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A Review of Global Precipitation Data Sets: Data

Sources, Estimation, and Intercomparisons

Qiaohong Sun1, Chiyuan Miao1 , Qingyun Duan1 , Hamed Ashouri2 ,

Soroosh Sorooshian2 , and Kuo-Lin Hsu2

1State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal

University, Beijing, China, 2Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA

Abstract In this paper, we present a comprehensive review of the data sources and estimationmethods of
30 currently available global precipitation data sets, including gauge-based, satellite-related, and reanalysis
data sets. We analyzed the discrepancies between the data sets from daily to annual timescales and found
large differences in both the magnitude and the variability of precipitation estimates. The magnitude of
annual precipitation estimates over global land deviated by as much as 300 mm/yr among the products.
Reanalysis data sets had a larger degree of variability than the other types of data sets. The degree of
variability in precipitation estimates also varied by region. Large differences in annual and seasonal estimates
were found in tropical oceans, complex mountain areas, northern Africa, and some high-latitude regions.
Overall, the variability associated with extreme precipitation estimates was slightly greater at lower latitudes
than at higher latitudes. The reliability of precipitation data sets is mainly limited by the number and spatial
coverage of surface stations, the satellite algorithms, and the data assimilation models. The inconsistencies
described limit the capability of the products for climate monitoring, attribution, and model validation.

1. Introduction

Ongoing climate change is unequivocal and ismost likely caused by increasing concentrations of atmospheric
carbon dioxide and other greenhouse gases and by anthropogenic activities (Flato et al., 2013; Mitchell &
Jones, 2005). Climate change has substantial impacts on physical, biological, and human-managed systems.
Observational data underpin our understanding of global and regional climate change (Feng et al., 2004)
and is essential for research into climate variability and change and for identification of the related impacts.

Precipitation is a crucial component of the water cycle (Eltahir & Bras, 1996; Trenberth et al., 2003) and is the
most important and active variable associated with atmospheric circulation in weather and climate studies
(Kidd & Huffman, 2011). Accurate and reliable precipitation records are crucial not only for the study of cli-
mate trends and variability but also for the management of water resources and weather, climate, and hydro-
logical forecasting (Jiang et al., 2012; Larson & Peck, 1974; Liu et al., 2017; Yilmaz et al., 2005). Gauge
observations are typically used to measure precipitation directly at the Earth’s surface (Kidd, 2001). Various
large-scale climate data sets at different spatiotemporal scales have been developed from station (in situ)
observations. For example, the Global Historical Climatology Network is an integrated database with about
31,000 stations and observations covering the entire twentieth century. However, gaugemeasurements have
several drawbacks, such as incomplete areal coverage and deficiencies over most oceanic and sparsely popu-
lated areas (Kidd et al., 2017; Rana et al., 2015; Xie & Arkin, 1996). With advanced infrared (IR) and microwave
(MW) instruments, satellite observations make up for these deficiencies by providing coverage that is more
spatially homogeneous and temporally complete for vast areas of the globe (Kidd & Levizzani, 2011; Xie
et al., 2003). Some satellite-derived data sets are now operationally available, including the Tropical Rainfall
Measuring Mission (TRMM) (Huffman et al., 2007), the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN) (Ashouri et al., 2015), and the Climate Prediction
Center (CPC) morphing technique (CMORPH) (Joyce et al., 2004) products. Furthermore, products merging
satellite and gaugemeasurements have been designed to improve the accuracy of climate-variable measure-
ments; this approach is expected to maximize the relative benefits of each data type (Huffman et al., 1995; Xie
et al., 2003). For instance, the Global Precipitation Climatology Project (GPCP) monthly precipitation analysis
merges gauge observations with low-orbit-satellite MW data and geosynchronous-orbit-satellite IR data and
is one of most popular products used in climate studies (Adler et al., 2003).
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These different types of precipitation data product have proved useful across a wide range of fields of
research. Global and regional climate-change trends have been quantified and made evident on the basis
of multiple different data sets. Climatology in different regions and changes in climate means and extremes
have also been investigated via these data products (Alexander et al., 2006; Kunkel et al., 2015; Rajah et al.,
2014; Sun, Kong, et al., 2014). Moreover, droughts and floods can be monitored by high-resolution
satellite-based products (AghaKouchak et al., 2015; AghaKouchak & Nakhjiri, 2012; Wu et al., 2014; Yilmaz
et al., 2010). Precipitation measurements are arguably the most vital meteorological input for forcing and
calibrating hydrological and ecological models. Although an increasing number of climate data sets with
higher spatial and temporal resolution have already been constructed and applied in a substantial number
of studies, the different data sets are not completely consistent (Tapiador et al., 2017). Differences exist
among the so-called observational data sets owing to deficiencies in the data sources and the individual
generation of the products. A range of studies comparing climate data sets has appeared in recent years
(Derin & Yilmaz, 2014; Donat et al., 2014; Gehne et al., 2016; Jiang et al., 2012; Kidd et al., 2012; Miao et al.,
2015; Sun, Kong, et al., 2014; Wang & Zeng, 2015). However, most of these studies focused on the applications
of, or comparisons between, just some of the data sets. Few studies provide a comprehensive overview of the
existing data products on a global scale. Moreover, more than 30 years of historical data are needed for the
purpose of conducting climate studies according to the World Meteorological Organization (WMO). Some
data sets, especially the gauge-based data sets and reanalysis, are generally provided long-term records of
precipitation, which are suitable for climate studies. The satellite-related data sets have the limitations of their
short length of record, but they still provide valuable and important information for the weather process,
drought, and hydrological monitoring. We make efforts to provide the full review of different data sets to
make readers in different research fields choose data set that suits themmore easily. Thereby, this study aims
to review the existing precipitation data sets generated from different data sources and to quantify the
discrepancies between these data sets over multiple time scales.

2. Data Set Sources and Estimation Procedures

2.1. Gauge-Based Estimates

2.1.1. Gauging Instruments

Precipitation shows high spatial and temporal variability. The analysis of climate change and variability
commonly depends on surface gauge observations. Rain gauges, disdrometers, and radar are the tools
usually used for measuring precipitation (Figure 1). Rain gauges are the most common tool for directly asses-
sing point precipitation at the surface, measuring the depth of rainfall as it accumulates over time. There are
several types of rain gauge, such as accumulation gauges, tipping-bucket gauges, weighing gauges, and opti-
cal gauges; these gauges all have strengths and limitations (Strangeways, 2006; Tapiador et al., 2012).
Accumulation gauges are simple collecting vessels that provide direct measurement of rainfall accumulation
via the water level in the collection cylinder at the gauge location. The accumulated rainfall measurement is
the sum of the raindrop volumes collected. Tipping-bucket rain gauges consist of a funnel that collects and
channels precipitation into a small seesaw-like container. Once the bucket is filled, the container tips and
empties the collected water, producing a signal in an inbuilt electrical circuit. However, clock synchronization
and the mechanical accuracy of bucket filling and emptying are potential problems (Michaelides et al., 2009).
Tipping-bucket gauges may remain partially filled at the end of a rainfall event, and only tip when a new
period of rain starts, resulting in a built-in uncertainty of one bucket tip and possible inaccuration of the quan-
tity of low-intensity rain. Optical rain gauges are based on visibility instruments and detect falling raindrops
by their effect on a horizontal beam of light. Although these gauges sense the rate of precipitation rather
than the amount, the total amount of rainfall can be derived (Strangeways, 2010). Weighing precipitation
gauges incorporate a storage bin for weighing the collected water and recording the mass. Compared with
tipping-bucket gauge, the advantage of this type of gauge is that it can measure other forms of precipitation,
including rain, hail, and snow. All of these instruments produce rainfall measurements that are highly corre-
lated with one another. Nevertheless, gauges suffer from environmental problems and other sources of error,
such as wind, evaporation, wetting, splashing, site location, instrument error, spatiotemporal variation in
drop-size distribution, and frozen versus liquid precipitation (Michelson, 2004; Peterson et al., 1998).

More recently, technologically sophisticated devices such as radar and disdrometers have been used to
enhance our knowledge about the composition of precipitation and the potential physical processes
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underlying its formation. Unlike rain gauges, disdrometers can detect individual raindrops and measure their
size. Knowledge of the drop-size distribution is essential for understanding precipitation processes,
estimating rainfall, and improving microphysics parameterizations in numerical cloud models.
Disdrometers can be categorized into two classes: impact disdrometers and imaging (line or area scan)
disdrometers. Weather radar is another alternative to rain gauges and provides real-time measurement
with high spatial and temporal resolution. Radar can also capture the three-dimensional structure of
precipitation. However, lack of accessibility and funding has limited the development of a global radar
network (Habib et al., 2012; Sauvageot, 1994).
2.1.2. Gauge-Based Precipitation Products

Gauge-based observations of precipitation tend to be collected by national weather services. For climate
research, it is necessary to assemble all of the data from different nations into one integrated global data
set. Founded in 1873, the World Meteorological Organization (WMO) is an intergovernmental organization
with 191 member states and territories (http://www.wmo.int). WMO promotes the development of observa-
tion networks for the fields of climatology, hydrology, and geophysics, as well as the exchange, processing,
and standardization of related data. It also provides assistance for technology transfer, training, and research.
For instance, the WMO Global Telecommunication System (GTS) is a complex worldwide communication
system for the exchange of meteorological data that forms the basis for many applications. Founded in
1992, the aims of the Global Climate Observing System (GCOS) were to meet the demand for climate-related
observations and to make the data freely available to all nations (Spence & Townshend, 1995). The GCOS is
essentially an aggregate of all climate-related activity in the observing systems fromwhich it is built, from the
global to the local scale (Houghton et al., 2012). The total number of rain gauges operated worldwide is esti-
mated to be between 150,000 and 250,000 (Groisman & Legates, 1995; New et al., 2001; Strangeways, 2006).
The wide range in estimates is due to the different criteria used to count gauges. Although many gauges
exist, not all have operated continuously or concurrently (Kidd et al., 2017).

Owing to the irregular distribution of observation stations, gridding of data is required for many climatic and
related applications. Several gridded precipitation data sets based entirely on gauge information have been
constructed and are in wide use (summarized in Table 1). The Climate Research Unit (CRU) data set comprises
a suite of climate variables, including precipitation. This data set is popular because of its relatively long
history and its fine spatial resolution. The principal sources used for construction of the CRU monthly preci-
pitation data set were obtained through the auspices of the national meteorological agencies (NMAs), the
WMO, the CRU, the Centro Internacional de Agricultura Tropical, the Food and Agriculture Organization
(FAO), and others.

The Global Precipitation Climatology Centre (GPCC) has established a unique capability to collect, perform
quality control, and analyze rain gauge data from across the globe. NMAs provide the primary data for the
GPCC, with 158 countries and 31 regional suppliers providing the majority of the gauge data in the GPCC
database. Furthermore, the GPCC receives daily surface synoptic observations andmonthly climatemessages
from the WMO GTS. The global data collections of the CRU (11,800 stations), FAO (13,500 stations), and GHCN

Figure 1. Three instruments for making ground observations of precipitation. Figure adapted from the website of National Aeronautics and Space Administration
(NASA) (https://pmm.nasa.gov/image-gallery/cocorahs-rain-gauge-storm; https://pmm.nasa.gov/science/ground-validation/ground-instruments).
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at the National Centers for Environmental Information (34,800 stations from GHCN2 and GHCN daily), as well
as data collections from international regional projects, are all integrated into the GPCC. The resulting
database covers more than 200 years and uses data acquired from more than 85,000 stations worldwide.
The GPCC requires a minimum of 10 uninterrupted years at each station as a screening criterion for the
cadre data set for the background climatology. Therefore, the number of stations utilized for GPCC
Climatology is exactly 67,298 stations for the best covered month (June) and exactly 67,149 stations for
the worst covered month (December). Stations (65,335) pass the 10 year constraint for every month of the
year and are therefore utilized for the annual climatology. Four globally gridded monthly precipitation
products have been constructed from this database (Becker et al., 2013)—ClimatologyV2011, GPCC Full
Data version 7, Monitoring Product V4, and GPCC First Guess Products. The GPCC Full Data product is the
most commonly used product and covers the period from 1901 to the present. The GPCC Full Data
product is described in Table 1; the distribution of gauges as of July 2005 is plotted in Figure 2b.

For the University of Delaware (UDEL) product, station data are gathered from various sources: a recent
version of the GHCN data set (GHCN2); a version of the Daily GHCN (GHCN-Daily); an Atmospheric
Environment Service/Environment Canada archive; data from the Hydrometeorological Institute in St.
Petersburg, Russia; Greenland Climate Network data; daily records from the Global Surface Summary of the
Day; the National Center for Atmospheric Research (NCAR) daily India data; Nicholson’s archive of African pre-
cipitation data; Webber and Willmott’s South American monthly precipitation station records; and the
Automatic Weather Station Project’s Greenland station records. Part of the background climatology is taken
from Legates and Willmott’s (1990) unadjusted archive.

To meet the need for a high-quality, observation-based, large-scale precipitation data set covering both land
and ocean for the period before the 1970s, the U.S. CPC has constructed a monthly precipitation data set
beginning in 1948. Termed the precipitation reconstruction (PREC), this global analysis is constructed by
interpolating gauge observations over land (PRECL) and by empirical-orthogonal-function reconstruction
of historical observations over ocean (Chen et al., 2002). PRECL data include measurements from over
17,000 stations in the GHCN2 and the Climate Anomaly Monitoring System data sets.

The CPC Gauge-Based Analysis of Global Daily Precipitation (CPC-Global) is the first product from the CPC
Unified Precipitation Project in progress at the National Oceanic and Atmospheric Administration (NOAA).
This project is devoted to combining all information sources available at the CPC and using the optimal-
interpolation objective analysis technique to create a set of unified precipitation products that have
consistent quantity and improved quality. Gauge reports from 30,000 stations form the CPC-Global product,
including reports from the GTS, Cooperative Observer Network (COOP), and other NMAs.

These databases depend on historical precipitation observations from ground stations, and the original data
are sometimes identical in the different databases. Thus, these data sets have always been in general agree-
ment across spatiotemporal scales. Moreover, the number of gauges in use is growing smaller (Figure 2). For
instance, in the GPCC Full Data Reanalysis Version 7.0 data set, there were around 10,900 usable stations
across the world in 1901. The number increased steadily to a maximum of about 49,470 in July 1970, and

Table 1

Summary of Global Gauge-Based Products

Data set Resolution Frequency Coverage Period Source Reference

CRU 0.5° × 0.5° Monthly Global land 1901–2015 The CRU of the University
of East Anglia

(Harris et al., 2014;
New et al., 2000)

GHCN-M 5° × 5° Monthly Global land 1900–present National Climatic Data
Center

(Peterson & Vose, 1997)

GPCC 0.5° × 0.5°,
1.0° × 1.0°,
2.5° × 2.5°

Monthly Global land 1901–2013 GPCC (Rudolf et al., 2009)

GPCC-daily 1.0° × 1.0° Daily Global land 1988–2013 GPCC (Schamm et al., 2014)
PRECL 0.5° × 0.5°,

1.0° × 1.0°,
2.5° × 2.5°

Monthly Global land 1948–2012.1(0.5°)
1948–present

NCEP/NOAA (Chen et al., 2002)

UDEL 0.5° × 0.5° Monthly Global land 1900–2014 University of Delaware (Willmott & Matsuura, 1995)
CPC-Global 0.5° × 0.5° Daily Global land 1979–2005 CPC (Xie et al., 2010)
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then fell thereafter to 30,000 in 2005 and subsequently to only about 10,000 by 2012 (Figure 2e). This
reduction in ground-based measurements is wide-ranging and has occurred for all climatic data, not just
precipitation. This reduction may be due to increasing operational and staffing costs associated with
ground-based data collection, restrictions on the release of the data by NMAs, migration and
abandonment of sites, and economic and political factors (Strangeways, 2006). The general decline in the
use of gauges is a serious concern and may reduce our ability to follow changes in precipitation in the
future (Strangeways, 2006). Timing of gauge observations is also an important issue because it differs
among the various national networks. This sometimes creates untagged multiday accumulations, with
clear implications for comparisons with other sources of data (e.g., Viney & Bates, 2004).

2.2. Satellite Estimates

Satellite systems are invaluable tools for global measurements of atmospheric parameters at regular inter-
vals. In April 1960, the first Television and IR Observation Satellite (TIROS) was launched, producing images
of clouds that could be compared with concurrent meteorological observations (Kidd, 2001). Since then,
the number of satellite sensors for observing the atmosphere has advancedmarkedly. Sensors onboard satel-
lites are currently the only instruments that can provide global, homogeneous, precipitation measurements.
The sensors can be classified into three categories: visible/IR (VIS/IR) sensors on geostationary (GEO) and low
Earth orbit (LEO) satellites, passive MW (PMW) sensors on LEO satellites, and active MW sensors on LEO satel-
lites (Michaelides et al., 2009; Prigent, 2010). Corresponding methods used to derive precipitation have been
developed, including the VIS/IR-based methods, active and passive MW techniques, and merged VIS/IR and
MW approaches (Kidd & Levizzani, 2011).
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Figure 2. (a–d) Distributions of rain gauges used for July 2005 in the data sets CPC, GPCC, CRU, and PRECL, respectively. (e) The number of monthly precipitation data
points in the different databases as a function of time across the period covered by the corresponding product.
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The principle underlying VIS/IR methods is that cold and bright clouds are related to convection; cold cloud
tops suggest greater vertical development in the cloud and therefore more rain. The link between IR cloud
top temperature and the probability and intensity of rainfall at the ground can be used to estimate precipita-
tion from IR readings. VIS/IR satellite observations have the advantage of providing wide coverage over tro-
pical regions with adequate temporal resolution and fine spatial resolution. A number of different VIS/IR
algorithms are widely used, such as the Griffith-Woodley algorithm (Griffith et al., 1978), the GEO
Operational Environmental Satellites (GOES) Precipitation Index (GPI) (Arkin & Meisner, 1987), the
Convective/Stratiform technique (Adler & Negri, 1988), the GOES multispectral rainfall algorithm (Ba &
Gruber, 2001), and so on. It should be noted, however, that the relationship between cloud top temperature
and precipitation is indirect and not all clouds form precipitation.

PMW radiometer is a more direct method of measuring precipitation because PMW is sensitive to
precipitation-sized particles. Unlike VIS/IR observations, PMW observations from satellites can sense through
clouds. PMW-based techniques for estimating precipitation have advanced significantly since the first Special
Sensor Microwave/Imager (SSM/I) was launched in 1987 (Hollinger et al., 1987). In late 1997, launch of the
TRMM included the PMW TRMM MW Imager (TMI) (Kummerow et al., 1998), which resulted in great progress
in depicting and analyzing tropical precipitation. The first advanced MW sounding unit (MSU) (AMSU)
onboard NOAA 15 was launched in July 1998. It provided information at higher frequencies between 23.8
and 190 GHz and was useful for deriving cloud and precipitation products. These products, combined with
those derived from the U.S. Defense Meteorological Satellite Program (DMSP) SSM/I provide more global
observation in spatial-temporal scales and are useful to weather and climate analyses (Goodrum et al.,
1999). In 2002, the Advanced MW Scanning Radiometer for the Earth Observing System (AMSR-E) was devel-
oped as a multichannel PMW radiometer and measures water-related geophysical parameters (Kawanishi
et al., 2003). The spatial resolution of AMSR-E data is double that of Scanning Multichannel MW Radiometer
and SSM/I data. Early PMW-based retrieval methods were simple regressions between surface rain rates
and the associated simulated or measured brightness temperature, methods which are currently still used
in long-term climatologies. Recently, however, other approaches have been developed, including probabilis-
tic, physical, and iterative algorithms, and these have been widely applied to rainfall estimation (Bauer et al.,
2001; Petty, 1994; Pierdicca et al., 1996;Wentz & Spencer, 1998). The Goddard PROFiling scheme is one ofmost
popular retrieval methods from which instantaneous rainfall and the vertical structure of rainfall can be
obtained (Kummerow et al., 2001). Although PMW-based methods can make realistic instantaneous rainfall
estimates, PMW sensors are at present only onboard LEO satellites, leading to relatively poor temporal sam-
pling (Hong et al., 2012) compared with the rapid temporal update cycle (30 min or less) of the GEO-based
IR instruments. The current era of LEO satellites with PWM sensors allow for near global coverage every 3 h
or less. Data collected from VIS/IR and PMW sensors are often merged to increase the accuracy, coverage,
and resolution of precipitation analyses. For example, Sorooshian et al. (2002) developed combined PMW
and IR algorithms and Tapiador et al. (2004) also used a neural network-based estimation approach that used
both PMWand IR satellitemeasurements. CMORPH usesmotion vectors derived fromGEO satellite IR imagery
(sampled at 30 min intervals) to produce high-quality precipitation estimates from PMW data (Joyce et al.,
2004). The use of active MW observations from satellites for precipitation began with the launch of the first
spaceborne precipitation radar in the TRMM mission in 1997, which made it possible to capture the three-
dimensional structure of rain (Kummerow et al., 2000). The Global Precipitation Measurement (GPM) mission
was designed to offer new rainfall and snowfall observations from space (Figure 3). These data helped the next
generation of global precipitation products, characterized by more accurate instantaneous precipitation esti-
mates and unified precipitation retrievals from a constellation of MW radiometers (Hou et al., 2014).

A number of satellite precipitation data sets are currently available (summarized in Table 2), including
CMORPH (Joyce et al., 2004), the TRMM Multi-satellite Precipitation Analysis (TMPA) (Huffman et al., 2007),
and PERSIANN (Hong et al., 2004; Hsu et al., 1997; Sorooshian et al., 2000). Maggioni et al. (2016) presented
a consolidated and detailed review of the algorithms used in satellite precipitation data sets, including a com-
parison of the algorithms over six continents and oceans.

CMORPH has half-hourly analyses at a grid resolution of 8 km, depends on MW retrievals exclusively, and only
uses IR data to propagate MW-derived precipitation features during times when updated PMW data are una-
vailable. Time-weighted linear interpolation is used to modify the shape and intensity of precipitation
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features during the times between PMW sensor scans to ensure precipitation estimates are temporally and
spatially complete. CMORPH retrieves PMW precipitation estimates from the NOAA polar-orbiting
operational meteorological satellites (including NOAA 15, 16, and 18); DMSP 13, 14, and 15; and NASA’s
Aqua and TRMM spacecraft. IR images over different time intervals are provided by the GOES 8, GOES 10,
Meteosat-5, Meteosat-7, and GEO Meteorological Satellite-5 (GMS-5) satellites.

The Global PERSIANN Cloud Classification System (PERSIANN-CCS) estimates rainfall distribution at a finer
scale (0.04° and 30 min) from IR brightness temperature data from GEO satellites and uses PMW measure-
ments from LEO satellites to update its parameters. The variable-threshold cloud segmentation algorithm
extracts informative features from cloud patches and then classifies these patches into different groups on
the basis of the similarity of selected features. Rainfall mapping for each classified cloud cluster is achieved
by using histogram matching and exponential regression to fit curves to the plots of pixel brightness tem-
perature versus rainfall rate (Hong et al., 2007). The PERSIANN Climate Data Record (PERSIANN-CDR) provides
longer (1983 to present) and finer (0.25°) daily precipitation estimates using the PERSIANN algorithm on
GridSat-B1 IR satellite data. The artificial neural network is trained with stage IV hourly precipitation data from
the National Centers for Environmental Prediction (NCEP). The high-resolution PERSIANN estimates are then
adjusted by GPCP data at a resolution of 2.5° for bias reduction (Ashouri et al., 2015).

The primary rainfall sensors on the TRMM spacecraft include the Precipitation Radar, the TMI, and the VIS/IR
Radiometer. A suite of precipitation products has been produced based on the data from these sensors, avail-
able at three levels. Level 2 products include 2A25, 2A23, 2A12, and 2B31. TRMM rainfall products that have a
uniform space and time grid are level 3 products and include 3A25, 3A11, 3A12, 3B21, 3B42, and 3B43. TRMM
3B42 and 3B43 are the most commonly used products and combine precipitation estimates from multiple
satellites (Liu et al., 2012). TRMM 3B43 combines the TRMM 3B42 data set with the GPCC rain gauge analysis.
The TMPA algorithm derives precipitation by combining high-quality PMW observations and IR data from
GEO satellites. The MW precipitation estimates are calibrated and combined from different sources, including
the TMI onboard the TRMM spacecraft, the SSM/I on DMSP satellites, the AMSR-E on the Aqua spacecraft,
AMSU-B on the NOAA satellite series, the MW Humidity Sounders (MHS) on later NOAA-series satellites and
the European Operational Meteorological satellite (Huffman et al., 2007).

The Global Satellite Mapping of Precipitation (GSMaP) project was sponsored by the Japan Science and
Technology Agency during the period of 2002–2007. It aims to produce high-resolution global precipitation
maps and develop precise MW radiometer algorithms. This precipitation product is based on MW radiometer
data from TMI, AMSR-E, SSM/I (F13, F14, and F15), AMSU-B (N15, N16, N17, and N18), and IR data merged from

Satellite altitude
                 407km

Direction

Figure 3. Conceptualization of precipitation observations from the GPM core satellite. Figure adapted from Hou et al. (2014) and GPM/DPR special site (http://global.
jaxa.jp/countdown/f23/overview/gpm_e.html).
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all available GEO satellites (GOES 8/10, Meteosat-7/5, and GMS) provided by NCEP/CPC. Surface precipitation
rates are retrieved according to Aonashi et al. (1996). High-resolution (1° /1 h) precipitation maps are created
with a morphing technique using the IR cloud motion vector and Kalman filtering (Ushio & Kachi, 2010).
GSMaP_MVK refers to the Kalman filter-based system; a near-real-time system named GSMaP_MVK_RT
contains the propagation process forward in time.

Rain gauges provide relatively accurate and trusted measurements of precipitation at single points but are
unavailable over many sparsely populated and oceanic areas and can be affected by sampling errors.
Satellite observations provide precipitation information with homogeneous spatial coverage but contain
nonnegligible random errors and biases owing to the indirect nature of the relationship between the obser-
vations and precipitation, inadequate sampling, and deficiencies in the algorithms. Many attempts have been
made to merge different sources of information to overcome these problems while tapping into the indivi-
dual advantages of the different methods, to obtain optimal precipitation analyses with regular gridded fields
(Figure 4). The CPC Merged Analysis of Precipitation (CMAP) (Xie & Arkin, 1997) and GPCP (Adler et al., 2003)
are themost widely recognized and usedmerged data sets. The GPCP precipitation product was first released
in 1997 and version 2 was released in 2002. It is based on the sequential combination of MW, IR, and gauge
data. For the SSM/I period 1987 to the present, MW measurements from the SSM/I and the Special Sensor
Microwave Imager Sounder (SSMIS) calibrate the GPI between 40°S and 40°N and are combined with esti-
mates based on data from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric IR Sounder
to offer globally complete satellite-only precipitation estimates. For the pre-SSM/I periods, the calibrated
Outgoing long-wave radiation (OLR) Precipitation Index (OPI) (trained against GPCP for the period of
1988–1997) is used globally between 1979 and 1985; for other time periods, the Adjusted Global
Precipitation Index is used between 40°S and 40°N and the calibrated OPI is used elsewhere. Then, the multi-
satellite field is merged with rain gauge analyses (over land) by adjusting the satellite estimates to the gauge

Figure 4. Flowchart for the precipitation products. The images for satellite adapted from Hou et al. (2014).
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bias and then combining the (adjusted) satellite and gauge fields by inverse error-variance weighting (Adler
et al., 2003).

CMAP uses very similar input data to GPCP, but there are some differences in themerging technique. CMAP is
constructed in two steps, merging seven independent sources with different characteristics. First, the
IR-based GPI, the OLR-based OPI, the MSU-based Spencer data set, the SSM/I-scattering-based
NOAA/National Environmental Satellite, Data, and Information Services data set, the SSM/I-emission-based
Chang data set, and the precipitation forecast from NCEP-NCAR reanalysis are linearly combined using a
maximum-likelihood method in which the weighting coefficients are in inverse proportion to the squares
of the individual random errors. The errors over land and ocean are determined by comparison with the
GPCC and atoll gauge measurements. Second, the variational blending method is used to combine the out-
put from the first step with gauge-based analyses to remove possible biases (Xie & Arkin, 1997). Yin et al.
(2004) reported that the GPCP and CMAP analyses are generally consistent, with just a few differences occur-
ring owing to discrepancies in the source data and merging techniques. The GPCP pentad precipitation ana-
lysis is constructed by modulating the pentad CMAP analysis on the basis of observations only to ensure that
the overall magnitude of the adjusted pentad analyses matches the monthly GPCP while the high-frequency
components remain unchanged (Xie et al., 2003).

The TRMM 3B43 monthly fields are constructed by combining multisatellite and gauge analyses via inverse
random-error variance weighting, then scaling all the individual 3-hourly combined PWM-IR fields so that
they sum to the 3B43 grid box values.

The GPCP 1° daily precipitation analysis (GPCP 1dd) was released to meet the initialization requirement in
numerical models, to drive land-surface models, to resolve the advance and retreat of precipitation, and to
validate model forecasts (Huffman et al., 2001). The algorithm for obtaining instantaneous precipitation in
the GPCP 1dd uses the Threshold Matched Precipitation Index (TMPI) for 40°N–40°S, based on a merged
geo-IR data set from IR brightness temperatures, and rescaled TOVS precipitation estimates at higher lati-
tudes (Huffman et al., 2001). It should be noted that all merged data sets make assumptions that the preci-
pitation distribution estimated from combined satellite estimates is optimal and that the gauge
observations are bias-free.

The global coverage Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall data set provides
3-hourly temporal resolution and 0.25° spatial resolution (Beck et al., 2017). MSWEP merges the highest-
quality precipitation data sources available as a function of timescale and location. It uses a combination
of rain gauge measurements, satellite observations, and estimates from atmospheric models (Beck et al.,
2017). The weight assigned to the gauge-based estimates is calculated from the gauge network density,
and the weights assigned to the satellite- and reanalysis-based estimates are calculated from their compara-
tive performance at the surrounding gauges. This determines the temporal variability of MSWEP at each grid.

2.3. Reanalysis

The idea behind reanalysis systems is tomerge irregular observations andmodels that encompass many phy-
sical and dynamical processes in order to generate a synthesized estimate of the state of the system across a
uniform grid, with spatial homogeneity, temporal continuity, and a multidimensional hierarchy. Many essen-
tial climate variables output from reanalysis systems maintain a physically consistent framework and can be
obtained after only a short time delay. A reanalysis system includes a background forecast model and a data
assimilation routine. The observations assimilated into the reanalysis system, the model parameterizations,
and the complex interactions between the model and the observations all influence the subsequent precipi-
tation forecast generated by the system (Bosilovich et al., 2008). Successive generations of reanalysis pro-
ducts produced by various organizations have advanced their quality, with improved models, input data,
and assimilation methods. We focus on global reanalysis systems in this study, including the two
NCEP/NCAR Reanalysis system (NCEP1 and NCEP2), two European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis systems (ERA-40 and ERA-Interim), the Twentieth Century Reanalysis system
(20CRv2), the Modern-Era Retrospective Analysis for Research and Application system (MERRA), the NCEP
Climate Forest System Reanalysis system (CFSR), and the Japanese 55-year Reanalysis (JRA-55).

NCEP2 was conceived as an updated and human-error-fixed version of NCEP, with similar input data and
vertical resolution (Kanamitsu et al., 2002); however, some evaluations have indicated that there are few
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differences between the performance of NCEP2 and NCEP1. ERA-40 had some data assimilation problems,
so the ECMWF created ERA-Interim in an attempt to overcome this. ERA-40 overestimated rainfall over
tropical oceans owing to the humidity analysis scheme and bias adjustments for IR radiance (Uppala
et al., 2005). ERA-Interim applies four-dimensional variational data assimilation (4D-Var), uses a
completely automated scheme to adjust for biases in satellite radiance observations, and executes
modified convective and boundary layer cloud schemes, increasing the atmospheric stability and
producing less precipitation (Dee et al., 2011). 20CRv2, CFSR, and MERRA are generally classified as
modern reanalysis systems with higher spatial resolution (Table 3) that apply advanced numerical
models and assimilation schemes to combine observations from multiple sources. CFSR is based on a
fully coupled ocean-land-atmosphere model and uses numerical weather prediction techniques to
assimilate and predict atmospheric states (Saha et al., 2010). CFSR applies three-dimensional variational
data assimilation (3D-Var) based on grid-point statistical interpolation (GSI), consistent with MERRA.
Since 2014, the second MERRA reanalysis system (MERRA-2) has increasingly replaced the original
reanalysis system and uses version 5 of the Goddard Earth Observing System Model data assimilation
system and an updated GSI. The NOAA 20CR data set has the longest record of variables, spanning the
twentieth century. Observations of synoptic surface pressure, prescribed monthly sea-surface
temperatures, and sea ice distributions were assimilated to form boundary conditions for atmosphere in
the 20CR reanalysis system (Compo et al., 2011). In 2010, the second Japanese global atmospheric
reanalysis project, Japanese 55-year Reanalysis (JRA-55), was improved by the Japan Meteorological
Agency to overcome the deficiencies in the first Japanese reanalysis project, Japanese 25-year
Reanalysis, and to provide a long-term comprehensive atmospheric data set. JRA-55 adopts a new radia-
tion scheme in the forecast model as well as 4D-Var with variational bias correction (Ebita et al., 2011). In
addition, JRA-55 includes greenhouse gases at time-varying concentrations to improve the data quality
(Ebita et al., 2011).

3. Intercomparison of Precipitation Estimates Among the Different Data Sets

The data sets described above have been used in numerous studies, including the detection of climate varia-
bility, the attribution of climate change, and the evaluation of climate models at global and regional scales
(Ceglar et al., 2017; Gehne et al., 2016; Huffman et al., 2001). However, the estimated precipitation is not
completely consistent among these data sets owing to their different data sources, quality control schemes,
and estimation procedures. Consequently, comparing the performance of the data sets at different spatio-
temporal scales will provide essential information for related studies that use these data sets. Some compar-
isons of global precipitation data sets have been carried out in previous studies. For instance, Gehne et al.
(2016) compared the characteristics of precipitation estimates from 11 global products. Herold et al. (2017)
explored the difference in observed daily precipitation extremes over tropical land (50°S–50°N) estimated

Table 3

Summary of Precipitation Reanalysis Products

Data set Resolution Freq. Coverage Period Source Assimilation schemes Reference

NCEP1 2.5° × 2.5° Monthly/Daily/6 hourly Global 1948–present NCEP/NCAR 3D-Var (Spectral
statistical interpolation)

(Kalnay et al., 1996)

NCEP2 1.875° × 1.875° Monthly/6 hourly Global 1979–present NCEP/DOE 3D-Var (Kanamitsu et al., 2002)
ERA 40 2.5° × 2.5°/

1.125° × 1.125°
Monthly/6 hourly Global 1957–2002 ECMWF 3D-Var (Uppala et al., 2005)

ERA Interim 1.5° × 1.5°/
0.75° × 0.75°

Monthly/6 hourly Global 1979–present ECMWF 4D-Var (Dee et al., 2011)

20CRv2 2.0° × 2.0° Monthly/daily/6 hourly Global 1871–2012 NOAA Ensemble Kalman
Filter

(Compo et al., 2011)

JRA-55 60 km Monthly/3 hourly
/6 hourly

Global 1958–present Japanese
Meteorological
Agency

4D-Var (Ebita et al., 2011)

MERRA 0.5° × 0.67° Daily Global 1979–present NASA 3D-Var (Rienecker et al., 2011)
MERRA Land 0.5° × 0.67° Monthly/Daily/1hourly Global land 1980–present NASA 3D-Var (Reichle et al., 2011)
CFSR 38 km 6 hourly Global 1979–2010 NOAA 3D-Var (Saha et al., 2010)
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by five products. These studies focused on a limited number of data sets and compared only certain aspects
of precipitation characteristics at temporal and spatial scales. In the following sections, we investigate the
differences among these data sets at annual, seasonal, and daily scales. We will also examine uncertainties
in mean and extreme precipitation values.

The websites used to access the data sets and the code necessary to read them can be found in the support-
ing information. Owing to differences in the time periods covered by the data sets (Figure 5), only the data
sets with overlapping time periods were used in the comparison. Thus, the CRU, GPCC, UDEL, PRECL,
GPCP, CMAP, CPC, CMORPH, TRMM 3B43, PERSIANN-CDR, PERSIANN-CCS, MSWEP, 20CR, CFSR, NCEP1,
NCEP2, JRA-55, ERA Interim, andMERRA were compared at the annual and seasonal scales. For the daily scale,
15 products were compared, GPCC-daily, GPCP 1dd, CPC, CMORPH, TRMM 3B42, PERSIANN-CDR, PERSIANN-
CCS, MSWEP, 20CR, CFSR, NCEP1, NCEP2, JRA-55, ERA Interim, and MERRA. Lastly, 22 monthly or daily data
sets were evaluated. The data sets cover a range of spatial (0.04° to 2.5°) and temporal resolutions (30 min
to monthly). We also summarize the preexisting regional intercomparisons of estimated precipitation in
different areas.

3.1. Intercomparison of Annual Precipitation Estimates

Figure 6 displays the annual precipitation estimates over global land (excluding Antarctica) and tropical land
(50°S–50°N) from 17 precipitation products (PERSIANN-CDR was not included owing to a short time period).
The data sets provide precipitation estimates over different time periods. The largest discrepancy occurs in
the magnitudes of the different precipitation estimates. Although the 20CR data set provides the longest
precipitation time series, this data set overestimates precipitation compared withmany of the other data sets.
The gauge-based CRU, GPCC, and UDEL data sets are popular products covering the 20th century and show
reasonably consistent interannual variability, but with deviations in magnitudes of up to about 100 mm. In
the Taylor diagrams (Taylor, 2001) (Figure 7), GPCC is used as the reference object because it is the largest
gauge-observation data set, with data from more than 70,000 different stations (Schneider et al., 2008). In
the period of overlap (1979–2010), the annual series from gauge-based estimates are similar and are located
close to each other in the Taylor diagrams, whereas there is great inconsistency in the annual values obtained
from reanalysis products. In tropical regions, gauge-based products showed consistent interannual variability
and small biases. The discrepancies were increased when other products were added. However, some pro-
ducts, including the satellite-based TRMM 3B43, PERSIANN-CDR products, and GPCP, match the gauge-based
precipitation well in tropical regions (Figure 7). The GPCC data set is used to calibrate both GPCP and TRMM

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

CRU
GHCN-M

GPCC

GPCC-daily
PRECL
UDEL

CPC
PERSIANN

PERSIANN CCS

CMORPH
TRMM 3B42

GPM
GPCP

GPCP 1dd

GPCP PEN
CMAP

TRMM 3B43

NCEP1
NCEP2
ERA 40

EAR Interim
20CR

JRA55
MERRA

CFSR
MSWEP

GSMaP

PERSIANN CDR

2003 2010

Figure 5. Years of coverage for each precipitation data set.
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3B43, and PERSIANN-CDR is adjusted according to GPCP estimates (Ashouri et al., 2015). This can partly
explain the higher correlation among these data sets. Precipitation estimates for tropical land from
reanalysis products other than 20CR show relatively high correlation coefficients with GPCC (>0.6)
compared with the coefficients over global land, but there are larger discrepancies in the variation of
annual precipitation.

Figure 8 shows the spatial distribution of annual precipitation from different products during the overlap per-
iod 2003–2010. All products capture a similar spatial precipitation pattern. The reanalysis products, especially
CFSR, NCEP2, and JRA-55, show higher precipitation estimates over tropical regions than the gauge-based,
satellite-based, or merged products. This overestimation is especially apparent in tropical ocean and results
from overestimation of small and medium-sized precipitation amounts (Pfeifroth et al., 2013). Furthermore,
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Figure 6. Temporal comparison of annual precipitation estimates from the different data sets for (a) global land (15 data sets) and (b) tropical land (18 data sets).
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Figure 7. Taylor diagrams were used to compare the precipitation estimates across (a) global land (1979–2010, 15 data sets) and (b) tropical land (50°S–50°N; 2003–
2010, 19 data sets). The blue, magenta, and red dots in the Taylor diagrams represent data sets belonging to gauged-based, satellite-related, and reanalysis products,
respectively.
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tropical precipitation is characterized by high spatiotemporal variability and stems mainly from convective
events, which requires accurate parameterization schemes and high resolution in the reanalysis model
(Pfeifroth et al., 2013). Owing to a lack of abundant direct observations, precipitation estimates over ocean
remain challenging and largely uncertain. Over global land, the largest differences among precipitation esti-
mates from gauge-based, reanalysis, and satellite-gauge merged products are concentrated in northern
Africa, northwest China, eastern Russia, northern North America, Greenland, and the west coast of South
America, areas that are characterized by sparse measurements owing to sparse populations and complex
terrain. High-elevation regions have relatively warm clouds. Incorrect discrimination between raining and
nonraining clouds with thermal IR could cause the IR rainfall retrieval algorithms to miss light-precipitation
events and underestimate total rainfall (Bitew & Gebremichael, 2010; Maggioni et al., 2016). Conversely, rea-
nalysis data sets tend to overestimate precipitation at higher elevations compared with observations from
stations. For instance, compared with the station observations from China Meteorological Administration
and the U.S. National Snow and Ice Data Center, MERRA, ERA-Interim, and CFSR significantly overestimate
precipitation at high elevations; however, the TRMM 3B42 satellite data underestimate precipitation in moun-
tainous areas in Central Asia (Hu et al., 2016). In addition, the discrepancies between products are slightly
greater in arid and semiarid regions than in humid regions (Cattani et al., 2016; Dinku et al., 2011). In tropical
regions, discrepancies between products did not increase when satellite estimates were included (Figure 9).

Figure 8. Spatial distribution of the 8 year (2003–2010) average precipitation estimates from different products. Precipitation estimates were based on the original
spatial resolution of each data set, without reinterpolation to a unified resolution.
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3.2. Intercomparison of Seasonal Precipitation Estimates

At the seasonal scale, satellite-gauge merged products produced low precipitation estimates, whereas reana-
lysis products produced high estimates (Figure 10). The CPC estimates are the lowest in all four seasons,
leading to the underestimation of annual precipitation. In March-April-May (MAM), September- October-
November (SON), and December-January-February (DJF), the CFSR estimates exceed those of the other
products. GPCP, CRU, and GPCC agree well with each other in all seasons. Although PRECL and UDEL are also
gauge-based, precipitation estimates for MAM, June-July-August (JJA), and SON from these products are
higher than the estimates from CRU and GPCC. The coverage of the raw data sources, orographic correction,
and interpolation techniques may be potential factors impacting agreement among gridded data sets. The
seasonal contributions to the difference in annual precipitation are slightly larger for JJA and MAM than
for the other seasons. Differences in JJA and MAM precipitation span more than 100 mm. For tropical land,
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Figure 10. Precipitation estimates from different data sets over the period 2003–2010 across different seasons over (a) global land and (b) tropical land.
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the relatively lower MAM, JJA, and SON precipitation estimates from CPC and the relatively higher MAM, SON,
and DJF precipitation estimates from PERSIANN-CCS result in these two products having the lowest and high-
est annual precipitation estimates, respectively. The estimates from GPCP and the four gauge-based products
are consistent, because they use the same gauges. The seasonal precipitation estimates are similar for TRMM
3B43 and PERSIANN-CDR. However, the seasonal estimates from the reanalysis products are uneven and
display discrepancies.

At the spatial level, there are discrepancies between products in northwest Africa, inland Asia, northern
Eurasia, northern North America, and Greenland, with a normalized discrepancy range of more than 0.4 in
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MAM (Figure 11). All products capture the zonal characteristics of global precipitation. The overestimation of
global precipitation in CFSR relative to other products is mainly due to overestimation of precipitation in the
equatorial regions. Underestimation of precipitation in the subtropical zone and temperate regions is the
major contributor to the low CMORPH MAM precipitation estimates. Precipitation estimates for JJA show
large discrepancies over Siberia, Alaska, southeast Brazil, western Asia, and northern Africa. For SON, the nor-
malized discrepancy range over Siberia, Alaska, and Greenland is generally greater than 0.5. It should also be
noted that clear discrepancies in DJF precipitation estimates exist for large areas of Eurasia and Alaska. In JJA,
SON, and DJF, CPC (Figure 11) tends to underestimate seasonal precipitation in equatorial regions compared
with other products.

3.3. Intercomparison of Daily Precipitation Estimates

Figure 12 shows the long-term histograms of daily precipitation intensity, from 0.1 mm d�1 to 250 mm d�1,
averaged over six continents. Light precipitation events occur more frequently than other precipitation
events, and there is a large divergence in the frequency of light events estimated by the different products.
For Asia, North America, Europe, Africa, South America, and Australia, the spread of frequency estimates
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covers 16.34%, 23.72%, 21.65%, 15.94%, 19.84%, and 17.65%, respectively. GPCP has the lowest frequency
estimate for light precipitation events on all continents. PERSIANN-CDR estimates of light precipitation fre-
quency in Asia, North America, and Australia are generally higher than the estimates from other precipitation
products. For moderate-intensity precipitation events, NCEP1 has higher frequency estimates for Asia, North
America, Africa, and, in particular, South America, with the latter having an estimated frequency of greater
than 40%. However, the estimated frequencies of precipitation at higher bins (>50 mm d�1) are lower for
NCEP1 than for most products, especially in South America. For heavy precipitation intensity events, the low-
est estimated frequencies for all six continents come from NCEP1. NCEP2, CFSR, TRMM 3B42, and PERSIANN-
CCS, however, generally produce higher frequency estimates at high precipitation intensity bins than most of
the other products. The satellite precipitation products estimate a greater frequency of high-intensity rain
events. The PERSIANN algorithm applied pattern recognition to develop a “patch-based” cloud classification
rainfall estimate based on satellite IR images. The higher frequency estimates in PERSIANN-CCS are likely
related to the uncertainties in the statistical relationship between cloud top brightness, temperature, and
precipitation rate. This relationship contains some uncertainties associated with the height, thickness, and
type of cloud, which translate into uncertainties in the ensuing precipitation estimation (AghaKouchak
et al., 2011; Shah & Mishra, 2016; Tian et al., 2007). As the input forcing the observed initial conditions in
hydrological models, discrepancies in reported daily precipitation may induce large biases in simulated
streamflow (Shah & Mishra, 2016).

The spatial distributions of daily precipitation 90th percentiles during the 2003–2010 period were plotted to
investigate the differences between product estimates of extreme events (Figure 13). Overall, the satellite-
related and gauge-based products show higher extreme precipitation over Africa, southern Asia, and

Figure 13. Spatial distribution of the daily precipitation 90th percentiles over the period 2003–2010 for different products. The daily data sets were regridded into a
unified resolution (1.0°) for comparison with GPCC-daily.
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South America than the reanalysis products, except for MERRA. Across all products, NCEP1 and ERA Interim
provide the lower estimates of extreme precipitation andMERRA the highest. Compared with other products,
MERRA greatly overestimates extreme precipitation in the Indian Ocean, the Pacific Ocean, and the western
Atlantic Ocean. Consistent with the mean values (Figure 9), the differences in estimates of extreme precipita-
tion are larger for arid regions than for humid regions. Large differences in the estimates are located in north-
ern Africa, western and central Asia, and central Australia (Figure 14). However, differences in extreme
precipitation estimates are lower at higher latitudes than at lower latitudes, which is not consistent with
the results for mean precipitation estimates.

Sources of error include the satellite sensor itself and retrieval error, plus the spatial and temporal sampling of
satellite products and the numerical models used in reanalysis products. Understanding the sources of error
is important for improving the retrieval algorithms, model optimization, and bias-correction techniques.
Therefore, the Willmott decomposition technique (Willmott, 1981) was used to decompose the systematic
and random error components. Figures 15 and 16 show the systematic and random error components for
daily precipitation data in the satellite products and reanalysis products, respectively, with the GPCC daily
as the reference. Overall, there are significantly fewer systematic errors than random errors for all satellite
and reanalysis precipitation products assessed over large regions. For satellite estimates, higher systematic
errors are found in the Himalayas, central Asia, and East Asia. PERSIANN-CCS has larger systematic errors than
CMORPH, TRMM 3B42, and PERSIANN-CDR. The spatial distribution of the systematic errors is similar for all
reanalysis products. Systematic errors are the main source of errors over large parts of Africa, northern
South America, and Greenland. Random errors are the dominant form of error for large regions of global land,
especially at high latitudes.

Figure 14. Spatial distribution of the range of discrepancies in daily precipitation 90th percentiles over the period of 2003–2010 between the different products. For
the discrepancy-range plots, the daily data sets were regridded into a unified resolution (1.0°) for comparison with GPCC-daily. The precipitation estimates from
different products were then normalized at each grid location. The difference in daily precipitation 90th percentiles estimates at each grid location is represented by
the range between the 75th and the 25th percentiles. (a) Data Sets covering global land. (b) Data Sets covering tropical land.

Figure 15. Systematic and random error components (%) for daily satellite precipitation data over the period of 2003–2010.
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3.4. Regional Intercomparison of Precipitation Estimates

Previous studies have presented evidence for the reliability and usability of global precipitation data sets at
the regional scale. In this section, we summarize and discuss the results of this previous research for a number
of important world regions. At the regional scale, precipitation product estimates can be compared with data
from local collection sites.
3.4.1. South Asia

South Asia is the most prominent monsoon region in the world, and accurate precipitation data are essential
for understanding the monsoon. Precipitation products have succeeded in depicting region-specific rainfall
patterns across climatologically different parts of India. Nevertheless, most data sets, including gauge-based
estimates, reanalysis systems, and satellite retrievals, have difficulty estimating orographic rainfall, particu-
larly in the Western Ghats mountain range, northeast India, and the Himalayan foothills (Hu et al., 2016;
Palazzi et al., 2013; Prakash, Mitra, Momin, Pai, et al., 2015; Prakash, Mitra, Momin, Rajagopal, et al., 2015;
Shah & Mishra, 2016). Most reanalysis products exhibit higher interannual variability in monsoon-season pre-
cipitation than the actual observations. Most products, especially satellite-based ones, underestimate
monsoon-season precipitation at high elevations but overestimate it in other parts of India relative to the
gauge based gridded precipitation data set from the India Meteorological Department (Shah & Mishra,
2014; Sunilkumar et al., 2015). The positive bias observed in monsoon-season reanalysis estimates might
be related to an overestimation of moisture content, and hence precipitable water, by the observation
systems (Shah & Mishra, 2014). Larger biases in the frequency of daily extreme precipitation events are found
in satellite products than in other products. Extreme rainfall frequency is largely overestimated in TRMM
products over India, except in northern India and the Western Ghats (Rana et al., 2015; Shah & Mishra, 2016).
3.4.2. East Asia

For China, all products capture the overall spatial distribution and temporal variations in precipitation (Huang
et al., 2016). But the performance of the products depends on the region and the particular precipitation
regime. There is a greater discrepancy in precipitation estimates in the northwest regions of China, and over
the Tibetan Plateau (Ma et al., 2009; Miao et al., 2015; Sun, Miao, et al., 2014). The satellite products, including

Figure 16. Systematic and random error components (%) for daily reanalysis precipitation data over the period of 2003–2010.
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PERSIANN-CDR, TRMM 3B42, and CMORPH, perform better over wet regions and in warm seasons (Shen et al.,
2010; Zhao & Yatagai, 2014). At the daily scale, CMORPH generates more light-rain events and fewer heavy-
rain events, which is partially due to the bilinear interpolation process during the generation of gridded satel-
lite products (Yu et al., 2009). TRMM 3B42 overestimates the frequency of heavy precipitation events for some
areas of southeastern China but underestimates the frequency of light and moderate precipitation events
over most of northwestern China compared with data from 756 Chinese stations archived by the Chinese
Meteorological Administration (Zhao & Yatagai, 2014). All other satellite products show lower frequencies
for both light and heavy rain events (Shen et al., 2010). The reanalysis products ERA-Interim, MERRA, and
NCEP1 reproduce the frequency of heavy precipitation events reasonably well, but NCEP2 significantly over-
estimates the frequency of heavy precipitation events, especially very heavy rainfall, compared with GPCP
and CMAP estimates and rain gauge observations over mainland China (Huang et al., 2016). Because it
includes relatively few gauge observations, CPC tends to smooth the precipitation structure and miss local
heavy precipitation events (Shen & Xiong, 2016). Over South Korea, TRMM successfully reproduces
medium-intensity precipitation frequency but is less accurate during periods of heavy rain (Koo et al.,
2009). CMORPH and PERSIANN significantly underestimate the summer mean distribution compared with
observations from 520 automated weather stations in a network operated by the Korean Meteorological
Administration (Sohn et al., 2010). In Japan, CMORPH estimates have higher correlations with rain gauge data
than TRMM 3B42 and PERSIANN (Kubota et al., 2009).
3.4.3. North America

Overall, CMORPH and PERSIANN tend to overestimate precipitation and the frequency of high-intensity
precipitation, particularly during the warm months, but tend to underestimate precipitation during the cold
months, when compared with Stage IV radar-basedmultisensory precipitation estimates (AghaKouchak et al.,
2011). TRMM 3B42 has a lower probability of detection and lower false-alarm rates than other products in
both warm and cold seasons. MERRA reproduces the continental-scale patterns of change observed in the
CPC U.S. Unified gridded data in a reasonable manner, although it underestimates the magnitude of
extremes, especially over the Gulf Coast regions (Ashouri et al., 2016), the value of the 99th percentile of
precipitation was lower for MERRA than for CPC (Ashouri et al., 2016).
3.4.4. South America

Compared with rain gauge data, most satellite-based products, such as CMORPH and TRMM, overestimate
precipitation, principally for extreme precipitation over northern Argentina and southern Brazil, which are
strongly affected by convective systems (Salio et al., 2015). The reanalysis products have systematic limita-
tions in depicting precipitation across South America, with low spatial correlations (Bosilovich et al., 2008).
The reanalysis data sets generally overestimate the amount of mountain rainfall in South America compared
with the CPC data set (Silva et al., 2011). Although CFSR is notably better than NCEP1 and NCEP2 at estimating
large-scale precipitation patterns, it does show dry bias during the onset phase of the South American
monsoon wet season and wet bias during the peak and decay phases of the monsoon wet season (Silva
et al., 2011). Gauge-related products (CPC, GPCC, CMAP, and GPCP) show a fairly consistent pattern of annual
and seasonal precipitation, with 5% and 11% differences over the Amazon region and northeast Brazil; larger
disagreements are found in the spatial and temporal patterns for the interannual to decadal variation (Juarez
et al., 2009).
3.4.5. Europe

The statistical characteristics for interannual variability among reanalysis products are more consistent for
northern and eastern Europe than for the mountainous regions in southern Europe. When compared with
station data for extreme precipitation, the NCEP products (especially NCEP2) fare better than the ECMWF
products, which can be attributed to the differences in model parameterizations, spatial resolution, and input
data assimilation (Zolina et al., 2004). For satellite-based products, orography and seasonal variability affect
the accuracy of the satellite rainfall retrieval techniques (Stampoulis & Anagnostou, 2012). Satellite products
generally perform well in the summer but relatively poorly in the winter, owing to the difficulties in retrieving
low-intensity precipitation during the winter and/or cold surface backgrounds affecting the PMW retrievals
(Kidd et al., 2012). Compared with surface radar data and gauge data, all products underestimate precipita-
tion in northwest Europe throughout the year but overestimate summer precipitation in Germany, which
tends to have more convective regimes in the summer than at other times of the year (Kidd et al., 2012).
The convective nature of rainfall can also increase gauge-interpolation uncertainty, with higher values for
the standard deviation of gauge error during the warm season (Stampoulis & Anagnostou, 2012).
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3.4.6. Africa

All reanalysis products capture the regionally averaged seasonal cycle, with only a few spatial mismatches
between estimates and observations seen in the climate pattern for the rainy season over southern Africa
(Zhang et al., 2012). CFSR reproduces both the regional pattern and the local details for the precipitation
mean and variability fairly well, because it has the finest resolution of all data sets and includes coupled
ocean-atmosphere assimilation in the models (Zhang et al., 2012). For the satellite-based estimations, all data
sets show general underestimation of heavy precipitation over eastern Africa relative to the observations
from 205 gauge stations (Thiemig et al., 2012). Satellite-based estimates have some difficulties depicting
the precipitation gradient normal to the elevated terrain (Derin & Yilmaz, 2014). For the long-term mean,
GPCP and CMAP display the major precipitation patterns, but substantial discrepancies occur in areas with
low gauge densities, such as equatorial West Africa (Yin et al., 2004). GPCC, GPCP, CMAP, and CRU are consis-
tent in exhibiting the drying trend in the East African long rains, although the GPCC and CRU have smaller
trend rates than the two satellite-gauge data sets, GPCP and CMAP (Yang et al., 2014). There are large discre-
pancies between GPCC, CMAP, GPCP, and CPC in the interannual and decadal variations in rainfall over the
Congo basin (Juarez et al., 2009).
3.4.7. Australia

Both TRMM and GPCP miss many light-rain events (intensities less than 1 mm/h), which may account for the
low correlations between gridded data sets and the merged satellite-gauge data sets over the most arid
regions of Australia (Contractor et al., 2015). Futhermore, relative to a gauge-based gridded rainfall product
from the Australian Water Availability Project, TRMM 3B42 generally overestimates tropical cyclone rain at
low rain rates but underestimates it at high rain rates (Chen et al., 2013). Larger differences occurred for heavy
precipitation during the winter months over southern Australia (Peña-Arancibia et al., 2013). For the long-
term precipitation series, PREC/L is in relatively poor agreement with GPCC, GPCP, and CMAP over
Australia compared with other continents, partly because there have been fewer gauge observations for
PRECL in the latest decade (Simmons et al., 2010).

4. Discussion and Conclusions

Reliable and accurate estimates of precipitation are not only crucial for the study of climate variability but are
also important for water-resource management, agriculture, and weather, climate, and hydrological forecast-
ing (Sarojini et al., 2016). This study provides a comprehensive overview of 30 existing precipitation products
and quantifies the discrepancies in the different precipitation estimates over timescales ranging from daily to
annual. The 22 monthly or daily precipitation products evaluated had spatial resolutions varying from 0.04° to
2.5° and included gauge-based (CRU, GPCC, GPCC-daily, PRECL, UDEL, and CPC-Global), satellite-related
(PERSIANN-CCS, PERSIANN-CDR, CMORPH, TRMM 3B43, TRMM 3B42 GPCP, GPCP 1dd, CMAP, and MSWEP),
and reanalysis (NCEP1, NCEP2, ERA Interim, 20CRv2, JRA-55, MERRA, and CFSR) products. We found that cur-
rent observations had large uncertainties in the magnitude and variability of precipitation at multiple time-
scales. There were deviations of up to 300 mm in the estimated magnitude of annual precipitation, even
among products within the same category. The reanalysis data sets generally had the largest discrepancies
when compared with the other data sets. JJA and MAMmade slightly greater contributions to the differences
in annual precipitation than the other seasons. At the daily scale, light precipitation events occurred more
frequently than other precipitation events, and the divergence in product estimates was greatest for light
events. There were slightly greater discrepancies associated with estimates of extreme precipitation events
at lower latitudes than at higher latitudes, which is inconsistent with the results for mean values.

The intermittency of precipitation coupled with sampling in time and space is the major challenge for preci-
pitation observation (Hegerl et al., 2015; Trenberth et al., 2017). Rain gauges are indispensable for measuring
precipitation directly, but global gauge density is limited and gauge distribution is uneven because there are
few gauges in the oceans (Kidd et al., 2017). Critically, the number of gauges available has been declining, and
this may reduce our ability to track precipitation variability in the future. At the temporal scale, gauge-based
precipitation products are restricted to monthly sampling. The data latency and lack of fine temporal resolu-
tion make it difficult to use these products in real-time research or for tracking changes in short-term
extremes. Further, gauge observations undergo interpolation to form gridded data sets in order to cover land
worldwide, and this smooths the extreme values and affects the long-term trends, especially in regions with
sparse gauges. Gauge-based precipitation estimates are inconsistent between products and vary greatly
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across the globe, depending on the number of stations used, their homogeneity, the manner of analysis,
quality control procedures, and how data coverage that changes over time is treated (Hegerl et al., 2015;
Sun, Miao, et al., 2014).

Satellite data provide adequate temporal resolution and fine spatial resolution with wide coverage, enabling
accurate precipitation estimates in some un-gauged regions, such as the oceans, complex mountain areas,
and deserts. Several algorithms and models based on multiple wavelengths have been developed to derive
precipitation estimates. Nevertheless, it is essential to note that precipitation estimates derived from satellite
data are indirect and are inevitably accompanied by a large degree of variability. For instance, many previous
studies have indicated that satellite-based products generally have difficulty representing precipitation in
areas with complex topography in which precipitation is controlled by the orography and characterized by
high spatiotemporal variability (Derin & Yilmaz, 2014). IR retrievals generally fail to capture light precipitation
events and underestimate orographic rains, whereas PMW retrievals face challenges detecting orographic
precipitation, especially in the cold season (Derin & Yilmaz, 2014). In addition, it is difficult to use satellite data
for climate-related research because only about 40 years of satellite data have been obtained. The recent
GPM mission is the most promising plan for better calibration of space-based observations. It uses a constel-
lation of satellites to improve sampling, making it possible to provide accurate and timely precipitation esti-
mates and to capture the intermittency of precipitation. With the current products, better calibration of
satellite data or better methods for the optimal combination of measurements, estimates, andmodel outputs
may provide a better understanding of precipitation.

Another challenge is that the degree of discrepancy in precipitation estimates varies from region to region;
some regions with insufficient observations display relatively large discrepancies. Over tropical oceans,
precipitation events are mainly dominated by convective systems and feature high spatiotemporal variability
(Pfeifroth et al., 2013). Hence, more accurate convective parameterization schemes, reasonable representa-
tion of the physical processes, and higher resolution are required in the reanalysis models. Satellite data
can be included in the data assimilation to improve precision in reanalysis estimates. However, a single algo-
rithm is not always applicable to different regions. Cross validating the differences among multiple data sets
is essential for reducing discrepancies.

Glossary

20CRv2 Twentieth century reanalysis system
3D-Var Three-dimensional variational data assimilation
4D-Var Four-dimensional variational data assimilation
AMSR-E Advanced Microwave Scanning Radiometer for the Earth Observing System
AMSU Advanced Microwave Sounding Unit

AMSU-B Advanced Microwave Sounding Unit-B
CFSR Climate Forest System Reanalysis system

CMAP CPC Merged Analysis of Precipitation
CMORPH Climate Prediction Center morphing technique

COOP Cooperative Observer Network
CPC Climate Prediction Center

CPC-Global Gauge-Based Analysis of Global Daily Precipitation
Japanese 55-year Reanalysis (JRA-55)

CRU Climate Research Unit
DMSP Defense Meteorological Satellite Program

ECMWF European Centre for Medium-Range Weather Forecasts
ERA European Centre for Medium-Range Weather Forecasts reanalysis systems
FAO Food and Agriculture Organization

GCOS Global Climate Observing System
GEO Geostationary

GHCN Global Historical Climatology Network
GMS Geostationary Meteorological Satellite
GOES Geostationary Operational Environmental Satellites
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GPCC Global Precipitation Climatology Centre
GPCP 1dd GPCP one-degree daily precipitation analysis
GPCP Global Precipitation Climatology Project
GPI Geostationary Operational Environmental Satellites Precipitation Index

GPM Global Precipitation Measurement
GSI Grid-point statistical interpolation
GTS Global Telecommunication System
IR Infrared

JJA June-July-August
JRA-55 Japanese 55-year Reanalysis

LEO low Earth orbit
MAM March-April-May

MERRA Modern-Era Retrospective Analysis for Research and Application system
MTSAT Multifunctional Transport Satellites
MHS Microwave Humidity Sounders
MSU Microwave Sounding Unit

MSWEP Multi-Source Weighted-Ensemble Precipitation
MW Microwave

NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NMAs National meteorological agencies
NOAA National Oceanic and Atmospheric Administration
OLR Outgoing long-wave radiation
OPI Outgoing long-wave radiation precipitation index

PERSIANN Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
PERSIANN-

CCS
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
Cloud Classification System

PERSIANN-
CDR

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
Climate Data Record

PMW Passive microwave
PREC Precipitation reconstruction
PRECL Precipitation reconstruction over land
SON September-October-November

SSM/I Special Sensor Microwave/Imager
SSMIS Special Sensor Microwave Imager Sounder
TIROS Television and Infrared Observation Satellite
TMI TRMM Microwave Imager

TMPA TRMM Multi-Satellite Precipitation Analysis
TMPI Threshold Matched Precipitation Index
TOVS Television and Infrared Observation Satellite Operational Vertical Sounder
TRMM Tropical Rainfall Measuring Mission
UDEL University of Delaware
VIS/IR Visible/infrared
VIRS Visible and infrared radiometer

WMO World Meteorological Organization
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