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is available at the end of the vides complexity in modeling the behavior of such materials. The same condition is
article applied to the behavior of the structural elements dealing with them. In this regard,

pile foundations, as the structural elements used to transfer superstructure loads deep
into the ground, are subjected to these material uncertainties and modeling complex-
ity. Artificial Intelligence (Al) has demonstrated superior predictive ability compared

to traditional methods in modeling the complex behavior of materials. This ability

has made Al a popular and particularly amenable option in geotechnical engineering
applications. Genetic Programming (GP) and Artificial Neural Network (ANN) are two of
the most common examples of Al techniques. This paper provides a review of GP and
ANN applications in estimation of the pile foundations bearing capacity.
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Introduction
Artificial Intelligence (Al) is a scientific discipline that is concerned with the design and
development of algorithms used to evolve behaviors based on empirical data. Genetic
Programming (GP) and Artificial Neural Network (ANN) are two common examples of
Al techniques.

Pile foundations are structural elements that are used to transfer superstructure loads
deep into the ground [1]. Several methods for estimating pile bearing capacity are pro-
posed. These include experimental, numerical and analytical methods [2, 3]. Since the
interaction of pile foundations and soils is complex and not entirely understood, the
applicability of these methods in predicting the bearing capacity of pile foundations is
limited. This complex interaction has encouraged researchers to apply Al techniques to
predict the ultimate bearing capacity of pile foundations.

The primary focus of this paper is to briefly explain the ANNs and GP techniques and
provide a literature review on the application of these methods in predicting the ulti-
mate bearing capacity of pile foundations.
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Overview of artificial intelligence

Artificial intelligence is a scientific discipline focused on the design and development of
algorithms used to evolve behaviors based on empirical data. Al techniques can be used
in solving engineering problems [4—11] even if the underlying relationships are unknown
or the physical meaning is difficult to explain. This is one of the main advantages of these
techniques when compared to most physically-based empirical and statistical methods.
AT has the capability of learning by examples of data inputs and outputs presented to
them so that the subtle functional relationships among the data are captured. Thus, Al
models do not require numerous assumptions about the physical behavior of the system
and mainly rely on the data to determine the structure and parameters that govern a sys-
tem. This is in contrast to most physically-based models that use physical laws to derive
the underlying relationships of the system and require prior knowledge about the nature
of the relationships among the data. Therefore, Al-based solutions can often provide val-
uable alternatives for efficiently solving problems in the geotechnical engineering.

Al uses available data to map between the system inputs and the corresponding out-
puts using machine learning. Mapping process is done by repeatedly presenting exam-
ples of the inputs and model outputs in order to find the function that minimizes the
error between the actual outputs and the predictions of the AI model. Statistical regres-
sion analysis of data with non-linear relationship can be applied successfully only if prior
knowledge of the nature of the non-linearity exists. However, for AI models, this prior
knowledge of the nature of the non-linearity is not required. In the broad area of engi-
neering problems, it is likely to encounter complex and highly non-linear conditions
where traditional regression analyses are inadequate [12].

There are several Al algorithms; amongst them ANN and GP are more applicable for
prediction of non-linear phenomena in engineering problems. A brief overview of these
techniques is presented below.

Artificial Neural Networks were first introduced by McCulloch and Pitts [13]. ANN as
described by Bendana et al. [14] is a massively parallel distributed processor which can
store information taken from a data set that is supplied out of the network.

Artificial Neural Networks are computational models based on the information pro-
cessing system of the human brain and nervous system [15]. They can be considered as
a group of simple, highly interconnected elements that process the information by their
dynamic state response to external inputs. ANNs learn from data examples presented
to them. Because of this, they can be used even if the underlying relationships among
the data are unknown or the physical meaning is difficult to explain. Comparing this
capability with other traditional empirical and statistical methods which require prior
knowledge about the nature of the relationships reveals the applicability of this method
in modeling the complex behaviors between inputs and outputs [16]. Since the early
1990s, ANNSs have been applied successfully to almost every problem in engineering.

A typical structure of ANNs is composed of a number of interconnected processing
elements, commonly referred to as neurons. The neurons are logically arranged in lay-
ers that interact with each other via weighted connections. The main three set of layers
include input layer, hidden layers, and output layer. Each neuron is connected to all the
neurons in the next layer. Patterns are presented to the network via the input layer. This
layer communicates to one or more hidden layers where the actual processing is done
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via a system of weighted connections. The hidden layers enable these networks to rep-
resent and compute complicated associations between inputs and outputs. The hidden
layer subsequently links to an output layer which holds the response of the network to
the input. In addition, there is also a bias with modifiable weighted connections, which
is only connected to neurons in the hidden and output layers. ANNs can be autonomous
and learn by input from outside “teachers” or even self-teaching from written in rules
[6]. Typical structure and operation of ANNs is shown in Fig. 1.

The overall performance of the ANN model can be assessed by several criteria includ-
ing coefficient of determination (R?), mean squared error, mean absolute error, minimal
absolute error, and maximum absolute error. A well-trained model should result in R?
value close to 1 and small values of error terms [15].

Genetic Programming is an example of Al inspired by biological evolution extending
from genetic algorithms. It can be considered as an evolutionary algorithm-based meth-
odology used to find computer programs that perform a given computational task [6].
The technique was introduced by Koza [18] as a domain-independent problem-solving
approach in which computer programs composed of functions and terminals are evolved
to solve, or approximately solve, problems by generating a structured representation of
the data. The structural representation imitates the biological evolution of living organ-
isms, and emulates naturally occurring genetic operations. The ability to provide the
relationship between a set of inputs and the corresponding outputs in a simple math-
ematical form accessible to the users is the main advantage of the GP over the ANNs.

The first step of GP modelling is the creation of initial population of computer models
(also called chromosomes). The initial population includes a randomly selected set of
functions and terminals defined by the user to suit a certain problem. The functions and
terminals represent the building blocks of the GP models and are arranged in a treelike
structure to form a computer model that contains a root node, branches of functional
nodes, and terminals (Fig. 2). Examples of functions and terminals used in GP are stand-
ard arithmetic operations, Boolean logic functions, trigonometric functions, numerical
constants, logical constants, variables, and user-defined operators [19].

Analysis in GP starts with determining a set of functions that represent the nature of
the problem or data. Each individual in the population receives a measure of its fitness in
the current environment. The fitness criteria are calculated by the objective function i.e.,
how good the individual is at competing with the rest of the population.
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Fig. 1 Typical structure and operation of ANNs [17
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Fig. 2 Typical example of GP tree representation for the function [(3 4 X,)/(X, — X3)1* [6]

New population is created by applying reproduction, cross-over, and mutation to cer-
tain proportions of the computer models. Reproduction is the copying of a computer
model from an existing population into the new population without any change; cross-
over, as shown in Fig. 3, is the genetic recombining of randomly chosen parts of two
computer models; and mutation is the replacement of a randomly selected functional or
terminal node with others from the same function or terminal set. The existing popula-
tion will then be replaced with the new population. This evolutionary process is con-
tinued until a termination criterion is met, which can be either an acceptable error or a
maximum number of generations. Finally, the best computer model is generated by GP
using the fitness function adopted.

Al applications in bearing capacity prediction of pile foundations

This section provides an overview of the applications of ANNs and GP in prediction of
the bearing capacity of pile foundations. It should be noted that covering every single
application of these techniques in pile foundations is not intended in the current paper.
However, the intention is to provide a general overview of some of the more relevant
applications in pile foundation’s bearing capacity estimation. In order to be able to com-
pare the previous applications and analyze their findings, an overview of the following
variables is studied: selected AI model; type of pile data and number of dataset; con-
sidered soil type; selected effective parameters; estimated output; selected error criteria
and measured error value; and applied comparison method. The purpose of providing
the list of applied comparison methods for each application is to demonstrate the effec-
tiveness of these techniques compared to other traditional methods.

Load carrying capacity is often the governing factor in the design of pile foundations.
This criterion has been examined by several Al researchers especially using ANNs.
Table 1 summarizes the input and output parameters used for ANN in previous research.

Table 2 summarizes the outcome of different applications of ANN reviewed in
this paper. Overall, 25 different applications have been reviewed and the results are
investigated.
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Fig. 3 Typical cross-over operation in GP

The parameters that were studied for comparison of different applications include:
type of ANN model, characteristics of dataset, soil type, input and output variables,
error criteria used for validation with respective error value, and selected method of
comparison.

Compared to ANN, the application of GP technique for estimating the capacity of pile
foundations is relatively new. However, the popularity of GP shows an increased ten-
dency in adopting this technique in estimating the capacity of pile foundations. Table 3
summarizes the input and output parameters used for GP in previous research reviewed
in this paper.

Seven applications of GP in estimating the capacity of pile foundations are reviewed in
this paper and similar to the trend applied in previous section, the following parameters
of each application were analyzed for comparison purpose: type of GP model, character-
istics of dataset, soil type, input and output variables, error criteria used for validation
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Table 1 ANN input and output variables

Variables Symbol

Input variables

Pile length L
Pile cross sectional area A
Pile diameter D
Pile set S
Pile weight W,
Pile modulus of elasticity E
Type of pile To
The amount of steel reinforcement A,
Pile circumference M
Pile compression stress o
Pile tension stress o,
Pile initial axial capacity P
Pile—soil interface friction angle o
Elastic compression of the pile and the soil k
Elapsed time after driving T
Time history of pile head force F(t)
Time history of pile head particle velocity V(t)
Eccentricity of load E.
Hammer weight W,
Hammer drop height Hp,
Driving energy delivered to the pile E
Average standard penetration number along the pile shaft SPT-N,
Hammer type H,
Number of blows N
Average standard penetration number along the pile tip SPT-N,
Effective cone point resistance along pile shaft Oess
Cone sleeve friction along pile shaft fos
Effective overburden stress o,
Shear resistance of the soil surrounding the pile shaft S,
Soil type around the pile shaft T,
Undrained shear strength u
Shear resistance of the soil at the pile tip of the pile Sy
Soil friction angle
Soil elastic module E,
Soil type around the pile tip T,
Soil consolidation coefficient C.
Drained cohesion of the soil Cq
Effective soil specific weight Ye
Output variables
Ultimate load capacity Py
Skin friction resistance s
Pile tip capacity ap
Undrained side resistance alpha factor for drilled shafts a
Lateral load capacity P
Undrained lateral load pile capacity Peu
Pile capacity increase due to setup AP

Time-dependent vertical ultimate bearing capacity P,(T)




Page 7 of 20

Fatehnia and Amirinia Geo-Engineering (2018)9:2

[€] anbIuya3] dymdvD

[£000°0]

s9|1d 93240U0d

YIOMIoN [eINSN

9U1 WoJj paALIR( saoeded) 10113 21enbs ueawl 100y "4 WA'Q)4  sadArjios ||y padJojutal a1enbs 1sedaid /¢ uonebedold-yoeg ISINERENVET]
143 HOMISN
ydjopuey 'TL€] ASM-YZdY ‘[c] [96°0] (.4) sodAl  |eanaN uoissaibay
0|[2158D) pue 340D ‘[€] JoylaAey  UOIIBUILLIRISP JO SIUSIDYJR0D) °b an”s *N-LdS pues 3|1d SNOLIeA UO $159) PRO| 6 pazi|eiausn [0€] ejary
43 SomiaN
ydjopuey '[1 €] ASM-VZdY ‘[c] [16°0] (;H) sadfl  |eanaN uoissaiboy
0|[2158D) pue 340D ‘[€] Joylakely  UOIIRUILLIIBP JO SIUBIDLJR0D) b v 7" 95 g pues 3|1d SNoLeA UO 51531 PeO| 6€ pazi|eJauan [0€] ejaIy
[ee] ylomiaN
ydjopuey ‘[Le] ASM-YZdY '] [C160] (4) sadAya)d [eInaN uolssaibay
0|[9158D) pue 340D ‘[€] JoylaAkely  UOIRUILLISISP JO SIUSIDYJS0D) "d v 7"0 "9 “g puUBS  USALP SNOLIPA UO S1S3} PRO| 65 pazi|eiauan [0€] ety
anjeA uopeliauad
piepuels abelaAe 9yl Uo 'S IN sadA1 apd YIOMIDN [BINSN
paseq [€] uonenb3 s JoyiakaN [96G7] 10113 WinWIXe "q -1dS “N-1dS‘a/1  sadAyjios |1y SNOLIeA UO $153) PeO| NS Ul {77 uonebedoid-yoeg [6¢] 997 pue 937
(%G 1] 10113 1enbs pawiwins $359) peo) a|id SIOMIBN [BINSN
- 3beiane ‘[9607] 10112 WNWIXEN "q NEXelal pues |9pOW Jaquieyd uoleiqled 87 uonebedoid-yoeg [6¢] 297 pue 937
[%¢ 1] Jou1s abe poyIaw 35D 10 d¥MdYD Ui SIOMIBN [BINSN
[82] eInWLIO AS|IH paylidwls  -1uadiad palenbs uesw 100y "q 35 sadAyjios |y wolj parenieas Aydeded 3)id 89 uonebedoid-yoeg [£7] "|e 18 uRYD
(5£0°0] uon
-elAsp piepuels 168 0] (,4)
siskjeue uols UOI1BUIWIIP JO JUIDLYS0D syeys wyioble yiom
-sa1ba1 '[97] Amey|ny pue usyd  ‘[965'00°0] 10419 patenbs ues|y D "0 s |10s 9AIS9YOD P3||P UO $1S31 PeO| play /7| -1dU [einau uelsaeg [s2] e 19 yoo
s9|Id 9918
nquer [£670] 935y s|l0s pue ‘91210u0d Jsedaid Jaquui} SIOMISN [BINSN
‘A3IH ‘(N3) sSmaN bunsauibul (4) UOIE|2110D JO JUBIPLYYR0D "q YT Y YA aAIsayoa-UoN UO 1IN0 PaLLIeD 51531 PO 16 uonebedoid-yoeg 72l yoo
ol L]
(ed¥) sandeded buleaq
[€7] puey painseaw sa paidipaid ayy
-Ing Ag padojansg poyis i\ U99M13q 1.l 1013 ‘[956°0] SIOMIBN [BINSN
d ‘[zz] usapbiy pue ajdwas (4) UOIE|2410D JO JUBIDLYD0D °b "s"0'q1 Ke|D  so)1d [991S pue Jaqui} USALP 9 uonebedold-yoeg [12] Yoo '[07] yoo
[onjen 1o113] indino
uosiiedwod JO POY1d|\  UOIIepI|eA J0) BLISLID JoI] 1opow sindui [spo adAy jios solIsua)deIRYD 195klReq |opow NNV Joyiny

suonepunoy 3jid jo fipeded ay) bunewnss ur NNY jo suonedijddy g sjqeL



Page 8 of 20

Fatehnia and Amirinia Geo-Engineering (2018)9:2

[€5] A0S pue UNUIAS
"Tesl e 19 HIoA TLS] R 10

[¢6'0] (4)

sisAleue dypm-dyD—1sa

YIOMIoN [eINSN

BuUOT [0G] J9AURT PUB AOYS  UOIIBUILLISP JO SIUSDLID0D) dv 1"0*17'q  sadAyjios |1y peo| diweuAp ajid adid 0| uonebedold-yoeg [6%] ysumele|
[+06°0] (;4) sadA1 a)1d UaALIp snoLeA SIOMIDN [BINSN
- UOIRUIULISISP JO SIUSIDYJR0D) 9b *b d9°191379'g  sadk JIOS || UO S}NSa1 159} PeO| DIWRUAD 9| uonebedold-yoeg [8%7] OYD pue yied
swyioby
[£¥] snius||o4 o133UdDH buisn
pue 1we|s3 ‘[oF] I]j9saueln pue paziwndQ syJom
91ueweIsng '[g7] weybun -19N [ednaN 2dA|
-1ON PUE [#7] Uuew1aWydS [S1°0] (@S) suohelnap sayid |9935 pue BuljpueH ereq
‘[e7]) usbuliag pue 121Ny 3Q pJepuels ‘[96°0] oN[eA US| b S5 sadAylos |l 91240U0D UO SIS} PRO| JIIRIS €€ Jo poyia\ dnoiny [cy] ‘e 19 ueepIY
nquef [6£'80¢€] soyd (9915 SIOMISN
'KIIIH “(NJ) SMaN Bunaauibul (N)) 10112 2Jenbs uesw 1001 d375 1y 110S pue 91210uU0d 35ed31d Jaquul |BINSN UOISSIBaY
"(INAS) S2UIYDBIN J10129A Hoddng  '[056°0] JUSIDLYD0D UOIIR|D1I0D) g AT PH Y YA aAIsayod-UON U0 1IN0 Pallied 51531 Peo| #6 $S9D01d UeISsnen) [1#] |lemsaQ pue |ed
[96°0] YIOMISN el
[0¥] POy AOUBIDLY3 JO JUSIDLYYS0D -naN uonebedoid
uasueH ‘[6€] POYIRIN SWolg  ‘[/#6°0] 3USIDYJ202 UOIIR[3110D) My "$s”37'Q e s3|id pIbL pue LoYs 8¢ Yoeqpaa Jake Ny [8€] Jeypnseg pue seq
SIOMISN
[BIN3N UOISsaIbaY
Buipeal say1d 23240uU0D 15ed31d pazi|eJaudn)
J919Woulpul ‘[£€] Welboid pue ‘s3|id 91910U0d passaisaid SIOMISN [BINSN
drZON0D buisn poyisy A-d [9607] 10119 WNWIXe q VNV TON-LS  sadAyjios iy ‘so)id adid [931s ‘sajid-H [931s €8 uonebedold-yoeg (6] e 12 LemeN
SIOMISN
[BINAN UOISSaIbaY
saj1d 232JouU02 15e331d paz||eJaudD)
[88°0] pue ‘sid 91210U0d passalsaid SIOMIBN [BINSN
[9€] 161dS '[S€] OLHSYY UO1JE|21102 JO JUSIDYS0D "d YWY TUNLS  sedAyjios |y ‘saiid adid (9335 ‘so)id-H 921 £8 uoiebedold-peg (6] '€ 19 iemeN
[9n]eA J01i3] indino
uosiiedwod JO pOYId|\|  UOIIEPI|eA 10} BLIDMID 10443 19pon syndui [9pow adA3 jl05 so13siadRIRYD J3Skleq |opow NNV loyny

panunuo> g ajqel



Page 9 of 20

Fatehnia and Amirinia Geo-Engineering (2018)9:2

ERIVLEIIEI
JO SISAjeuy ‘POYIS|A 14 UOIS
-s2163y Jeau] ‘buiwiwelbold

[218] (N¥) Jo1ia ssenbs
UeSW 1001 '[89980] (;4)

s9)1d USALIP [933s pue

YIOMIoN [eINoN

D12USD) Paseg-9aJ] [BJISSe|D  UOIBUILLIDISP JO SIUSIDLYS0D) "d d'QPATINPOY  sodAyI0s |y 2120U0D UO $1591 PO JeIS 001 uonebedoid-yoeg [S] ‘e 39 elUYDIES
[/p] sniug)|
-|°24 pue wejs3‘[9%7] (DdDT)
poyiaw yduald ‘[si] weybun [€£:/] (ed¥) 4011 patenbs sadAy
-JON PUE [#f] UuPWLISWYDS ueaw 1001 ‘[58°0] (;4) uon 3|id snolea uo paulioyad SIOMIBN [BINSN
‘[ey] poyraw ueadoing -eUIWISIBP JO SIUBIDLIR0D) °b S5 %53b g sadAyjios |1y 3591 bujpeo) a)id 31835 ||y 59 uonebedoid-yoeg [09] ‘e 1 JeizZeg
[200°0] 4011 3a|1d 23210U00 SIOMIBN [BINSN
pasenbs ueaw ‘[66'0]/(,4) passaisaid 1seda1d uo pa1dnp paseg-wyiobly
NNV [BUOIIUSAUOD  UOIIRUIWLIDIDP JO SIUSIDLIR0D) "4 SV 7MW sadAyjios |y -U0D $1531 PeO| DIWRUAP 0 2112U9D) PLYAH [6G] '|e 19 luswow
[£90070] sadA
Joud pasenbs uesw [/ /56°0] ERT 9|1d snoleA uo pawliopad YIOMIDN [BINSN
- 1USIDYJS0D UONE|R1I0D) "q “Mms?o”07'q  sadAyios |1y 3591 JazAjeue Buialp aid 00¢ uonebedoid-yoeg  [8G] WISSEY pue JZIepy
[9€6°0] () uon
-BUIWIS1SP JO SIUSIDYJS0D
TLy60] (cH) uoneulus1ep
40 SUBIYR0D ‘(1 56°0] (,H) IN-LdS [l0S sa)1d 91910U0D UO pawioiad SIOMIDN [BINSN
- UOI1RUIWIISLSP JO SIUSIDLYS0D) 9b “bng “N-LdS 'S ‘v 7 SS9|-uoisayod 51591 JazAjeue Buialp 9|id o¢ uojebedold-yoeg [/G] e 32 lUswow
SIOMIBN [BINSN ey osy) sayd (9915 SIOMISN
uonebedoid-yoeg ‘nquer (N¥) 4012 21enbS UBSW 100J 9351y |los pue 31215u02-1se3id Jaquipy [_IN3N UOISSaI63Y
'A3IH ‘(NJ) SmaN Bulsauibul  ‘[i716'0] 3USIDYS0D UOHR[S1I0D) "d AT AH Y YA sS9l-UoIsay0D U0 1IN0 pallied bulisal peo 6 pazi|eiauan [95] |ed
SIOMIBN [BINSN
- [96S ] 10119 WNWIXe|A "y 91535y sadAl oS |y s9|1d 91210U0D | € uonebedold-yoeg [5S] Je 19 eix
e1eg 159]
peOT D13e1S ‘UoISSaIbay Jeaul]
3|diNI 'TES] AOMS pUB UBUIAS sishjeue
‘TSl e 19 oA TLs] e 601 (4) dVM-d¥D—1591 peo| dlweuAp YIOMISN [BINSN [¥S]
BuOT [0G] J19AUSQ PUB AOYS  UOIIBUILLIRISP JO SIURIDLJR0D) dv+"d d'1"0°1°%1 7' sadkjios || 3|1d-H pue ‘a1210u0> ‘adid 69| uonebedoid-yoeg  Wew| pue yaumele|
[9n]eA J01i3] indino
uosiiedwod Jo poYld|\  UOIIepI|eA 10) BLISYLID JoI] 1°opow sindul [9po\ ad£y jlos solIsud)dRIRYD 19skleq |opow NNV loyiny

panunuod g 3jqeL



Fatehnia and Amirinia Geo-Engineering (2018)9:2 Page 10 of 20

Table 3 GP input and output variables

Variable Symbol

Input variable

Pile length L
Pile diameter D
Pile set S
Pile modulus of elasticity E
Type of pile Tp
Driving energy delivered to the pile E
Average standard penetration number along the pile shaft SPT-N,
Average standard penetration number along the pile tip SPT-N,
Cone point resistance at pile tip et
Cone sleeve friction along pile shaft fos
Cone point resistance along pile shaft e
Lateral force point of application distance Dy,
Chain force angle with the horizontal Fe
Loading rate Re
Eccentricity of load €
Effective overburden stress o,
Undrained shear strength at pile tip Sut
Permeability of the soil k
Output variables
Ultimate load capacity Py
Ultimate capacity of suction caisson Pus
Uplift capacity of suction caissons Pucss
Undrained lateral load capacity P
Undrained side resistance alpha factor a

with respective error value, and selected method of comparison. Table 4 shows this
information for the seven analyzed applications.

Discussion

In order to better understand the different applications of Al techniques in pile capac-
ity estimation, a statistical analysis was conducted on the input and output variables of
the analyzed applications. This is useful in realizing the importance of different variables
and their effects on pile capacities in previous research. It will also show which type of
variables had the highest importance in previous applications and will help in selecting
the proper variables for future research.

Artificial Neural Networks

The input variables adopted in the previous ANN research that are analyzed in this
paper can be categorized into 4 main subdivisions. These subdivisions include pile prop-
erties, loading history, hammer/SPT/CPT information, and soil properties. Overall, in
all 25 studied applications, 38 different input variables were adopted. Table 5 shows the
adopted input variables categorized into 4 main groups, and their repeat numbers in all
25 analyzed ANN applications. Pile length was the most adopted variable with 21 repeat
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Table 5 ANN input variables

Input variable Symbol Repeat number

Pile properties

Pile length L 21
Pile cross sectional area A 11
Pile diameter D 10
Pile set S 8
Pile weight W, 3
Pile modulus of elasticity E 3
Type of pile T 3
The amount of steel reinforcement A, 2
Pile circumference M 2
Pile compression stress O, 1
Pile tension stress (o} 1
Pile initial axial capacity p 1
Pile—soil interface friction angle o 1
Elastic compression of the pile and the soil k 1
Loading history
Elapsed time after driving T 4
Time history of pile head force F(t) 1
Time history of pile head particle velocity V(t) 1
Eccentricity of load E. 1
Hammer/SPT/CPT information
Hammer weight W, 5
Hammer drop height Hy, 5
Driving energy delivered to the pile E 5
Average standard penetration number along the pile shaft SPT-N, 5
Hammer type H, 3
Number of blows N 2
Average standard penetration number along the pile tip SPT-N, 2
Effective cone point resistance along pile shaft Jes 2
Cone sleeve friction along pile shaft fs s 2
Soil properties
Effective overburden stress o, 7
Shear resistance of the soil surrounding the pile shaft S 3
Soil type around the pile shaft T, 3
Undrained shear strength S 3
Shear resistance of the soil at the pile tip of the pile Sp 2
Soil friction angle 0] 2
Soil elastic module E, 1
Soil type around the pile tip Ty 1
Soil consolidation coefficient Ce 1
Drained cohesion of the soil Cq 1
Effective soil specific weight Ye 1

among all 25 studied applications. Pile cross sectional area and pile diameter had the
highest number of repeat after pile length.

The percentage of repeat for the four categories of ANN input variables is depicted
in Fig. 4 where pile properties had the highest percentage of repeat, while, the loading
history had the lowest repeat percentage. Hammer/SPT/CPT and soil properties are
parameters that are used in slightly less than half of the ANN studies.
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ANN INPUT VARIABLES CATEGORY
Loading
Histrory _
5%
Soil
Properties _
19%
Pile
Properties
- 52%
Hammer/SPT
/CPT
Information
24%
Fig. 4 Percentage of repeat for different categories of ANN input variables

Percentage of repeat of input variables in each category of ANN applications is shown
in Fig. 5. The information in Fig. 5 helps us to see which parameters in each category has
had the highest repeat percentage. Figure 5a shows that, between all parameters related
to pile properties, the pile length with 31% repeat rate, was the most applied variable.
Pile cross sectional area and pile diameter with 16 and 15% usage were following the pile
length. For the loading history presented in Fig. 5b, the elapsed time after driving with
57% contribution, had the highest repeat percentage. In hammer/SPT/CPT informa-
tion category, hammer weight, hammer drop height, driving energy delivered to the pile,
and average SPT Along the pile shaft had similar repeat percentage of 16% and were the
highest applied variables as an input of ANN models (Fig. 5¢). In soil properties category
(Fig. 5d), the effective overburden stress with 28% repeat percentage, had the highest
repeat rate among previous related studies where shear resistance of the soil surround-
ing the pile shaft, soil type around the pile shaft, and undrained shear strength has equal
usage of 12% in previous ANN studies on piles.

The variables applied as an output of ANN models together with their repeat numbers
in all 25 applications are shown in Table 6. The ultimate load capacity with 14 number
of repeat was the main variables of interest in previous research. Skin friction resistance
and pile tip capacity had the highest repeat number after ultimate load capacity. How-
ever, both skin friction resistance and pile tip capacity are directly or indirectly used to
estimate the ultimate load capacity of pile foundations.
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Fig.5 Percentage of repeat of input variables in ANN applications for (a) pile properties, (b) loading history,
(€) hammer/SPT/CPT information, and (d) soil properties

Table 6 ANN estimated variables

Estimated variable Symbol Repeat number
Ultimate load capacity Py 14
Skin friction resistance a, 6
Pile tip capacity ap 3
Undrained side resistance alpha factor for drilled shafts a 1
Lateral load capacity P, 1
Undrained lateral load pile capacity Py 1
Pile capacity increase due to setup AP 1
Time-dependent vertical ultimate bearing capacity P.(M 1

Genetic Programming
As discussed before, compared to ANN, GP is a newer technique for intelligence analysis
of piles. Hence the number of parameters used in GP in each category are smaller than
ANN. Overall, in 7 reviewed studies in this research, 19 different parameters have been
used for GP. By following the four classification of the analyzed properties in previous Al
studies on piles, Table 7 presents the input variables used for GP. Similar to parameters
studied by ANN, pile length and undrained shear strength at pile tip were the most used
parameters.

For pile properties category, previous studies only focused on 5 different parameters,
where in ANN, 15 different parameters have been investigated. Parameters such as pile
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Table 7 GP input variables

Input variable Symbol Repeat number

Pile properties

Pile length L 6
Pile diameter D 5
Pile set S 1
Pile modulus of elasticity E 1
Type of pile T 1
Hammer/SPT/CPT information
Driving energy delivered to the pile = 1
Average standard penetration number along the pile shaft SPT-N, 1
Average standard penetration number along the pile tip SPT-N, 1
Cone point resistance at pile tip et 1
Cone sleeve friction along pile shaft fos 1
Cone point resistance along pile shaft Tes 1
Loading history
Lateral force point of application distance Dy, 3
Chain force angle with the horizontal F 3
Loading rate Re 3
Eccentricity of load e 1
Soil properties
Effective overburden stress o, 1
Undrained shear strength at pile tip SuT 5
Permeability of the soil k 3

weight (\X/p), amount of steel reinforcement (A,), pile circumference (M), pile initial axial
capacity (P), and pile—soil interface friction angle () has not been investigated by GP.
For hammer SPT/CPT information, ANN covered 9 parameters where GP only have
covered 6 parameters. Hammer drop height (H;), number of blows (N), and hammer
weight (W}) are parameters that are investigated in ANN but not covered by GP in pre-
vious studies. In soil properties, ANN was more developed where 11 parameters have
been investigated in the literature; however, only three parameters have been used for
GP. Hence, parameters such as effective soil specific weight (y,), soil friction angle (¢),
soil type around the pile shaft (T,), and etc. can be used in future GP studies on piles. In
loading history category, GP used different load parameters than ANN.

The percentage of repeat for the four categories of GP input variables is illustrated in
Fig. 6. Similar to ANN, pile properties had the highest percentage of repeat; however, the
percentage of using pile properties in ANN (52%) was 16% larger than its usage in GP
(36%). Opposite to ANN, loading history plays an important role for adopted parameters
in GP with 23% where for ANN, it only contributed by 5%. Soil properties for both ANN
and GP has high percentage of usage; however, it was used in GP slightly more than
ANN (by 7%). Hammer/SPT/CPT for GP has usage percentage of 15% where in ANN it
has a contribution of 24% in the previous studies.

Percentage of repeat of input variables in each category of GP applications is shown
in Fig. 7. Figure 7a shows that, between all parameters related to pile properties, the pile
length with 43% repeat rate, was the most applied variable. Pile diameter with 36% was
the second frequent used parameter. For the loading history presented in Fig. 7b, the
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GP INPUT VARIABLES
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Fig. 6 Percentage of repeat for different categories of GP input variables

lateral force point of application, chain force angle with the horizontal, and loading rate
had equal contribution of 30%. In hammer/SPT/CPT information category, all param-
eters had equal usage percentage in previous studies (Fig. 7d). In soil properties category
(Fig. 7d), undrained shear strength at pile tip with 56% usage was the most frequent used
parameter.

Table 8 summarizes the output variables of GP models with their repeat numbers in
all reviewed cases. Similar to ANN, The ultimate load capacity is the most interested
parameter resulted from GP. The uplift capacity of suction caissons is another parameter
considered in GP; however, it was not interested in ANN studies. Other parameters such
as ultimate capacity of suction caissons, undrained lateral load capacity, and undrained
side resistance alpha factor were also considered in GP. The comparison of the output
parameters in ANN and GP showed that uplift capacity of suction caissons and ultimate
capacity of suction caissons were only considered in GP.

Conclusions

In this review paper, initially the importance of Al in geotechnical engineering was
discussed. Subsequently, the two well-known AI techniques of ANN and GP were
introduced. Afterward, a detailed review of the previous studies on pile foundations
was conducted and a list of applied variables as well as their usage frequencies were



Fatehnia and Amirinia Geo-Engineering (2018)9:2

a b
Type of Pile Eccentricity
Pile Modulus 7% of Load L“Pf'_"tr"r“"
f Elastici = 10% m‘n of
o iy ity Pile Application
g Length ~  Distanc
Pile Set__— ' 3% = . 30%
. Loading
' Eate
0% _
Chain Force
Pile Angle with the
Diameter Horizontal
6% 30%
¢ d
3 2 Effective
Cone I rm..i e Overburden
ance Along Driving Energy ’ Stress
. Delivered to the Permeability 11%
— Pile 16% of the Soil
Cone 33% -
Sleeve Average
Friction SPT
Along Pile Number
Shaft Along the
17% Pile Shaft
M Undrained
: LA Shear
(.ione Point By _ Average SPT Strength at
Resistance at Pile/ Along the Pile Pile Tip
Tin 1704 Tie 1704
Fig. 7 Percentage of repeat of input variables in GP applications for (a) pile properties, (b) loading history, (c)
hammer/SPT/CPT information, and (d) soil properties

Table 8 GP estimated variables

Estimated variable Symbol Repeat number
Ultimate load capacity Py 2
Uplift capacity of suction caissons Puc_s 2
Ultimate capacity of suction caisson Pus 1
Undrained lateral load capacity Pu 1
Undrained side resistance alpha factor a 1

presented. Results of this paper will help in better understanding the importance of dif-
ferent variables and their effects on pile capacities in previous research. In addition, it
will help in choosing other important or un-investigated parameters for future research.
Based on the reviewed articles and used parameters, the followings were concluded:

o Opverall, in all 25 studied ANN applications, 38 different input variables were
adopted. Pile length was the most adopted variable with 21 repeat among all vari-
ables. Pile cross sectional area and pile diameter had the highest number of repeat
after pile length. Among all four main categories of variables, pile properties had the
highest percentage of repeat, while, the loading history had the lowest repeat per-
centage. Hammer/SPT/CPT and soil properties were used in slightly less than half of
the ANN studies.
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+ Compared to ANN, GP is a newer technique for artificial intelligence analysis of pile
capacity. Among GP applications, pile length, pile diameter, and undrained shear
strength at pile tip were the most applied variables. Similar to ANN, among the four
main categories of variables, pile properties had the highest percentage of repeat;
however, the percentage of using pile properties in ANN (52%) was 16% larger than
its usage in GP (36%). Specifically, for pile properties category, GP studies were only
focused on 5 different variables, whereas in ANN, 14 different variables have been
investigated. Parameters such as pile weight (W), amount of steel reinforcement
(A,), pile circumference (M), pile initial axial capacity (P), and pile—soil interface fric-
tion angle (8) have not been investigated by GP. Overall, in the seven reviewed GP
applications, only 18 different variables have been applied. Comparing this number
with 38 applied variables in ANN applications shows that further studies are needed
to explore more variables in GP.

+ The ultimate load capacity was the most evaluated output parameter among both
ANN and GP. The uplift capacity of suction caissons was another variable considered
in GP; however, it was not evaluated in ANN studies. The comparison of the output
variables in ANN and GP showed that uplift capacity of suction caissons and ulti-
mate capacity of suction caissons were only considered in GP. Hence, future ANN
studies may consider these variables for characterization of soil—pile interactions.
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