-
VANET cooperation.

5. FANET Routing Protocols

In this section, different sets of routing protocols in the network layer are defined for
FANETs. One possible classification of FANET routing protocols is depicted in Figure 5,
and is discussed in the following.

• Position-based (Figure 5, box A): In these protocols, the geographic information of the
nodes is known from GPS, and the positions of the sender and receiver are determined
in advance using reactive, predictive, greedy [84], and hierarchical [85–87] methods, as
shown in Figure 5, box A. The position-based hop by hop protocols usually dynam-
ically select relay nodes. The packets are broadcast blindly by the node, and the
selection of the relay is postponed until the neighbours of the node receive the packets.
After the neighbours receive the packets, they calculate the dynamic forwarding delay
(DFD) values according to their local position information in a distributed manner
and then forward the packets to the destination greedily.The nodes closest to the
destination then acquire the minimum DFD value and become the next forwarder [88].

• Topology-based (Figure 5, box B): In topology-based hop by hop routing protocols,
the senders forward packets through an optimal path using the network’s topology
information along with link- state information such as IP address [89]. As shown
in to Figure 5, box B, these can be classified as static [90], proactive [91], reactive [92],
and Hybrid.

• Delay-tolerant networks (DTNs) (Figure 5, box C): In DTNs, the mobile nodes are intermit-
tently and unstably connected. As the mobile nodes experience high latency and low
data rates, new routing protocols are needed to address the DTN characteristics [66].
The three main DTN-based routing protocols studied for FANETs are deterministic,
social network, and stochastic [66], which are depicted in Figure 5, box C.

• Heterogeneous (Figure 5, box D): FANETs interact with various ground networks, such
as VANETs, MANETs, or fixed nodes, in which heterogeneous routing protocols are
required for exchanging data between moving users. Routing protocols with hetero-
geneous techniques can support both mobile and fixed nodes in FANETs [93]. This
technique can provide sub-network assistance coverage for both nodes on the ground
and UAVs, network extension, and more [94]. The classification of heterogeneous
routing protocols is shown in Figure 5, box D.

• Cluster-based (Figure 5, box E): In the clustering technique, nodes with similar charac-
teristics and features are combined to form clusters. There is a cluster head in each
cluster that carries out communication processing [95]. As shown in Figure 5, box E,
cluster-based routing protocols in FANETs can be classified into two main categories,
namely, probabilistic and deterministic. A full classification of cluster-based routing
protocols in FANETs is shown in Figure 5, box E.
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• Swarm-based (Figure 5, box F): This routing technique takes advantage of the social
behaviour of fish, birds, and insects to find the optimal path and topology management
approach [96–99].

Selecting the best routing protocol for different UAV-based scenarios depends on a
variety of characteristics, including the routing approach (dynamic, static, on-demand,
hybrid), mobility models, simulation tools, and performance metrics. Although UAV
routing protocols are in the early stages of development, the reactive and proactive routing
approaches have thus far performed better in highly dynamic FANETs compared to other
protocols. In addition, hybrid protocols appear to be better for employment in monitoring
applications in large-scale FANETs [100].

Figure 5. FANET Routing Protocols: position-based, topology-based, DTN, heterogeneous, cluster-
based, and swarm-based.

6. UAV Mobility Models

This section describes the different UAV mobility models supported in FANETs. Typ-
ical mobility models used in FANETs include pure randomized mobility models (the
random way (RW), random waypoint (RWP), random direct ion (RD), and Manhattan
grid (MG) models), time-dependent mobility models (the Gauss Markov (GM), bound-
less simulation area (BSA), and smooth turn (ST) models), path-based mobility models
(the semi-random circular movement mobility model (STCM), and paparazzi (PPRZM)
models), group mobility models (the reference point froup (RPGM), exponential correlated
(ECR), column (CLMN), nomadic community (NC), pursue (PRS), and particle swarm
(PS) models), and topology control mobility models (the pheromone base (PB), distributed
pheromone repel (DPR)-based, mission plan-based (MBP), and self-deployable point cov-
erage (SDPC) models) [66,73,79,88]. The chosen model relies on the network to keep the
entire system working as a unity. There are several parameters, including the altitude, path
and directing of flying, and atmospheric conditions, all of which impact UAV mobility. In
addition to these parameters, other important aspects should be considered when select
a mobility model for UAVs in different scenarios. These aspects include avoidance of
connections that control the distance between UAVs, controlling sudden changes in the
UAVs’ direction, and the safety standards and deployment that need to be considered in
order to prevent collisions between UAVs [100].

7. Integration of Technologies with the UAV-Networked Systems

Recently, UAVs have begun to be integrated with several technologies, several of
which technologies are discussed in this subsection, as shown in Figure 6.
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Figure 6. The main technologies integrated with UAVs: augmented and virtual reality (AR and VR),
IoT, cloud, edge, and fog computing, and cellular networks.

• Augmented reality (AR) and Virtual Reality (VR) technologies (Figure 6, box A): VR, which
is shown in Figure 6, box A, has been integrated with UAV-networked systems for
greater integration of the virtual and real worlds. Such integration can create a virtual
environments for multiple purposes, including marketing, agriculture, entertainment,
education, and more, by taking over people’s vision and making them feel as if they
are somewhere else. AR is considered a variation of VR; VR technology, there is an
essential need for 3D data on a large scale. In this regard, UAVs that can freely fly in
the sky are excellent tools for collecting 3D data. Several studies have investigated the
use of VR technology and UAV networks [5–9]. The main challenges of UAV-enabled
VR include the low battery lifetime and computing capacity of VR users, which in
turn cause issues with content caching and transmission. VR applications need a high
data rate and low latency. In this regard, AI and ML techniques bring together novel
NN ideas from echo state networks (ESNs) and the liquid state machine (LSM), which
can enable user reliability prediction in order to find the optimal content level for
transmission and caching [7,101,102].

• IoT-enabled UAV communication system (Figure 6, box B): The integration of UAVs with
IoT is called the Internet of Flying Things (IoFT) [10,11] or Internet of Drone Things
(IoDT) [12]. IoFT or IoDT represents a new research topic related to IoT, cellular net-
works, cloud, fog, and edge computing, big data, intelligent computer vision, and
security techniques. IoFT or IoDT can efficiently support different applications in various
fields ranging from disaster management to smart industry, providing high connectivity,
scalability, flexibility, and availability. Although integrating UAVs with IoT improves
the scalability, connectivity, stability, reliability, and security of real-time IoT applications,
there are several open challenges, including interference and collision, UAV selection
and placement, UAV control and management, security issues, the power limitations of
IoT devices, path planning, and more [66,103–108].
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• Integration with Cloud Computing (Figure 6, box C): As shown in Figure 6, box C, cloud
computing has been integrated with FANETs; known as cloud-based UAV or flying
cloud computing, this can improve and increase storage, network bandwidth, and
processing. Such an integrated system includes three main layers: a UAV layer, a
cloud server layer, and a ground control system (GCS)/client layer. The UAV layer
collects sensor data such as pressure, temperature, etc., while flying and transmits
the collected data to the cloud for storage and processing using 3G/4G/5G cellular
communication devices or other technologies such as WiMAX, WiFi, etc. The com-
munication layer is responsible for providing wireless connectivity for the UAVs and
GCS any time and anywhere without any limitations on communication range. The
last layer contains the cloud servers that store and process different types of data,
such as geographical location parameters, environment variables, sensor data, images,
etc., received from the UAVs to detect various events [10,109–111]. Although flying
cloud computing provides many advantages in addition to the existing challenges
in traditional FANETs, new issues arise as well. The major challenges that appear in
cloud-based applications include large bottlenecks, latency due to centralized process-
ing, lack of offline processing, and security issues. These challenges can be mitigated
by edge and fog computing in a distributed manner, with storage and processing of the
data carried out near the places where the data are generated. Therefore, integrating
edge and fog computing with UAVs can provides better results in certain cases [14].

• Flying Edge Computing (Figure 6, box D): Edge computing allows data storage and
computing closer to the sources of data. Edge computing has been integrated with
FANET (flying edge computing) to mitigate the hardware limitations of UAVs and
improve the performance of UAV networks [13]. Flying edge computing is employed
to support real-time IoT applications such as video streaming surveillance, VR and AR,
and smart transportation [112]. In flying edge computing, UAVs are associated with
edge IoT devices such as GBSs to offload and migrate part of the data computation
to the edge layer; the other parts of computation tasks are locally managed by the
UAVs [113] without the intervention of the cloud [114]. Integrating UAVs with edge
computing provides low latency and response time for different IoT real-time applica-
tions. However, certain applications require storage and computing of voluminous
data such as video streams. The local resources of edge IoT devices cannot efficiently
support such cases. Therefore, flying fog computing can be expanded to the core
network to provide low latency for storage and processing of huge amounts of UAV
data [10].

• Flying Fog Computing (Figure 6, box E): Flying fog computing, which is located at the
edge of the network, provides an intermediate level between the cloud and UAV
layers. The fog layer communicates with the UAV layer through wireless connection
and the cloud layer using the internet. The integration of fog computing and UAVs
provides low latency for real-time UAV-assisted IoT applications along with high
capacity in terms of computing and storage. Although the flying fog computing
paradigm provides enough computing power for IoT nodes, a major issue involves
the integration of the UAVs in the edge computing layer with the cloud computing
layer [10,14,15]. Figure 7 shows the cloud, fog, edge, and IoT layers.

• Integrating UAVs into cellular networks (Figure 6, box F): Agile UAVs are a special class
of lightweight fixed-wing UAVs with small control surfaces [115]; they can be used
as flying base stations, mobile relays, users, sensors, network controllers, and even
as a scheduler in a cellular network [16], providing high reliability and low latency
in communications. In UAV-based cellular networks, UAVs are mostly equipped
with small BSs to provide temporary required communication links and cover the
hard-to-reach regions. These flying BSs are more adaptive, flexible, and cost-effective
than conventional towers or pole-mounted or rooftop BSs [17]. However, cellular
networks have limitations in terms of supporting UAV communications. For example,
optimally deploying UAVs is one of the most challenging issues in this context [18,19].
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Therefore, new communication technologies such as 5G and 6G that support aerial
and satellite communication are needed to manage UAV traffic in very dense air traffic
scenarios [77,103,116,117]. There are challenges with integrating 5G and 6G with
FANETs, which can suffer from issues and is a very complex task with many technical
issues which need to be addressed [66].

Figure 7. The basic model of cloud, fog, and edge computing.

8. Main Components of Cloud-Based UAV Managing Systems (CBUMS)

As already mentioned, CBUMS include three main layers, the UAV layer, cloud layer,
and control layer [20], as shown in Figure 8.

• UAV Layer: As shown in Figure 8, in the UAV layer (i.e., the physical layer), UAVs that
are connected with the IoT cloud using short- and long-range wireless technologies
can perform different tasks, ranging from traffic monitoring to delivery. The cloud
layer sends control information and signals about the traffic situation to the UAV
layer to guide responses based on the desired GBS in the control layer. In the UAV
layer, multiple network components such as drone-to-target (D2T) and drone-to-drone
(D2D) are attached [20,118].

• Cloud Layer: The cloud layer, which is the heart of CBUMS, transfers the data between
the UAV and control layers. As can be seen in Figure 8, the storage, computation, ML
techniques, and interface are the main components of the cloud layer [20,118].
Storage: The cloud layer captures streams of data about the location, environment,
and UAV mission information, storing the captured data in a regular SQL database or
NoSQL database based on the application’s requirements.
Calculations and ML techniques: Several computation algorithms, such as map/reduce,
data analytics, image processing, ML techniques (including supervised and unsuper-
vised learning algorithms), RL and DRL-based algorithms, and FL-based techniques are
executed in the cloud to improve the system performance and fix existing open issues.
Interface: The interface contains web and network services that make connections
between control and UAV layers. Interfaces in the cloud layer take advantage of
various communication protocols, including wireless personal area networks (WPAN),
wireless local area networks (WLAN), low-power wide-area networks (LPWAN), and
cellular networks. In applications that require UAVs to directly communicate with
the central station, a WiFi transmission system is used. However, long-term evolution
(LTE) and long-range area networks (LPWAN) provide lower-latency communication
systems than WIFi.

• Control Layer: As Figure 8 shows, the control layer includes GCSs that remotely register,
control, manage, and monitor UAVs from a location close to or inside the flying field.
The GCS contains application software that receives collected data from UAVs and
sends control signals to them. The users can monitor UAVs, set task parameters,
and modify them through the data analysis implemented by the cloud based on the
application software [20,118].
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Figure 8. Cloud-based UAV managing system including the three main layers: UAV, cloud, and control.

9. Simulation Tools

Evaluating the performance of UAV-based communication networks in the real world
is a difficult task that requires a remarkable amount of time and resources. Frequent topol-
ogy changes and the high degree of mobility of the UAVs in FANETs make the practical
evaluation of UAV performance a challenging, costly, and time-consuming task. In addition,
due to regulations around using UAVs in most countries, certain types of cyber-attack
resistance evaluation tests for UAV networks are not allowed [2]. Therefore, many flexible
simulation tools, frameworks, emulators, and testbeds have been developed to make it
possible to create, implement, test, and evaluate schemes virtually without requiring real-
world implementation. The available FANET performances analysis tools include AVENS,
CUSCUS, Simbeeotic, UAVSim, UTSim, FANETSim, Netsim, OMNeT++, NS2,NS3, OPNET,
ROS-NetSim, MATLAB, TOSSIM, QualNet, GloMoSim, YANS, ONE, SSFNet, FlynetSim, J-Sim,
BonnMotion, GAZEBO, AirSim, RoboNetSim, Mininet-Wifi, and SUMO, each of which sup-
ports different mobility models, operating system, and programming languages [119–122].
Table 2 shows additional details about each simulator.
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Table 2. Simulation tools and testbeds for UAV systems performance analysis.

Name Type Mobility Model Operating System Programming Language More Description

AVENS (http://hdl.handle.
net/10125/41924 accessed

on 21 July 2022)
Simulator Linear Mobility Linux, Windows, MacOS N/A

A flight control simulator that implements co-simulation
between the XPlane Flight Simulator and an
OMNeT++/INET simulation for modeling

UAV communication.

CUSCUS [123] Simulator micro-mobility > Ubuntu 14.04 N/A

A simulation architecture for networked control systems
which is based on two well-known solutions in the fields
of networking simulation (the NS-3 tool) and UAV control

simulation (the FL-AIR tool).

Simbeeotic [124] Simulator and
Testbed N/A Linux Java Used to evaluate Micro-aerial vehicle (MAV) swarms.

UAVSim [125] Testbed well-defined mobility
framework

Windows, Linux and
MacOs C++ An OMNeT++ based UAV simulator; useful for cyber

security analysis in UAV-based networks.

UTSim [126] Simulator and
a framework N/A Linux Windows

C#, JavaScript, Unity
Script, or BOO coding

languages.

Useful for air traffic sumulation and capable of simulating
UAV physical specification, control, navigation,sensing ,

communication, and avoidance in environments with
stationary and mobile objects.

FANETSim [127] Simulator Grid Linux Distribution Java
Java software able to consider a set of flying UAVs in the

sky, providing connectivity to the users inside the
considered map.

Netsim [128] Simulator RW, RWP Windows , MacOS or C Provides three different versions:
Debian-based Linux. NetSim Pro, Standard, and Academic,

with a very intuitive GUI interface

OMNeT++ [129] Simulator FP, RWP, RW Linux, MacOS. C++, high-level A modular and extensible
and Windows language (NED) component-based network

simulator used for research and commercial purposes.

NS2 [130] Simulator RW, RWP, GM, MG,
RPGM Linux, Windows, MacOs C++, with an OTcl

interpreter as a front-end

A discrete event simulator used for networking research
which simulates TCP, routing, and multicast protocols
over wired and wireless (local and satellite) networks.

NS3 [87] Simulator RW, RWP, RD, GM, MG,
RPGM

Linux, Windows, and
MacOS C++, Python

Allows simulation of both IP and non-IP-based networks.
It is suitable for performance evaluation of mobile ad hoc

and TCP networks

http://hdl.handle.net/10125/41924
http://hdl.handle.net/10125/41924
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Table 2. Cont.

Name Type Mobility Model Operating System Programming Language More Description

OPNET [131] Simulator RW, Group mobility,
RWP, RD

Windows, Red Hat and
CentOS C, C++ Provides a powerful GUI and animation that involves

significant costs.

ROS-NetSim [132] Simulator N/A Linux C++, Python An ROS package that acts as an interface between robotic
and network simulators.

MATLAB [133] Simulator SRCM, PSMM Windows, Linux, and
MacOs C, C++

Provides different example applications involving both
fixed-wing and multirotor UAVs, along with a UAV

Toolbox and the ability to integrate AI/ML through its
Statistics and ML Toolbox.

TOSSIM [134] Testbed RWP
Linux, and it is

compatible with
Windows

C++, Python A BSD-licensed OS designed for low-power wireless
devices, it is widely used in both academia and industry.

QualNet [135] Simulator RWP, Group mobility MacOs, Linux UNIX,
Windows, C++ A powerful simulation tool for UAV research focusing on

network security.

GloMoSim [136] Simulator RWP, Group mobility Linux, Windows C, Parsec
Widely used for research purposes and very scalable; does
not offer good documentation, however, which makes it

less user-friendly.

YANS [137] Simulator N.A MacOS, Ubuntu Python, C, C++ A lightning-fast Docker-based network simulator.

ONE [138] Simulator RWP Linux, Windows and
MacOS Java

Generates node movement using different movement
models and visualizes both mobility and message passing

in real-time in its graphical user interface. ONE can
import mobility data from real-world traces or other

mobility generators.

SSFNet
(http://www.ssfnet.org/
accessed on 21 July 2022)

Simulator MG, RPGM, RW, RWP,
GM

Linux, Solaris, and
Windows NT using
JDK1.2 and higher

java, C++
A scalable simulation framework network model

designed for expansion of networks, including topology,
protocols, traffic, etc.

FlynetSim [139] Simulator GM, MG, RPGM, RW,
RWP, RD Ubuntu Distributions Python An open-source synchronized UAV network simulator

based on NS3 and Ardupilot.

J-Sim
(https://sites.google.com/

site/jsimofficial/downloads
accessed on 21 July 2022)

Simulator RWP Linux, Windows, and
MacOS Tcl, Python, and Perl A powerful tool, although it is relatively complicated to

use and has a longer execution time than NS3.

http://www.ssfnet.org/
https://sites.google.com/site/jsimofficial/downloads
https://sites.google.com/site/jsimofficial/downloads
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Table 2. Cont.

Name Type Mobility Model Operating System Programming Language More Description

BonnMotion [140] Mobility
generator

RW, RWP, GM, MG,
RPGM and more Linux, OSX Java, Windows Java software that creates and analyzes mobile ad

hoc network characteristics.

GAZEBO [141] Simulator High-speed Mobility Linux, Linux virtual
machines C++

A robotics simulation platform for testing
algorithms and building AI/ML platforms for

UAV applications. It can connect to a robot control
framework (ROS).

AirSim [142] Simulator N/A Windows, Linux C++, C#, Python, Java

An open-source platform for AI research
experimentation, with computer vision, deep

learning, and reinforcement learning algorithms
for UAVs

RoboNetSim [143] Framework
C++,

It provides good mobility
patterns. MacOs, Linux, Windows, Python

Integrates multi-robot simulators with network
simulators for realistic communications simulation

of networked multi-robot systems. It has been
applied to interface the NS-2, NS-3, and ARGoS

Player/STAGE simulators.

Mininet-Wifi (https:
//mininet-wifi.github.io/
accessed on 21 July 2022)

Emulator

RW, RWP,
TruncatedLevyWalk, GM,

Random Direction,
Reference Point,

TimeVariantCommunity

any Ubuntu Distribution
from 14.04 C++, Python An extension of the Mininet SDN network

emulator that adds or modifies classes and scripts.

SUMO [144] Simulator N/A Windows, Linux or MacOs C++, Python
While it cannot be used directly in FANETs as it is
tailored for 2D vehicles, it can be integrated with

OMNeT++ and NS3.

https://mininet-wifi.github.io/
https://mininet-wifi.github.io/
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10. Future Prospects

Although the collaborative UAVs technologies discussed in Section 7 provide a number
of benefits for a variety of collaborative applications, there are a number of challenges that
remain to be addressed [145].

Due to the energy limitations of UAVs, energy-efficient algorithms need to be designed
for such different aspects as collaborative communication, sensing, processing, acting, and
data storage [145].

Providing efficient resource management strategies that try to dynamically manage
resources such as bandwidth, transmitting power, the number of UAVs, and UAV flight
time is another challenging issue in UAV-assisted technologies [1]. Security provision in
UAV-based communication is a complex task, as UAVs are now widely used in technologies
involving domains (military, rescue services, and infrastructure inspection) that involve
sensitive information. Therefore, efficient techniques are required to provide reliable and
secure communications and services in the technologies associated with UAVs [145,146]. In
our own future work, we plan to apply Artificial Immune System-based Danger Theory
to enhance FANET security, as this is an area in which promising results have previously
been found by [147].

In addition, flexible deployment of a UAVs relies on their mobility and ability to
fly towards their destination and perform their mission. To prevent conflict and manage
battery levels, UAVs’ real-time mobility reactions and states are vital [148,149].

11. Conclusions

This paper has presented a comprehensive review of FANETs, highlighting their char-
acteristics, routing protocols, and new applications. UAV-based communication provides
many benefits, and as such many solutions are being proposed and implemented by re-
searchers exploring their possible employment. The main objective of this article has been
to provide a thorough review of overall research in the area of FANETs, describing the
different types of UAVs used in FANETs along with their main characteristics, applications,
and routing protocols. This comprehensive review sought to find the most relevant publi-
cations addressing each of these topics. The main findings of this review are summarized
as follows:

• UAV classification: UAVs can be classified based on size, weight, altitude, range and
endurance, application, flying mechanisms, air class, degree of autonomy, ownership,
and type of engine.

• Main Characteristics of FANETs: Node density, node mobility, changing network topol-
ogy, communication range, radio propagation model, localization, power consump-
tion, frequency band, cost-efficiency, versatility, agility, and network lifetime are the
main characteristics of FANETs.

• Main Applications of FANETs: The applications of FANETs can be classified into three
main categories: Multi-UAV cooperation (e.g., target detection/tracking, area moni-
toring, and surveillance), UAV-to-ground tasks (e.g., relay networking, provision of
on-demand base stations for mobile communication, intermittent networking), and
UAV-to-VANET collaborations (e.g., roadway traffic monitoring, data packet delivery,
route guidance).

• FANET routing protocols: FANET routing protocols can be classified into six main
categories: position-based, topology-based, delay-tolerant networks (DTNs), heterogeneous,
cluster-based, and swarm-based.

• UAV Mobility models: The mobility models used by FANETs consist of pure randomized
mobility models, time-dependent mobility models, path-based mobility models, group
mobility model, and topology control mobility models.

• Integration of other technologies with UAV-networked systems: UAVs have been integrated
with various technologies, including augmented and virtual reality, IoT, cloud com-
puting, fog and edge computing, cellular networks, and intelligent reflective surfaces.
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• Main components of CBUMS: Cloud-based UAV managing systems includes three main
layers: the UAV layer, cloud layer, control layer.

• Simulation Tools: The available FANET performances analysis tools include AVENS,
CUSCUS, Simbeeotic, UAVSim, UTSim, FANETSim, Netsim, OMNeT++, NS2, NS3,
OPNET, ROS-NetSim, MATLAB, TOSSIM, QualNet, GloMoSim, YANS, ONE, SSFNet,
FlynetSim, J-Sim, BonnMotion, GAZEBO, AirSim, RoboNetSim, Mininet-Wifi, and SUMO,
each of which support different mobility models, operating systems, and program-
ming languages.

• Future Directions: When integrating new technologies with UAV-based communica-
tions, there remain several significant open challenges that need to be addressed,
including the energy limitations of UAVs, the need for dynamic management of vari-
ous resources (bandwidth, transmitting power, number of UAVs, UAV flight time),
and the FANET security.

An important contribution of this paper is our discussion of possible future UAV net-
work application, which was made possible by a review of the main emerging technologies
that are currently being integrated with FANETs. This discussion sheds light on the future
of this research area and can open the path for new ideas further exploring the possibilities
discussed in this article.
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