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Introduction

Artificial Intelligence (AI) is a scientific discipline that is concerned with the design and 

development of algorithms used to evolve behaviors based on empirical data. Genetic 

Programming (GP) and Artificial Neural Network (ANN) are two common examples of 

AI techniques.

Pile foundations are structural elements that are used to transfer superstructure loads 

deep into the ground [1]. Several methods for estimating pile bearing capacity are pro-

posed. �ese include experimental, numerical and analytical methods [2, 3]. Since the 

interaction of pile foundations and soils is complex and not entirely understood, the 

applicability of these methods in predicting the bearing capacity of pile foundations is 

limited. �is complex interaction has encouraged researchers to apply AI techniques to 

predict the ultimate bearing capacity of pile foundations.

�e primary focus of this paper is to briefly explain the ANNs and GP techniques and 

provide a literature review on the application of these methods in predicting the ulti-

mate bearing capacity of pile foundations.
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Overview of artificial intelligence

Artificial intelligence is a scientific discipline focused on the design and development of 

algorithms used to evolve behaviors based on empirical data. AI techniques can be used 

in solving engineering problems [4–11] even if the underlying relationships are unknown 

or the physical meaning is difficult to explain. �is is one of the main advantages of these 

techniques when compared to most physically-based empirical and statistical methods. 

AI has the capability of learning by examples of data inputs and outputs presented to 

them so that the subtle functional relationships among the data are captured. �us, AI 

models do not require numerous assumptions about the physical behavior of the system 

and mainly rely on the data to determine the structure and parameters that govern a sys-

tem. �is is in contrast to most physically-based models that use physical laws to derive 

the underlying relationships of the system and require prior knowledge about the nature 

of the relationships among the data. �erefore, AI-based solutions can often provide val-

uable alternatives for efficiently solving problems in the geotechnical engineering.

AI uses available data to map between the system inputs and the corresponding out-

puts using machine learning. Mapping process is done by repeatedly presenting exam-

ples of the inputs and model outputs in order to find the function that minimizes the 

error between the actual outputs and the predictions of the AI model. Statistical regres-

sion analysis of data with non-linear relationship can be applied successfully only if prior 

knowledge of the nature of the non-linearity exists. However, for AI models, this prior 

knowledge of the nature of the non-linearity is not required. In the broad area of engi-

neering problems, it is likely to encounter complex and highly non-linear conditions 

where traditional regression analyses are inadequate [12].

�ere are several AI algorithms; amongst them ANN and GP are more applicable for 

prediction of non-linear phenomena in engineering problems. A brief overview of these 

techniques is presented below.

Artificial Neural Networks were first introduced by McCulloch and Pitts [13]. ANN as 

described by Bendana et al. [14] is a massively parallel distributed processor which can 

store information taken from a data set that is supplied out of the network.

Artificial Neural Networks are computational models based on the information pro-

cessing system of the human brain and nervous system [15]. �ey can be considered as 

a group of simple, highly interconnected elements that process the information by their 

dynamic state response to external inputs. ANNs learn from data examples presented 

to them. Because of this, they can be used even if the underlying relationships among 

the data are unknown or the physical meaning is difficult to explain. Comparing this 

capability with other traditional empirical and statistical methods which require prior 

knowledge about the nature of the relationships reveals the applicability of this method 

in modeling the complex behaviors between inputs and outputs [16]. Since the early 

1990s, ANNs have been applied successfully to almost every problem in engineering.

A typical structure of ANNs is composed of a number of interconnected processing 

elements, commonly referred to as neurons. �e neurons are logically arranged in lay-

ers that interact with each other via weighted connections. �e main three set of layers 

include input layer, hidden layers, and output layer. Each neuron is connected to all the 

neurons in the next layer. Patterns are presented to the network via the input layer. �is 

layer communicates to one or more hidden layers where the actual processing is done 
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via a system of weighted connections. �e hidden layers enable these networks to rep-

resent and compute complicated associations between inputs and outputs. �e hidden 

layer subsequently links to an output layer which holds the response of the network to 

the input. In addition, there is also a bias with modifiable weighted connections, which 

is only connected to neurons in the hidden and output layers. ANNs can be autonomous 

and learn by input from outside “teachers” or even self-teaching from written in rules 

[6]. Typical structure and operation of ANNs is shown in Fig. 1.

�e overall performance of the ANN model can be assessed by several criteria includ-

ing coefficient of determination (R2), mean squared error, mean absolute error, minimal 

absolute error, and maximum absolute error. A well-trained model should result in R2 

value close to 1 and small values of error terms [15].

Genetic Programming is an example of AI inspired by biological evolution extending 

from genetic algorithms. It can be considered as an evolutionary algorithm-based meth-

odology used to find computer programs that perform a given computational task [6]. 

�e technique was introduced by Koza [18] as a domain-independent problem-solving 

approach in which computer programs composed of functions and terminals are evolved 

to solve, or approximately solve, problems by generating a structured representation of 

the data. �e structural representation imitates the biological evolution of living organ-

isms, and emulates naturally occurring genetic operations. �e ability to provide the 

relationship between a set of inputs and the corresponding outputs in a simple math-

ematical form accessible to the users is the main advantage of the GP over the ANNs.

�e first step of GP modelling is the creation of initial population of computer models 

(also called chromosomes). �e initial population includes a randomly selected set of 

functions and terminals defined by the user to suit a certain problem. �e functions and 

terminals represent the building blocks of the GP models and are arranged in a treelike 

structure to form a computer model that contains a root node, branches of functional 

nodes, and terminals (Fig. 2). Examples of functions and terminals used in GP are stand-

ard arithmetic operations, Boolean logic functions, trigonometric functions, numerical 

constants, logical constants, variables, and user-defined operators [19].

Analysis in GP starts with determining a set of functions that represent the nature of 

the problem or data. Each individual in the population receives a measure of its fitness in 

the current environment. �e fitness criteria are calculated by the objective function i.e., 

how good the individual is at competing with the rest of the population.

Fig. 1 Typical structure and operation of ANNs [17]
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New population is created by applying reproduction, cross-over, and mutation to cer-

tain proportions of the computer models. Reproduction is the copying of a computer 

model from an existing population into the new population without any change; cross-

over, as shown in Fig.  3, is the genetic recombining of randomly chosen parts of two 

computer models; and mutation is the replacement of a randomly selected functional or 

terminal node with others from the same function or terminal set. �e existing popula-

tion will then be replaced with the new population. �is evolutionary process is con-

tinued until a termination criterion is met, which can be either an acceptable error or a 

maximum number of generations. Finally, the best computer model is generated by GP 

using the fitness function adopted.

AI applications in bearing capacity prediction of pile foundations

�is section provides an overview of the applications of ANNs and GP in prediction of 

the bearing capacity of pile foundations. It should be noted that covering every single 

application of these techniques in pile foundations is not intended in the current paper. 

However, the intention is to provide a general overview of some of the more relevant 

applications in pile foundation’s bearing capacity estimation. In order to be able to com-

pare the previous applications and analyze their findings, an overview of the following 

variables is studied: selected AI model; type of pile data and number of dataset; con-

sidered soil type; selected effective parameters; estimated output; selected error criteria 

and measured error value; and applied comparison method. �e purpose of providing 

the list of applied comparison methods for each application is to demonstrate the effec-

tiveness of these techniques compared to other traditional methods.

Load carrying capacity is often the governing factor in the design of pile foundations. 

�is criterion has been examined by several AI researchers especially using ANNs. 

Table 1 summarizes the input and output parameters used for ANN in previous research.

Table  2 summarizes the outcome of different applications of ANN reviewed in 

this paper. Overall, 25 different applications have been reviewed and the results are 

investigated.

Fig. 2 Typical example of GP tree representation for the function [(3 + X1)/(X2 − X3)]2 [6]
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�e parameters that were studied for comparison of different applications include: 

type of ANN model, characteristics of dataset, soil type, input and output variables, 

error criteria used for validation with respective error value, and selected method of 

comparison.

Compared to ANN, the application of GP technique for estimating the capacity of pile 

foundations is relatively new. However, the popularity of GP shows an increased ten-

dency in adopting this technique in estimating the capacity of pile foundations. Table 3 

summarizes the input and output parameters used for GP in previous research reviewed 

in this paper.

Seven applications of GP in estimating the capacity of pile foundations are reviewed in 

this paper and similar to the trend applied in previous section, the following parameters 

of each application were analyzed for comparison purpose: type of GP model, character-

istics of dataset, soil type, input and output variables, error criteria used for validation 

Fig. 3 Typical cross-over operation in GP
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Table 1 ANN input and output variables

Variables Symbol

Input variables

 Pile length L

 Pile cross sectional area A

 Pile diameter D

 Pile set S

 Pile weight Wp

 Pile modulus of elasticity Ep

 Type of pile Tp

 The amount of steel reinforcement As

 Pile circumference M

 Pile compression stress σc

 Pile tension stress σt

 Pile initial axial capacity P

 Pile–soil interface friction angle δ

 Elastic compression of the pile and the soil k

 Elapsed time after driving T

 Time history of pile head force F(t)

 Time history of pile head particle velocity V(t)

 Eccentricity of load Ec

 Hammer weight Wh

 Hammer drop height Hh

 Driving energy delivered to the pile E

 Average standard penetration number along the pile shaft SPT-Ns

 Hammer type Ht

 Number of blows N

 Average standard penetration number along the pile tip SPT-Nb

 Effective cone point resistance along pile shaft qE-S

 Cone sleeve friction along pile shaft fS-S

 Effective overburden stress σ
v

 Shear resistance of the soil surrounding the pile shaft Ss

 Soil type around the pile shaft Ts

 Undrained shear strength Su

 Shear resistance of the soil at the pile tip of the pile Sb

 Soil friction angle φ

 Soil elastic module Es

 Soil type around the pile tip Tb

 Soil consolidation coefficient Cc

 Drained cohesion of the soil Cd

 Effective soil specific weight γe

Output variables

 Ultimate load capacity Pu

 Skin friction resistance qs

 Pile tip capacity qb

 Undrained side resistance alpha factor for drilled shafts α

 Lateral load capacity Pt

 Undrained lateral load pile capacity Pt-u

 Pile capacity increase due to setup ∆P

 Time-dependent vertical ultimate bearing capacity Pu(T)
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with respective error value, and selected method of comparison. Table  4 shows this 

information for the seven analyzed applications.

Discussion

In order to better understand the different applications of AI techniques in pile capac-

ity estimation, a statistical analysis was conducted on the input and output variables of 

the analyzed applications. �is is useful in realizing the importance of different variables 

and their effects on pile capacities in previous research. It will also show which type of 

variables had the highest importance in previous applications and will help in selecting 

the proper variables for future research.

Artificial Neural Networks

�e input variables adopted in the previous ANN research that are analyzed in this 

paper can be categorized into 4 main subdivisions. �ese subdivisions include pile prop-

erties, loading history, hammer/SPT/CPT information, and soil properties. Overall, in 

all 25 studied applications, 38 different input variables were adopted. Table 5 shows the 

adopted input variables categorized into 4 main groups, and their repeat numbers in all 

25 analyzed ANN applications. Pile length was the most adopted variable with 21 repeat 

Table 3 GP input and output variables

Variable Symbol

Input variable

 Pile length L

 Pile diameter D

 Pile set S

 Pile modulus of elasticity Ep

 Type of pile Tp

 Driving energy delivered to the pile E

 Average standard penetration number along the pile shaft SPT-Ns

 Average standard penetration number along the pile tip SPT-Nb

 Cone point resistance at pile tip qE–T

 Cone sleeve friction along pile shaft fS–S

 Cone point resistance along pile shaft qE–S

 Lateral force point of application distance Dfh

 Chain force angle with the horizontal Ft

 Loading rate Rf

 Eccentricity of load ef

 Effective overburden stress σv

 Undrained shear strength at pile tip SU–T

 Permeability of the soil k

Output variables

 Ultimate load capacity Pu

 Ultimate capacity of suction caisson PU–S

 Uplift capacity of suction caissons PUC–S

 Undrained lateral load capacity Plu

 Undrained side resistance alpha factor α
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among all 25 studied applications. Pile cross sectional area and pile diameter had the 

highest number of repeat after pile length.

�e percentage of repeat for the four categories of ANN input variables is depicted 

in Fig. 4 where pile properties had the highest percentage of repeat, while, the loading 

history had the lowest repeat percentage. Hammer/SPT/CPT and soil properties are 

parameters that are used in slightly less than half of the ANN studies.

Table 5 ANN input variables

Input variable Symbol Repeat number

Pile properties

 Pile length L 21

 Pile cross sectional area A 11

 Pile diameter D 10

 Pile set S 8

 Pile weight Wp 3

 Pile modulus of elasticity Ep 3

 Type of pile Tp 3

 The amount of steel reinforcement As 2

 Pile circumference M 2

 Pile compression stress σc 1

 Pile tension stress σt 1

 Pile initial axial capacity P 1

 Pile–soil interface friction angle δ 1

 Elastic compression of the pile and the soil k 1

Loading history

 Elapsed time after driving T 4

 Time history of pile head force F(t) 1

 Time history of pile head particle velocity V(t) 1

 Eccentricity of load Ec 1

Hammer/SPT/CPT information

 Hammer weight Wh 5

 Hammer drop height Hh 5

 Driving energy delivered to the pile E 5

 Average standard penetration number along the pile shaft SPT-Ns 5

 Hammer type Ht 3

 Number of blows N 2

 Average standard penetration number along the pile tip SPT-Nb 2

 Effective cone point resistance along pile shaft qE–S 2

 Cone sleeve friction along pile shaft fS–S 2

Soil properties

 Effective overburden stress σv 7

 Shear resistance of the soil surrounding the pile shaft Ss 3

 Soil type around the pile shaft Ts 3

 Undrained shear strength Su 3

 Shear resistance of the soil at the pile tip of the pile Sb 2

 Soil friction angle φ 2

 Soil elastic module Es 1

 Soil type around the pile tip Tb 1

 Soil consolidation coefficient Cc 1

 Drained cohesion of the soil Cd 1

 Effective soil specific weight γe 1
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Percentage of repeat of input variables in each category of ANN applications is shown 

in Fig. 5. �e information in Fig. 5 helps us to see which parameters in each category has 

had the highest repeat percentage. Figure 5a shows that, between all parameters related 

to pile properties, the pile length with 31% repeat rate, was the most applied variable. 

Pile cross sectional area and pile diameter with 16 and 15% usage were following the pile 

length. For the loading history presented in Fig. 5b, the elapsed time after driving with 

57% contribution, had the highest repeat percentage. In hammer/SPT/CPT informa-

tion category, hammer weight, hammer drop height, driving energy delivered to the pile, 

and average SPT Along the pile shaft had similar repeat percentage of 16% and were the 

highest applied variables as an input of ANN models (Fig. 5c). In soil properties category 

(Fig.  5d), the effective overburden stress with 28% repeat percentage, had the highest 

repeat rate among previous related studies where shear resistance of the soil surround-

ing the pile shaft, soil type around the pile shaft, and undrained shear strength has equal 

usage of 12% in previous ANN studies on piles.

�e variables applied as an output of ANN models together with their repeat numbers 

in all 25 applications are shown in Table 6. �e ultimate load capacity with 14 number 

of repeat was the main variables of interest in previous research. Skin friction resistance 

and pile tip capacity had the highest repeat number after ultimate load capacity. How-

ever, both skin friction resistance and pile tip capacity are directly or indirectly used to 

estimate the ultimate load capacity of pile foundations.

Fig. 4 Percentage of repeat for different categories of ANN input variables
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Genetic Programming

As discussed before, compared to ANN, GP is a newer technique for intelligence analysis 

of piles. Hence the number of parameters used in GP in each category are smaller than 

ANN. Overall, in 7 reviewed studies in this research, 19 different parameters have been 

used for GP. By following the four classification of the analyzed properties in previous AI 

studies on piles, Table 7 presents the input variables used for GP. Similar to parameters 

studied by ANN, pile length and undrained shear strength at pile tip were the most used 

parameters.

For pile properties category, previous studies only focused on 5 different parameters, 

where in ANN, 15 different parameters have been investigated. Parameters such as pile 

Fig. 5 Percentage of repeat of input variables in ANN applications for (a) pile properties, (b) loading history, 

(c) hammer/SPT/CPT information, and (d) soil properties

Table 6 ANN estimated variables

Estimated variable Symbol Repeat number

Ultimate load capacity Pu 14

Skin friction resistance qs 6

Pile tip capacity qb 3

Undrained side resistance alpha factor for drilled shafts α 1

Lateral load capacity Pt 1

Undrained lateral load pile capacity Pt–u 1

Pile capacity increase due to setup ∆P 1

Time-dependent vertical ultimate bearing capacity Pu(T) 1
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weight  (Wp), amount of steel reinforcement  (As), pile circumference (M), pile initial axial 

capacity (P), and pile–soil interface friction angle (δ) has not been investigated by GP. 

For hammer SPT/CPT information, ANN covered 9 parameters where GP only have 

covered 6 parameters. Hammer drop height  (Hh), number of blows (N), and hammer 

weight  (Wh) are parameters that are investigated in ANN but not covered by GP in pre-

vious studies. In soil properties, ANN was more developed where 11 parameters have 

been investigated in the literature; however, only three parameters have been used for 

GP. Hence, parameters such as effective soil specific weight (γe), soil friction angle (φ), 

soil type around the pile shaft  (Ts), and etc. can be used in future GP studies on piles. In 

loading history category, GP used different load parameters than ANN.

�e percentage of repeat for the four categories of GP input variables is illustrated in 

Fig. 6. Similar to ANN, pile properties had the highest percentage of repeat; however, the 

percentage of using pile properties in ANN (52%) was 16% larger than its usage in GP 

(36%). Opposite to ANN, loading history plays an important role for adopted parameters 

in GP with 23% where for ANN, it only contributed by 5%. Soil properties for both ANN 

and GP has high percentage of usage; however, it was used in GP slightly more than 

ANN (by 7%). Hammer/SPT/CPT for GP has usage percentage of 15% where in ANN it 

has a contribution of 24% in the previous studies.

Percentage of repeat of input variables in each category of GP applications is shown 

in Fig. 7. Figure 7a shows that, between all parameters related to pile properties, the pile 

length with 43% repeat rate, was the most applied variable. Pile diameter with 36% was 

the second frequent used parameter. For the loading history presented in Fig.  7b, the 

Table 7 GP input variables

Input variable Symbol Repeat number

Pile properties

 Pile length L 6

 Pile diameter D 5

 Pile set S 1

 Pile modulus of elasticity Ep 1

 Type of pile Tp 1

Hammer/SPT/CPT information

 Driving energy delivered to the pile E 1

 Average standard penetration number along the pile shaft SPT-Ns 1

 Average standard penetration number along the pile tip SPT-Nb 1

 Cone point resistance at pile tip qE–T 1

 Cone sleeve friction along pile shaft fS–S 1

 Cone point resistance along pile shaft qE–S 1

Loading history

 Lateral force point of application distance Dfh 3

 Chain force angle with the horizontal Ft 3

 Loading rate Rf 3

 Eccentricity of load ef 1

Soil properties

 Effective overburden stress σv 1

 Undrained shear strength at pile tip SU–T 5

 Permeability of the soil k 3
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lateral force point of application, chain force angle with the horizontal, and loading rate 

had equal contribution of 30%. In hammer/SPT/CPT information category, all param-

eters had equal usage percentage in previous studies (Fig. 7d). In soil properties category 

(Fig. 7d), undrained shear strength at pile tip with 56% usage was the most frequent used 

parameter.

Table 8 summarizes the output variables of GP models with their repeat numbers in 

all reviewed cases. Similar to ANN, �e ultimate load capacity is the most interested 

parameter resulted from GP. �e uplift capacity of suction caissons is another parameter 

considered in GP; however, it was not interested in ANN studies. Other parameters such 

as ultimate capacity of suction caissons, undrained lateral load capacity, and undrained 

side resistance alpha factor were also considered in GP. �e comparison of the output 

parameters in ANN and GP showed that uplift capacity of suction caissons and ultimate 

capacity of suction caissons were only considered in GP.

Conclusions

In this review paper, initially the importance of AI in geotechnical engineering was 

discussed. Subsequently, the two well-known AI techniques of ANN and GP were 

introduced. Afterward, a detailed review of the previous studies on pile foundations 

was conducted and a list of applied variables as well as their usage frequencies were 

Fig. 6 Percentage of repeat for different categories of GP input variables
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presented. Results of this paper will help in better understanding the importance of dif-

ferent variables and their effects on pile capacities in previous research. In addition, it 

will help in choosing other important or un-investigated parameters for future research. 

Based on the reviewed articles and used parameters, the followings were concluded:

  • Overall, in all 25 studied ANN applications, 38 different input variables were 

adopted. Pile length was the most adopted variable with 21 repeat among all vari-

ables. Pile cross sectional area and pile diameter had the highest number of repeat 

after pile length. Among all four main categories of variables, pile properties had the 

highest percentage of repeat, while, the loading history had the lowest repeat per-

centage. Hammer/SPT/CPT and soil properties were used in slightly less than half of 

the ANN studies.

Fig. 7 Percentage of repeat of input variables in GP applications for (a) pile properties, (b) loading history, (c) 

hammer/SPT/CPT information, and (d) soil properties

Table 8 GP estimated variables

Estimated variable Symbol Repeat number

Ultimate load capacity Pu 2

Uplift capacity of suction caissons PUC–S 2

Ultimate capacity of suction caisson PU–S 1

Undrained lateral load capacity Plu 1

Undrained side resistance alpha factor α 1
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  • Compared to ANN, GP is a newer technique for artificial intelligence analysis of pile 

capacity. Among GP applications, pile length, pile diameter, and undrained shear 

strength at pile tip were the most applied variables. Similar to ANN, among the four 

main categories of variables, pile properties had the highest percentage of repeat; 

however, the percentage of using pile properties in ANN (52%) was 16% larger than 

its usage in GP (36%). Specifically, for pile properties category, GP studies were only 

focused on 5 different variables, whereas in ANN, 14 different variables have been 

investigated. Parameters such as pile weight  (Wp), amount of steel reinforcement 

 (As), pile circumference (M), pile initial axial capacity (P), and pile–soil interface fric-

tion angle (δ) have not been investigated by GP. Overall, in the seven reviewed GP 

applications, only 18 different variables have been applied. Comparing this number 

with 38 applied variables in ANN applications shows that further studies are needed 

to explore more variables in GP.

  • �e ultimate load capacity was the most evaluated output parameter among both 

ANN and GP. �e uplift capacity of suction caissons was another variable considered 

in GP; however, it was not evaluated in ANN studies. �e comparison of the output 

variables in ANN and GP showed that uplift capacity of suction caissons and ulti-

mate capacity of suction caissons were only considered in GP. Hence, future ANN 

studies may consider these variables for characterization of soil–pile interactions.
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