
Vol.:(0123456789)

Surveys in Geophysics (2021) 42:505–549

https://doi.org/10.1007/s10712-021-09638-4

1 3

A Review of Geophysical Modeling Based on Particle Swarm 
Optimization

Francesca Pace
1
  · Alessandro Santilano

2
  · Alberto Godio

1
 

Received: 14 December 2020 / Accepted: 27 February 2021 / Published online: 13 April 2021 

© The Author(s) 2021

Abstract

This paper reviews the application of the algorithm particle swarm optimization (PSO) to 
perform stochastic inverse modeling of geophysical data. The main features of PSO are 
summarized, and the most important contributions in several geophysical fields are ana-
lyzed. The aim is to indicate the fundamental steps of the evolution of PSO methodologies 
that have been adopted to model the Earth’s subsurface and then to undertake a critical 
evaluation of their benefits and limitations. Original works have been selected from the 
existing geophysical literature to illustrate successful PSO applied to the interpretation of 
electromagnetic (magnetotelluric and time-domain) data, gravimetric and magnetic data, 
self-potential, direct current and seismic data. These case studies are critically described 
and compared. In addition, joint optimization of multiple geophysical data sets by means 
of multi-objective PSO is presented to highlight the advantage of using a single solver 
that deploys Pareto optimality to handle different data sets without conflicting solutions. 
Finally, we propose best practices for the implementation of a customized algorithm from 
scratch to perform stochastic inverse modeling of any kind of geophysical data sets for the 
benefit of PSO practitioners or inexperienced researchers.

Keywords Particle swarm optimization · Stochastic inverse modeling · Inversion · Swarm 
intelligence · Optimization · Joint optimization

 * Francesca Pace 
 francesca.pace@polito.it

 Alessandro Santilano 
 alessandro.santilano@igg.cnr.it

 Alberto Godio 
 alberto.godio@polito.it

1 Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, 
Corso Duca degli Abruzzi 24, 10129 Turin, Italy

2 Institute of Geosciences and Earth Resources - National Research Council (IGG-CNR), Via 
Moruzzi 1, 56124 Pisa, Italy

http://orcid.org/0000-0001-8415-6894
http://orcid.org/0000-0003-3895-9324
http://orcid.org/0000-0003-0452-0815
http://crossmark.crossref.org/dialog/?doi=10.1007/s10712-021-09638-4&domain=pdf


506 Surveys in Geophysics (2021) 42:505–549

1 3

Article Highlights

• Stochastic inverse modeling of geophysical data using the particle swarm optimization 
algorithm

• Best practices for the adoption of particle swarm optimization in geophysics
• Multi-objective optimization of geophysical data

1 Introduction

The link between geophysical data and the properties of the Earth’s subsurface is provided 
by the modeling process, that is, forward and inverse modeling. These modeling proce-
dures allow us to derive a subsurface model that interprets the observed data; the core of 
the procedure requires the inverse problem to be solved. This means solving a nonlinear, 
multi-parametric and ill-posed problem affected by the equivalence of solutions. Thus, there 
are many models that can equally fit the data within a given tolerance threshold (Tarantola 
2005). The standard approach is the iterated and linearized inversion based on a local search 
of the model domain (Sen and Stoffa 2013). The main issues of this approach include firstly 
the choice of the reference model used to initialize the inversion, which can strongly bias 
the result and hence the interpretation, and secondly the inversion can find local rather than 
global solutions (i.e., the local minimum “syndrome”, Sen and Stoffa 2013).

To solve the nonlinear inverse problem, it is also possible to perform a global optimiza-
tion instead of a linearized inversion. The global search approach, also called probabilistic or 
stochastic inverse modeling, is represented by methods like Monte Carlo or metaheuristics 
(Sen and Stoffa 2013). Global search methods have become of major interest in geophysics 
because they are theoretically able to find the global minimum of a function as the final solu-
tion without being trapped in one of several local minima. The main reason for this is that 
the model space is sampled either randomly or according to a specific strategy (e.g., adaptive 
behavior). Consequently, global search algorithms are time-consuming, while derivative-based 
algorithms converge after a few iterations. The essential advantage of global search algorithms 
is that the final solution is independent from the initial guess of the starting model. Unfortu-
nately, the application of global search algorithms to geophysical inversion has been hindered 
by their high computational costs. However, the striking recent improvements in computer 
efficiency have enabled the decrease in the computer time required to run these algorithms.

The family of global search algorithms is divided into two main groups. The first one 
is represented by Monte Carlo (MC) methods and is based on the random sampling of 
the search space of the solutions (Sambridge and Mosegaard 2002). The second group 
encompasses the metaheuristic methods, such as nature-inspired algorithms. They are 
examples of Computational Intelligence algorithms based on biological systems. Among 
the metaheuristic methods, evolutionary computation (EC) models genetic and behavioral 
evolution, while swarm intelligence (SI) models the social behavior of organisms living in 
groups. EC and SI are referred to as population-based algorithms since they are based on 
the behavior of groups of individuals (Engelbrecht 2007). The EC tenet is that the individ-
uals with the best chromosomes survive (and the weakest individuals have to die), so that 
only the selected chromosomes are inherited by the new generations. The most important 
example of an EC algorithm is the genetic algorithm (GA) (Engelbrecht 2007).

SI is instead the problem-solving behavior emerging from the interactions of agents in 
a group. SI mimics the naturally based social dynamics that provide individuals with more 
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information than their own senses obtain. The algorithmic models of SI are referred to as 
computational swarm intelligence (CSI), whose main paradigms are particle swarm opti-

mization (PSO) and ant colony optimization (ACO) (Kennedy et al. 2001). Many emerging 
real-world applications of EC and CSI are telecommunication networks, training of neu-
ral networks, game learning, clustering, design, bioinformatics, data mining (Engelbrecht 
2007) and chemical engineering (Valadi and Siarry 2014).

GA, PSO and ACO are theoretically able to find the global minimum of the objective 
function without being trapped in one of the several local minima. This point is of pivotal 
importance in their application to geophysics because of the equivalence issue of the geo-
physical inverse problem. The most important metaheuristics applied to the inversion of 
geophysical data are simulated annealing (SA) (Kirkpatrick et al. 1983; Sen et al. 1993), 
GA (Sen and Stoffa 2013), ACO (Yuan et al. 2009), grey wolf optimizer (Agarwal et al. 
2018) and PSO (Shaw and Srivastava 2007). To date, GA has been more widely adopted 
than PSO in geophysical modeling: 1-D seismic waveform inversion (Stoffa and Sen 1992), 
magnetotelluric (MT) data (Pérez-Flores and Schultz 2002; Everett and Schultz 1993) and 
reservoir modeling (Sen et al. 1995). However, some studies have demonstrated that PSO 
outperforms GA for accuracy and convergence in several geophysical applications (Yuan 
et al. 2009; Fernández Martínez et al. 2010a; Song et al. 2012; Pace et al. 2019b).

1.1  General Applications of PSO

PSO has been successfully utilized in many fields, such as structural design (Perez and Beh-
dinan 2007), solar photovoltaic systems (Khare and Rangnekar 2013), epidemic modeling of 
Sars-Cov-2 (Godio et al. 2020; Al-qaness et al. 2020), hydrogeology (Fernández Martínez 
et al. 2012), geotechnical engineering (Cheng et al. 2007; Armaghani et al. 2017; Yin et al. 
2018), reservoir engineering (Ahmadi et al. 2013), computer vision (Jin et al. 2017), artificial 
neural networks (Song et al. 2007), biomedical engineering (modeling of the spread of anti-
biotic resistance) (Wachowiak et al. 2004), electronics and electromagnetics (Robinson and 
Rahmat-Samii 2004), power systems (AlRashidi and El-Hawary 2009), robotics (robot path 
planning), and signal processing (Poli 2008; Adhan and Bansal 2017 and references therein).

A clear overview of the most common PSO applications is graphically shown in Fig. 1. 
It is a word cloud generated from the one-thousand most cited PSO papers in Google 
Scholar between 1995 and 2020. The year 1995 is a milestone in the PSO literature since 
the first paper about PSO was published by Kennedy and Eberhart, which today counts 
more than 60,000 citations. During the same time span of 25  years, more than 15,000 
works (journal articles, conference proceedings, books) that contain PSO in the title 
have been published according to Google Scholar. The overall H-index is 232. The mean 

Fig. 1  Word cloud from the titles 
of the most cited one-thousand 
papers about PSO published from 
1995 to 2020. The data source 
is Google Scholar and encom-
passes journal articles, books and 
conference proceedings. Data 
analysis: Harzing (2007) Publish 
or Perish, available from https:// 
harzi ng. com/ resou rces/ publi sh- 
or- perish

https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
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citations per year are 4 and the mean author count is 3 (data analysis: Publish or Perish, 
available online; query date: July 2020).

According to Scopus, more than 73,000 works (journal articles, conference proceed-
ings, books) were published between 1995 and 2020, which included PSO in the title or 
abstract or keywords. They are marked in the grey bins in Fig. 2 and classified by the year 
of publication. In the field of “Earth and planetary science” a total of 2458 works was pub-
lished, as depicted in the black bins in Fig. 2. Clearly, there was an increasing linear trend 
in PSO-related works in this period. PSO has received growing attention in the field of geo-
science as well, in particular near-surface applications for geological, hydrogeological and 
engineering studies, and large-scale geological and structural exploration of geo-resources.

1.2  PSO in Geophysical Studies: An Overview

Even though recent reviews of PSO in engineering-related fields have been published (e.g., 
Khare and Rangnekar 2013), little attention has been paid to a comprehensive review of 
PSO applied to geosciences, despite demonstrating attractive features and successful geo-
physical applications. The fundamental theoretical basis of PSO can be found in Engelbre-
cht (2007), which deals with general applications of PSO to the optimization of benchmark 
mathematical functions. The book of Sen and Stoffa (2013) focuses on global search meth-
ods applied to the geophysical inversion. However, it extensively describes methods such 
as Monte Carlo, SA and GA, but devotes only a paragraph to PSO.

The earliest applications of PSO to geophysical data involved direct current (DC), 
induced polarization (IP) and MT (Shaw and Srivastava 2007). Subsequently, research 
studies improved the PSO algorithm by focusing on the tuning of the input parameters, 
stability region, convergence and PSO variants (Fernández Martínez et al. 2010a, b). This 
resulted in a better solution of the geophysical inverse problem. At the same time, PSO was 
suggested to model a few parameters (tens) with fast forward routines. A number of theo-
retical studies refined both the mathematical and computational aspects of PSO, thus lead-
ing to a family of PSO algorithms (Ratnaweera et al. 2004; Ebbesen et al. 2012; Gou et al. 
2017). Furthermore, due to the striking computational improvements of the last decade, 
PSO began to be applied to complex geophysical problems. Original works include 3-D 

Fig. 2  Number of works published in 1995–2020 including PSO in the title or abstract or keywords (data 
source: Scopus). Grey bins refer to all scientific fields, black bins refer to “Earth and planetary science”. 
The table below the horizontal axis counts the number of PSO-related works per year
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gravity inversion (Pallero et al. 2015), microseismic event location (Lagos and Velis 2018), 
2-D MT optimization (Pace et al. 2019a), full waveform inversion (Aleardi 2019) and joint 
inversion of multiple data sets (Paasche and Tronicke 2014).

The main applications of PSO to the geophysical inverse problem include the interpreta-
tion of:

a. vertical electrical sounding (VES) (Fernández-Álvarez et al. 2006; Fernández Martínez 
et al. 2010a; Pekşen et al. 2014; Cheng et al. 2015; Pace et al. 2019b);

b. gravity data (Yuan et al. 2009; Pallero et al. 2015, 2017, 2021; Darisma et al. 2017; 
Jamasb et al. 2019; Essa and Munschy 2019; Anderson et al. 2020; Essa and Géraud 
2020; Essa et al. 2021);

c. magnetic data (Liu et al. 2018; Essa and Elhussein 2018, 2020);
d. multi-transient electromagnetic data (Olalekan and Di 2017);
e. time-domain EM data (Cheng et al. 2015, 2019; Santilano et al. 2018; Pace et al. 2019c; 

Li et al. 2019; Amato et al. 2021);
f. MT data (Shaw and Srivastava 2007; Pace et al. 2017, 2019a, c; Godio and Santilano 

2018; Santilano et al. 2018) and radio-MT data (Karcıoğlu and Gürer 2019);
g. self-potential data (Santos 2010; Pekşen et al. 2011; Göktürkler and Balkaya 2012; Essa 

2019, 2020) and induced polarization (Vinciguerra et al. 2019);
h. Rayleigh wave dispersion curve (Song et al. 2012) and full waveform inversion (Aleardi 

2019).

1.3  Objectives of the Review

The goal of this work is to review the recent advances in the application of PSO to differ-
ent geophysical methods, e.g., electric, electro-magnetic, magnetic and gravity data. Our 
aim is to indicate the fundamental steps of the evolution of PSO methodologies that have 
been adopted to model the Earth’s subsurface and to undertake a critical evaluation of their 
benefits and limitations.

We investigate the state of the art of scientific literature regarding geophysical appli-
cations of the PSO algorithm. We illustrate some case studies of pivotal importance in 
electromagnetic, gravity, magnetic, self-potential, electric and seismic data. From an accu-
rate literature review, we highlight the main contributions which have deployed PSO to 
solve some geophysical issues, to provide a new approach for geophysical modeling and to 
improve data interpretation and solution evaluation. Significant innovations have dealt with 
the choice of the geophysical measurement, the dimensionality of the problem to be solved 
(1-D, 2-D or 3-D), the parametrization of the geophysical model, the error associated to 
the data, the choice of the most appropriate PSO input arguments and the adoption of new 
releases of the algorithm to improve the model solution. We analyze the most-commonly 
adopted minimization functions, the flexibility of PSO if lateral and spatial constraints 
are imposed or if a priori information is introduced. We point out the possible limitations 
of existing works that could be improved by means of sophisticated variants of the PSO 
algorithm or by implementing a parallelized PSO to be run on clusters (e.g., cloud com-
puting, high-performance-computing). These aspects could improve some of the existing 
simple applications of PSO to low-dimensional geophysical problems (tens of unknown 
parameters).
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This work also focuses on a powerful application of PSO to solve multi-objective prob-
lems, such as joint optimization of multiple geophysical data sets. Multi-objective PSO 
has proven to be a valid method for an integrated interpretation of different geophysical 
measurements that present different resolutions, sensitivities, depths of investigation and/or 
error levels. The computational load of the PSO algorithm is much higher than that of the 
deterministic approach. However, it can be seen as a minor drawback if the algorithm argu-
ments are correctly chosen and the code is parallelized. Finally, the work provides practical 
PSO guidelines to pave the way for further advances in this field.

2  Particle Swarm Optimization: State of the Art

The original idea of the PSO algorithm was born from the observation of the choreogra-
phy of bird flocks and schools of fish (Kennedy and Eberhart 1995). The way they share 
knowledge to search for food or find the best reciprocal distance in motion fascinated 
Kennedy and Eberhart (1995) so strongly that they proposed applying this evolutionary 
approach to the optimization of nonlinear problems. Pivotal references for computational 
swarm intelligence are Kennedy et al. (2001) and Engelbrecht (2007), that reports: “PSO 

is a population-based search procedure where the individuals, referred to as particles, are 

grouped into a swarm. Each particle in the swarm represents a candidate solution to the 

optimization problem. In a PSO system, each particle is “flown” through the multidimen-

sional search space, adjusting its position in search space according to its own experi-

ence and that of neighboring particles”. Simple interactions between individuals yield a 
complex collective behavior, meaning that each individual is able to adapt and derive new 
and coherent behavior in case of changes in the external environment. The most striking 
feature of PSO is that every particle has a memory component that rules its behavior. “The 

effect is that particles “fly” toward an optimum, while still searching a wide area around 

the current best solution. The performance of each particle (i.e. the “closeness” of a par-

ticle to the global minimum) is measured according to a predefined fitness function which 

is related to the problem being solved”. The fitness function is the objective function of the 
optimization problem.

During the past two decades, PSO has been widely applied to solve optimization prob-
lems. The solution m is found after that the objective function, that is, the quantity to be 
optimized, is minimized (or maximized, depending on the problem) obeying or not some 
constraints. Fundamentals of the optimization theory can be found in Engelbrecht (2007). 
The typical properties of the most common (and challenging) optimization problems are

a. Multivariate: there is more than one unknown
b. Nonlinear: the objective function is non linear
c. Constrained: the search space of the candidate solutions is restricted to specific regions 

according to equality or inequality constraints
d. Multimodal or multi-solution: there is not only one clear solution, but a set of feasible 

candidate solutions referred to as local or global optima (whose mathematical definition 
is here omitted).

Another distinction of the optimization problems is between single-objective or multi-
objective problems, meaning that there is one or more than one objective function(s) to 
be simultaneously optimized. In geophysics, an example of multi-objective optimization 
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problem is the joint inversion of multiple geophysical data sets. Multi-objective PSO 
(MOPSO) of geophysical data is presented in Sect. 5.

2.1  Classical PSO

A swarm is usually thought as a disorganized cluster of elements (insects, birds, fish, 
bacteria) apparently moving chaotically and following random directions. They are actu-
ally sharing their knowledge to pursue the goal of escaping from predators or keeping the 
best reciprocal distance in motion or searching for food. Social behavior allows particles 
to reach a specific objective and adapt to the environment. Therefore, the elements of the 
swarm can be regarded as massless and volume-less mathematical abstractions aiming at 
optimizing the objective function.

Assuming a nonlinear optimization problem affected by the non-uniqueness of the solu-
tion, as the geophysical inverse problem is, the set of the possible solutions can be imag-
ined as a set of particles grouping in a swarm. The particles populate the search space of 
the problem solutions and change their position to fulfill the common objective. At the 
beginning of the optimization, the particles are initialized by being given uniformly dis-
tributed random position and null velocity. Then, the iterative swarming behavior begins. 
Each iteration, each particle is stochastically accelerated, on the one hand, toward its previ-
ous best position (i.e., where it minimized the objective function) and, on the other hand, 
toward the neighborhood best position (i.e., where any other particle minimized the objec-
tive function). These two basic approaches are referred to as exploration and exploitation, 
respectively. They compete in searching for the global minimum. While the exploration 
is associated to the cognitive behavior, that is, the memory component of the particle, the 
exploitation is related to the social behavior, that is, the convergence toward the leader.

The ruling equations of the standard PSO algorithm are

where x is the vector of the particle’s position composed of as many components as the 
problem unknowns, v is the velocity vector, i = [1, …, N], N is the number of particles 
forming the swarm, k is the current iteration number, xk

i
 and vk

i
 are the current vectors of 

position and velocity of the ith particle, respectively, ωk is the inertia weight that balance 
the momentum remembered from the previous iteration, α1 is the cognitive acceleration 
towards the best particle position P, also called “local best”, α2 is the social acceleration 
towards the best global position G (or “global best”) found by the group leader and γ1 and 
γ2 ∈ [0,1] are uniformly distributed random values which provide stochastic perturbation. 
The inertia weight ωk usually linearly decreases from 0.9 (first iteration) to 0.4 (last itera-
tion) (Shi and Eberhart 1998). However, many geophysical studies adopting PSO make use 
of constant inertia (ω) in the range 0.5–1, always less than 1.

At the beginning of the optimization (k = 0), the velocity vector 
(

v
0

i

)

 is zero and the 
position vector (x0

i
 ) is randomly initialized. Then (k > 0), the particle velocity (vk

i
) changes 

according to three terms: inertia component ωk, cognitive memory α1 and social attraction 
α2. Finally, the particle position x

k

i
 is updated. Figure  3 clearly represents the graphical 

meaning of Eqs. 1 and 2. The ith particle moves from the position at iteration k ( xk

i
 ) to the 

following position ( xk+1

i
 ) (purple arrow) as the resulting contribution of the three terms of 
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Eq. 1: inertia ωk (red arrow), cognitive attraction α1 (green arrow) and social attraction α2 
(yellow arrow).

The PSO algorithm complies with the following three steps:

1. To evaluate the objective function for each particle
2. To update the individual and global best positions (P and G)
3. To update the velocity and position of each particle.

The previous steps are repeated as long as a valid ending condition is satisfied. The most 
common stopping criterion is to fix a maximum number of iterations. However, since 
the number of iterations is problem-dependent, there are some other stopping criteria to 
ensure an effective optimization of the objective function: an acceptable solution found, 
no improvements over a number of iterations, a normalized swarm radius tending towards 
zero or the objective-function slope tending towards zero (Engelbrecht 2007).

The values of the accelerations (α1 and α2) influence the way the particles explore the 
model space and change their trajectory with respect to the local and global bests. The 
accelerations values must obey the stability solution conditions (Perez and Behdinan 2007):

Equations 3 and 4 are derived from applying the necessary and sufficient condition for 
stability to the eigenvalues of the PSO equations written in matrix form. A generic PSO 
algorithm can be easily implemented thanks to practical guidelines both in MATLAB 
(Ebbesen et al. 2012) and in Python (Miranda 2018).

2.2  PSO Variants and Input Arguments

A large number of different PSO variants have been developed since the first algorithm of 
Kennedy and Eberhart (1995) appeared. The early improvements of the code concentrated 
on the inertia weight ωk (Shi and Eberhart 1998) and the acceleration coefficients α1 and 
α2 (Perez and Behdinan 2007) in order to improve both convergence speed and solution 
stability. The improvements regarding the inertia weight have been adopted by the majority 
of geophysical applications (Fernández Martínez et al. 2010a; Godio and Santilano 2018; 
Santilano et al. 2018). Standard PSO usually adopts constant values for the accelerations 
independently of the iterations.

(3)�
1
+ �

2
< 4

(4)
�

1
+ �

2

2
− 1 < � < 1

Fig. 3  Graphical representation 
of the ruling equations of the 
PSO algorithm. (Adapted from 
Ebbesen et al. 2012)
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Further developments of the standard PSO proposed some sophisticated adjustments to 
accelerate convergence and avoid the solution getting trapped in a local minimum. The 
most important PSO variants are: the fuzzy-adaptive PSO with fuzzy system tuning the 
inertia weight (Shi and Eberhart 1998), the self-organizing hierarchical PSO with time-
varying acceleration coefficients (Ratnaweera et al. 2004), the hybrid quadratic PSO (Ying 
et al. 2006), the adaptive PSO (Zhan et al. 2009) and the individual-difference evolution 
PSO (Gou et al. 2017).

As introduced in the previous section, the main input arguments or tuning parameters of 
the PSO algorithm are:

a. The acceleration coefficients α1 and α2 The simplest variants of PSO adopt constant 
acceleration coefficients, that are usually equal to 2 since they are the benchmark val-
ues. Inspection of literature values reveals a wide range of accelerations setups if they 
are tuned to a specific geophysical case study. For this reason, cognitive acceleration 
is set in the range from 0.5 to 2 to 3.2. Social acceleration ranges instead from 1.1 to 
2. A significant improvement in PSO efficiency has been observed by allowing the 
accelerations to vary with the iterations, as examined in Ratnaweera et al. (2004) with a 
thorough sensitivity analysis. This variant is called hierarchical PSO with time-varying 
acceleration coefficients (HPSO-TVAC) and takes the social and cognitive behavior of 
particles into account to enhance the solution convergence and stability. Useful examples 
about the influence of the PSO accelerations on the geophysical models can be found in 
Fernández Martínez et al. (2010a; b) and Pace et al. (2019a). The ruling equations of the 
HPSO-TVAC are slightly different from Eqs. 1 and 2 in that the acceleration parameters 
are k-dependent:

where the equation terms have already been defined. The HPSO-TVAC approach states 
that, at the beginning of the optimization, α1 is larger than α2 and then they linearly 
reverse. In this way, at the start, the diversity of the swarm ensures the search space 
exploration (high α1

k), and, at the end, the exploitation of the best regions and the con-
vergence towards the global minimum are enabled (high α2

k). The resulting adaptive 
behavior is hence enhanced. In more detail, the cognitive and social accelerations obey 
Eqs. 3 and 4 and change according to:

where αk is the acceleration value at iteration k; α1
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max are the maximum 
values for the cognitive and social accelerations, respectively; α1

min and α2
min are the 
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is the maximum number of iterations set for the optimization (Engelbrecht 2007 and 
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while, at the last iteration (k = max(k)), �k=max(k)

1
= �

min

1
 and �k=max (k)

2
= �

max

2
 . The best 

range of the acceleration values ensuring the convergence and stability of the solution 
has been tested and identified for several benchmark functions (Ratnaweera et al. 2004; 
Fernández Martínez et al. 2010a, b). Starting from their results, and obeying Eqs. 3, 
4, 7 and 8, Pace et al. (2019a) performed some tests to assess the influence of several 
acceleration values on the solution of the 2-D MT inverse problem. That sensitivity 
analysis outlined �max

1
= 2 , �min

1
 = 0.5, �min

2
= 0.5 , and �max

2
= 2 as optimal accelera-

tion values for a robust minimization of the objective function (see Fig. 5 compared to 
Fig. 4). These accelerations were also adopted for PSO of TDEM and VES data (Pace 
et al. 2019b; Amato et al. 2021).

b. The stopping criterion/criteria adopted to end the iterations The PSO algorithm is 
iterated enough to guarantee as far as possible minimization of the objective function. 
Many PSO applications have commonly adopted the maximum number of iterations 
as the unique stopping criterion (Fernández Martínez et al. 2010b; Pallero et al. 2017; 
Godio and Santilano 2018; Santilano et al. 2018). However, the number of iterations 
is problem dependent and its arbitrary choice can lead to either an ending before the 
solution convergence or unnecessary computation (Engelbrecht 2007). Recent studies 
took into account the trend of the objective function during the minimization (Pace 
et al. 2019a, b). PSO ran as long as the objective function did improve for a significant 
number of consecutive iterations (e.g., 100) or, if this condition was not satisfied, up to 
a maximum number of iterations (e.g., 2000). Another stopping criterion useful in geo-
physical modeling is the minimum root-mean-square error (RMSE) equal to 1 (± 10% 
of tolerance), to avoid the fitting of the data below their uncertainty (deGroot‐Hedlin 
and Constable 1990). Depending on the application, multiple stopping criteria can be 
combined. Additional stopping criteria consider the performance of the optimization, 

Fig. 4  Objective function (F(m)) and particle positions at the end of PSO using �max
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2
= 0.5 : a calculated F(m) for the best particle (red dots) and the rest of the swarm (black dots) 

at each PSO iteration; b calculated F(m) as a function of the particle positions (ρ) in the search space, at the 
first (gray dots) and final (blue dots) iterations; c plain view of b; d final distribution of F(m) for the swarm 
at last iteration
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such as the slope of the objective function, the distribution of the particles, the standard 
deviation of the particle positions (Kennedy et al. 2001).

c. The swarm size N, i.e., the number of particles forming the swarm N influences the way 
the particles distribute over the search space to guarantee the exploration of the pos-
sible solutions. The swarm size must be sufficiently high to ensure a wide initial cover-
age of the search space, so that the particles can efficiently explore all of the regions 
potentially hosting the global minimum. This behavior is missed if the swarm is too 
small, although giving the advantage of unburdening the computational complexity. 
An interesting analysis on the relation between the swarm size and the computational 
complexity can be found in van den Bergh and Engelbrecht (2001). The number of par-
ticles is a problem-dependent parameter and it is usually set proportional to the number 
of unknowns, that is, in geophysical modeling, the number of the model parameters. 
The ratio between the problem unknowns and the number of particles was suggested 
to be between 8 and 12 times the unknowns by Engelbrecht (2007, p. 241) for GA and 
by Fernández Martínez et al. (2010a) for PSO. The sensitivity analysis performed in 
Pace et al. (2019a) considering a 2-D MT synthetic model outlined the multiple of 9 as 
the best ratio, giving the preferred inversion model, the minimum number of iterations 
and the second shortest runtime.

d. The initialization settings The initialization of the optimization is another essential fea-
ture of PSO. At the beginning, the particles in the search space are by default randomly 
distributed and bounded between a minimum and maximum value. This range is con-
stant during the optimization but can vary from each layer (or group of layers or cells) to 
another (Godio and Santilano 2018; Pallero et al. 2021). The decision of the lower and 
upper boundaries is problem dependent and should be coherent with the desired cover-
age of the search space of solutions. Tight boundaries can decrease the convergence 
time, but must be chosen with caution as long as there is a reasonable confidence in 

Fig. 5  Objective function (F(m)) and particle positions at the end of PSO using �max
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= 2 and 
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min
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2
= 0.5 : a Calculated F(m) for the best particle (red dots) and the rest of the swarm (black dots) 

at each PSO iteration; b Calculated F(m) as a function of the particle positions (ρ) in the search space, at 
the first (gray dots) and final (red circled blue dots) iterations; c plain view of b; d final distribution of F(m) 
for the swarm at last iteration
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the expected solution that avoids any bias. In addition, the adoption of tight boundaries 
can represent a way to add reliable a priori information to the optimization (e.g., from 
wells), even though it represents a strong constraint. After the random initialization, 
the adaptive behavior controls the position updating and a stochastic perturbation is 
guaranteed by γ1 and γ2 (Eqs. 1 or 5). Derivative-based inversion algorithms usually 
deploy a homogeneous or a priori model as starting model to initialize the geophysical 
inversion. The a priori information is derived from geologic (well-log) data or other 
geophysical methods. The key factor of global search algorithms such as PSO is that 
they are independent of the starting model and, consequently, do not necessarily require 
external information to initialize the optimization (Pace et al. 2019b). However, it may 
also be possible to use a priori information to partially influence the swarm behavior 
by setting the initial position (i.e., a proposed model) for a small portion of the swarm 
(e.g. 5% of the particles). In this way, if the data agree with a priori information, the 
optimization is influenced, otherwise the optimization disregards the information and 
searches for a valid solution thanks to its adaptive behavior (Pace et al. 2019a).

The choice of the input arguments influences the optimization performance and 
hence the final solution of the problem investigated. Given the same case study of PSO 
applied to 2-D MT synthetic data, Figs. 4 and 5 show an example of poor and successful 
convergence, respectively (Pace et  al. 2019a). The two outcomes result from different 
acceleration coefficients, that is, �max

1
= �

max

2
= 2.75 and �min

1
= �

min

2
= 0.5 in Fig. 4 and 

�
max

1
= �

max

2
= 2 and �min

1
= �

min

2
= 0.5 in Fig. 5. Figure 4 shows that the minimization 

of the objective function was not effective. Figure 4a plots the objective function calcu-
lated for the best particle (red dots) and the mean value of the remaining particles (black 
dots) as a function of the iterations. Figure 4b plots the objective function values of the 
swarm as a function of the search space, i.e., two cells of the 2-D grid, at the first (gray 
dots) and final (blue dots) iterations. Figure 4c is the plain view of Fig. 4b and demon-
strates that the distribution of the particles in the search space was still scattered at the 
last iteration. Figure 4d is the histogram of the objective function calculated for all the 
particles at the last iteration and reveals that the optimization did not end in a conver-
gence state because the minimum value of the objective function was not reached by the 
totality of the particles. Figure 5 shows that PSO ended in true convergence because the 
particles converged toward a single position (the blue dots in Fig. 5b, c) and toward the 
same value of objective function as demonstrated by the histogram of Fig. 5d. Figures 4 
and 5 confirm that the choice of the optimal input arguments ensures a robust minimiza-
tion and convergence.

The PSO flow chart is shown in Fig. 6. This procedure can be repeated several times 
(or “trials”) to assess the variability on the solution resulting from the random initializa-
tion. In fact, the final solutions coming from different initial random distributions are 
quite similar but not identical, as shown in Santilano et  al. (2018) for 1-D MT. The 
solution with the lowest RMSE is usually selected as the preferred optimized (inversion) 
model. An associated criterion to select the preferred solution from a set equivalent 
solutions obtained from the PSO trials is to show both the solution with the minimum 
RMSE and a subset of solutions within the 5–15% of the minimum RMSE (Pallero et al. 
2017; Godio et al. 2020; Amato et al. 2021). This criterion has the advantage of show-
ing the equivalence region within a tolerance of the RMSE. Moreover, the swarm can be 
inspected at the last iteration by calculating the mean (or median) and standard devia-
tion of each model parameter to estimate a model solution based on these statistical 



517Surveys in Geophysics (2021) 42:505–549 

1 3

quantities (Fernández Martínez et  al. 2010b; Godio and Santilano 2018; Pallero et  al. 
2018, 2021). Finally, to assess the uncertainty of the final outcome, it is recommended 
to analyze the a posteriori probability density (ppd) function of each model parameter. 
Different approaches were explored considering the ppd of the swarm either for a single 
PSO run or for several PSO trials (several  runs with equal settings) (Santilano et  al. 
2018; Pallero et al. 2018, 2021). It may happen that the most occurred value of a param-
eter in the ppd curve is different from the value it assumed in the lowest-RMSE model. 
This inspection definitely overcomes the limitation of the unique solution found by local 
search methods.

2.3  Multi‑objective PSO

PSO can be adopted to solve multi-objective problems as a tool for joint optimization of 
multiple geophysical data sets. Theory about MOPSO and its variants is given in Coello 
et al. (2004, 2007), Reyes-Sierra and Coello Coello (2006) and Tripathi et al. (2007).

Joint inversion of multiple data sets can significantly improve their modeling by 
overcoming the intrinsic limitations of each geophysical method. The advantages in 
combining different geophysical measurements using a single inversion scheme have 
been clear since the first introduction of joint inversion methods (Vozoff and Jupp 
1975; Yang and Tong 1988) and recent advances (Hering et al. 1995; Musil et al. 2003; 

Fig. 6  The PSO algorithm flow-
chart. P is the local best solution 
and G is the global best solution 
(from Pace et al. 2019a)
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Gallardo and Meju 2003; Moorkamp et  al. 2011; Sen and Stoffa 2013). Joint inver-
sion is though affected by data compatibility because field data of different geophysi-
cal methods usually present different depths of investigation, resolutions, sensitivities 
and/or error levels. Consequently, joint inversion may provide as a result a variety of 
conflicting models or biased results. The choice of a proper weighting factor between 
the objective functions is critical but may resolve the conflict (Commer and Newman 
2009; Akca et al. 2014; Meqbel and Ritter 2015).

Multi-objective evolutionary algorithms (MOEAs) are deployed for joint inversion 
of multiple data with the advantage of avoiding the simplification of a multi-objective 
problem (joint inversion) into a succession of single-objective optimization problems 
adopting user-dependent weighted objective functions. Another advantage of perform-
ing joint inversion with MOEAs is that these global search methods are not dependent 
on the first assumption of the starting model. The striking feature of performing joint 
optimization with MOEAs is that the objective function is a vector function with as 
many components as the different geophysical data sets to be optimized.

The common approach is to exploit the economic concept of Pareto optimality that 
avoids the ranking of the vector components (Edgeworth 1881; Pareto 1896; Baum-
gartner et al. 2004). This principle identifies a range of compromises as feasible solu-
tions of the geophysical problem. It states that a candidate solution is considered 
Pareto-optimal if there is not another candidate solution that minimizes one objective 
without degrading the other objective. The set of solutions obeying this criterion are 
called non-dominated solutions and form the Pareto-optimal set. Its projection onto 
a surface creates the so-called Pareto Front (PF), which is a tradeoff surface show-
ing which component of the objective function is mostly minimized. The PF is also 
useful to infer the data compatibility (Dal Moro and Pipan 2007; Schnaidt et al. 2018; 
Pace et al. 2019b). The ruling equations of MOPSO are the same of PSO (Eqs. 1 and 
2, or 5 and 6) with the only difference that in single-objective PSO the leader G is the 
best particle of the swarm, while in MOPSO the leadership belongs to the non-dom-
inated solutions. The non-dominated solutions are stored in a repository, from which 
Gk is selected at each iteration according to a quasi-random criterion based on the most 
crowded regions of the objective space. The flowchart of the MOPSO algorithm is 
schematically shown in Fig. 7.

MOPSO has proven to be a valid method for an integrated interpretation of dif-
ferent geophysical measurements presenting different resolutions, sensitivities, depths 
of investigation and/or error levels. Significant examples of MOPSO are joint opti-
mization of electric and electromagnetic data (Cheng et  al. 2015; Pace et  al. 2018, 
2019b), ground-penetrating-radar (GPR) and P-wave seismic travel times (Tronicke 
et al. 2011; Paasche and Tronicke 2014). Some of these case studies are reviewed in 
Sect.  5. For the sake of completeness, another MOEA adopted in geophysics is the 
Nondominated Sorting GA (NSGA-III) (Deb and Jain 2014). NSGA has actually been 
more explored than MOPSO and applied to the inversion of: Raleigh-wave dispersion 
curves and reflection travel times (Dal Moro and Pipan 2007), surface wave dispersion 
and horizontal-to-vertical spectral ratio (Dal Moro 2010), seismic and well-log data for 
reservoir modeling (Emami Niri and Lumley 2015), magnetic resonance and VES data 
(Akca et al. 2014), AMT and broad-band MT data (Schnaidt et al. 2018), and receiver 
functions, surface wave dispersion and MT data (Moorkamp et al. 2011).
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2.4  Minimization of the Objective Function Using PSO

The interpretation of geophysical data is accomplished by solving the inverse problem, 
which provides a model of the distribution in the Earth’s subsurface of the physical param-
eters investigated. The inversion consists in finding the model parameters m, considering 
the observed data dobs, and applying the functional F, which entails the physics of the geo-
physical technique investigated.

The basic concept of PSO application to geophysics is that each particle of the swarm 
represents a possible solution of the inverse problem. Since this solution is affected by 
non-uniqueness, the search space of solutions needs to be fully explored to find the best 
model, which fits the observed data. This need is fulfilled by the adaptive and swarming 
behavior of the particles. Differently from derivative-based inversion techniques, solving 
the inverse problem by means of PSO means that the forward functional F calculates the 
predicted responses for each assumed model m. The calculated responses are compared 
with the observed data for each particle. The final goal is the minimization of the objective 

(9)F(m) = d
obs

Fig. 7  The MOPSO-algorithm 
flowchart. ( Adapted from Pace 
et al. 2019b)
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function. The particle with the lowest objective function value is awarded with the global 
best position G and exerts influence on the neighbors depending on the social acceleration 
α2 (Eq. 1). At the end of the swarming, the optimized solution is expected to be identified.

The objective function to be minimized is a misfit function that computes the differ-
ences between the observed data and the predicted responses calculated by the forward 
modeling from an assumed Earth model m. The objective function can also include a fur-
ther term that manages the model roughness according to the concept of Occam’s inver-
sion (Constable et al. 1987). It is known that in derivative-based inversion techniques, the 
closest fitting between observed and predicted data brings to the maximum roughness, i.e., 
spurious structures. A smooth model avoids the over-interpretation of the data beyond their 
resolving capability. The concept of “Occam-like regularization” has also been applied to 
PSO in order to minimize not only the data deviations but also the roughness of the model 
m (Godio and Santilano 2018; Santilano et al. 2018; Pace et al. 2019a, b).

The general objective function to be minimized is usually defined as the norm of the 
misfit between the observed data and calculated responses. The Euclidean or L2 norm is 
commonly adopted, but the geometric, harmonic and L1 norms can also be found in the 
literature for particular geophysical applications (see examples in Sen and Stoffa 2013). An 
additional term can be potentially included to regulate the model roughness:

where ϕo is the observed signal; ϕc is the calculated response; the difference in ‖⋅‖ is nor-
malized by the corresponding errors (σϕ) on the observed data; λ is called the Lagrange-
multiplier, or smoothing parameter. The right-hand side of Eq.  10 is composed of two 
terms: the first one assesses the distance of the observed data from the responses calcu-
lated by the forward modeling; the second term is non-obligatory and addresses the mini-
mization of the roughness of the model, by using the smoothing parameter λ on the first 
derivative of the model m. The proper value of λ is usually chosen following the L-curve 
criterion, which identifies the optimal tradeoff between the minimum data misfit achievable 
and the minimum model norm, i.e., unnecessary structure (or roughness) of the final model 
(Farquharson and Oldenburg 2004). A high value of λ results in a smooth model penalizing 
the misfit, while, on the contrary, a low λ yields a minimum data misfit but sharp contrasts 
(roughness) between the layers (or cells) of the model.

As previously explained, the objective function of joint optimization has as many jth 
components as the data sets to be optimized.

where λj addresses the different level of smoothing required by the particular geophysical 
data set.

The validity of the preferred PSO model is usually assessed by means of a posteriori 
analysis among the different solutions given by the several PSO trials. The equivalence 
region of the solution can be inspected by calculating the mean (or median) and the stand-
ard deviation among the final solutions. The uncertainty of the preferred model is evalu-
ated with the ppd function of the parameter values at each layer (or cell). The shape of 
the ppd can feature a multimodal or a unimodal behavior. If the solutions are analyzed at 
the last iteration (or also, after several PSO trials with equal settings), and if the model 

(10)F(m) =
�o − �c

��

+ � ∥ log10 (�m) ∥

(11)Fj(m) =
�o − �c

��

+ �j ∥ log10 (�m) ∥
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parametrization is appropriate, a unimodal distribution is the indicator of solution con-
vergence and good quality. A multimodal distribution instead reflects the complexity and 
ill-posedness of the inverse problem (Fernández Martínez et al. 2010b; Godio and Santi-
lano 2018; Pallero et al. 2018). The a posteriori analysis of the final PSO solutions should 
become a crucial step in the discussion of PSO solutions.

3  PSO of Electromagnetic Data

The solution of the electromagnetic (EM) inverse problem is a challenge for the scientific 
community due to the high nonlinearity and ill-posedness of the problem, according to the 
definition by Hadamard (1902).

In particular, the solution of the inversion of MT data is not unique and is in a cer-
tain way unstable. The application of derivative-based inversion schemes results in a high 
dependence of the solution on the starting model that initializes the deterministic inver-
sion. Nowadays, deterministic algorithms are by far conventional for the inversion of MT 
data. The scientific community can indeed exploit the state of the art of well-established 
algorithms for 1-D, 2-D and 3-D inversion, such as 1-D Occam inversion (Constable et al. 
1987) and the 2-D and 3-D nonlinear conjugate gradient (NLCG) schemes (Rodi and 
Mackie 2001; Kelbert et al. 2014).

The computational complexity of the EM forward problem drastically increases with its 
dimensionality. For this reason, the application of stochastic population-based algorithms 
is not conventional and represents a challenge that has recently been solved for 1-D and 
2-D inversion but not yet addressed for 3-D inversion.

3.1  1‑D MT

The earliest applications of PSO to the 1-D MT inverse problem were presented in confer-
ences proceedings (Godio et al. 2016; Patel et al. 2016; Grandis and Maulana 2017) and 
published in full articles (Shaw and Srivastava 2007; Godio and Santilano 2018; Santilano 
et  al. 2018). At the same time, research focused on the solution of the 1-D MT inverse 
problem by adopting the Markov Chain Monte Carlo (MCMC) method (Grandis et  al. 
1999; Mandolesi et al. 2018; Xiang et al. 2018; Conway et al. 2018) and the SA algorithm 
(Dosso and Oldenburg 1991).

Godio and Santilano (2018) proposed a comprehensive work to describe the adoption 
of the PSO in MT and to state the validity of PSO applied to the 1-D MT inverse problem. 
Even though 1-D MT inversion is well-documented, the study represents a benchmark for 
the application of SI to EM methods and to more complicated problems such as 2-D MT, 
joint inversion and other geophysical methods.

The study by Godio and Santilano (2018) firstly focuses on the optimization of the 
parameters of a blocky earth model, i.e., a few-layered model, which is a common prac-
tice for the use of global search methods in geophysical inversion. In the blocky optimi-
zation, the unknown vector is composed of the resistivity and thickness values of each 
layer and the search space is implemented accordingly. The PSO was able to solve the 1-D 
inverse problem and to find the optimum blocky model, even though the simplification to 
a blocky scheme can be seen as a limitation. An innovation is the implementation of the 
“Occam-like” scheme to obtain a smooth earth model with many layers. In the Occam-
like scheme, the model vector is composed of the resistivity of each layer with fixed 
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thickness (logarithmically increasing). In the objective function, the smoothing parameter 
(see Eq. 10) acts on a differential operator of the model parameters to minimize the model 
roughness. This is the first attempt to adapt the classical deterministic Occam inversion 
(from Constable et al. 1987) to a global optimization method.

The random initialization produces slightly different results if the PSO run is repeated 
for several “trials” with the same data and settings. Several trials of the same PSO setup 
generate a set of final models, that can be statistically analyzed with an “a posteriori” dis-
tribution to verify their quality. The large is the scattering of the results, the poorer is the 
quality of the solution, and vice versa. The a posteriori distribution can be affected by: 
the propagation of the data uncertainties, the limit of the forward modeling to reproduce 
the complexity of the true resistivity distribution and the conditioning of the optimization 
process.

The authors apply PSO to real and synthetic cases from audio-MT and long period MT 
data. In particular, the COPROD dataset (Jones and Hutton 1979) was used because it is 
available to the scientific community for testing new algorithms (Fig. 8). In this case study 
the swarm is composed of 300 particles and the input arguments are constant: the inertia 
weight is equal to 0.9, the cognitive and social accelerations equal to 0.5 and 1.5, respec-
tively. 25 trials are run, each for 200 iterations. The PSO, as it is conceived, provides the 
best solution that emerges thanks to the intelligent behavior of the particles.

3.2  2‑D MT

The inversion of 2-D MT data is usually based on algorithms such as Occam, NLCG, 
Gauss–Newton (GN) and other variants, which are now widely recognized as milestones 
among 2-D and 3-D MT inversion codes (Siripunvaraporn 2012). These derivative-based 
inversion schemes ensure convergence in few iterations, but the final solution depends on 
the initial assumption of the starting model. If a homogeneous half-space is adopted as a 
starting model, some trials have to be done to define the most appropriate value of the elec-
trical resistivity to start with, depending on the data set and inversion code (Miensopust 
et al. 2013; Tietze et al. 2015). Otherwise, the inversion should be initially constrained by 
an a priori model that can resolve the non-uniqueness of the solution by using information 
from well-log data (Yan et al. 2017a), seismic data (Yan et al. 2017b), MT data (Santilano 
2017) or other geophysical methods. However, the initial guess can bias the model solution 
and its interpretation (Tietze et al. 2015).

To date, only a limited number of works have applied metaheuristic methods to the 2-D 
MT inverse problem. A preliminary application of PSO to 2-D MT and audio-MT data 
considered only synthetic data (Pace et al. 2017). PSO of 2-D MT data was performed to 
characterize a sedimentary basin (Pace et al. 2019a) and a geothermal system (Pace et al. 
2019c, 2020), after an accurate validation of the method on two MT synthetic models of 
different complexity.

To properly address the complexity of the 2-D MT inverse problem, the efficiency of the 
PSO algorithm was improved by applying the PSO variant called HPSO-TVAC (Eqs. 5, 6). 
In fact, the assumption of constant values for the social and cognitive accelerations is not 
adequate for the 2-D inverse problem due to its high dimensionality and complex searching 
behavior. The sensitivity analysis on the time-varying accelerations improved the conver-
gence speed of the algorithm and prevented the solution from being trapped in some local 
minima. In addition, a new parallelized version of PSO to be run on a high performance 
computing (HPC) cluster was effective in overcoming the time-consuming nature of PSO, 
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which is computationally demanding, like the other global search algorithms. (The paral-
lelization of the PSO tests performed on the HPC led to runtime savings of more than 80% 
if 24 cores were adopted instead of the 4 cores of a common laptop computer.)

The first PSO application to 2-D MT field data regards the COPROD2 data set, that is 
the benchmark to test new 2-D MT inversion methods and to compare numerous inversion 
solutions (Jones 1993a). The COPROD2 data set is a 400 km east–west profile crossing 
a 2-D geoelectrical structure in Saskatchewan and Manitoba, Canada (Jones and Savage 

Fig. 8  a PSO of COPROD MT data (modified from Godio and Santilano 2018 after Jones and Hutton 
1979): on the left, data fitting for apparent resistivity and phase between observed data (red cross) and 
calculated response (blue dotted line) and on the right, the 1-D resistivity models from PSO (red lines), 
the mean model (yellow line) and the median model (green line); b comparison between the PSO model 
(green) and the models from Constable et al. (1987) (blue) and from Jones and Hutton (1979) (black); c the 
a posteriori probability density (ppd) function of layers 2 and 17 from the PSO trials in a: the histograms 
show a multimodal and a unimodal distribution, respectively
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1986). The data set presents low impedance errors (< 2%) and includes the correction of 
the static shift. To perform PSO of COPROD2 data, a subset of 20 sites was selected to 
focus only on the center of the profile. Since the responses below 10 s present a one-dimen-
sional behavior, the selected period range was from 10.67 to 910.2 s (Martí et al. 2009). 
The errors on the data were kept as original for both transverse electric (TE) and transverse 
magnetic (TM) apparent resistivity and phase. The 2-D model mesh was divided into 10 
layers, from 1.8 to 60.5 km of depth, whose thickness increased logarithmically with depth. 
The 200-km-long mesh was divided into 34 bricks to include the boundary conditions. 
The total number of cells was 340. Since some structures of the region are known to be 
highly conductive, the lower boundary of the search space was 0.1 Ωm. The upper bound-
ary of the upper layers (up to 5 km of depth) was 10 Ωm since the superficial sediments are 
known to be far more conductive than the resistive basement. The upper boundary of the 
underlying layers was 1000 Ωm.

As regard the PSO input arguments, the cognitive acceleration �
1
 linearly decreased 

from 2 to 0.5 and the social acceleration �
2
 linearly increased from 0.5 to 2. The popula-

tion size was 2500 particles, proportional to the number of cells. In order to retrieve the 
optimal value of the Lagrange multiplier λ (Eq. 10), a sensitivity analysis was performed 
on five different values in the range between 0.001 and 10. Since the problem is 2-D, λx and 
λz were contextually analyzed with the same value and the optimal value was chosen as the 
point of maximum curvature in the plot of data misfit versus model norm. The best tradeoff 
value was equal to 0.1 for both λx and λz. A priori information was not given: the optimiza-
tion started with a completely random initialization.

The final model from COPROD2 data was computed after 6000 iterations and is 
depicted in Fig. 9. The most significant feature of this model is the low-resistivity anoma-
lies below the station E3–E4 and 12–11 at around 20 to 35 km of depth. The PSO output is 
well comparable with the models published in the literature since the low-resistivity anom-
alies were identified in the same regions (Jones 1993b).

Figure 10 shows the observed data and predicted responses for the apparent resistivity 
(ρapp) and phase at selected periods for the 20 stations. The observed data are marked with 
dots for TE and diamonds for TM, and predicted responses are plotted with a solid line 
for TE and a dashed line for TM. The final RMSE was 2.42. PSO of COPROD2 data was 
executed on a 24-core node of an HPC cluster for academic research, with a total runtime 
of 8 h. (The CPU model of the single node was an Intel Xeon E5-2680 v3 2.50 GHz (turbo 
3.3 GHz) with 128 GB of RAM.)

3.3  PSO of MT and TDEM Data for Static Shift Correction

Chave et  al. (2012) consider the distortion of regional electric fields by local structures 
as the greatest problem of the MT method. This effect, also known as “static shift”, is a 
galvanic distortion of MT data caused by near-surface small-scale heterogeneities or topog-
raphy. The effect is a frequency-independent shift of the MT apparent resistivity curve by 
an unknown multiplier (constant on a logarithmic scale) that does not affect the MT phase 
(Jones 1988).

The adoption of TDEM (or TEM) data to solve the static shift of an MT sounding has 
been extensively studied in the literature (e.g., Sternberg et al. 1988; Pellerin and Hohm-
ann 1990; Meju 1996). Among the several correction techniques, static-shift correction by 
means of TDEM data is quite common for geothermal exploration (e.g., Árnason 2015), 
being MT and TDEM widely used for imaging geothermal systems (Spichak and Manzella 
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2009; Muñoz 2014). The TDEM method is considered an effective means of correcting 
the static shift of distorted MT data because TDEM measurements are not (or slightly) 
affected, by this kind of distortion.

Santilano et  al. (2018) discuss the application of the PSO algorithm to overcome the 
galvanic distortion by providing a quantitative estimate of the static shift. The authors 
propose a joint analysis of MT and TDEM data. The method is based on the correlation 
between the time-domain diffusion depth and the frequency-domain skin depth, and the 
computation of a TDEM apparent resistivity from the measured voltage (e.g., Spies and 
Eggers 1986). At a certain site and at the same depth of penetration, the TDEM time t (ms) 
is assumed to be equivalent to the MT period T (s) according to the equality proposed by 
Sternberg et al. (1988):

Therefore, the TDEM response is converted into an equivalent MT period. Obviously, 
the overlapping of the two apparent resistivity curves (TDEM and MT) occurs only at 
high MT frequencies. The 1-D optimization scheme is easily implemented because of the 
common physical parameter, that of electrical resistivity, and the common forward model, 
that of MT. The objective function to be minimized is composed of three terms: a term 
related to the TDEM converted data, a term related to the MT data and a term related to 

(12)t = 194 ⋅ T

Fig. 9  (Top) Resistivity model of COPROD2 MT data from PSO computation, after 6000 iterations. 
Lagrange multiplier λ = 0.1 (from Pace et al. 2019a); (bottom) interpolated model for interpretation
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Fig. 10  Fitting curves between observed apparent resistivity (ρapp) and phase, and predicted responses at 
selected periods: 56.9 s, 85.3 s, 341.3 s (from Pace et al. 2019a). Observed data include error bars and are 
marked with dots for TE and diamonds for TM. Calculated responses are plotted with solid line for TE and 
dashed line for TM. The optimization was randomly initialized
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the structure according to the Occam-like scheme (see Godio and Santilano 2018). Fur-
thermore, the static shift S is an element of the model vector, i.e., a parameter optimized by 
PSO. It is included in the objective function and adopted as multiplier of the MT observed 
data. The best solution provides the smoothest model and the proper static shift value in 
accordance with the reference TDEM-converted curve.

The approach is tested on a synthetic model (Fig. 11) and on field data acquired in the 
Larderello geothermal field (Italy). The PSO input arguments are constant accelerations 
(cognitive attraction α1 = 0.75 and social attraction α2 = 1.75), stopping criterion at 200 
iterations, swarm size of 300 particles, random initialization and resistivity search space 
bounded between 1 and 2000 Ωm. The same PSO setup was repeated 25 times (or trials).

The main contribution of this work is that PSO was validated to correct, retrieve and 
remove the static shift from MT data by simultaneous analysis of MT and TDEM data. 
Furthermore, running several PSO trials with the same settings allows the robustness of the 
retrieved static-shift value to be assessed.

4  PSO of other Geophysical Data

4.1  Gravity

The gravimetric method is adopted in applied geophysics to study the delineation of sedi-
mentary basins in hydrocarbon and mineral exploration, hydrogeology, fault investigation, 
glaciology, etc. (Telford et  al. 1976). The gravity inverse problem is linear if the geom-
etry is provided and the density estimated or, conversely, nonlinear if the geometry is the 
unknown and the density is assumed. The nonlinear inverse problem is commonly solved 
by means of iterative linearization using the Levenberg–Marquardt algorithm (L–M), 
whose solution is however strongly influenced by the initial model (prior information) and 
suffers from a correct uncertainty analysis.

Fig. 11  The PSO optimization of a synthetic model of TDEM and MT data (black dotted line in the right-
side plot) from Santilano et al. (2018). The resulting 25 models are shown in red, and the model with the 
minimum NRMSE is shown in blue. On the left, the theoretical MT data are shown for the minimum 
NRMSE model (blue crosses) and compared with the synthetic MT (red line) and TDEM (green line) data. 
The MT apparent resistivity curve multiplied by the optimized factor S for static shift correction is marked 
with red dashed line
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PSO has been applied to both synthetic and field gravity data for 2-D (Yuan et al. 2009; 
Pallero et al. 2015, 2021; Darisma et al. 2017; Essa and Munschy 2019; Anderson et al. 
2020; Essa and Géraud 2020; Essa et al. 2021) and 3-D interpretations (Pallero et al. 2017; 
Jamasb et al. 2019).

The first application of PSO to 2-D synthetic data with and without noise (Yuan et al. 
2009) adopts a standard PSO algorithm (constant accelerations) and random initialization. 
The acceleration value is 2 for both cognitive and social accelerations, while the inertia 
weight is 1. PSO proved to outperform the L–M method in terms of data fitting and inde-
pendence from the starting model and to outperform GA in terms of accuracy and converg-
ing time. Gravity modeling in 2-D and the specific objective function for gravity data are 
well explained in Darisma et al. (2017). They perform a sensitivity analysis on the influ-
ence of the PSO input parameters on the model solution and choose the constant values of 
0.79, 0.79 and 0.86 for the inertia weight, cognitive and social accelerations, respectively. 
The best solution is achieved with the swarm size equal to 2 times the unknowns, but val-
ues up to 5 times are tested.

Pallero et al. (2015) adopt a full family of PSO optimizers for the 2-D gravity inversion 
and model appraisal (uncertainty assessment) of basement relief in sedimentary basins. 
The family of PSO algorithms includes Generalized PSO (GPSO), CC-PSO and CP-PSO, 
which were firstly presented in Fernández Martínez et  al. (2010a), and new optimizers 
called RR-PSO and PP-PSO. While CP- and PP-PSO are explorative algorithms, RR-PSO 
has a good balance between exploration and exploitation of the search space. For further 
details on the family of PSO, the reader is referred to the cited works (Fernández Mar-
tínez et al. 2010a, 2012; Pallero et al. 2015). The cloud version of the adopted algorithms 
is based on the “free-parameter tuning philosophy”, which automatically choses the input 
parameters (inertia, local and global accelerations) from the regions of the search space 
that are more stable. The full family of PSO optimizers is applied to a gravimetric profile 
from Atacama Desert in north Chile. Their PSO algorithms perform a fast inversion and 
uncertainty assessment of the gravimetric model using a sampling instead of an optimiz-
ing procedure. They show the 10% equivalence region of the best PSO model and con-
clude that “inversion and uncertainty analysis (solution appraisal) must always go hand in 

hand”. The proposed method appears as a powerful tool for an accurate estimation of base-
ment relief of sedimentary basins, taking into account the actual topography of the gravity 
observations.

Another study of 2-D synthetic and field gravity data has been recently published by 
Anderson et al. (2020) to model 2-D vertical faults and to calculate fault parameters (depth, 
amplitude factor and origin of the fault trace). They adopt standard PSO with constant 
accelerations (equal to 2) and random initialization. Even though using classical PSO, the 
proposed method shows fast convergence and does not require a priori initialization.

The common nonlinear approach for the 3-D gravity problem consists in modeling the 
basin as a set of regular prisms whose unknown is either the density contrast or depths. 
Pallero et al. (2017) propose the application of a family of PSO optimizers to 3-D gravity 
inversion in sedimentary basins in order to estimate the height of the prisms given the den-
sity contrast (fixed or variable) between the sediments and the basement. The coefficients 
of the regional trend affecting the observed data are treated as additional unknowns. A 
family of global PSO optimizers is applied to both synthetic and field case studies: GPSO, 
CC-PSO, CP-PSO, PP-PSO and RR-PSO (Pallero et  al. 2015). These algorithms deploy 
free-parameter tuning, meaning that inertia, cognitive and social accelerations change for 
every particle of the swarm. These three coefficients are indeed constant with the itera-
tions, but that are chosen close to the limit of second order stability of each PSO member 
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to ensure a balance between exploration and exploitation of the search space. It is demon-
strated that CP-PSO has a high exploratory character, while RR-PSO and PP-PSO have a 
more exploitative character, yielding a constant decreasing of the relative error. CC-PSO 
and GPSO instead reach stabilization in the region of low relative error (2%). The PP-
PSO proves to be the best PSO variant applied to synthetic data with Gaussian noise since 
the best solution and the 10% equivalent region match the true model (see Fig. 12). This 
demonstrates that different PSO algorithms ensure different levels of solution convergence. 
Pallero et al. (2017) provide a valid method to solve 3-D gravity inversion and quantify the 
uncertainty (model appraisal) of the inverted depth model.

Jamasb et al. (2019) present a hybrid PSO that adopts evolution strategies in order to 
speed up the converging time to solve the “high-dimensional” 3-D nonlinear gravity inver-
sion problem (note that the model parameters are around 10). The proposed hybrid PSO 
outperforms classical PSO in real field applications for the estimation of the thickness of a 
sedimentary cover without a priori assumptions.

Recently, Pallero et  al. (2021) presented the MATLAB software package “GRAVP-
SO2D” for the 2-D inversion of gravity data. They focus on the nonlinear problem of 
the estimation of the basement geometry in sedimentary basins and use a broad family 
of PSO optimizers. The source codes and the package are freely available and can rep-
resent an important tool to boost the adoption of PSO by the geophysical research com-
munity. Besides the synthetic and real case studies that prove the efficiency of the code, 
Pallero et  al. (2021) present a full description of the implemented methodologies, the 
possible workflows, as well as the guidelines for running the optimization. Conceptually, 
GRAVPSO2D implies the juxtaposition of rectangles along the profile, whose top repre-
sents the topography, whereas the bottom corresponds to the sediments-basement inter-
face. The input data for the inversion are the Bouguer gravity anomalies observed along 
the profile. The anomaly generated over each observation point by a 2-D model composed 
of juxtaposed rectangles is computed with a forward operator as a function of the rectan-
gles and their position with respect to the point and as a function of the rectangles bottom 
depth. The algorithm considers the latter, i.e., the elevation of the rectangles bottom, as the 
problem unknowns. The package allows the use of constant or variable density contrasts 
(vertically or horizontally). The contribution of regional trends can also be modelled. The 
tool also performs the uncertainty analysis on the resulting model(s) by showing the inver-
sion residuals, the best model and the equivalence region of the solutions. Moreover, the 
authors propose the analysis of the cumulative distribution of those models sampled during 
all the iterations and falling within a certain percentage of misfit tolerance.

4.2  Magnetic

The solution of the magnetic inverse problem is addressed according to several approaches. 
The basic analysis focuses on the retrieval of the main geometrical factors of the target, 
such as the shape, depth and magnetization properties (Abdelrahman et  al. 2003, 2007; 
Abdelrahman and Essa 2005, 2015). Conventional methods to retrieve the model param-
eters of special features, such as thin sheets or dykes, are based on the least-square minimi-
zation approach (e.g., Abdelrahman and Sharafeldin 1996; Abdelrahman et al. 2009).

Stochastic approaches have recently been introduced for the nonlinear inversion of 
magnetic anomalies caused by different geological features such as faults, thin dikes and 
spheres (Asfahani and Tlas 2007). Metaheuristic methods have been adopted to interpret 
the magnetic anomalies caused by simple features. A global optimization algorithm (the 
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Fig. 12  Synthetic case study 
with noisy gravimetric data from 
Pallero et al. (2017). Top: true 
model. Middle: best model after 
PP-PSO. Bottom: WE profile 
from the best solution showing 
the true depth (black curve), the 
best solution depth (blue prisms), 
the 10% misfit solutions (pink 
prisms), the observation points 
(green dots) and the residuals 
(black dots)
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very fast SA) was developed to interpret gravity and magnetic anomalies over thin sheet-
type structures for mineral exploration (Biswas 2016) and to interpret the total gradient 
of gravity and magnetic anomalies caused by thin dyke-like structure embedded in the 
shallow and deeper subsurface (Biswas et al. 2017). The model parameters are the ampli-
tude coefficient, the exact origin of causative source, depth and shape factors. The GA is 
adopted to solve the general equation of magnetic anomalies in Kaftan (2017).

The PSO algorithm has recently been proposed for the interpretation of magnetic anom-
alies with simple geometry (e.g., isolated sources embedded in the subsurface). Essa and 
Elhussein (2018) test both noise-free and noisy synthetic and real-field data with a standard 
PSO algorithm. PSO demonstrates speed of convergence, solution stability, applicability 
for a fast evaluation of the best model-parameter values and a chance to provide the ini-
tial model for conventional least-square inversion. Essa and Elhussein (2020) apply clas-
sical PSO to several synthetic and real case studies for mineral exploration. To remove 
regional anomalies up to the third-order, they optimize the second moving average residual 
magnetic anomalies for different window lengths (s-values). The model parameters are the 
depth of the body, the amplitude coefficient, the angle of magnetization, the shape factor 
and the horizontal coordinates of the source along the profile. PSO input arguments are 
constant: 0.8 for inertia weight and 2 for the accelerations. For the field data set from Ham-
rawein area (Egypt), the data fitting between observed data and PSO-predicted response 
in shown in Fig. 13 with a final RMS value of 11.4 nT after 400 PSO iterations. The PSO 
outcome is also in good agreement with known geological and geophysical information. 

Fig. 13  Field case study from Hamrawein area (Egypt) in Essa and Elhussein (2020). Top: the data fitting 
between observed data (white circles) and PSO-predicted response (black circles). Bottom: cross-section of 
the model



532 Surveys in Geophysics (2021) 42:505–549

1 3

Even though Essa and Elhussein (2020) adopt a standard PSO algorithm (constant inertia 
and accelerations), they outline the PSO efficient computation and the solution robustness 
with respect to GA and SA.

Complex magnetic anomalies due to multiple sources are investigated in Liu et  al. 
(2018). They adopt standard PSO with smoothing for the particle velocity to solve the 2-D 
inversion of magnetic data and recover the magnetization intensity of the subsurface. The 
PSO input parameters are tested with a comprehensive sensitivity analysis on the influ-
ence of inertia and accelerations on the convergence curves of PSO (the RMS trend as a 
function of the iterations). The most appropriate input arguments they find for a stable and 
fast-convergence optimization of magnetic data are linear decreasing inertia weight (from 
0.96 to 0.6) and constant accelerations (equal to 2). This PSO setup is applied to both syn-
thetic and field examples from iron ore deposits. The 2-D model domain is divided into 
800 regular cells and the number of particles is 20. The iterations converged in 200 to 400 
iterations, depending on the case study they investigate. The uncertainty analysis of the 
PSO models and their comparison with drill-hole information demonstrate the validity of 
the proposed methodology.

The nonlinear inversion of magnetic anomalies from 3-D prismatic bodies has been 
poorly addressed using metaheuristics. An example is the application of the differential 
evolution algorithm, a population-based evolutionary algorithm (Balkaya et al. 2017).

4.3  Self‑potential

The self-potential (SP) method is widely referred to as the “ugly duckling” in geophys-
ics as it involves simple procedures in both data acquisition and processing (Nyquist and 
Corry 2002). The data acquisition involves simple equipment consisting in non-polarizing 
electrodes, voltmeter or data logger and electrical cables. No artificial source is required. 
This makes the method cheap and easy to be applied in multiple fields, not only for geo-
exploration but also for monitoring dynamic processes. As the self-potentials are related 
to groundwater flow, temperature gradients, chemical processes and biological effects, the 
method is widely adopted in environmental and engineering investigations (Vichabian and 
Morgan 2002), hydrology and hydrogeology (Jouniaux et  al. 2009), geothermal explora-
tion (Corwin and Hoover 1979) and other fields. Thanks to its simplicity, it is also suitable 
to describe the meaning of forward modeling and inversion procedures, that could be then 
extrapolated to other geophysical methods.

Focusing on the interpretation of SP signals, the most recent updates cover min-
ing exploration and monitoring. A global optimization method based on a Genetic-Price 
hybrid Algorithm (GPA) has been proposed for identifying the source parameters of SP 
anomalies (Di Maio et al. 2019). The approach leads to the interpretation of simple polar-
ized structures, such as spheres, vertical or horizontal cylinders and inclined sheets. Singh 
et al. (2019) discuss the use of GA on SP data for the prediction of coal seam fire in India. 
The SP anomaly is mainly caused by the thermoelectric effect of the temperature gradient 
observed in the coal fires. Their results estimate the depth of the fire regions and other geo-
metrical factors to characterize the fire regions. Göktürkler and Balkaya (2012) compare 
the performance of GA, SA and PSO to invert SP anomalies originated by polarized bodies 
with simple geometries. Field tests are a copper belt (India), graphite deposits (Germany) 
and metallic sulfide (Turkey).

The optimization procedure considers the general equation of the SP anomaly, which 
relates the voltage to the geometrical factors of simple targets. Following Yüngül (1950) 
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and Bhattacharya and Roy (1981), the SP anomaly expression, V, produced by most polar-
ized structures is given by the following:

where z is the depth of the body, xi the location coordinate, K the electric dipole moment, θ 
the polarization angle and q the shape factor. The shape factors for a sphere, horizontal cyl-
inder, and a semi-infinite vertical cylinder are 1.5, 1.0, and 0.5, respectively (see Fig. 14).

PSO can be used for quantitative interpretation of SP data (Santos 2010; Essa 2019, 
2020). For a single target, the optimization procedure is reduced to a trivial estimate of the 
model parameters, such as the depth of the source, the distance from the origin, the elec-
tric dipole moment, polarization angle, shape factor and regional coefficients. Pekşen et al. 
(2011) investigates the reliability and the performance of PSO in solving the SP problem 
and introduces a customized statistical analysis to reduce the ambiguities of the optimiza-
tion procedure.

A well-known literature case study is the interpretation of the SP anomaly in the Mala-
chite Mine, Colorado, USA (Dobrin and Savit 1960, p. 426). PSO has recently been applied 
to the second moving-average residual SP anomalies of the Malachite Mine to determine 
the five above-mentioned parameters for various s-values (Essa 2019). This SP profile 
is shown in Fig. 15 together with the misfit between the observed and predicted anoma-
lies. The values for inertia weight and accelerations are constant and equal to 0.8 and 2, 
respectively. The final parameter values for the best PSO solution are: K = − 236.53 mV; 
θ = 99.31°; z = 13.74 m; x = 0.2 m; q = 0.49. The final RMSE is 7.72 mV.

4.4  Direct Current

One of the first applications of PSO to electrical methods has been published by Fernández 
Martínez et al. (2010a). They apply PSO to the VES inverse problem and test its perfor-
mance with a 6-layer parametrization for a real case study related to seawater intrusion 
in a coastal aquifer in Spain. They examine a family of PSO algorithms with these set-
ups for inertia weight, cognitive and social accelerations, respectively: (0.687, 2.25, 1.125) 
for GPSO, (0.629, 2.67, 1.33) for CC-PSO, (0.545, 3.27, 1.64) for CP-PSO. These values 
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Fig. 14  Vertical section of the subsoil with the shape factor q for a sphere and a cylinder
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are proved to ensure closeness to the second order stability region and to avoid entrap-
ment in local minima regions. They observe that for the VES problem the CP-PSO variant 
has a very god convergence rate and a good balance between explorative and exploitative 
behavior. The family of PSO variants is compared to other global optimization algorithms 
(binary GA and SA) to check their respective convergences given the same search space 
and number of particles (200) and iterations (100). It is demonstrated that the PSO family 
variants converge in the low-misfit zone (5–6%) after around 10–20 iterations, while GA 
and SA do not reach it in 100 iterations.

Pekşen et al. (2014) propose a PSO method to solve the problem of a layered anisotropic 
earth model and estimate vertical and horizontal resistivity (2-D) and layer thickness. They 
adopt standard PSO with input parameters as suggested in previous applications (Fernán-
dez Martínez et al. 2010a). They demonstrate the suitability of the method on noise-free 

Fig. 15  Result of PSO applied to an SP anomaly over the Malachite Mine (USA) as interpreted by Essa 
(2019). Top: misfit between the observed and predicted anomalies (red stars are from Essa 2019). Bottom: 
observed (black) against predicted SP response using PSO (red), very fast SA (green) and assuming residual 
response (blue)
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and noisy synthetic and field DC data. The most interesting part of the work is the a pos-
teriori analysis of the PSO outcome in terms of: general behavior of the model parameters 
during the iterations, frequency distribution and probability density function of the param-
eters. To reduce the ambiguity of the result, only the anisotropic model parameters whose 
probability density function is higher than 95% are selected. Other PSO applications to 
VES data regard the joint interpretation of VES and TDEM data (Cheng et al. 2015; Pace 
et al. 2019b).

4.5  Seismic and Ground Penetrating Radar

We distinguish the application of PSO to data processing and interpretation of seismic 
data, according to the distinction between induced seismicity and active seismic for explo-
ration and geotechnical characterization.

a. Seismic Rayleigh waves have been increasingly used as an appealing tool to obtain near-
surface shear-wave velocity profiles. Inversion of Rayleigh wave dispersion curves is 
challenging for most local-search methods due to its high nonlinearity and multimodal-
ity. A Rayleigh-wave dispersion-curve inversion scheme based on PSO has been devel-
oped by Song et al. (2012) for the inversion of noise-free and contaminated field data 
sets. They adopt the PSO variant with the constriction factor in order to enhance local 
search and convergence (Shi and Eberhart 1998). An accurate inspection of the PSO 
results is provided by means of histograms of the inverted model-parameters belong-
ing to the low-misfit region with less than 15% of relative error. The histograms have 
symmetric shape and contain the true value (of the synthetic model) within the high 
density area, thus proving that PSO performs a good posterior sampling of the equiva-
lence region. Moreover, the efficiency and stability of PSO is examined by means of a 
comparative analysis with GA and MC. Results from synthetic and field data demon-
strate that PSO provides better performances than GA and MC in terms of quality of 
the solution, speed of convergence and computational efforts. The main advantages of 
PSO consist in the location of the low misfit region and the easiness of implementation.

  Swarm intelligence has proved to be effective as inversion method for seismic wavelet 
analysis (Yuan et al. 2009). The feasibility and accuracy of PSO has been tested on a 
theoretical model of wavelet, simulating the response of a layered medium. One of the 
most interesting findings is the great stability of the PSO with respect to noise. While 
PSO outperforms GA with the best performance in terms of accuracy and convergence 
speed, PSO and SA have a comparative accuracy and convergence speed even though 
the final misfit between the original and estimated wavelets is higher in SA than in PSO.

b. Microseismic Lagos and Velis (2018) detect microseismic events associated to hydraulic 
fracturing by using very fast SA (VFSA) and PSO and compare them to the classical 
grid search (GS). Their PSO workflow merges into an automated process the different 
steps that lead to the microseismic events location starting from raw data. The first step 
of the workflow deals with the automatic detection, denoising and identification of the 
P- and S-waves. The second step estimates the corresponding back-azimuths using 
polarization information and selects the most reliable estimate to restrict the search 
space of model parameters (microseismic source coordinates). Finally, the location of 
the events is performed by solving a nonlinear optimization problem using the VFSA 
and PSO algorithms for 2-D and 3-D usual scenarios of hydraulic fracturing. The main 
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conclusion highlights the advantage of using either VFSA or PSO instead of GS in terms 
of computation speed-up.

5  Performing Joint Inversion with PSO

Multi-objective PSO can solve the nonlinear joint inversion of different geophysical data 
sets. The MOPSO algorithm has revealed a number of attractive features: a single tool to 
tackle multiple data sets, a set of final models without multiple conflicting solutions and 
an effective insight in the trade-off meaning of the final solutions. The general theory of 
optimization of multi-objective problems is based on the concept of Pareto optimality. The 
best trade-off solutions and their range are usually identified as final solutions because of 
the Pareto dominance. Moreover, the shape of the Pareto Front (PF) provides insight into 
the compatibility between different geophysical data sets.

Initial attempts to solve joint optimization by means of PSO have actually simplified 
the multi-objective problem to a single-objective one. As an example, Cheng et al. (2015) 
apply PSO to a whole forward process synchronized between TEM and DC methods. 
Basically, the authors build a single data vector including the two different (modelled or 
observed) data sets, as well as a single residual vector that computes the objective function. 
The same weight is used for the two datasets. This simplistic but effective procedure is 
applied to a civil engineering case study in a coalmine in China.

The adoption of a MOPSO scheme avoids both the simplification of a multi-objective 
problem and the use of weighting factors between different data sets. Another advantage 
of the multi-objective optimizer is to overcome the intrinsic limitations of each geophysi-
cal method. Some representative examples exploit MOPSO to jointly interpret TDEM and 
VES data (Pace et al. 2019b) and GPR and P-wave seismic travel-times (Paasche and Tron-
icke 2014). The economic concept of Pareto optimality is adopted to identify the final set 
of results among the feasible solutions.

In the case study by Pace et al. (2019b), MOPSO is applied to a field data set composed 
of TDEM and VES soundings over a known stratigraphic setting in Piedmont, Northwest 
Italy. The physical parameter to be optimized in a layered-model is the same for the two 
methods, i.e., the electrical resistivity. The TDEM data were acquired in the range  10–5 s 
and  10–3  s using a coincident-loop configuration with a 50-m-long loop. The VES data 
were collected according to a Schlumberger array and deploying a 100-m maximum half-
spacing of the current electrodes. The model is discretized into 19 layers and an Occam-
like minimization is implemented to obtain smooth models (objective function like Eq. 11). 
The optimal Lagrange multiplier of the objective function is the same for both TDEM and 
VES components following the L-curve criterion. The boundaries of the solution search 
space are the minimum and maximum resistivity values of 1 Ωm and 500 Ωm, respectively. 
The MOPSO algorithm with time-varying accelerations coefficients is adopted: cognitive 
accelerations linearly decreasing from 2 to 0.5, social acceleration linearly increasing from 
0.5 to 2, inertia weight linearly decreasing from 0.9 to 0.4. The MOPSO algorithm ran for 
1000 iterations, giving in the end the family of Pareto-optimal solutions plotted in Fig. 16c. 
The data fitting is shown in Fig. 16a, b for TDEM and VES, respectively. The number of 
particles forming the swarm is 170, following the rule of thumb to set the swarm size as 
nine times the unknowns. The solutions drawn from the PF are depicted in green, while the 
blue line corresponds to the solution with the minimum value for both the components of 
the objective function. The resistivity model reveals a resistive layer of about 200 Ωm in 
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the shallow subsurface, till 10 m of depth. A conductive region of less than 50 Ωm appears 
from a depth of about 20–40 m, while, at higher depths, the resistivity increases to 77 Ωm. 
The PSO resistivity model is supported by the geological information derived from a bore-
hole located very close to the investigated site. A major result is the comparison between 
the resistivity model from MOPSO and the models from separate optimizations using 
single-objective PSO (not shown here). Indeed, the model resulting from PSO applied to 
only TDEM underestimates the shallow resistive layer due to the intrinsic limitation of 
EM methods that are more sensitive to conductors rather than to resistors. Conversely, 
the model resulting from PSO applied to only VES images the shallow resistive layer and 
underestimates the deep conductors. The resistivity model obtained from MOPSO cor-
rectly images the two conductive and resistive structures and compares well with the strati-
graphic well log (not shown here).

Figure 17a, b shows the simultaneous minimization of the two components (TDEM and 
VES, respectively) of the objective function from the first to the last iteration. The red stars 
refer to the particles with the minimum objective-function component, while the black cir-
cles to the mean value. Figure 17c depicts the 2-D objective space at the final iteration. The 
PF is marked in red, while the black circles represent the objective function of the remain-
ing solutions. The PF can be evaluated by three metrics. The repository index (RI), that 
measures the ratio of the non-dominated solutions with respect the population size, was 
21.5%. The spacing (SP), that measures the solution distribution throughout the PF, was 
0.0041. The deviation angle α between the ideal line and the Theil-Sen-regression line over 
the non-dominated solutions was 78.9°. Figure 17d zooms in the PF and shows the devia-
tion angle between the grey-dashed ideal line and the Theil-Sen-regression blue line. Since 
α is higher than 45° and the PF is not symmetric, a slight conflict between TDEM and VES 
can be inferred (Dal Moro and Pipan 2007; Schnaidt et al. 2018).

In addition to the Pareto dominance adopted in MOPSO, Paasche and Tronicke 
(2014) test a hybrid approach to jointly invert synthetic cross-hole tomographic data-
sets composed of radar and P-wave travel-times. This approach is based on a first 

Fig. 16  MOPSO applied to field electric and TDEM data from Pace et al. (2019b): observed data (red dots 
with error bars) and predicted apparent resistivity (blue-line-ρapp) for TDEM (a) and VES (b) data; c the 
final resistivity models belonging to the PF (green lines) and the best solution marked in blue
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Pareto-dominance-based nonlinear joint inversion and then a linear-aggregation-based 
nonlinear joint inversion. The starting model consists of seven layers exhibiting spa-
tial heterogeneity (Fig. 18a). The layers are associated to petro-physical parameters to 
model the propagation of geo-radar and seismic wave-field velocity (Fig. 18b, c, respec-
tively). The edges of the model represent boreholes, with a 0.25 m spacing of equally 
distributed sources and receivers. The proposed layer-based parameterization of the 
model domain results from a deterministic zonal cooperative inversion (ZCI) to sup-
port the finding of an adequate minimal complexity (Paasche and Tronicke 2007). The 
number of model parameters to be optimized is 26. The database is first jointly inverted 

Fig. 17  The MOPSO performance as in Pace et al. (2019b). The evolution of the TDEM (a) and VES (b) 
components of the objective function from the first to the last iteration for the best particle (red stars) and 
the remaining ones (black circles); c the 2-D space of the objective function (TDEM and VES components) 
at the last iteration: the red symbols identify the PF and the black circles the objective-function values 
assumed by the other solutions; d the intersection between the ideal line (grey dashed) and the Theil-Sen 
regression line (blue) or the least-square regression line (black) identifies the deviation angle α 
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using the MOPSO algorithm exploiting the Pareto dominance. In order to rank the avail-
able Pareto optimal models, the authors exploit the concept proposed by Balling (2003) 
based on game theory. The approach considers the objective functions as competing 
agents with conflicting interests in a zero-sum game (Raghavan 1994). The swarm is 
initialized with 48 particles, apparently without following the rule of thumb to size the 
swarm at least nine times the unknowns. At the end of the multi-objective optimization 
the final Pareto set of optimal solutions had 39 solutions, as shown in the Pareto front 
of Fig. 18d with crosses. The red symbol depicts in the search space the Pareto optimal 
solution drawn in Fig. 18e, f for radar and P-wave velocity, respectively.

The test accomplished in Paasche and Tronicke (2014) provides for a further trans-
formation of the MO optimization problem into a single-objective one based on the idea 
of aggregation-based solutions (e.g., Parsopoulos and Vrahatis 2002). This additional 
scheme is appended at the end of the MOPSO algorithm and exploits the set of solu-
tions already computed. The aim is to find the solutions in the vicinity of the point of 
maximal curvature on the Pareto Front found by MOPSO. The radar and seismic objec-
tive functions are scaled according to the RMS errors at the point of maximal curvature 
found by the Pareto-dominance-based approach. The simplification of the MO optimiza-
tion problem into a single-objective problem by linear aggregation implies, in terms of 
computational effort, an inefficient identification of several mutually independent solu-
tions of the problem. The optimization is repeated several times. The result comprises 
150 radar and seismic velocity models. Five models out of 150 are non-dominated and 
represent a very short segment of the Pareto Front. Paasche and Tronicke (2014) con-
clude that the Pareto-dominance-based approach is able to efficiently detect the non-
dominated solutions with some risk of mutual model dependency in the final set of 
solutions, whereas the linear-aggregation approach turns out to be robust but time con-
suming and hence inefficient.

Fig. 18  Pareto-dominance-based nonlinear joint inversion using MOPSO of radar and P-wave velocity from 
Paasche and Tronicke (2014); a structural model composed of seven layers; synthetic data are generated 
from georadar (b) and P-wave (c) velocity fields; d the Pareto Front from MOPSO is composed of 39 opti-
mal solutions (crosses) after 1000 iterations; the red symbol denotes the position in the Pareto Front of the 
optimal solutions in e and f 
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6  Best Practices with PSO

We here propose practical and useful guidelines to perform stochastic inverse modeling 
of any kind of geophysical data set for the benefit of PSO users. The fundamental rules 
of thumb to run PSO can be schematically summarized as follows:

1. Evaluate the mathematical complexity and computational load of the geophysical for-
ward problem. The complexity influences the choice of the PSO variant in terms of 
balance between explorative and exploitative behavior. The expected runtime influences 
the optimization settings such as the number of iterations, trials and particles.

2. Choice of the PSO variant: an updated overview of the most recent PSO variants (as 
those listed in Sect. 2.2) can be of help to choose the algorithm that best fits the specific 
geophysical problem in terms of search space exploration and solution convergence. 
For simple problems the classical PSO can be appropriate enough, but for increasing 
complexity (in the number of unknowns or equivalent solutions) HPSO-TVAC or similar 
variants are highly recommended.

3. Model discretization: the 1-D, 2-D or 3-D geophysical model should be appropriately 
discretized in order to, on one hand, obey the under-determined condition of the inverse 
problem, and, on the other hand, to avoid excessive computational load due to numer-
ous unknowns. It is also possible to use basis functions in order to decrease the number 
of parameters and to unburden the computational load of the forward modeling. For 
example, in Aleardi (2019), orthogonal Legendre polynomials are used as basis func-
tions to reparameterize the model space. The expansion coefficients associated with 
each Legendre polynomial are determined via PSO.

4. Input arguments (see Sect. 2.2): they are problem-dependent and imply a good knowl-
edge of the mathematics and physics of the problem.

• The accelerations coefficients α1 and α2 have to be chosen following either a sen-
sitivity analysis or literature findings in order to balance exploration and exploi-
tation.

• The stopping criterion/-a may vary according to the objective-function trend as a 
function of the iterations.

• The number of particles N depends on the model discretization as it is propor-
tional to the number of unknowns. As a rule of thumb, the number of particles of 
the swarm could be selected as 9 times the unknowns;

• The boundaries of the search space have to be tailored, namely, far larger than the 
expected values of the solution to ensure an effective exploration behavior. Too 
wide search space can result in unnecessary computation. If the final solution is 
stuck to one of the boundaries, it means that it should be enlarged.

5. Formulation of the objective function with, if preferred, the model regularization (e.g., 
“Occam’s-like optimization”) and choice of the Lagrange multiplier;

6. External constraints (non-obligatory): the random initialization of the model solutions 
is the key factor of PSO. However, in case of good reliability of external information 
potentially constraining the solution, a portion of the swarm can be influenced in the 
global search. This is done by giving an initial value (a priori information) to the position 
of a subset of particles at the first iteration. External constraints can also be adopted to 
perform sensitivity tests as a posteriori assessment of the uncertainty of the final solu-
tion.
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7. Parallelization of the code: it is recommended when dealing with complex forward rou-
tines but it is subject to the availability of adequate computational resources. Multi-core 
workstations or HPC clusters remarkably speed up the computation.

8. When PSO is running, check for effective minimization of the objective function with 
the iterations.

9. A posteriori evaluation of the PSO outcome in terms of:

• coverage of the search space: if the distribution of the initial positions of the parti-
cles is not dense, increase the number of particles. Otherwise, N can be decreased to 
unburden the computation. If at the early stages the whole swarm occupies a small 
region, maybe the search-space boundaries should be changed (enlarged or nar-
rowed).

• minimization trend of the objective function: if the curve is not flat at the end, the 
maximum number of iterations should be increased and vice versa. The stopping 
criteria may be adjusted as well.

• solution convergence toward the global best: the particles should swarm (i.e., con-
verge) toward the global best at the final iteration. If it is not verified, exploration 
is maybe still occurring. In this case, either the number of iterations or the social 
acceleration (or both) should be increased in order to enhance the convergence 
toward the best particle.

• uncertainty analysis: the a posteriori probability density function of the sampled 
model parameters should exhibit a unimodal distribution. The larger is the scatter-
ing of the results, the poorer is the quality of the solution. Otherwise, be aware of 
the solution uncertainty. To implement such analysis is not trivial. Two different 
approaches have been proposed in the literature. The first approach refers to the 
work by Pallero et al. (2018) that implies the cumulative analysis of all the mod-
els of the swarm for every iteration within a certain percentage of error tolerance. 
The second approach refers to the works by Godio and Santilano (2018), Santilano 
et  al. (2018) and Amato et  al. (2021) and implies the cumulative analysis of the 
best models (minimum RMSE within an error tolerance) emerged from several PSO 
trials, that have been run several times with identical settings. Even though the sec-
ond approach is more computationally demanding than the first, it has the advan-
tage of considering the solutions emerged from several PSO trials that have been 
run with independent random initializations. The first approach instead draws the 
final cumulative distribution from all the sampled models (all the iterations of a sin-
gle trial) falling within a certain misfit tolerance. The difference between these two 
approaches is substantial, but it does not hinder an effective assessment of the solu-
tion.

7  Conclusions and Suggestions

The state of the art about geophysical modeling using PSO was presented. We described 
the main features of the algorithm and the recent advances that have improved the solu-
tion of nonlinear problems. This review summarized the most representative applica-
tions of the PSO algorithm in geophysics. Some original works were selected from the 
literature to illustrate the adoption of PSO for the solution of the inverse problem of 
several geophysical data: EM, gravimetric, magnetic, SP, DC and seismic. We focused 
on the most recent contributions regarding 1-D, 2-D and 3-D PSO of geophysical data 
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to offer an updated and broad overview of original workflows and valid outcomes the 
PSO has provided in the scientific literature. Joint optimization of multiple geophysical 
data sets by means of MOPSO was also presented to highlight the advantage of using 
a single solver that deploys Pareto optimality to handle different data sets without con-
flicting solutions.

The selection of the works analyzed in this review encompassed the PSO application to 
complex inverse problems (such as 2-D MT) requiring intense computational effort and the 
PSO adoption to solve existing scientific issues, such as the correction of the static shift in 
MT (Sect. 3). So far, the sole PSO application to 3-D interpretation has been for the gravi-
metric inverse problem, whose solution was found by testing several variants of the PSO 
algorithm (Sect. 4.1). A recent contribution to PSO of 2-D gravity data has been the release 
of a code available for the scientific community. The most attractive features of the PSO 
examples selected for this review are the accurate tuning of the acceleration coefficients of 
the PSO equation, the extensive analysis of PSO variants to ensure the stability region, the 
introduction of code parallelization to overcome the high computational cost and the origi-
nal approaches to handle multiple data sets. In the interpretation of geophysical data, PSO 
demonstrates to be helpful to account for the error propagation in the model parameters 
and for the solution uncertainty.

The present work is consistent with the increasing demand for computational-intelli-
gence methods that solve nonlinear or under-determined problems affected by non-unique-
ness of the solution. These problems are frequent in a wide range of scientific fields and 
may receive further comprehension if a metaheuristic approach is adopted to find the 
model solution. The works selected in this review are of relevant interest not only for the 
geoscientists directly involved in processing and interpretation of geophysical data but also 
for the scientific community involved in any kind of optimization process for solving linear 
and nonlinear problems related to artificial neural networks, robotics, biomedical engineer-
ing, electronics, electromagnetics, epidemiology, power systems and signal processing. 
This work may be also beneficial to inexperienced researchers and neophytes since it both 
summarizes the last PSO developments and outlines the best practices for the implementa-
tion of a customized algorithm from scratch.

It is straightforward that PSO has been widely adopted to interpret gravity, magnetic, SP 
and DC data, because of the simplicity of the forward modeling routine and of the imple-
mentation of the optimization scheme. A lot of literature works presents simplistic PSO 
applications to low “dimensional” geophysical problems (few tens of unknowns), deploy-
ing basic versions of the algorithm (e.g., constant accelerations, a single stopping crite-
rion) with no uncertainty assessment of the final solution and limited use of computational 
resources. This review presented the state of the art and may pave the way for new possible 
directions of future research and encourage further developments in the theory and appli-
cation. Future studies are highly recommended to speed up the computation by means of 
code parallelization and to openly discuss the obtained solutions by means of posterior 
analysis.

A possible direction for future work could be the solution of the 3-D EM inverse prob-
lem, which is highly challenging due to the strong nonlinearity of the forward model and 
the computational demand. Moreover, new criteria can be studied for the implementation 
of PSO where the solution of the problem is driven or constrained by additional informa-
tion such as geological and stratigraphic data. A new possible research trend should be 
the coexistence of the local and global approaches to solve the inverse problem in order to 
consider two families of possible solutions, given that global search methods are going to 
be positively accepted in spite of the skeptical view of the past.
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