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Gait generation is very important as it directly affects the quality of locomotion of legged robots. As this is an optimization problem
with constraints, it readily lends itself to Evolutionary Computation methods and solutions. This paper reviews the techniques used
in evolution-based gait optimization, including why Evolutionary Computation techniques should be used, how fitness functions
should be composed, and the selection of genetic operators and control parameters. This paper also addresses further possible
improvements in the efficiency and quality of evolutionary gait optimization, some problems that have not yet been resolved and
the perspectives for related future research.

1. Introduction

Compared to wheeled robots, legged robots usually possess
superior mobility in uneven and unstructured environments.
This is because they can use discrete footholds to overcome
obstacles, climb stairs, and so forth, instead of relying on a
continuous support surface.

A gait is a cyclic, periodic motion of the joints of a
legged robot, requiring the sequencing or coordination of
the legs to obtain reliable locomotion. In other words, gait
is the temporal and spatial relationship between all the
moving parts of a legged robot [1]. Gait optimization is
very important for legged robots, because it determines the
optimal position, velocity and acceleration for each Degree
of Freedom (DOF) at any moment in time, and the gait
pattern will directly affect the robot’s dynamic stabilization,
harmony, energy dissipation and so on. Gait optimization
determines a legged robot’s quality of movement.

2. Why Evolutionary Computation Is Suitable
for Gait Optimization

2.1. Gait Generation Is a Multiconstrained, Multiobjective
Optimization Problem. Gait generation, which incorporates

mobility and stability, is a very challenging task for legged
robots, because their system of locomotion has multiple
DOFs and a variable mechanical structure during locomo-
tion. As a result a large number of parameters have to be
established. For example, 54 motion parameters have to be
considered for the walk gait of the Sony AIBO robot [2].
To obtain a natural and efficient gait for a legged robot, two
kinds of strategies for sequencing or coordination of the leg
movements can be followed.

The first strategy assumes that the gaits of humans or
animals are optimal, as otherwise they would not have
been able to survive the competition and natural selection
proposed by Darwin’s Theory of Evolution. This assumption
has been proved accurate [3]. The constrained optimization
hypothesis suggests that gait parameters are selected to
optimize (minimize) the objective function of the cost of
transport (metabolic cost/distance) within the limitations of
imposed constraints [4]. A lot of research has shown that
humans and animals move in a way that minimizes the
metabolic cost of locomotion and validates the idea that the
gait synthesis of legged robot is a constrained optimization
problem [5–12].

Robots simulate human or animal behavior [13]. There-
fore, it is quite natural to use biological locomotion data



2 Applied Computational Intelligence and Soft Computing

to control the gait of robots. For example, Human Motion
Captured Data has been adopted to drive a humanoid
robot [14]. However, some research indicates that biological
locomotion data cannot be used directly for a legged robot
due to kinematic and dynamic inconsistencies between
humans/animals and the legged robot. This implies the
need for kinematic corrections when calculating joint angle
trajectories [14].

The second strategy formulates the gait generation
problem of the legged robot as an optimization problem with
constraints. It generates the optimal gait cycle by minimizing
some performance indexes, for example, velocity of motion,
stability criteria, actuating forces, energy consumption, and
so forth. The gait generation problem of legged robots often
has several objectives, and some of these objectives may
be contradictory to each other (for example, speed and
stability). Thus the gait generation problem can be stated
as a multi-constrained and multi-objective optimization
problem [15].

These two gait generation strategies may reach the same
goal by different routes because both of them actually
solve the gait synthesis problem as a multi-constrained
multi-objective optimization problem. Once a database of
precomputed optimal gaits has been created, the robot can
cover the entire interval of precomputed optimal gaits by
interpolation and thus realize smooth real time locomotion.

2.2. Evolutionary Computation Is Suitable for the Gait Opti-
mization Problem. The dynamic equations of legged robot
locomotion are high order highly coupled and nonlinear, and
gait optimization for legged robots requires searching a set
of parameters in a highly irregular, multidimensional space.
As a result, the standard gradient search-based optimization
methods are not useful for legged systems with high DOF
[2, 16, 17].

Evolutionary Computation (EC), including the Genetic
Algorithm (GA), Genetic Programming (GP), Evolutionary
Programming (EP), and Evolutionary Strategy (ES), is a
natural choice for the gait optimization of legged robots.

First, EC uses optimization methods based on Darwin’s
Natural Evolution Theory. According to this theory, the
locomotion mechanisms of life forms resulted from natural
selection and the interaction between individuals and the
natural environment. This makes the use of EC a natural
choice, as it is biologically inspired and can generate
biologically plausible solutions [18].

Second, from the computational point of view, EC also
fits well with the gait optimization of legged robots [2, 18,
19], because of the following:

(a) Gait optimization problems can have multiple crite-
ria, multiple constraints, as well as multiple design
variables, and EC has been shown effective for these
kinds of large-dimension, multi-objective, multi-
constraint optimization problems.

(b) EC has been seen to be robust for search and
optimization problems and has been used to solve
difficult problems with objective functions where
local information such as continuity, differentiability,

and so on is not available, even though it is very
important for gait optimization, as the objective
functions of gait optimization may be very complex
and it is very difficult to obtain this local information.

(c) Because of the complexity and high DOF of the
mechanical structure, it is difficult to obtain a precise
dynamic model of a legged robot [20]. EC will be
efficient as this method is resistant to noise in the
evaluation function and offers a model-free approach
to optimization, only requiring feedback from the
environment to improve performance when online
evolution is deployed with a real robot.

(d) EC has strong global search capability and is also
insensitive to the initial population. Therefore EC
decreases the risk of being trapped in a local mini-
mum for finding a true optimum solution.

(e) EC can easily be parallelized. Since gait optimization
of legged robots is often a large-scale problem and the
objective function and constraints are often complex,
the process of evolutionary optimization may be very
time-consuming because of the high computational
cost of EC due to iterative evaluations of candi-
date solutions. Therefore it is advantageous to use
parallel implementations of EC to gain efficiency
and improve the solution quality of EC-based gait
optimization.

3. How to Evolve the Optimal Gait

3.1. The Multiform EC Models Adopted in Gait Optimization.
Gait optimization based on EC is actually a combination of
EC procedures and gait optimization problems. A general
block diagram of EC-based gait optimization is given in
Figure 1. This offers a first glance at the application of EC
technique for gait optimization of legged robots.

A lot of EC models have been adopted to solve gait
optimization problems. The gaits most often studied include
the gaits of biped, quadruped, and hexapod robots engaged
in walking, running, negotiating sloping surfaces, and going
up and down stairs [21–26].

The Genetic Algorithm (GA) is the gait optimization tool
which is most often used, and some modifications can be
introduced to fit the specific problems of gait optimization
[25, 27, 28]. For example, interpolating and extrapolating
operators [29], two-point crossover, Gaussian mutation,
overlapping populations [2], and Elitism strategy have been
adopted. The explicit fitness sharing mechanism [30] has
also been adopted to prevent premature convergence to
suboptimal extremes. This speciation technique divides the
population into a fixed number of species, where each species
contains individuals that are similar to each other, and can
force similar members of the same species to “share” one
representative score, thereby penalizing species with a large
number of individuals and allowing new species to form even
if they do not perform as well as other, larger, species [30].

Adaptability that can adaptively change the probabilities
of crossover and mutation is introduced in GA to balance
global and local exploitation and exploration towards the
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Figure 1: A general block diagram for EC-based gait optimization.

progress of evolutionary optimization. For instance, Adap-
tive GA is used to optimize the gait of a humanoid robot
ascending and descending a staircase by searching optimal
trajectory parameters in blending polynomials [31].

Adaptive mechanisms may also be applied to control
mutation rate [2]. This method places radiation (the level of
radiation decreases over time) into the middle of a region
where a large group of individuals is clustered within the
same locality to dramatically increase the mutation rate in
this area, causing all the individuals to mutate in the next
generation and to disperse to other areas of the space. It is
reported that this mechanism can be useful in controlling
the learning behavior of GA and makes GA more robust
with respect to noise in parameter evaluations preventing
premature convergence to suboptimal extremes.

Genetic Programming (GP) [32] and Grammatical Evo-
lution (GE) are often used to evolve the gait of robots.

Simulation results obtained using GP on an AIBO
quadruped in the Webots environment are reported
much better than those obtained using simple GA-based
approaches [17]. In this approach, the gait is defined using
joint angle trajectories instead of locus of paw to reduce the
search space of optimization. An elite archive mechanism
(EAM) is used to prevent premature convergence and
improve the search capability of GP. EAM can preserve elite
individuals at an early stage and flow them into in later stage.
In this way, genetic material from elite individuals at an early
stage is used to refresh an evolutionary convergent state and
to create a role for preserving diversity as long as possible.

GE is one of the most popular forms of grammar-
based GP. The advantage of GE lies in that it allows the
user to conveniently specify and modify the grammar,
whilst ignoring the task of designing specific genetic search
operators. Thus GE can be used to optimize pre-existing
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motion data or generate novel motions. Using a Fourier
gait representation to encode the chromosome and the
dynamic similarity principles as a constraint, GE is employed
to optimize the gait retargeting problem in animation. It
successfully modified one animal’s gait cycle data into a
different animal’s gait cycle data in computer simulations
of animal locomotion [33]. The same method can also
be used to optimize the gait of a walking horse from a
veterinary publication into a physics-based horse model
[34].

ES is also employed to solve the gait optimization
problem [35, 36], and some encouraging results have been
obtained.

Using a hand-tuned gait as a seed, the bipedal gait is
directly evolved on a physical robot by an ES approach
with parametric mutation and structural mutation. After
hundreds of evaluations significant improvements were
obtained for a functioning but nonoptimized bipedal gait
that improved the walking speed by around 65% compared
to the hand-tuned gait [37].

A hybrid approach of space-time optimization and
covariance matrix adaptation evolution strategy (CMA-ES)
has been proposed to generate gaits and morphologies
for legged animal locomotion [38]. It effectively generated
dynamic locomotion gait of bipeds, a quadruped, as well as
an imaginary five-legged creature by simulation. The gaits
and morphologies produced are reported lifelike and exhibit
many qualitative traits seen in real animals. This hybrid
approach may combine the efficiency in high-dimensional
spaces and the ability to handle general constraints of space-
time optimization with the ability to handle nondifferen-
tiable variables and to avoid many local minima from CMA.

Apart from traditional EC and its variations, some
relatively new types of EC have also been applied to gait
optimization research.

Estimation of Distribution Algorithms (EDAs) are evolu-
tionary algorithms based on probabilistic models that replace
the operators of mutation and crossover used in GAs. The
main advantage of EDA lies in the fact that the knowledge
about the problem acquired previously can be used to
set the initial probability model, and the global statistical
information about the search space can be extracted directly
by EDA to modify the probability model with promising
solutions. This can reduce the search space and obtain good
solutions in a shorter time interval. For this reason EDA
has been used to study the gait optimization problem [15,
39, 40]. For example, EDA has been applied to optimize
the gait of the AIBO robot. A fitness function based on
direct evaluation of the robots was adopted, and significant
improvement of the previous gait was achieved over a short
training period [41].

In some cases of gait optimization, the performance of
a gait cannot be directly measured or calculated based on
certain functions. In this case human preferences, intuition,
emotions, and other psychological aspects can be introduced
into the target system. Interactive evolutionary computation
(IEC) is a form of evolutionary computation where the
fitness function can be replaced by the user. A prominent
advantage of IEC is that it can reflect user preference and

allow optimization of the solution with a minimum of
required knowledge in the problem domain [42].

Staged Evolution, which evolves the result in a number
of stages, has also been proposed for gait optimization
[20, 42, 43]. This approach employs a strategy of divide
and conquer. By introducing a staged set of manageable
challenges, it decreases the search space and thus improves
the convergence rate of EC and obtains rapid evolution of
behavior towards a given goal.

The multiobjective multiconstraint problem is often
solved by combining the multiple objectives and constraints
into a single scalar objective problem using weighting
coefficients. To do this, some problem-specific information
is needed, and the relative importance of the objectives and
constraints should be decided. In the complex problem of
gait optimization, it is difficult to know this information
in advance. In addition, there is no rational basis for
determining adequate weights for these competitive or
conflicting criteria, and the objective function that will be
formed may lose significance due to the combination of non-
commensurable objectives [44]. Therefore, more and more
gait optimization problems are parameterized and optimized
using tailored Multiple Objective EC procedures [45], for
example, the Strength Pareto Evolutionary Algorithm [46]
and Nondominated Sorting Genetic Algorithm with Fitness
Sharing method [44], and the obtained Pareto-optimal gaits,
which is a set of nondominated or noninferior gaits that
satisfies different objective functions. These methods have
shown good performance [44, 46–48].

3.2. Gait Representation and Chromosome Encoding. The gait
of a legged robot may be represented in three-dimensional
space [30, 49] or in joint space [17, 20, 50].

In order to control a legged robot’s movement, it is nec-
essary to generate the trajectories of all the joints. Therefore,
gait is usually represented by a sequence of key poses (states)
extracted from one complete gait cycle [51], and phases
between these key poses are approximated by a polynomial
function, for example, 3rd, 4th, or 5th order polynomials.
These polynomial functions are adopted because they can
insure that the joint trajectories are smoothly connected
with first-order and second-order derivative continuity. First
order derivative continuity guarantees the smoothness of
velocity, while the second order guarantees the smoothness
requirements of acceleration or the torque in the joints [20].
As a result, the gait of robot will look natural.

If only the foot placement point of these key poses is
specified, once the foot trajectories are generated, inverse
kinematics should then be used to convert the locus of foot
into the joint angles required to generate the foot placement
curves for a particular gait [17, 20, 30, 47, 52–54].

To make the robot optimally move from its current
position/stance to a goal position/stance, other parameters
apart from those of the leg joint trajectories should also be
considered [47, 55], for example, parameters describing the
position and orientation of the body, how the robot’s weight
shifts during walking, whether or how much the arms swing,
and so forth.
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The joint angles in these states, the coefficients of the
polynomials, and some of the other parameters mentioned
above are the design variables to be optimized by EC [18, 39,
56, 57]. These design variables, when treated as genes and
arranged in an array, make up a chromosome of EC [16].

A variety of chromosome encoding methods, including
the gray code representation [43], real number coding
[57], mixed encoding of floating point number, and binary
number [1], have been adopted, but the most often used
encoding is the real coded method. This is due to difficulties
associated with binary representation when dealing with a
continuous search space with large dimension [44].

3.3. Composing the Fitness Functions. EC are a family of
objective function driven optimization algorithms. The
objective/fitness functions represent the problem environ-
ment and decide how well the individual solves the problem.
Therefore, the construction of a fitness function is very
important for the correct functioning of EC, and researchers
should define these objective functions appropriately accord-
ing to the task to be accomplished so that each individual’s
actual behavior can be evaluated correctly and efficiently.

A lot of criteria can be used to construct the fitness
functions of EC for gait optimization, and at present most
studies mainly emphasize only one or a part of the following
aspects [1].

(a) Maximum Velocity. The gait should help the robot
attain maximum velocity, so the robot’s speed of
locomotion is a basic performance index [47, 51, 55,
58].

(b) Minimum Consumed Energy. The criterion most
often used for gait optimization is the minimum
consumed energy (MCE) [1, 20, 39, 40, 44, 46, 56,
57, 59–66] as an energy-efficient locomotion pattern
results in a more natural walking motion. In fact,
the MCE gait of a biped robot is similar to that of
human. Another advantage of MCE criteria is that
the consumed energy should be reduced so as to
maximize battery operation time.

(c) Minimum Torque Change. The criterion of minimum
torque change (MTC) is based on smoothness at the
torque level [44, 46, 57, 59, 60]. This may result in a
more stable motion due to a smoother change in link
acceleration.

(d) Stability. In order to make the robot move in an
environment and avoid falling down, it has to have a
stable gait. Stability is the most important constraint
and is most often used in gait optimization. Stability
can be static or dynamic. Static stability can be
verified via the center-of-gravity index [18, 59], while
the dynamic stability is often verified via the zero-
moment-point (ZMP) [1, 14, 16, 20, 39, 40, 46, 47,
57, 60, 67], which has an important role in gait
optimization, especially for the biped gait. If the
robot has to focus on how to restore balance rather
than constantly trying to maintain dynamic balance,

the foot placement estimator (FPE) can be adopted
[68].

(e) Geometric Constraint. This ensures the feasibility of
robot gaits from the point of physical structure [1,
14, 40, 58, 67, 69]. When the robot is passing through
obstacles or climbing stairs, the gait should not lead
to a collision between the robot and its environment.
When the robot walks, the swing limb has to be lifted
off the ground at the beginning of the step cycle and
has to be landed back at the end of it.

(f) Smooth Transition Constraint. To have a continuous
periodic motion, the initial posture and velocities
should be identical to those at the end of the step
[44, 56, 62, 69]. For a humanoid robot, the horizontal
displacements of the hip during the single and double
support phases must also be continuous. When a
walking robot’s swing limb makes contact with the
ground (heel strike), the effect of impact should be
minimized so that it does not influence the motion
stability of the robot [1, 14, 40, 57, 58].

More criteria can be added to achieve other practical
requirements in gait generation and optimization, and the
constraints can be formulated as equalities and inequal-
ities. These criteria will serve as objective functions for
evolutionary-based gait optimization.

There are two ways to evolve gait for a robot, namely
on-line evolution and off-line evolution. On-line evolution
evolves gait directly on a real robot [32, 43, 47, 49, 51, 70, 71],
while the off-line method evolves gait on a simulator [18, 59,
72]. In the case of off-line evolution, solutions are evaluated
using the objective functions mentioned above. In the case of
on-line evolution, the fitness may not be directly calculated,
instead it will be determined based on measurements, that is,
the solutions have to be tested by letting the robot actually
walk with the parameters encoded by the chromosome, and
the fitness for each individual is evaluated using the robot’s
sensors (digital camera, infrared sensor, and gyro-sensor) or
directly evaluated by the user [30, 42].

3.4. The Genetic Operators and Control Parameters of EC. In
order to make EC work properly, a set of control param-
eters and some genetic operators, for example, selection,
crossover, and mutation should be predefined.

(a) Selection. Selection is performed so that better indi-
viduals are chosen for breeding and surviving. There
are quite a lot of methods for selecting individuals
for genetic operations. The mostly commonly used
method is the roulette wheel procedure [16, 47],
which assigns a higher probability of selection to an
individual if its fitness is determined to be better.
Tournament selection is another commonly used
selection procedure. Binary tournament randomly
selects two individuals from the population at each
time and chooses the fitter one [42]. Other tourna-
ment algorithms simultaneously select individuals as
parents and other specific individuals to be replaced
[32, 49]. The parent(s) is the individual(s) with
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higher fitness, and the individual with the lowest
fitness is replaced by the offspring of the parent(s).
Elitism strategy is commonly adopted. This guaran-
tees that the fittest individuals will always be retained
into the next generation.

(b) Crossover. Crossover combines the genes of two indi-
viduals into a new one. A parameter Pc is used to con-
trol how often the crossover operator can be applied,
and it can be encouraged by increasing the proba-
bility. Usually, Pc∈ [0.6 ∼ 0.9]. All commonly used
crossover operators, for example, Simple Crossover,
Two-point crossover, Multipoint crossover, Arith-
metic crossover, Heuristic Crossover and Uniform
crossover, can be used for gait optimization [2, 16,
18, 20, 30, 32, 42–44, 56, 67, 69, 73]. Other methods
for crossover may also be used. For example, the
interpolation and the extrapolation operators [29],
as well as the quaternion recombination techniques
of Guaranteed-Uniform-Crossover, and Guaranteed-
Average, Guaranteed-Big-Creep, Guaranteed-Little-
Creep have been employed [47].

(c) Mutation. Mutation introduces perturbation to the
genes of an individual and thereby creating a new
one. Parameter Pm affects the number of individuals
mutated, as well as the number of mutated genes
per chromosome. Mutation is performed with a very
low probability, usually, Pc∈ [0.005 ∼ 0.1]. All com-
monly used mutation operators, for example, Uni-
form Mutation, Nonuniform Mutation, Boundary
Mutation, and Gaussian Mutation, can be used for
gait optimization [2, 16, 18, 20, 29, 32, 42–44, 67, 69,
73].

(d) Population Size. The number of genetic strings main-
tained at one time may vary from 10 to 800 according
to the literature [2, 16, 18, 20, 32, 42–44, 47, 51,
56, 67, 69, 71, 73]. A larger population increases
the evaluation time for each epoch, while a smaller
population size may not provide enough variation,
causing the algorithm to converge to local extremes
more often than necessary. Therefore, the population
size should be carefully decided according to the
size or difficulty of the problem, and a compromise
between efficiency of computation and diversity of
solution should be made. This is why Chernova
suggested that a population size of 30 is a good choice
[2]; however Eperješi reported that a population of
the same size lost most of the genetic material quite
quickly and converged to local minima [42].

(e) Initial Population. The initial population can be
randomly created in two ways. One generates the
initial population by mutation using a hand-tuned
gait as a seed [29, 51], and the other generates the
initial population with a uniform distribution over
the given search range [32, 49, 50, 71].

(f) Maximum Generation Criterion. EC will iteratively
apply the genetic operations until a certain termi-
nation criterion is met. Typical termination criteria

employed in EC include: the realization of a pre-
defined total number of iterations, having reached
a maximum number of iterations without improve-
ment, and even more complex mechanisms based
on estimating the probability of being at a local
optimum. Maximum generation is the most often
adopted termination criterion in gait optimization.
The value of the maximum generation may vary
between 30 to 5000 iterations [16, 18, 20, 44, 47,
51, 56, 58, 67, 69, 73]. This should also be carefully
determined according to the complexity or difficulty
of the problem. Due to the stochastic nature of EC,
each evolutionary optimization experiment may have
to be repeated a number of times to ascertain the
global optima [18].

3.5. The Effect and Efficiency of Evolutionary Gait Optimiza-
tion. Almost all research, whether it is simulation or physical
experiment, has shown that EC achieves good results. The
advantages of evolutionary gait optimization include the
following.

(i) As the joint torques and link accelerations change
smoothly, the final motion of the robot is very
smooth, and the impact of the foot with ground
is minimal. Therefore, the best-evolved gaits deter-
mined by this method outperform the best manually
developed gaits in their ability to move straighter and
faster, while at the same time being more flexible and
reliable [2, 18, 32, 44, 49–51, 57, 71, 74].

(ii) The energy consumption of the optimal motion
was dramatically reduced [44, 56, 57]. The optimal
gait pattern was natural and very similar to that of
humans [44, 59, 73], and battery actuated robots can
thus prolong their operation time.

(iii) EC can autonomously and more efficiently search
for high performance gait parameters for various
surface conditions and different robot platforms
compared to using a manual approach [2, 50].
Furthermore, the EC-based approach was able to
match the best previously known AIBO gait within
a matter of hours even starting from a random
population [2]. Multi-objective evolution was able to
find optimal humanoid robot gaits with completely
different characteristics efficiently in one simulation
run [44].

4. Comparing EC with Other Global
Optimization Approaches

Besides evolution-based optimization techniques, other
global optimization approaches that adopt a non-
evolutionary metaphor have also been employed in gait
optimization. These also search for the global optimum of
the cost function without using the differential information
of a given cost function.

Particle Swarm Optimization (PSO) can be used to
optimize the stable and straight movement patterns (gaits)
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of a humanoid robot with the control signals of the joint
angles produced by a Truncated Fourier Series (TFS) [75,
76]. It is reported that PSO optimized TFS significantly
faster and better than GA to generate straighter and faster
humanoid locomotion because PSO bypassed a local min-
imum that GA was caught in [76]. The authors therefore
concluded that PSO is better than GA as a learning method
for the gait optimization problem in a non-deterministic
environment.

We argue that GA may not necessarily be inferior to PSO
in gait optimization, even in a non-deterministic environ-
ment such as the one in this experiment. This is because
the PSO employed in this experiment was Adaptive PSO,
which has a dynamically adjustable nonlinear parameter of
inertia weight w to control the balance between global and
local exploration. A larger inertia weight facilitates a global
search, while a smaller inertia weight facilitates a local search
[77]. The GA employed in this experiment is just a canonical
paradigm with roulette wheel selection and a fixed rate of
crossover and mutation. This may be the reason why PSO
can speed up the search and perform better than GA in this
experiment.

EC of course can employ the same mechanism to
improve its efficiency. For example, Adaptive GA can adap-
tively change the probabilities of crossover and mutation
during the process of evolution. In ES, the step size or
mutation strength is often governed by self-adaptation
(evolution window), and the individual step sizes for each
coordinate or correlations between coordinates are either
governed by self-adaptation or also by covariance matrix
adaptation (CMA-ES) [38].

Adaptive PSO is used to optimize the fastest forward
gaits of the quadruped robot AIBO with the whole learning
process running automatically on the physical robot [78].
Starting with randomly generated parameters instead of
hand-tuned parameters, several high-performance sets of
gait parameters are obtained, and these gaits were reported
as being among the fastest forward gaits ever developed for
the same robot platform.

Parallel PSO was applied to large-scale human movement
problems, and experimental results show that PSO was
outperformed by the gradient-based algorithm [19]. It is
reported that a single run with a gradient-based nonlinear
least squares algorithm produced a significantly better solu-
tion than did 10 runs using global PSO. Thus the authors do
not recommend using the PSO algorithm for solving large-
scale human movement optimization problems possessing
constraints or competing terms in the cost function.

The results of this experiment may be a fortunate excep-
tion. The objective functions of large-scale gait optimization
problems with hundreds of design variables will no doubt
be massively multimodal and the landscape must be very
rugged. Therefore a gradient-based algorithm will certainly
be trapped in a local minimum, and the global search ability
of EC is absolutely necessary for decreasing this risk. We
agree with the suggestion of the authors that a global local
hybrid algorithm may be necessary for PSO and other global
optimizers to solve large-scale human movement problems
efficiently.

As far as we have seen from the literature, Ant Colony
Optimization (ACO) has not yet been used in the field of gait
optimization though this too is a famous metaheuristic of
Swarm Intelligence (SI) similar to PSO and has been widely
used to solve a lot of kinds of optimization problems.

The univariate dynamic encoding algorithm for searches
(uDEAS) has also been applied to the gait optimization
problem of a biped model walking up and down a staircase.
The simulation results show that uDEAS outperforms adap-
tive GA with a 17 s versus 126 s run time on average and
a slightly smaller minimum for best cost values [79]. The
authors attribute this result to the effectiveness of describing
trajectories with the blending polynomial of uDEAS.

The problem representation method and the genotype
encoding method directly determine the size and the char-
acteristic of the search space and as a result directly affect
the efficiency of EC optimization. Therefore, we suggest
that researchers should pay attention to both the problem
representation method and the genotype encoding method
when studying the EC-based gait optimization problem. For
example, TFS is reported to be a good gait representation
approach that can generate suitable angular trajectories for
controlling bipedal locomotion. This is because it does not
require inverse kinematics, and stable gaits with different step
lengths and stride frequencies can be readily generated by
changing the value of only one parameter in the TFS [76].

Though some comparison of performance between EC
and other non-evolutionary global optimization approaches
has been reported, no systematic comparative study has been
carried out. Such a systematic comparative study may be not
necessary or not feasible because we often search for a set of
satisfactory solutions instead of an absolutely global optimal
solution. Both the robot platform and the objective functions
of gait optimization will be different in each case, and thus it
is difficult to find a benchmark robot and a set of benchmark
objective functions to optimize.

Both EC and SI approaches are population-based itera-
tive algorithms, even though they adopt different metaphors.
Thus they share the same advantages and disadvantages in
gait optimization, for example, a similar global and high-
dimensional search capability, multi-objective optimization
capability, as well as a lot of control parameters which require
tuning. One thing that can be said for sure is that EC, and
SI approaches are proven good tools for gait optimization
for legged robots, and further research should be done to
improve their performance in the field of gait optimization.

5. Conclusions and Perspectives for
Future Research

The most important conclusion that can be drawn from the
literature mentioned above is that EC is indeed capable of
achieving good performance in gait optimization and that
this direction of research is very encouraging. However, it is
obvious that we have not yet taken full advantage of EC, and
some questions still need to be resolved for EC-based gait
optimization.
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To solve these problems, we suggest that future research
should focus on the following issues.

5.1. Studying EC Approaches That Are Gait Optimization
Niches. One of the most obvious problems in EC-based
gait optimization is that of computational efficiency. Evo-
lutionary methods generally require the maintenance of a
population of candidate solutions and an iteration of a
large number of generations. Thus it can be very time-
consuming to evaluate every candidate gait especially when
the experiment is carried out on a physical robot over several
days while requiring constant manual supervision [32].

Though many researchers have optimized the gait of
legged robots using EC, they mainly just transplanted
the EC from other optimization applications with a few
modifications. In order to solve gait optimization problems
properly, it is necessary to study EC-based algorithms that
are especially suitable for solving gait optimization problems,
that is, study EC that can evolve the gait of robots with a high
level of efficiency and quality.

Some researchers have noticed the necessity of studying
the gait optimization niching EC paradigm, operators, and
parameters and have done some work in this area. For
example, using interpolation and extrapolating operators
instead of a crossover has been found to reduce the size of
the population [29], which is an essential element for robotic
applications because the time required for optimization may
be considerably reduced. The ideas of parameter tuning and
the use of a global-local hybrid algorithm for the global
optimizers to solve large-scale gait optimization problems
have also been suggested in [19, 38]. Some fragmentary
information has also been established on the characteristics
of the design space of the gait optimization problem, for
example, the penalty terms of the constraints could result in
the minimum of the objective function being located within
a narrow “channel”, and the shape of the design space could
made it difficult to locate the global minimum without the
use of gradient information, and so forth [19]. This may be
helpful for designing EC approaches.

The problem representation method and the genotype
encoding method should also be studied as they can lead
to different efficiency of EC. For instance, two different gait
definition methods, a finite state machine based on the joint
angles of the robot legs, and an Elman’s recurrent neural
network were studied [80], and the performance of the
neural controller was reported superior (more stable, better
displacement) for a simulated legged robot navigating on an
irregular surface. TFS has also been reported to be a good
gait representation approach and has been mentioned above
[76].

Yet another method that could dramatically improve the
gait optimization efficiency of EC has been proposed [81].
This method harnesses the general purpose computing on
graphics processing units (GPGPU) to produce hardware-
accelerated simulations without significant loss in fidelity,
and it has achieved results that are orders of magnitude
faster than software-only simulation (a 10–50-fold increase
in speed has been reported).

We believe that EC-based gait optimization research
should continue in this direction. The characteristics of the
search space of gait optimization should be studied. This is
determined by objective functions and constraints. Different
applications of legged robot can have different objective
functions and constraints, and different combinations of
objective functions and constraints can have different search
space characteristics. Based on the characteristic information
of a search space, some benchmark test functions should
be designed and classified to reflect to a certain extent the
characteristics of the gait optimization objective functions.
These benchmark test functions will facilitate the study of
the corresponding EC paradigms, the genetic operators and
control parameter sets of EC, providing researchers of legged
robot gait optimization with a suite of high-performance
optimization tools that can work well “out of the box”
[19]. In particular, we suggest that both the EC hybrid
with local search and the GAs that can learn linkage may
play an important role in gait optimization. The former
can integrate the global search ability of EC with the local
optimization ability of local search operators, and the latter
can evolve optimal code sequencing by learning the linkage
among the genes and therefore enhancing the search ability
of EC in tackling complicated, large scale problems of gait
optimization.

5.2. Investigating the Objective Functions of EC. The objective
function plays a critical role in EC. It serves as the envi-
ronment for judging whether a solution represented by a
chromosome in the simulated evolution is good or bad. It
thus directs the search direction. The fitness functions in
the research mentioned above were all different from one
another. These were dependent on each researcher’s insight
into the nature of the problem, the different nature of each
robot model or platform, and the performance requirements
of each robot.

When constructing the objective functions for gait
optimization, one has to compromise between the quality of
solution and the velocity of evolution. A complex objective
function including more performance indexes will, of course,
lead to good solutions, but it can also greatly increase the
size of the search space, and hence the computation cost of
evaluation as well as the duration of the evolution. A lot
of experience and techniques are needed to compose the
objective functions (and the penalty weight set) properly.
Therefore, it would be beneficial to construct a set of general
guidelines for selecting the evaluation functions, especially
for a typical application scenario or for a special robot
platform [43].

5.3. Bridging the Reality Gap. Another important problem
in EC-based gait optimization is that the gait evolved by
simulation usually does not yield the same behavior once it is
transferred to a real robot, since simulation always includes
some simplifications when modeling the real world. This is
called the reality gap problem in the field of evolutionary
robotics. It is a branch of artificial intelligence concerned
with the automatic generation of autonomous robots [74]
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and of course includes the gait generation of legged robots.
Though evolving gait directly in real robots is an attractive
goal with certain advantages, it is also very time-consuming
requiring heavy user-intervention.

A possible scheme for tackling the problem of the reality
gap in gait optimization nowadays is to integrate off-line and
on-line evolution with respect to the reality gap.

Staged evolution may be a good method for this purpose
[32, 42, 43, 82, 83]. This method evolves the gait by
simulation first so that the gait may get a preliminary eval-
uation faster, and then the simulation results are transferred
to the physical robot where the process of evolution is
continued on the real robot. In this way, both the efficiency
of EC and the quality of the solution may be significantly
improved. A general multistage process, which minimizes
the reality gap between real and simulated robots with
respect to the behavior of actuators and their interaction
with the environment, has been reported to be transferable
to different kinds of legged robots [83].

Another method worth considering is the back to reality
algorithm [74]. This method employs a coevolutionary con-
struction that allows continuous robot behavior adaptation
interleaved with simulator adaptation. It was able to solve
the gait optimization problem in real robots using fewer
evaluations than most of the currently existing approaches. It
was used for the gait optimization of AIBO and is claimed to
be the first work in which the simulated gait been successful
and constantly transferred to reality [74].

In conclusion, a lot of work still remains to be done.
Evolutionary gait optimization for legged robots is a promis-
ing field of research, and future encouraging and interesting
results can be expected.
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[18] M. R. Heinen and F. S. Osório, “Gait control generation for
physically based simulated robots using genetic algorithms,”
in Proceedings of the 2nd International Joint Conference on
Advances in Artificial Intelligence—IBERAMIA-SBIA, J. S.
Sichman, et al., Ed., vol. 4140 of Lecture Notes in Computer
Science, pp. 562–571, Ribeirão Preto, Brazil, October 2006.

[19] B.-I. Koh, J. A. Reinbolt, A. D. George, R. T. Haftka, and B. J.
Fregly, “Limitations of parallel global optimization for large-
scale human movement problems,” Medical Engineering and
Physics, vol. 31, no. 5, pp. 515–521, 2009.

[20] Z. Tang, C. Zhou, and Z. Sun, “Humanoid walking gait
optimization using GA-based neural network,” in Proceedings
of the 1st International Conference on Natural Computation
(ICNC ’05), L. Wang, K. Chen, and Y. S. Ong, Eds., vol. 3611 of
Lecture Notes in Computer Science, pp. 252–261, August 2005.

[21] T. Arakawa and T. Fukuda, “Natural motion trajectory
generation of biped locomotion robot using genetic algorithm



10 Applied Computational Intelligence and Soft Computing

through energy optimization,” in Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pp.
1495–1500, October 1996.

[22] C. Paul and J. C. Bongard, “The road less travelled: mor-
phology in the optimization of biped robot locomotion,”
in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’01), vol. 1, pp. 226–232,
Maui, Hawaii, USA, October 2001.

[23] J. Pettersson, H. Sandholt, and M. Wahde, “A flexible evo-
lutionary method for the generation and implementation of
behaviors for humanoid robots,” in Proceedings of the IEEE-
RAS International Conference on Humanoid Robotics, pp. 279–
286, November 2001.

[24] K. Wolff, J. Pettersson, A. Heralić, and M. Wahde, “Structural
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