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A Review of Geometric Transformations for
Nonrigid Body Registration

Mark Holden

Abstract—This paper provides a comprehensive and quantita-
tive review of spatial transformations models for nonrigid image
registration. It explains the theoretical foundation of the models
and classifies them according to this basis. This results in two cat-
egories, physically based models described by partial differential
equations of continuum mechanics (e.g., linear elasticity and fluid
flow) and basis function expansions derived from interpolation and
approximation theory (e.g., radial basis functions, B-splines and
wavelets). Recent work on constraining the transformation so that
it preserves the topology or is diffeomorphic is also described. The
final section reviews some recent evaluation studies. The paper con-
cludes by explaining under what conditions a particular transfor-
mation model is appropriate.

Index Terms—Fluid flow registration, linear elastic registration,
nonrigid image registration, parametric transformation models,
spatial transformations, spline based registration, wavelet based
registration.

MATHEMATICAL NOTATION:

Target image, is an image location.

Source image to be aligned with .

The rate of deformation tensor.

Strain tensor.

Mass source term.

Body force per unit volume acting at .

, Cartesian components.

Identity matrix.

Inner product of functions and ,
i.e., where is the complex
conjugate of .

, Lamé constants describing the mechanical
properties of an elastic material.
Viscosity coefficients of a viscous fluid.

Vector differential operator:
for .

Domain of the image.

, th landmark locations in the source and target
images, respectively.
Fluid density.

Cauchy stress tensor.
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Spatial transformation, refers to the mapping
from the space of the source image to the space
of the target.
Direct sum.

Displacement vector of point in the space of
the source image with components (u, v, w).
Velocity vector.

Vorticity tensor.

DEFINITIONS:

Capture range The range of attraction of the registration
function. The spatial extent of the set of
misregistrations from which convergence
to the optimal transformation is possible.

CSF Cerebrospinal fluid.

Diffeomorphism A differentiable homeomorphism
with a differentiable inverse (nonzero
determinant of the Jacobian matrix).
It is a homeomorphism that maps one
differentiable manifold to another.

Eulerian
coordinates

These describe the motion of a body of
particles relative to a set of fixed points
in space through which particles pass.
The Eulerian coordinate frame refers to
the current state of the system.

Homeomorphism A continuous bijective mapping with
a continuous inverse. Intuitively this
is achieved by stretching, bending or
compressing an elastic material without
any cutting.

Lagrangian
coordinates

These describe the motion of a body
of particles relative to its initial
configuration. Given the position of a
particle at time , its position

at time is given by a mapping from
the initial to current configuration,
i.e., where
is the displacement vector. Since
deformations are assumed to be
homeomorphisms there exists a unique
mapping of the current
location of a particle to its original one

at . Lagrangian coordinates are
also referred to as material or referential
coordinates.
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Positive definite
function

A function is positive
definite if the associated matrix with
elements is positive
semi-definite . A matrix
is positive semi-definite if for
all vectors .

Support of a
function

Let be a real-valued function
on some set . The support of is
the smallest closed subset
outside of which is zero, i.e.,

. A function
is said to have compact support if its
support region is a compact subset of
and global support if .

EBS Elastic body spline. The solution of the
Navier-Cauchy PDE of linear elasticity.

FFD Free-form deformation.

GEBS Gaussian elastic body spline.

GM Grey matter.

MQ A multiquadric is a type of radial basis
function of form .

MRA Multiresolution analysis.

OF Optical flow based transformation.

PA Piecewise affine transformation.

PDE Partial differential equation.

ROI Region of interest.

TPS Thin-plate spline.

VS Volume spline.

WM White matter.

WMN Weighted mean radial basis function.

I. INTRODUCTION

IMAGE registration is the process of determining the corre-
spondence between objects in two images, by convention be-

tween the source and the target image. To determine correspon-
dences it is necessary to find the geometrical or spatial mapping
(or spatial transformation) applied to the source image so that
it aligns with the target. The mapping is from the image do-
main to a subset or a superset of . For medical imaging,
the mapping is usually 3-D to 3-D. Transformations that pre-
serve the distance between all points in the image are referred to
as rigid-body transformations. They are equivalent to a change
from one Cartesian system of coordinates to another one which
differs by shift and rotation. Transformations that allow for a
global change of scale and shear are referred to as affine trans-
formations. Affine transformations map parallel lines to par-
allel lines. Affine and rigid-body transformations can be con-
veniently represented using homogeneous matrices, these are
4 4 matrices for 3-D to 3-D mappings.

In contrast, nonrigid transformations map straight lines to
curves. Nonrigid registration is the process of determining such
transformations given two images of an object. In certain situa-
tions the deformation model is known, e.g., the geometrical dis-
tortion of the imaging system, but in most cases it is unknown.

There are many different nonrigid transformation models. In
general, they can be divided into two categories: physical based
models and function representations. The physical models in
general, are derived from the theory of continuum mechanics
and can be divided into two main subcategories: elasticity and
fluid flow. Function representations originate from interpola-
tion and approximation theory. They use basis function expan-
sions to model the deformation. There are many different types
of basis functions, e.g., radial basis functions, B-splines and
wavelets.

There are a few reviews of rigid-body registration methods
[1]–[3] and a few that consider nonrigid transformations [4]–[8].
Also there are reviews of related image warping methods [9].
Lester et al. [4] reviewed a number of transformation models,
including linear elasticity, fluid flow, function expansions, and
splines. They focussed on hierarchical strategies which can be
applied to both the transformation and data. Rohr [5] focussed
on landmark based methods, particularly the TPS model and
extensions to it. Zitova and Flusser [6] provided a general re-
view of image registration which includes a section on transfor-
mation models. Their review describes radial basis functions,
elastic and fluid models. Modersitzki [7] concentrated on nu-
merical solutions to registration problems, including nonrigid
ones. This included elastic and fluid models and also radial basis
functions. Goshtasby [8, Ch. 5] focussed on radial basis func-
tions and compared them to piecewise affine models. None of
these provide a comprehensive review of commonly used trans-
formations such as B-splines and wavelets and few of them ex-
plain the underlying physical models or discuss the compara-
tive evaluation of transformation models. This paper provides
a comprehensive quantitative review including an explanation
of theoretical basis of the models. It compares models and de-
scribes their limitations.

This paper is organized by grouping transformations ac-
cording to their theoretical basis. This results in two main
categories: those that originate from physical models of
materials and those that originate from interpolation and ap-
proximation theory. In addition to this, there are methods that
constrain the transformation according to some desirable math-
ematical property. Accordingly the paper is organized with the
following structure:

• Physical models
— linear elasticity
— viscous fluid flow
— optical flow.

• Basis function expansions
— radial basis functions
— B-splines
— wavelets.

• Constraints on the transformation
— inverse consistency
— topology preservation
— diffeomorphic transformations.

The final section describes recent comparative evaluation
studies of some of these models. In order to make the paper
more self-contained and provide motivation, a brief description
of registration metrics and applications of nonrigid registration
follows on from the introduction.
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A. Registration Metrics

A registration metric takes two images as input and returns a
real value that indicates how well the images are aligned. One
of the simplest ones is based on the distance between corre-
sponding pairs of landmarks that are extracted from images.
The landmarks can be anatomical features or fiducial markers
that are rigidly attached to bone. For rigid-body registration the
theory is well developed [1], [2], [10]–[12]. For nonrigid reg-
istration, landmarks are often used with thin-plate splines, see
Section V-D. An advantage of landmarks is that they enable the
transformation to be determined in closed form. Disadvantages
are that a large number of them are needed to densely sample
the deformation field and also the localization process intro-
duces error. Another possibility is to use the distance between
corresponding segmented surfaces. But this provides a registra-
tion metric only at the surfaces and not throughout the image
volume as is often required, also the segmentation process in-
troduces error. A more modern approach is to use an image
similarity measure which gives a quantitative measure of image
alignment. For intramodality registration, the sum of square dif-
ferences or cross correlation of the corresponding voxel intensi-
ties can be used. For intermodality registration measures based
on information theory such as mutual information perform well
in the rigid case, see [3]. These measures have the advantage of
providing fully automatic algorithms and are suitable for deter-
mining dense deformation fields.

II. APPLICATIONS OF NONRIGID REGISTRATION

In general, application domains are: medical imaging, remote
sensing, and industrial imaging [8]. Crum et al. [13] survey a
variety of medical applications. Essentially, there are two cat-
egories: intrasubject and intersubject. Intrasubject registration
refers to the registration of scans of the same subject at different
times, while intersubject refers to the registration of scans of
different subjects, usually with the same imaging modality. A
nonexhaustive list of the main applications is given below.

• Motion correction: To correct for the deformation of a
patient’s anatomy over time. For example, to correct for
motion between preoperative, intraoperative, and postop-
erative scans in neurosurgery. For instance to correct for
brain-shift [14], [15] and facilitate navigation. These de-
formations are mostly physical in nature and are caused by:
changes in the direction of gravity, changes in fluid pres-
sure, physiological motion associated with the heart, res-
piration, peristalsis, or other muscle groups.

• Motion determination: To quantify the physiological mo-
tion of the organ, e.g., heart [16], [17], lungs [18], [19],
or joints [20] and use the measurements for diagnosis or
therapy monitoring.

• Cross modality image fusion: To combine information
from multiple scans of the same patient with different
imaging modalities e.g., X-ray-MR [21], PET-CT [22],
[23]. This is analogous to the rigid-body case except that
the tissue is deformable, the deformations involved are
similar to motion correction.

• Change detection: To detect and measure structural change
over time. For instance for monitoring disease processes
(e.g., longitudinal studies) to aid either diagnosis or

therapy. Typically measures of volume and shape are
used that are derived from the transformations. Examples
include multiple sclerosis [24], rheumatoid arthritis [25],
Alzheimer’s disease [26], [27], hormone therapy [28], and
morphological changes resulting from surgical interven-
tion [29].

• Distortion correction: To measure and correct for geomet-
rical distortion of the imaging system. Possible approaches
are to register to scans of other imaging modalities that ex-
hibit less distortion [30], [31] or to use phantoms [32].

• Atlas construction: To produce a representation of the av-
erage or variation in anatomy for a patient group. Atlases
can be either probabilistic [33]–[35], intensity based [36],
label based [37], [38], or deformation based [39].

• Atlas registration: This allows information from a group of
subjects to be combined and analysed in the standard space
of the atlas, cf. Talairach space [40].

• Segmentation: Given an image containing a set of delin-
eated structures this can be registered to the subject images
and the transformations used to propagate the delineations
into the space of the subject images so providing a seg-
mentation [41]–[43]. Accurate segmentations of tissue can
be obtained from optical images of histologically stained
tissue samples. These segmentations can be mapped into
anatomical images like MR [44], [45].

III. LINEAR ELASTIC TRANSFORMATIONS

A. Theory

The theory of linear elasticity is based on notions of stress
and strain. The stress at a given location is the contact force
per unit area acting on orthogonal planes that intersect the loca-
tion. Stress can be analysed mathematically using the Cauchy
stress tensor. This is a second rank tensor denoted by , the
subscripts and denote the three Cartesian directions ( , ,
and ). Stress components are either normal to the plane or
within it , . This tensor has nine components and can be
represented as a 3 3 matrix. Strain is a measure of the amount
of deformation. It is treated in an analogous way to stress as a
second rank tensor with normal and shear , com-
ponents.

When a body is subject to an external force this induces in-
ternal forces within the body which cause it to deform. The in-
ternal forces are grouped into body and surface forces. Body
forces are distributed throughout the volume and are specified
as force per unit volume. When a linear elastic material is in
an equilibrium state the body forces balance with the surface
stresses . So the integral of the surface (stress) forces and
body forces must be zero. Assuming that the stress components
vary linearly across an infinitesimal element it is possible to de-
termine the following set of equilibrium equations [46]:

(1)

where indicates that the other two equations are
obtainable through cyclic permutation of , , and . By
applying Gauss’s divergence theorem to the force integral
it can be shown that the stress tensor is symmetric, this
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reduces the number of independent stress components to six
. The normal and shear infini-

tesimal strain can then be expressed in terms of the spatial
derivative of the displacement, as follows:

(2)

The constitutive equations for elasticity relate stress and
strain tensors see [46], [47]. This relationship is expressed in
the generalised Hooke’s law . The quantity

is a fourth rank tensor referred to as the stiffness tensor.
Since there are six independent components for both the stress
and strain tensors the tensor of elastic constants has 36
distinct elastic constants. For an homogeneous isotropic mate-
rial there are an infinite number of planes of symmetry. Hence,
the constitutive equations are independent of the coordinate
system. By considering rotational invariance it is possible to
reduce the number of independent constants to just two [46].
These are the Lamé constants, and . is also referred to as
the shear modulus. Thus, for an isotropic material the stress-
strain relation simplifies to the following Piola-Kirchoff form:

(3)

Equations (1)–(3) form a system of 15 equations with 15 un-
knowns (stress, strain, and displacement) and so the unknowns
can be determined. Substituting (2) into (3) and then substituting
the result into (1) gives the Navier-Cauchy linear elastic PDE

(4)

where is the displacement vector at position , and
denotes the body force per unit volume, which drives registra-
tion. It is possible to determine eigenfunctions of (4). These are
products of univariate sinusoidal functions [48], [7, Ch. 9] and
have the following form

(5)

The corresponding eigenvalues are given by

.
(6)

The second-order terms of the displacement gradient are ig-
nored in (2). This leads to error for large deformations. Further-
more, many biological materials have a nonlinear stress-strain
relationship which also leads to error. Consequently, the linear
model (4) is only really accurate for small deformations.

B. Linear Elastic Algorithms

The Navier-Cauchy PDE (4) is essentially an optimisation
problem that involves balancing the external forces (image sim-
ilarity) with the internal stresses that impose smoothness con-
straints [4]. It can be solved using variational [7], finite dif-
ference [49], [50], FEM models [51], basis function expansion
[48], and Fourier transform methods [7].

Broit [49] was the first to propose a linear elastic model for
nonrigid image registration. In [49, Ch. 6], an iterative algorithm
is described that determines for which the internal stresses and
external forces of (4) are in equilibrium. The PDE is solved by
the finite difference method on a rectangular lattice. The first and
second derivatives, and , are approximated
using discrete derivatives. This results in three linear equations,
one for each Cartesian direction (i.e., , , ). These linear
equations can be solved iteratively from the initial and previ-
ously calculated displacements determined using Gauss-Seidel
or Jacobi methods. This gives a value of for each lattice point.

Bajcsy et al. [50] improved this approach. Prior to elastic reg-
istration they corrected for global differences using a transfor-
mation consisting of translation, rotation and scaling. This was
determined by aligning the centres of mass, ellipsoid axes, etc.
They used a multiresolution version [50], [52] of Broit’s [49]
elastic model. The external force was based on the cross corre-
lation of image features. These consisted of the local mean in-
tensity, horizontal, and vertical edges that were extracted from
the images.

Davatzikos and Bryan [53] designed an elastic algorithm for
intersubject registration of cortical grey matter. They modelled
the brain cortex as a thin spherical shell of constant thickness
and described the central layer parametrically by , with
surface parameters and and a surface normal . De-
formation was modelled as a uniform dilation or contraction
with bending (homothetic mapping) between the two surfaces.
Their model is also based on a balance between internal and ex-
ternal forces. The external force has two components, the first
one deforms a point towards the shell. This attractive force is
simply the distance between the point and the centre of mass
function , i.e., . The second external force
acts normally to the shell’s surface and has magnitude , this
either expands or dilates the shell depending on its sign. This
leads to the following PDE:

(7)

where the repeated subscript refers to partial differentiation. The
first term in (7) refers to the elastic force (Laplacian) and the
second and third terms refer to the external forces. Davatzikos
and Bryan solve (7) iteratively. The image is partitioned into

square subimages and the partial derivatives are ap-
proximated with finite differences. This gives a set of discrete
variables and functions of the form ,
and leads to the following discretised equation:

(8)

Equation (8) is solved iteratively using successive over-relax-
ation [54].

In [55], Davatzikos further develops this approach to match
both the cortical and ventricular surfaces which are pre-seg-
mented from the images. A homothetic mapping is first used to
achieve a coarse match then this is further refined. The refine-
ment step is based on curvature and landmark matching. Curva-
ture matching involves determining the minimum , max-
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imum and Gaussian curvatures of the segmented
surfaces. The matching criterion involves determining the op-
timum displacement field such that

(9)

where are binary values of voxels corresponding to target (or
source ) surfaces such that if threshold and

otherwise. The curvature matching results in an external
force of the form

(10)

The curved outlines of corresponding sulci and ,
parametrises the sulcal curve, are obtained manually from the

source and target images, respectively. The displacement func-
tion can be constrained by minimising the squared distance
between corresponding landmarks as follows:

(11)

This results in a second force that is proportional to the sum
of residual distances between the two sets of landmarks:

(12)

The forces and are then incorporated as external forces in
the Navier-Cauchy linear elastic PDE (4) as follows:

(13)

Equation (13) defines a 3-D elastic deformation that brings
the cortical surfaces into registration. Davatzikos points out
that there are large shape differences of certain brain structures
across a population, e.g., the lateral ventricles. To accommodate
this they propose to model the brain as an inhomogeneous body
with nonzero initial strain at the ventricular surface. This
results in a modified Navier-Cauchy PDE, of the form

(14)

The first term of (14) is the standard Navier-Cauchy PDE (4),
the second term allows for material inhomogeneity, and the third
term allows for the pre-strained ventricular surface.

Validation of Bajcsy’s Algorithm: Bajcsy et al. [50] validated
their elastic algorithm by registering a segmented brain atlas to
patient CT scans. They manually segmented the ventricles in
patient images and compared this to the corresponding region
propagated from the atlas. Results indicated a maximum error
of three to four pixels. Later Gee et al. [56] validated the al-
gorithm for atlas to MR registration. This time the atlas was de-
rived from myelin-stained sections to provide a segmentation of

GM, WM, and CSF. The tissue types were manually delineated
in the patient images. The voxel overlap was 66% for the region
bound by the brain and ventricular surfaces and 78% for the re-
gion bounded by the GM/WM interface.

Validation of Davatzikos Algorithm: Davatzikos [55] evalu-
ated his algorithm using six T1 weighted 3-D MR brain images
of volunteers. Thirty six anatomical landmarks, corresponding
to sulcal roots, ventricular horns, etc., were manually identified
and used to measure the registration error. The mean, maximum
(std) registration error was 3.4, 10.4 (2.1) mm.

IV. FLUID FLOW TRANSFORMATIONS

A. Theory

It is often useful to register images where there are large de-
formations. Large deformations are typically needed for inter-
subject registration because of anatomical variation over a popu-
lation. A major limitation of the linear elasticity approach, using
the Navier-Cauchy PDE (4) is that it is based on the assumption
of an infinitesimally small deformation. Furthermore, for the
regularization strategy used in linear elasticity (and TPS), the
restoring force increases monotonically with strain [57] which
penalizes large deformations. Christensen et al. [48], [57], [58]
proposed a viscous fluid flow model to recover large deforma-
tions. This was applied after linear elastic registration.

Continuum mechanics provides the theoretical foundation for
fluid flow. There are many standard texts on continuum me-
chanics, e.g., see [47] and [59]. Fluid flow models are based on
idealised physical properties of fluids, e.g., they behave as a col-
lection of particles that conform to Newtonian mechanics. Fluid
models must satisfy physical laws such as the conservation of
mass, energy, and linear and angular momentum. When a fluid is
stationary there is no shear stress and so the Cauchy stress tensor

consists entirely of normal stresses (the hydrostatic pressure
). When a fluid flows the shear stresses are no longer negli-

gible. They are represented by a viscous (shear) stress tensor.
The Cauchy stress tensor then becomes the sum of a hydrostatic
pressure term and the viscous stress tensor. The viscous stress
tensor is usually considered to be a function of the rate of de-
formation tensor. If this relationship is linear then the fluid is
known as Newtonian otherwise it is considered Stokesian [47].
Fluid flow can be explained in terms of the following notions
from continuum mechanics.

• Fluid velocity: In the Eulerian frame1, the velocity of an
element of mass passing through at time is given by the
material derivative of the displacement as follows:

(15)

• Rate of deformation: The velocity gradient tensor
can be considered as the sum of a sym-

metric tensor and an anti-symmetric one such that
. is referred to as the rate of

deformation tensor and the vorticity tensor. In tensor
notation, and

1The Eulerian frame is thought by some authors [57] to be the most suitable
for tracking large deformations.
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. In vector notation,
the rate of deformation tensor can be expressed as
follows:

(16)

where is the velocity vector and denotes transpose.
• Conservation of mass: Leads to the following continuity

equation:

(17)

where denotes the density of the fluid and the mass source
term allows for arbitrary creation or destruction of mass.2

• Conservation of linear momentum: Leads to the equa-
tion of motion:

(18)

where , sometimes written , is the body force per unit
volume.

• Constitutive equations: For a Newtonian fluid the viscous
stress tensor is linearly related to the rate of deformation
tensor as follows:

(19)

where is the hydrostatic pressure and and are the
viscosity coefficients of the fluid, is the trace.

Substituting (19) into (18) and then substituting for in (16)
allows us to derive the Navier-Stokes-Duhem equation

(20)

For very slow flow rates (low Reynolds number) it is possible to
neglect the inertial terms and .

Assuming there is only a small spatial variation in the hydro-
static pressure then can also be neglected and (20) simplifies
to the Navier-Stokes equation for a compressible viscous fluid

(21)

Essentially the Navier-Stokes PDE describes the balance of
forces acting in a given region of the fluid. It characterizes an
equilibrium state where changes in momentum of the fluid bal-
ance with changes in pressure and dissipative viscous forces.
The term is associated with constant volume or incom-
pressible viscous flow whereas the term al-
lows for the expansion or contraction of the fluid. Remarkably,
the Navier-Stokes PDE (21) is identical to the Navier-Cauchy
PDE of linear elasticity (4) except that the PDE operates on ve-
locity rather than displacement .

B. Fluid Flow Algorithms

These are based on the viscous fluid flow model defined by the
Navier-Stokes PDE (21). Because of the similarity to Navier-
Cauchy PDE (4) solutions of linear elasticity can be transferred

2Christensen et al. [57] argue that from an image registration perspective it is
often desirable to allow local mass creation or destruction, however they do not
seem to implement this in [57].

to fluid flow. Differential operators are applied to a velocity field
that describes pixel motion. Fluid flow allows large localized
deformations to be modelled, but has the disadvantage of some-
times increasing registration error [4] and high computational
cost.

The most well-known fluid flow algorithm is due to Chris-
tensen et al. [48], [57], [58]. The overall registration strategy is
based on a transformation hierarchy of successively increasing
numbers of degrees-of-freedom [58] starting with affine then
linear elasticity and finally a fluid flow algorithm [48]. The
fluid flow algorithm iteratively solves the Navier-Stokes PDE.
It evolves velocity fields that describe the motion of voxels over
time (iteration). The body force is determined from image
similarity like elastic algorithms. It is assumed to take the form
of a Gaussian sensor model [57]

(22)

where is the difference of intensities be-
tween the target and deformed source images. The gradient of
the source image gives the direction of the local
forces applied to . Given the current estimate of , the ve-
locity and body force can be estimated using (15) and (22). This
provides initial values for the Navier-Stokes PDE which is sub-
sequently solved in discrete time steps by successive over-re-
laxation [60]. The updated velocity field then is used to update
the displacement field. For large deformations, the numerical
solution of the Navier-Stokes PDE can produce displacement
fields that become singular [57]. To avoid this the determinant
of the Jacobian of the transformation is tracked. Each time
it falls below 0.5 a new source image is generated by interpo-
lation using the current displacement field and the algorithm is
restarted using the new source image.

Solving the Navier-Stokes PDE is particularly computation-
ally intensive which is a major disadvantage. To address this
Christensen’s algorithm was implemented on parallel hardware
so that results could be obtained in a few hours [57]. Other
authors have proposed faster solutions. Bro-Nielsen et al. [61]
used a filter (convolution with Green’s functions) in scale space.
Freeborough et al. [27] solved the PDE hierarchically using the
full multigrid method [62].

C. Validation of the Fluid Flow Algorithm

Christensen et al. [57] experimentally compared the fluid
flow and linear elasticity algorithms. They used a synthetic
image pair consisting of a small rectangular patch (source
image) and a “C” shape with an area about an order of mag-
nitude larger. They reported that the fluid algorithm was able
to produce deformations to achieve an overlap whereas
the linear elastic algorithm only achieved about 25%.

D. Optical Flow

Optical flow [63] has been widely used to track small scale
motion in time sequences of images. It is based on the principle
of intensity conservation between image frames. There is a sim-
ilarity to fluid flow. The equation of motion for optical flow can
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be derived by retaining the first-order terms of the Taylor expan-
sion of the intensity function in the target frame. It is possible
to relate the displacement3 to the change in intensity between
frames and the spatial derivative of intensity in the
target frame , as follows:

(23)

Demons Algorithm: The demons algorithm [64] uses the op-
tical flow model (23). First (23) is approximated to give a nu-
merically stable expression for

(24)

The displacement (force) on the source image is in the direc-
tion of and its orientation is if and
otherwise. A disadvantage of this model is that there are no con-
straints on the displacement and it does not necessarily preserve
the topology. To reduce the effects of noise the displacement
field is smoothed by Gaussian convolution. The algorithm iter-
ates over time, during each iteration an incremental displace-
ment field is determined and the source image is resampled for
the next iteration.

E. Continuum Biomechanics

Although continuum mechanics explains well the behaviour
of simple rubber-like materials it does not explain well the more
complex behaviour of biological materials like soft tissue. Con-
tinuum biomechanics is concerned with extending the theory,
particularly non-linear continuum mechanics [65], to deal with
this. Humphrey [66] provides a detailed review of the subject.
An important observation here is that although soft biological
tissue has many different forms it is composed of only two basic
components: cells and an extra-cellular matrix [66]. So mechan-
ical models at a cellular level should be able to explain tissue
behavior. Tissues could be modelled as mixture-composites that
exhibit anisotropy, visco-elasticity and inelastic behavior using
the theory of elasticity or visco-elasticity. The constitutive rela-
tions should be used to describe the material under certain con-
ditions and not the material itself. In conclusion, new models
are anticipated that better explain: the multiaxial behavior of
muscle, growth, remodelling, damage, regeneration, cell me-
chanics, etc.

V. TRANSFORMATIONS BASED ON BASIS

FUNCTION EXPANSIONS

In general, these transformations are not derived from phys-
ical models, but instead model the deformation using a set of
basis functions. The coefficients are adjusted so that the com-
bination of basis functions fit the displacement field (cf. inter-
polation). Much of the mathematical framework arises from the
theory of function interpolation [67] and approximation theory
[68], [69]. In approximation theory it is assumed that there is
error in the samples, so the standard interpolation requirement
that the function intersects samples is relaxed. As a result, the

3This is actually velocity—displacement over the time interval of the two im-
ages. However, it can be considered as a displacement without loss of generality.

approximating function is usually much smoother than its inter-
polating counterpart.

Polynomial functions might seem an intuitive choice, how-
ever, global polynomials of degree larger than two can be un-
stable [1, Ch. 8]. Radial basis functions and piecewise polyno-
mials (splines) are more stable and are widely used.

In general, these functions do not preserve the topology, how-
ever, recent work [70], [71] has sought to design functions that
are diffeomorphisms, see Section VI-C.

A. Radial Basis Functions

Radial basis functions [72]–[74] are functions of the distance
between the interpolation point and basis function

centre or landmark position . They can be defined as follows:

(25)

where indexes the landmarks, e.g., landmark pairs, is the
total number of landmarks, and are weights which are de-
termined by solving a set of linear equations. Examples are the
Gaussian [75] and the inverse multiquadric, IMQ [76] defined
in (29). These functions asymptotically tend to zero, but have
global support. RBFs are positive definite functions which allow
an optimal set of coefficients to be determined in closed-form.
This is a particularly useful property for landmark based regis-
tration. Rohr et al. [77]–[79] and Fornefett et al. [80] have ex-
tensively investigated RBFs for the landmark-based registration
of medical images. In [80], a general form is given which con-
sists of a sum of polynomials and RBFs

(26)

This requires solving a set of linear equations of the form

(27)

where the matrix has elements and
has elements and the column vectors , ,
have elements consisting of landmark positions and the coeffi-
cients and .

Others have compared the performance of TPS to polyno-
mials and multiquadrics [81]–[83]. Arad [75] suggested that the
TPS had favorable properties for image registration.

B. Multiquadrics

The multiquadric (MQ) is a type of radial basis function (25)
with is defined as follows [74]

(28)

where is the Euclidean distance , is an interpolated
point, and is the location of the th landmark. The parameter

controls the amount of smoothing, larger results in more
smoothing. The inverse multiquadric (IMQ) is defined as the
reciprocal of (28)

(29)
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C. Weighted Mean

The WMN is defined by:
chosen such that

is a monotonically decreasing RBF such as a
Gaussian or cubic where

[84]. The weighted sum makes it
an approximating rather interpolating function. The width of
is tuned to the density of landmarks and the function becomes
interpolating as decreases [84].

D. Thin-Plate Splines

Historically, the TPS was used to design structures such
as aircraft wings [85]. Later it was applied to function [86],
[87] and spatial [88], [89] interpolation. Grimson [90] and
Terzopoulos [91] described the TPS function mathematically
as a variational Euler-Lagrange equation which minimises the
bending energy. Essentially the TPS is the solution of a square
Laplacian [7], [92]. Goshtasby [93] applied the
TPS to the registration of remote sensing images. Bookstein
et al. [92] introduced it into the modelling shape deformation
in medical image analysis. According to [6] it is the most
commonly used RBF.

The TPS is applicable to multidimensional interpolation
problems and has useful smoothing properties. It is usually
used with sets of homologous features, anatomical landmarks,
which are typically manually located in the images. The TPS
can be used even if the landmarks are irregularly spaced. Given
a set of corresponding sets of features, the spline coefficients
can be determined by the method of least squares [94]. In 2-D,
the TPS has a logarithmic basis function , in 3-D this
simplifies to [80]. So the TPS displacement can be
determined as follows [8]:

(30)

(31)

where (30) and (31) refer to 2-D and 3-D space, respectively.
The matrices and define an affine transformation and is
the identity matrix. Goshtasby [8] includes an additional stiff-
ness parameter in such that .
The coefficients of the linear transformation defined by and

and the TPS coefficients are determined by solving the
set of linear equations at the locations of landmarks in the source
image .

The TPS is a globally supported function and so it cannot
accurately model localized deformation. Furthermore, outliers
have a global impact and also large deformations can lead to sin-
gularities in the sets of equations that need to be solved which
can result in the topology not being preserved. The global extent
also leads to high computational complexity when large num-
bers of landmarks are used. Hence, some authors have improved
its computational efficiency [95]–[98].

E. Approximating Thin-Plate Splines

Rohr et al. [78], [79] proposed an approximating rather than
interpolating TPS that is more robust to outliers which occur
because of errors in feature (landmark) localization. Landmark
errors are considered as anisotropic and are measured using
a quadratic approximation term. The registration functional

consists of a landmark registration measure term and a
TPS term that regularizes the transformation

(32)

where and denote landmarks in the source and target
images. The covariance matrix is a 3 3 matrix and
represents anisotropic landmark localization errors, refers
to the dimension of the image and to the chosen deriva-
tive order of the functional. The term is defined by

and is defined as [9]

(33)

The term defines the TPS and controls the smoothness
of the transformation. Hence, the minimization of (32) results in
a smooth transformation that approximates the distance between
the landmark sets. The parameter controls the weighting be-
tween the two terms, the transformation becomes smoother as

increases.

F. Wendland -Function

Fornefett et al. [80] required a transformation function that
could be used to model brain deformation resulting from neu-
rosurgery. These deformations tend to be highly localized so
standard RBFs such as TPS, MQ are unsuitable since they are
global supported. They formulated a number of criteria that the
transformation function should fulfill for landmark-based brain
registration.

(a) Locality: should have compact support and the extent
of support region should be controllable.

(b) Solvability: (27) describing the mapping of landmark lo-
cations in the source image to the target image must be
solvable. This amounts to the function being positive
definite.

(c) Preservation of topology: The transformation function
must be continuous and locally 1-to-1 and the determinant
of the Jacobian of the transformation must be positive, i.e.,

[100].
(d) The numerical solution should be computationally

efficient.
They selected the function of Wendland [101] which is
a locally supported RBF. Local support is desirable because it
also reduces complexity and speeds up optimization. The
function is multivariate in and is continuous. It has a
similar shape to a Gaussian, but it has finite extent, furthermore
it is smooth unlike a truncated Gaussian. Like other RBFs,
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is positive definite in and has a minimal polynomial degree
of where denotes the floor operator4

(34)

where

(35)

and denotes applications of the integral operator
defined by

(36)

They selected because it provides
smooth continuity with minimal degree and therefore com-
putational expense for 3-D image registration. The locality cri-
teria (a) is satisfied by using a multiplicative scaling factor on
the distance , such that . They demonstrated
experimentally that for large the function resem-
bled a TPS, whereas for it was much more spatially
constrained. They proved that satisfies the aforementioned
criteria (a)–(d).

G. Elastic Body Splines

Davis et al. [102] proposed an elastic body spline (EBS) for
landmark based registration. The EBS is the solution to the
Navier-Cauchy PDE of linear elasticity (4). In general, they as-
sume a polynomial radially symmetric force .
They considered and where
(Euclidean norm) and is a constant vector. This gives an elastic
displacement field of the form

(37)

where is the location of the th of target landmarks and
are the coefficients associated with the force. Essentially, this

is a linear combination of translated basis functions , repre-
sented by a 3 3 matrix. Consequently, the three components of
the PDE are coupled. They solve these three coupled equations
using the Galerkin vector method, see [46]. This transforms the
three coupled PDEs into three independent radially symmetric,
biharmonic ones and results in the following solutions for forces

and , respectively

(38)

(39)

where is the Poisson ratio, is the 3 3
identity matrix and is an outer product. The coefficients of
the force are determined from the system
of linear equations where is a matrix
of elements and a vector of
displacements. They solve for using singular value decom-
position [62]. In comparison the volume spline (VS) and 3-D
TPS can be written in the form and .

4The floor operator bxc gives the largest integer i 2 not greater than x

So apart from the multiplicative constants in (38) and (39), the
terms including can be considered as modifications to the
VS and TPS so that they conform to the Navier-Cauchy phys-
ical model [102].

Kohlrausch et al. [103] argue that the force model
in [102] does not decrease sufficiently

fast and therefore models global rather than local defor-
mations. So instead they propose a Gaussian force model

hence they refer to it as
GEBS. The Gaussian model has the advantage that can be
used to control the localization of the deformation. Following a
similar approach to [102] they show that a Gaussian force leads
to , is the shear modulus
and the Poisson ratio, and the new basis function has the form

(40)

where and de-
notes the error function. The Poisson ratio depends on the
material and is limited physically such that . They
argue that because the Gaussian asymptotically falls rapidly to
near zero, the affine and elastic registration can be determined
separately. This results in a similar system of linear equations
as in [102]. They solve coefficients using a Tikhonov reg-
ularization scheme [62]. In a continuation of this work, Wörz
et al. [104] have extended the method to deal with anisotropic
landmark localization errors.

H. Quantitative Comparison of EBS and GEBS

Kohlrausch et al. [103] created a simple brain model in which
the tumour can deform within a rigid cranium. The symmetry
of the model allows the Navier-Cauchy PDE to be solved in a
cylindrical coordinate system. They evaluated the GEBS model
by comparing it and the EBS model, with forces
and , to an analytical model for both and

. In all cases, they reported that GEBS outperformed
EBS, in some cases by an order of magnitude. However, a dis-
advantage of the GEBS is that its computational complexity is
several times larger than EBS.

I. B-Splines

B-splines were originally proposed for interpolation by
Schoenberg [105] in the 1940s. Since then they have been
applied widely, they have been popular for interpolation prob-
lems in signal processing since the 1990s [106]–[108]. More
recently some authors [107], [109] have argued that B-splines
are optimal as approximating functions. These basis functions
can be extended to multivariate ones using tensor products. The
FFD is an example of this. The mapping function is
modelled using translations of a regularly spaced grid (lattice)
of control points where is the index
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of a control point and is the control point spacing in the
direction. FFDs usually use compact supported basis functions
and is expressed in terms of local coordinates with

. Given a set of univariate compact
supported basis functions of degree . The FFD
mapping function can be defined as [110]

(41)

FFDs have been applied in deformable models of the heart
[111]. It was soon recognised that B-spline basis functions had
superior properties [112] and FFDs based on B-splines were
used for object modelling in 3-D [113] and 2-D [110], [114] and
for animations [115]. Declerck [116] applied cubic B-spline
FFDs to register SPECT cardiac images using the iterative
closest point of extracted surfaces as a registration metric.
Rueckert et al. [117] also used this FFD in combination with a
voxel intensity similarity measure to register dynamic contrast
enhanced MR breast images. The theory and methods for
object modelling with polynomial and spline curves, including
B-splines is well developed, see [118] and [119].

1) B-Spline Interpolation: B(asis) splines are a type of min-
imal support spline that was introduced by Schoenberg [105] for
interpolation. A B-spline basis function of degree zero is a
rect (step) function, the kernel used for nearest neighbor inter-
polation. A degree one B-spline basis function is constructed
by the self-convolution of , i.e., . A B-spline basis
function of degree is constructed from such convolutions,
i.e., ( times). The support of B-spline basis
functions depends on its degree we denote as a B-spline
basis function of degree 5 that is applied to an interval defined
by the knot point . B-spline basis functions of an arbitrary de-
gree can be defined using the Cox-de Boor recursion formula,
see [118]:

if
otherwise

(42)

(43)

B-splines can be used as either interpolators or approximators.
Approximators do not intersect samples, but instead minimize
an error metric such as the norm. When used as approxima-
tors B-splines are said to provide an optimal trade-off between a
smooth function and a close fit to the data samples [107], [108].
This property is useful because often it is desirable to have a
smooth fit to noisy sample points. To construct a B-spline inter-
polator it is necessary to prefilter the image with a high-boost
filter. If this is ignored then there is too much low-pass filtering.
Unser [106] proposed using a spatial domain recursive filter
to prefilter a discrete function prior to B-spline interpolation.
In summary, the discrete function with sample points

5The notation � as in [67] is used rather than � to denote a B-spline
basis function of degree n.

Fig. 1. De Boor Polygon consisting of control points fP ; . . . ;P g that de-
fines the spline curve x ; . . . ; x .

and sample interval can be interpolated to a contin-
uous function [67] as follows:

(44)

The functions are infinite impulse response
filters known as cardinal splines of degree .

Curve Fitting Using De Boor Control Points: A fundamental
theorem of B-splines [105], [120] states that any spline function
of degree , can be represented as a linear combination
of B-spline basis functions of the same degree over the same
partition i.e., . Curve fitting can
be achieved using a set of de Boor control points that are
joined to form a de Boor polygon, see Fig. 1. The control points
are adjusted so that fits
the data samples. The number of control points depends on the
degree of splines and the number of knots.

2) Free-form Deformations: FFDs are similar to the idea of
tensor products of univariate splines suggested by de Boor [118,
Ch. 17] for modelling surfaces. Sederberg and Parry [121] gen-
eralised this to volumes. The image domain is partitioned into
a lattice of rectangular sub-domains that are aligned with the
image axis. They used globally supported Bernstein basis func-
tions which resulted in the following FFD:

(45)

In this case denote the number of control points in the
three directions. The Bernstein polynomial basis functions are
defined by

(46)

They suggested that other basis functions such as B-splines
would be suitable. FFDs have advantages compared to previous
surface based methods. This is because the deformation model
is object-independent in the sense that it applies to 3-D space
and is independent of the object’s surface.

Hsu [112] argued that cubic B-splines had superior proper-
ties compared to the Bernstein polynomials used in [121]. They
provide both local control within a support region and conti-
nuity when control points are moved—they join smoothly
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at the knots. For cubic B-splines the support region is four con-
trol points in each direction and represents the th B-spline
basis function of degree . Their FFD takes the following form
within the support region:

(47)

with cubic B-spline basis functions

Lee et al. [110], [114] proposed a multilevel cubic B-spline
FFD for landmark-based matching of 2-D images. They showed
that a one-to-one mapping could be achieved by limiting the
displacement of control points to less than half the control point
spacing. Their FFD had local form

(48)

They chose control point locations based on dyadic subdivision.
They regularized their transformation by using a cost function
that was based on the TPS bending energy and an image en-
ergy term , where denotes convolution and a
Gaussian of standard deviation .

Gao and Sederberg [115] used a FFD to generate animations
with minimal human interaction. They chose a hierarchy of first
order (linear) B-splines on a grid of control points

. Their FFD has the form

(49)

where

if
if
otherwise.

(50)

They used a regularization strategy based on minimizing a cost
function that incorporates rudimentary
deformation energy terms and as well as color image
similarity . The Lagrange multipliers and are determined
empirically.

Registration Using B-Splines: Rueckert et al. [117] proposed
using a cubic B-spline FFD with a voxel intensity similarity
measure. The algorithm searched for the set of control point
displacements that minimized the cost function

. Where is the image
similarity measure and is the TPS bending energy. The
Lagrange multiplier controls the amount of regularization and

was chosen empirically. Normalized mutual information was
used for similarity metric and was minimized using
a gradient descent method. The FFD grids can be constructed
hierarchically so that deformations can be determined by mul-
tiresolution, see [28].

Kybic et al. [30], [122] proposed cubic B-splines as a defor-
mation model of the distortion in echo planar MR brain images
[30] and and for the registration of MR, SPECT, and CT im-
ages of the brain and heart [122]. In a continuation of this work,
Sorzano et al. [123] used cubic B-splines to model both image
deformation and also to interpolate images. Their 2-D transfor-
mation is defined as follows [122]:

(51)

where ,
is a multiresolution scaling parameter and for cubic

B-splines. They argued that a function regularization strategy
based on a Laplacian or TPS bending energy is deficient because
only pure second order derivatives and not cross-terms of first
order derivatives are considered. To overcome this, they pro-
posed a regularization scheme based on two terms, the gradients
of the divergence and the curl

of the displacement field. They evaluated the accuracy
of this approach using 2-D electrophoresis images and simu-
lated barrel and pincushion distortion. According to their re-
sults the convergence rate was faster when regularization was
used and faster still when both regularization and landmarks
were used. However, there was no comparison between their
proposed method of regularization and the standard Laplacian
one.

J. Validation of Rueckert’s B-Spline FFD Algorithm

The cubic B-spline FFD was compared to an affine model
for the registration dynamic contrast enhanced MR breast im-
ages [117]. According to this when there was subject motion,
the FFD outperformed both the rigid or affine models, in terms
of both the correlation of voxel intensities and visual assess-
ment. In [28], the algorithm was evaluated by comparing atlas
propagations of the cerebral lateral ventricles with manual seg-
mentations. Here, it was found that the algorithm was accurate
enough to compare cohorts when there was a small deformation.
In [124], a bio-mechanical model was used to generate deforma-
tions and these were compared with the ones determined using
the registration algorithm.

K. Piecewise Affine

This is sometimes also termed block-matching, multiple
or poly-affine registration. It is a relatively simple model, the
source image is divided into a number of rectangular subimages
or blocks and these are individually registered to the target
image. Typically an affine or rigid-body model is used. This
approach invariably uses a voxel intensity similarity metric as
a registration measure. This gives a uniformly spaced displace-
ment field. However, it has a particular problem in that the
displacement field is not necessarily continuous. Many authors
solve this by regularization, for instance, by low pass filtering.
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Another issue is the number of degrees of freedom or, equiv-
alently the size of the blocks. If there are too few voxels in a
block then there is insufficient information to drive registration.

The original method is usually credited to Collins et al. [125].
They used it for brain segmentation, to determine the geomet-
rical variability of brain structures across a population. The al-
gorithm was named ANIMAL and was intended to be used for
intersubject brain registration. It assumes that brain deforma-
tion can be modelled as a set of translations at regularly spaced
nodes of a dense 3-D cubic lattice. It uses a hierarchical strategy
in which the images are convolved with a Gaussian kernel and its
first derivative. Large deformations are recovered first at coarse
scales and then smaller ones at finer scales. The algorithm itera-
tively optimizes a cost function consisting of a voxel similarity
measure and a regularization term. The similarity measure is
based on normalized cross correlation (NCC). The regulariza-
tion term is a function of the magnitude of the displacement
of each voxel and the FWHM of the Gaussian convolution
kernel, , it has the following form:

(52)

where is a constant. A presegmented atlas is used for the target
image. The subject images are registered to this and the trans-
formation is inverted and used to propagate the segmentation
into the subject images. The algorithm was evaluated by com-
paring displacements of 34 manually located landmarks from
3-D MR brain scans of normal subjects [125]. The
average standard deviation of voxel displacements in the three
Cartesian directions was 4.2 mm for the algorithm and 3.9 mm
for the manual method.

L. Wavelets

In Fourier analysis, a function6 is decomposed into a set of si-
nusoidal basis functions. Sinusoidal functions are perfectly lo-
calized in frequency, but completely unlocalised in space. In
contrast, in wavelet analysis, basis functions are localized in
both the frequency and spatial domains [126]. Wavelets are im-
plicitly designed for the multiresolution analysis of signals. A
vector function subspace of is constructed from a nested
set of subspaces , such that
where contains the additional detail to generate .
and are, respectively, constructed from usually orthogonal
sets of scaling and wavelet functions. Defined as

and .
A 1-D function can be represented as an expansion of translated
and dilated scaling and wavelet basis functions as follows:

(53)

Wavelets have an advantage over the Navier-Cauchy eigenfunc-
tions in (5) because they allow deformations with local sup-

6The function is assumed to be continuous, real-valued and square integrable
L ( ), i.e., jf(x)j dx < 1:

port to be modelled from a finite set of basis functions. Further-
more, they provide an implicit multiresolution representation of
the transformation.

Amit [127] considered registration as a variational problem
where is obtained by minimising a cost function consisting
of the sum of square intensity differences and a smoothing
term. Here, is modelled in 2-D by the wavelet expansion

with basis functions that are
tensor products of and

(54)

The smoothing term is

(55)

where , with , The optimal value
of is found by gradient descent and the inner products
are determined by the fast discrete wavelet transform of Mallat
[128] using Daubechies [129] compactly supported wavelets.

Gefen [130], modelled in 3-D with a wavelet expansion

(56)

where is determined from the tensor product of 1-D order
3 spline wavelet basis functions, cf. (54) and denotes the
subband. In this approach, the Navier-Cauchy PDE is solved
by minimising the elastic energy functional separately for each
component of the deformation field using the Levenberg-Mar-
quardt algorithm. Gefen compared the wavelet and TPS models
for intersubject registration of histology images of rat brains.
The mean surface error of both methods decreased with the
number of registration parameters. For the same number of
parameters, the wavelet method was about 10% more accurate
than the TPS, however it is substantially more computationally
intensive. For the TPS, the number of parameters depends on
the number of corresponding points. However, for the wavelet
method it depends on the number of voxels. The wavelet
method can therefore be applied at a finer scale, 2800 parame-
ters gave an accuracy of 2.39 voxels.

Wu et al. [131], [132] expressed the displacement field as a
wavelet expansion and determined the optimal set of wavelet co-
efficients with a coarse-to-fine optimisation strategy using the
Levenberg-Marquardt algorithm. They required a smooth so-
lution and chose the wavelet function of Cai and Wang [133]
which are cubic spline basis functions that span a Sobolev rather
than space.

1) Piecewise Affine With Optical Flow Regularization: Hel-
lier et al. [134] proposed a multiresolution algorithm based on a
piecewise affine transformation regularized with an optical flow
model. They used a quadratic form of optical flow, defined by
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(23). They added a second regularization term ,
where is in a neighborhood of , to smooth the dis-
placement field. The combined cost function was

(57)

They used a multi-resolution strategy to circumvent the small
displacement limitation of optical flow. This consisted of both
a Gaussian image pyramid and a multi-grid method. The multi-
grid method involved partitioning the image into rectangular
blocks. The displacement field for each block is estimated
using the robust M-estimator [135]–[137]. The M-estimator
[135] is a robust maximum likelihood estimator that decreases
the weighting of values at the tails of the distribution. It is
typically used for iterative least squares problems to reduces
the impact of outliers. The transformation model used depends
on the number of voxels in the block. For blocks with 12 or
more voxels a full affine is estimated, for ones with between 6
and 12 voxels a rigid-body and for those less than 6 a simple
translation is used. The multigrid method is thought to have
an advantage of being robust to MR intensity inhomogeneities
which tend to be low spatial frequency.

VI. CONSTRAINTS ON THE TRANSFORMATION

A. Inverse Consistency

Christensen and Johnson [138], [139] used inverse con-
sistency as regularization constraint. Inverse consistency can
be explained by considering the transformations obtained by
registering image to as and the inverse one from

to as . If the transformations and are
consistent their composition is the identity. For almost all
registration algorithms . So they introduced a
regularization constraint that penalizes the inconsistency. In
[138], they consider linear elastic registration as defined by
the Navier-Cauchy PDE (4). The cost function is a linear
combination of: image similarity , the consistency of the
forward and backward transformations , and a regular-
ization term that is related to the energy of the deformation

. the
square difference similarity measure is used so

. is determined from the
residual between the forward and backward transfor-
mation, i.e., with

. relates to
energy of the transformation
where .

B. Topology Preservation

The topology can be preserved by ensuring that two condi-
tions are fulfilled [140]: 1) the determinant of the Jacobian of
the transformation is always positive; 2) the transformation is
bijective. Continuity is implied by the existence of .

Noblet et al. [141] proposed a method to ensure that
for a hierarchy of linear B-splines. For B-splines of degree one,

the displacement can be represented as a product of three terms
of the form where is or or . Expanding the
determinant of the derivative terms leads to an expression for
in terms of , and

(58)

Given a gradient descent optimization method with step length
it is possible to express as a function of i.e.,

in (58). In this way, it is possible to limit so that .

C. Diffeomorphic Transformations

Miller et al. [142] proposed that the group of diffeomorphic
mappings, as proposed by Christensen et al. [57] for fluid flow
registration, were suitable to generate groups of computational
anatomies [143]–[145]. The problem with the fluid flow algo-
rithm [57] is that singularities can arise from the successive
overrelaxation method used to solve the Navier-Stokes PDE
[146]. These can be avoided by regularising the velocity field
[146]. To achieve this a diffeomorphic space-time mapping

where and is required. This is mapping
is related to the displacement field by and
satisfies the following [142]:

(59)

(60)

(61)

The function describes a diffeomorphic flow through
space-time. The vector is a location in the target image and
the derivative is the Jacobian of the transformation.
A numerical method for obtaining a diffeomorphism is given in
[147]. Joshi and Miller [70] describe how diffeomorphisms can
be used for landmark matching. The optimal displacement is
determined by integrating the optimal velocity over time, i.e.,

. The optimal velocity is determined by
minimizing two terms. The first term relates to the energy of the
flow. The second term refers to the distance (residual) between
the landmarks in the target image and the time dependent
mappings of the landmarks in the source image . This
leads to the following equation for the velocity :

(62)

The differential operator is modelled on the Navier-Stokes
PDE (21) with incompressible flow i.e., . Con-
sequently, is a diagonal operator and takes the form

where is a constant. The operator
and its boundary conditions are chosen so that the 3 3 ma-
trix Green’s function is continuous in and and

is a positive definite operator.
The term is given by

(63)
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Here, is a 3 3 covariance matrix that represents anisotropic
landmark localization errors. The minimiser can be rewritten,
see [70], in the following form:

(64)

with a diagonal matrix

is the 3 3 identity matrix. Assuming a normally distributed
velocity field then is defined as a covariance matrix
with 3 3 submatrices . The time

derivative of the optimal diffeomorphic mapping for the th
landmark is given by

(65)

They implement (64) by discretizing time and determining the
perturbation of landmark displacements over each time step, for
details see [70]. They use simple test examples to demonstrate
that for their transformation.

VII. COMPARATIVE EVALUATION OF

NONRIGID TRANSFORMATIONS

A critical aspect in choosing a transformation model is its
impact on the accuracy of the nonrigid registration algorithm.
However, this error is difficult to evaluate for real-world med-
ical applications. This is because of the difficulty in obtaining
ground truth transformations. A possible approach is to use sim-
ulation, but this must be realistic to be valuable. Furthermore,
there are a wide range of potential applications and for most
of these the transformation model is not precisely known. An
alternative approach is to measure the geometric error at corre-
sponding landmark locations. A large number of samples would
be needed to give a representative estimate over the entire image
domain. Despite this, for many applications, only the error at
key structures is important so this approach can be viable. A
limitation here is the localization error in identifying landmarks.

There is little published work on the comparative evaluation
of nonrigid algorithms with different transformation models.
Two recent studies have been published by Hellier et al. [148]
and Zagorchev and Goshtasby [84]. There are new projects such
as NIREP [149] that aim to provide systematic evaluation strate-
gies. Hellier et al. [148] evaluated six methods for the inter-
subject registration of MR brain images. These consisted of
rigid-body [150], [151] and nonrigid registration algorithms and
the proportional squaring method of Talairach [40] which re-
quires manual input. The nonrigid algorithms were based on
fluid flow [139], optical flow [64] and piecewise affine [125]
transformation models. They used a variety of metrics to eval-
uate error, both globally over the entire image domain and lo-
cally for certain key brain structures. According to the global
criteria accuracy appeared to increase with the number of de-
grees-of-freedom of the transformation. Also, folding was noted
for the optical flow algorithm [64]. For the local criteria there

were mixed results and there was no significant difference be-
tween rigid and nonrigid algorithms. In conclusion, they recom-
mended combining anatomical landmarks with intensity-based
registration to increase accuracy.

Zagorchev and Goshtasby [84] compared four land-
mark-based methods [TPS, MQ, WMN, and piecewise linear
(PL)] in terms of accuracy and computational cost. The TPS,
MQ, and WMN are globally supported RBFs while PL is lo-
cally supported. The WMN is an approximating function while
the others are interpolating. The accuracy generally depended
on the size of the local geometrical differences between the
images and the number and distribution of landmarks. When
there were large local geometrical differences, WMN and PL
were considered the most accurate. This was thought to be
because: 1) when landmarks are irregularly spaced there are
large errors for RBFs like TPS and MQ in image regions with a
low landmark density; 2) when the landmark spacing is highly
variable the system of equations that needs to be solved for
each component becomes ill-conditioned. When there are small
local geometrical differences and a small set of widely spread
landmarks then TPS and MQ were preferred because they are
interpolating functions. Generally, PL was the most suitable
method for images with local geometrical differences because
the local support property ensures that errors are not propagated
globally. When there is a large number of landmarks with
localization error the WMN method was preferred because 1)
it does not require the solution of a system of equations that
could be numerically unstable and 2) the averaging process
when calculating the mean value reduces noise effects.

VIII. CONCLUSION

Nonrigid registration has become an important tool in med-
ical image analysis. It can provide automated quantitative mea-
surements for a large range of biological processes in vivo.

In principle, physical models have the advantage of pro-
viding physically realistic solutions. However, some of these,
e.g., linear elasticity can only accurately model small deforma-
tions, which is a limitation because often soft tissue exhibits
large deformation. Fluid flow is more appropriate for this and
can ensure that the topology is preserved. However, it does
not model the elastic component of tissue deformation and
contains a solution space that cannot be realized in many tissue
deformation states. Also, the solutions of the associated PDEs
are often highly computationally complex. In reality, tissue
exhibits a complex behavior, only in certain conditions can
it be considered as an elastic or visco-elastic material and it
usually behaves anisotropically. It is expected that better phys-
ical models should emerge as our understanding of continuum
biomechanics advances [66].

Basis function expansions do not, in general, describe the
physical or biological processes that cause the geometrical
change. Instead they construct an interpolating or approxi-
mating function to model it. Some basis functions are com-
pactly supported which allows highly localized deformation
to be modelled. Compact support also has the advantage of
reducing complexity and speeds up optimization. Generally,
basis function expansions are easier to solve computationally
than PDEs. Radial basis functions are used for landmark-based
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registration. They simplify the multidimensional representation
of the deformation. They provide fast closed-form solutions.
B-spline and wavelet expansions are similar, but they do not
use a simplifying distance metric. Instead multidimensional
basis functions are constructed from linear combinations of
univariate ones. An optimal set of coefficients is typically de-
termined using a variational approach. B-splines and wavelets
have desirable properties such as smoothness and can be con-
structed hierarchically. B-splines have less complexity than
wavelets and are smooth and compactly supported.

It is always beneficial to use as much information as possible,
so using additional landmarks should improve the accuracy of
a non-landmark based method, provided the landmarks are ac-
curately localized. It is possible to design basis functions that
satisfy physical models, e.g., [102], [103]. Similarly, preserving
the topology or ensuring the transformation is diffeomorphic are
principled strategies and can be incorporated, for example, as a
regularization constraint.

Generally, there is a lack of evaluation studies of nonrigid al-
gorithms with different transformation models. Consequently,
it is difficult to draw robust conclusions about which methods
are most accurate or best suited to a particular application. New
evaluation projects are being planned that can address this. Eval-
uation could play an important role in providing feedback when
new continuum biomechanical models of in vivo soft-tissue de-
formation are proposed.
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