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Abstract 

 

Ground‐based radar (GBR) are increasingly being used either as a vibration‐based or as guided‐wave‐
based structural health monitoring (SHM) sensors for monitoring of wind turbines blades. Despite 

various studies mentioning the use of radar as transducer for SHM, a singular exclusive review of 

GBR in blade monitoring may have been lacking. 

Various studies undertaken for SHM of blades using GBR have largely been laboratory‐based or with 
actual wind turbines in parked positions or focussed on the extraction of only specific condition 

parameters like frequency or deflection with no validation with actual expected operating data. The 

present study provides quantitative data that relates in‐field monitoring of wind turbines by GBR 
with actual design operating data. As such it helps the monitoring of blades during design, testing, 

and operation. Further, it supports the determination of fatigue damage for in‐field wind turbine 
blades especially those made of composite materials by way of condition parameters residuals and 

deflection. 

A review of the two GBR–SHM approaches is thus undertaken. Additionally, a case study 

demonstrating its practical use as a vibration‐based noncontact SHM sensors is also provided. The 
study contributes to the monitoring of blades during design, testing, and operation. Further, it 

supports the determination of damage detection for in‐field wind turbine blades within a 3‐tier SHM 
framework especially those made of composite materials by way of condition parameter residuals of 

extracted modal frequencies and deflection. 

 

Abbreviations 

  

CP, condition parameters (as unbalanced parameters in this study); CSLDV, continuous‐scan laser 
Doppler vibrometer; EoCs, environmental and operational conditions; FMCW, frequency‐modulated 
continuous wave; FRPC, fibre‐reinforced polymer composite; GBNW‐SAR, ground‐based noise 
waveform SAR; GBR, ground‐based radar; GNSS, Global Navigation Satellite System; HT, hypothesis 

testing; IDIC, International Doctoral Innovation Centre; JTF, joint time frequency; LDV, laser Doppler 

vibrometer; SAR, synthetic aperture radar; SFCW, stepped frequency continuous wave; SHM, 



structural health monitoring; SL‐FMCW, step linear frequency‐modulated continuous wave; UWB, 

ultra‐wideband; VNA, vector network analyser. 

 

1. Background 

 

The increase by 22% in cumulative installed wind energy capacity on an annual basis,1 though 

increasing share of clean energy of energy, may also be fraught with challenges. First, the increasing 

rotor sizes to capture more energy may have added issue of aeroelasticity and flutter2 to the already 

existing load analysis of fatigue and ultimate strength loads. The second is the emerging challenge of 

structural health monitoring (SHM) of blades particularly aeroelasticity as blade become much 

longer, increasing flap wise vibrations.2 With further increases in blade lengths, the torsional 

frequencies tend to reduce, leading to flutter. Unfortunately, as of today, aeroelasticity modelling in 

most wind turbine numeric models remains at basic principles.2 Highlighting the need to acquire a 

comprehensive understanding of the blades while in actual operation, such as may be brought by a 

sensor that does not change the blades structure, weight or shape need to be used, lending 

credence to the possibility of noncontact sensors. 

The foregoing when coupled with environmental and operating conditions (EoC), in which wind 

turbines blades operate, may be one of the reasons for many blade failures. Environmental and 

operational conditions including unbalanced blades, defined as relative blade angle deviations 

(>0.3°) with respect to the set value,3 acid rain that deteriorates glass fibre polymer composite 

blades,4-6 lightning, and varying changes in climate7 impact annual variability of wind resources—
affecting wind turbine total loads and hence altering the conditions and affecting the lifetime of 

existing turbines. 

It is found by Ciang et al8 that blades have a 74.79% failure rates as compared with other turbine 

components, while other studies9, 10 point out that 1 in 8 and 1 in every 61 wind turbine faced blade‐
related down times or failures, respectively, implying 12.5% and 2% of the 300 000 existing wind 

turbines in 2018 will face blade related downtimes, failure, and damage.11 

In detecting the damage by SHM, a study by Van Overschee and De Moor12 suggest 2 most 

widespread methods in the last 2 decades. These are the differential guided wave‐based signal 
analysis as being and vibration‐based damage detection (VBDD). 

In Loh et al,13 VBDD is divided into model based and nonmodel based. Detecting damage in 

nonmodel‐based approach requires analysing measurement of the damaged and undamaged state 
for a level 2 damage detection, whilst the model‐based compares and correlates an analytical 
framework like finite element model with measurements to detect level 2 damage. In both 

approaches, some key principles are employed: 

1. Deviation from the normal range of dynamic response for the damage sensitive features of 

the structure (blade tip deflection and natural frequencies) will be indicative of potential or 

pre‐existing damage. In this, a range is defined, because sensors will have different accuracy 
levels and may also be affected by the EoC like temperatures, humidity, dust, rotations, and 

electromagnetic (EM) interferences among others. 

2. Data analysis through multisensor or multisources reduces errors and allows formation of an 

analysis matrix and extraction of SHM condition parameters (CP) that enable structural 

damage assessment. Use of data from all sensors for SHM CP in a Hankel matrix enables the 



(a) detection, (b) location, and (c) quantification of damage using stochastic subspace 

identification.13 

The widespread use of singular value decomposition (SVD) for structural damage detection by 

“comparing current sensor data to measurements taken from the healthy structure under varying 
EoC” is becoming widespread.12-14 This implies using measurement from 1 sensor can be compared 

with prior acceptable/operating ranges (tolerance) of dynamic characteristics of structure, such as 

changes in blade tip deflection range or modal frequencies to determine level 1 damage. Then, using 

approaches like fractal dimension or curvature methods a level 2 damage detection can be achieved. 

The level 2 damage detection actually locates the damage.13 

For level 1 identification, contact sensors have historically played a major role.15-18 Noncontact 

sensors, especially when designing wind turbines and certifying them, their applications may have 

been limited to mainly in laboratory situations or for wind turbines in parked positions.6 19-25 No 

single work that particularly considers ground‐based radar (GBR) may not be present yet. 
Consequently, a potential gap may exist for an exclusive review for SHM of blades using GBR. 

Further, no review may have applied GBR SHM within a clear 3‐tier SHM framework for SHM level 1 
damage detection. 

Studies where the radar system is placed on the ground and used SHM of structures like bridges and 

buildings are available in literature26-28. What is key in these studies is that, firstly, damage is 

detected 29-34 and secondly, a contact sensor like accelerometer35, 36 that is attached to the structure 

may be used to validate the GBR results. In Muñoz et al and Corucci,37, 38 the GBR is used to monitor 

a tower, while in other studies39, 40 the radar is not in contact at all with the wind turbine but is 

demonstrated to acquire the deflection and modal frequencies. During the monitoring of the 

structure under movement, the GBR is fixed at the position on the ground and not moved at all. 

Based on studies,12-14 one can also validate the GBR results using previous design data set of the 

wind turbine when in a healthy state. This increasingly widespread approach may be considered as 

use of SVD for structural damage detection. This suggests that GBR measurements can be validated 

using prior acceptable/operating ranges (tolerance) of dynamic characteristics of structure, such as 

changes in blade tip deflection range or modal frequencies to determine level 1 damage. 

It has been suggested in certain literature36, 40 that despite the increasing use of GBR for SHM, 

certain challenges have become evident. These include 

 The GBR accuracy in some literature is not verified by laboratory test or in‐field 
measurements campaigns. 

 Accurate and extensive comparisons between time histories acquired from conventional 

sensors and GBR were not performed. 

 No experimental evidence was provided that the resonant frequencies acquired from the 

GBR correspond to the dynamic characteristics of the investigated structures. 

With a focus on SHM of wind turbine blades, this paper seeks to address two gaps in knowledge. 

That noncontact sensors can contribute towards SHM of structures under dynamic movement and 

may detect damage based on considering SHM damage detection as a 3‐level process: level 1—
damage identification: Damage may be deemed to have occurred in a structure, if and when the 

SHM CP (modal frequencies, deflection, mode shape, etc) are extracted and shown to have deviated 

from what is deemed to be normal operating tolerances/state. 



Contact sensor achieve SHM level 1 damage identification by determining a baseline situation of say 

modal frequency, and then damage is introduced, and the sensor in principle, when it takes a new 

measurement, reveals a change in say modal frequency due to the damage. For the GBR, the design 

CP are compared with the current operating CPs to determine if damage has occurred. The design 

CP being considered as the baseline conditions. In bridge situations, the accelerometers provide the 

baseline conditions as an alternative approach to the previously mentioned SVD. Level 2—damage 

localization: In this case, the exact point where the damage has occurred is identified. Level 3—
fatigue life determination: based on levels 1 and 2, a calculation of the remaining useful life of the 

structure or expected structural failure can be done. 

The GBR employs level 1 damage detection by identification of change of CP. This is demonstrated 

by the references previously given and further experimentally proved by the case study.39 A recent 

study demonstrates the use of radar for level 2 damage localization.41 

From the foregoing, the novelty of the paper at hand are given by the following aspects, which also 

forms the goals of this work: 

1. Present a critical comparative analysis of contact and noncontact sensors (Table 1) for wind 

turbine blade SHM. 

2. Further, the article reviews the use of GBR as noncontact sensor for blade monitoring, 

particularly highlighting the EoCs conditions under which it was used. In this sense, it 

differentiates between vibration‐based and guided wave SHM GBR transducers. As far as our 
literature review reveals, no such work has exclusively dealt with wind turbine blades using 

such a distinction. 

3. Finally, the study concludes by a case study that demonstrates use of GBR for SHM based on 

results using model‐based approach for level 1 damage detection. Many of the GBR results 

presented in literature are not for an in‐field operating wind turbine, and for the few that 
are for actual wind turbines, no validation with contact nonmodel based or model based 

validation has been done. 
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Consequently, damage detection in SHM may be considered at 2 levels. Level 1 (damage 

identification), where the CP are extracted and compared either with another sensor or from apriori 

healthy state data or from model to determine if there is deviation. Second is level 2 (damage 

location) where the damage is located. The GBR in Van Overschee and De Moor12 uses residual 

mapping, ie, compares a previous healthy state image of the structure with the current image to 

determine the location of the damage. The case study presented shows a level 1 SHM that aims at 

only damage identification (level 1). 

The remainder of this review and case study is organized in the following way: section 2introduces 

the 3‐tier SHM,59, 60 while section 3 provides the state of art review of contact and noncontact 

sensors used to determine blade's SHM CP. Section 4 then exclusively reviews GBR as an SHM 

transducer, and Section 5 presents the case study of use of GBR within the 3‐tier framework. 
Section acknowledgements consequently concludes the paper and identifies further areas for more 

research. 

 

2. State of the Art in Classical Contact and Noncontact Sensors for Blade Monitoring 

 

Several approaches are used in determining the SHM of blades CP. These include time‐frequency 
analysis methods, vibration‐based methods, and voltage and current based methods. A study 

reviewing these methods61 concluded that vibration‐based methods provide the best practices for 
wind turbines SHM. Consequently, the use of structural vibration62, 63 of gearboxes, blades, and 

tower positioning3 provide a simple basis for measuring the unbalanced parameters for potential 

and pre‐existing fatigue damage. A critical comparative analysis of these contact and noncontact 
sensors is explored in Table 1 with respect to their determination of in‐field unbalanced vibrational 
parameters (radial displacement and modal frequency).15-18 

2.1 Direct and indirect contact‐based sensors 

In other studies,64-66 the classical surveying sensors such as photogrammetric cameras,43-49 Global 

Positioning System receivers,50-52 network‐based Global Navigation Satellite System,53-55 strain 

gauges,43, 56, 57 fibre optic and inertial sensors,18, 42, 43, 56 levels, total stations, and theodolites are 

divided into geodetic and non‐eodetic sensors.67, 68 These classical embedded sensors are currently 

used to complement the traditional finite element analysis used to investigate eigen frequencies, tip 

deflections and stress–strain (S–N) levels of composite wind turbine blades.43, 69-71 Further, they are 

normally placed in locations where the damage is most likely to occur.10 Such locations include the 

blade root, spar cap, spar, splash zone of the tower, welded or bolted tripod joints, and lastly, 30% 

to 35% and 70% from the blade root. 

In other studies,63, 72 other novel indirect contact approaches to determine unbalanced parameters 

using prognostic methods are indicated. They include gearbox monitoring using vibration analysis 

and time‐series prediction, bearings acoustic emission, use of signature distances, and supervisory 

control and data acquisition (SCADA) data analysis. These, however, do not provide real‐time 
monitoring of unbalanced parameters, as they depend on the structural vibrations or blade‐tip 
speed to be high enough to trigger warning signals in the gearbox and bearings. Other innovative 

indirect contact‐based sensors3, 73-75 like visual blade examination, pitch angle measurements, 

holospectrum, and detection of mass imbalance for assessing unbalanced parameters have the 

demerit of relying on the sensor being embedded in the wind turbine, creating a challenge if the 

sensors cannot be accessed if it fails or limitations in moving the sensor from one turbine to another; 



furthermore, their application in real‐time data collection and measurement of unbalanced 
parameters is difficult. 

The challenges with the embedded and/or contact sensors when measuring blade‐tip deflections 
and modal parameters are many, for instance, (a) some require a laborious time‐consuming 
installation and data collection process, (b) it is unfeasible to set them up on the blade tip outer 

surface without affecting the performance of the blade, (c) difficulty to collect data from inaccessible 

areas, (d) possibility of losing measurement due to surface deformation, and (e) many are not 

portable.11, 76 Portability being the ability to move the sensor from one wind turbine to another 

without difficulty or stopping the wind turbine. 

2.2 Noncontact methods in monitoring wind turbines blades 

Various noncontact SHM sensors have been suggested including laser based, infrared thermography, 

and microwave, for SHM damage detection like cracks and blade delamination.21-23 Infrared 

thermography is based on the common knowledge that working components increase their 

temperature as they start to malfunction. The method captures this temperature change for damage 

location; it is however not appropriate for early fault detection because temperature changes occur 

slowly. In addition, this noncontact is generally applicable when the wind turbine is not 

rotating.69 The methods however are mainly laboratory based and vary significantly during testing 

and design of wind turbines blades. However, they may face applicative challenges when applied for 

onshore in‐field rotating wind turbines. Laser‐based methods generally include Laser Doppler 
vibrometer (LDV) and continuous‐scan Laser Doppler vibrometer (CSLDV). 

In Stanbridge and Ewins,20 an LDV is utilized to provide the mode shape of a structure or its 

deflection by scanning its deflection at a discrete point. The mode shape is achieved by 

demodulating the output signal through multiplying it by in‐phase and quadrature signals at the 
given excitation frequency. The errors in using LDV are mainly attributed to nonlinearity of the 

deflection mirror drive system, input signal distortion, and speckle dropout.20 These contribute to 

the measurement errors making LDV's unsuitable for measurement of out‐of‐plane vibration of 
rotating wind turbine blades. In addition, LDV's cannot measure deflections for objects moving 

beyond 24.5 m/s; wind turbine blades tips tend to travel at beyond 50 m/s. 

Another approach using LDV involve integrating photogrammetry with LDV6 suggests use of 

photogrammetry of deflection of a fixed laser point being compared with the measured deflections 

of the LDV results. The camera is placed on the movable structures, immediately in front of it being a 

measurement panel to which a laser beam from the LDV impinges. The LDV is located in a fixed 

location. By tracking the movement of the laser dot on the screen, the video camera can acquire the 

displacement experienced by the structure. 

Another light‐based systems are the laser displacement systems.5 In these system, a laser system is 

attached to the central beam (or tower) that holds the rotating blade. Operating at radio bands of 

2.4 GHz, 915 MHz, or 868 MHz, a pin‐point laser is beamed to the tip of the blade or aimed at a point 
where its expected deflection should reach. Changes different from the expected deflections will 

result in changes in the laser echo return being different and hence reveal the deflection magnitude. 

Laser Doppler vibrometers has a lower signal to noise ratio and does not scan the whole area of the 

blade. It also can be retrofitted into existing system at no great cost. However, if faces a challenge 

due to the wind turbine blade change direction to face wind from another direction. This implies it 

has to be installed all around the tower circumferences or at least in dominant wind directions. 



A study's proposal for a CSLDV77 to attempt to overcome the LDV defect were inconclusive as the 

wind turbine was in a parked position. A wind turbine requires wind speed greater than the cut‐in 
wind speed of 3.5 m/s for at least 10 minutes before it releases the parking brake and starts to 

generate electricity. Thus, the CSLDV provided results for a wind turbine not in actual operating 

mode. Similar studies with tracking LDV11, 78 also utilized parked wind turbines. A further challenge 

with using the LDV type noncontact sensors was the large number of averaged data sets required in 

order to get reasonable results. 

Another noncontact methodology is the photogrammetric/vision‐based approaches. In a novel 
study,20 use is made of vision‐based displacement measurement system employing photographs and 
template matching/registration techniques. Essentially the system takes photographs (or videos) and 

assess each previous and current frame to determine displacement based on a predetermined 

separation distances between camera and target. It however faces a challenge that all the points on 

the target surface must have equal depth of fields. The system is also affected by heat haze and 

camera own vibrations. 

Lastly, is the use of microwave radiowaves. Though functionally similar to the GBR is the use of 

microwaves blade tip clearance,7 it involves a probe emitting a continuous electromagnetic wave at 

24 GHz to measure displacements of up to one‐half of the radiating wavelength, which is 6 mm. The 

system is particularly suited for measurement of deflection monitoring in extremely elevated 

temperature gas turbine engines. 

In, Yang et al and He et al,22, 23 a number of noncontact SHM are suggested including laser based, 

thermography, and microwave, for identification of cracks and blade delamination. The methods 

however are mainly laboratory based and vary significantly during testing and design of wind 

turbines blades. However, they may face applicative challenges when applied for in‐field rotating 
wind turbines. In Stanbridge and Ewins,20 an LDV provides mode shape of a structure by scanning its 

deflection at a discrete point. The mode shape is achieved by demodulating the output signal 

through multiplying it by in‐phase and quadrature signals at the given excitation frequency. The 
errors in using LDV are mainly attributed to nonlinearity of the deflection mirror drive system, input 

signal distortion, and speckle drop‐out.20 These contribute to the measurement errors making LDV's 

unsuitable for measurement of out‐of‐plane vibration of rotating wind turbine blades. In addition, 

LDV's cannot measure deflections for objects moving beyond 24.5 m/s; wind turbine blades tips tend 

to travel at beyond 50 m/s. 

Other studies77 using CSLDV to attempt to overcome this were inconclusive as the wind turbine was 

in parked position. A wind turbine requires wind speeds greater than the cut‐in wind speed of 
3.5 m/s for at least 10 minutes before it releases the parking brake and starts to generate electricity, 

not in actual operating mode. Similar studies with tracking LDV11, 78 also utilized parked wind 

turbines. Further, a large number of averaged data sets will be required in order to get reasonable 

results. In this study, the GBR was utilized in actual operating mode as it generates electricity. 

 

3. Review of GBR for SHM of Blades 

 

In radar (Radio Detection and Ranging), short bursts of radio energy are transmitted and reflected 

from the target as an echo. The radar signals are generated by the transmitter and received by a 

sensitive receiver. Directional antennas are used in radar to transmit the pulse and receiving the 

echo. Different techniques used in ranging and detection include monostatic (1 antenna used for 



both the transmitter and receiver) and quasi‐monostatic (collocated transmit and receive antennas), 
bistatic (noncollocated transmit and receive antennas), and multistatic (multiple transmit and 

receive antennas). 

The attraction of GBR comes from its ability to operate in any weather or light conditions, work day 

and night, its better spatially‐distributed information,79 and its greater flexibility in operation and 

parameter acquisition. Furthermore, GBR has the ability to assess both fast and slow 

deformations.80 Unbalanced parameters monitoring for wind‐turbine blades has normally been done 
using contact methods for mainly discrete point measurements. 

The role of SHM in dealing with the fatigue and emergent emphasis of aeroelasticity phenomenon 

like flutter is critical in integrating EoC conditions into SHM framework. A review of various SHM 

approaches by Loh et al13 suggested that VBDD methods provide the best practices for wind turbines 

SHM. Other studies,12 however, suggest residual or differential imaged‐based signal analysis as being 
superior. For both approaches, damage occurrence (level 1 damage detection)14 can be achieved, 

however,12 indicates that damage localization (level 2 damage detection) can be achieved only with 

the residual approach for real‐life operating wind turbines. 

3.1 VBDD‐SHM for blades using GBR 

The first use of radar for deflection monitoring of a wind turbine is mentioned in a patent,81 but no 

practical implementation was seemingly realized at that time. A previous 2008 study82 used a GBR 

with a central frequency of 16.75 and a 350 MHz bandwidth to measure tower deflection. The study 

employs the use of time‐frequency series statics and the modal frequency CPs for the tower at 
different distances between GBR and wind turbine as well as for different EoCs: stationary to 

dynamic where the blades are rotating as well as for light and strong wind situations. The study was 

able to show the capability of the GBR to determine the natural frequency of the tower as well as its 

deflection. However, a deliberate effort was made to place the GBR in a manner to avoid Doppler 

effects of rotating wind turbine blades. Consequently, deflection as well natural frequencies of the 

blades were not captured. 

In Zhang et al,57 the use of ultra‐wideband (UWB) operating between 3.1 to 5.3 GHz is used to 

determine the deflections of the wind turbine blade tip using a contact approach. Two UWB 

antennas are attached to the blade root and 1 UWB antenna at the blade tip (Figure 1). Each blade 

has this radar system attached. The distance between T1 and T3 is estimated by the time it takes the 

first UWB pulse to move from T3 to A and T1 to B, then a triangulation is undertaken to determine 

blade deflection. A similar method has a 2018 patent applied for in Vangen et al.83 



 

Figure 1 Deflection monitoring using contact radar 

The choice of a lower band is attributed to lower cost and commercial availability but has 3 main 

sources of errors that create specific challenges to using this “contact” radar method are amplitude 
variation of the first pulse used to determine the rotor root‐tip (T3 to T1) distance possible 
interaction with the blade shell material due to the close proximity between the antenna and the 

blade.84 Secondly such a system will affect aerodynamic properties of an operating wind turbine, and 

thus cannot be used on large scale or on wind turbines that must continue operation. Lastly, first 

pulse may suffer interference and cancellation arising from multipath (reflections and surface 

waves). 

The multiple error sources are first, the glass fibre that has a dielectric permittivity of 4.4 and loss 

tangent of 0.025, with blade chord changing from 5 cm at the tip to around 2 m at the blade root, 

with the blade shell thickness ranging from 7 mm to several centimetres, respectively. This creates a 

shadowing of the signal shadowing/attenuation as it travels from T3 to A and T1 to B (Figure 1) due 

to the blade tapering and possible scattering.57 



The signal attenuation (multipath) is further investigated in Zhang et al84 by installation of 60‐cm 
internal absorber plate from the internal antenna that's inside the blade tip. The advanced method 

however faces a number of implementation challenges including (1) it cannot be applied to already 

existing wind turbine blades; (2) the impact of putting an antenna and an absorber plate may need 

investigation especially in situation of using different composites matrix to make the blades; (3) the 

impacts of EoC's like wet blade surfaces, ice accretion, and temperature variations measurements is 

not factored during measurements; and lastly, (4) actual blade frequency is not captured in this 

method. 

An alternative approach to the UWB is shown in a patent application83 for a quasi‐monostatic radar 
(1 with 2 antennas for receiving and transmitting, respectively) that is attached to the tower. The 

Doppler radar unit emits radar signal and receive the backscattered reflected signal from the blade. 

It then analyses the Doppler shift to determine the blade velocity as it moves towards or away from 

the tower; additional analysis of the Doppler information will provide parameters like period and 

amplitude of the rotor blade vibration. An additional claim under this patent is the possibility of 

having a set of radars along the length of the tower and/or radars that linked to the nacelle and so 

rotate as the nacelle rotates. No commercial viability of this system could be ascertained. 

Interestingly, a previous patent85 claims a smart wind turbine deflection sensor. This consist of 3 

sensors, 2 within the blade and 1 attached to the tower. The blade sensors are accelerometers and 

strain gauges, while the sensor attached to the tower would be a laser, radar, or ultrasonic sensor. 

The need for the 3‐sensor typology is premised on the deviation of the cumulative measurement 
errors of the 2 sensors for the out‐of‐plane deflection of the rotor blade. Hence, the third stationary 
sensor affixed to the tower acts as control in the event of such deviation. Using the sensor, an 

assessment can then be made if the blade is at a risk of striking the tower or not. Seemingly 

patent83 then focusses on the development of this stationary sensor based on radar signals. 

Another 2013 study40 had a GBR being used to determine the tower deflection of parked 

(nonrotating) wind turbine tower. The study suggested then that GBR measurements should be 

limited to points of the tower lower than the blade tips or the blades be stopped in order to obtain 

the real tower deflection. The study thus presents static tower monitoring. Its limitation being that 

for better understanding of the EoCs‐based SHM, a dynamic state of rotating blades is best. 

Efforts to measure a wider range of EoCs by incorporating the rotating blades was attempted by a 

2013 study.86 In this case, a joint time frequency simulation is undertaken and verified on a scaled 

down version of the wind turbine using a vector network analyser (VNA). The VNA collects the data 

in continuous wave format at 11 GHz with a sampling rate of 22 GHz. The study provides the 

simulated blade results in a joint time frequency spectrograms for (a) blade circular motions, (b) 

blade in‐plane vibrations, (c) blade out of plane vibrations, (d) blade flexing, and (e) tower vibrations. 

The simulated results indicate frequency range of between +40 to −40 Hz, while VNA measurements 

show frequency range of ±5 Hz. The study essentially sought to demonstrate the possibility of 

modelling higher order vibration motions on the blade; however, the VNA was unable to fully 

capture the frequency magnitude properly. 

In a 2016 study,37 the concept of frequency‐modulated continuous‐wave (FMCW) Doppler radar 
employed in a network formation for SHM is presented. The study however is undertaken in a 

simulated environment but anchored from experimental results from a 2015 study using a 24 GHz 

hand held radar.87 Spectrograms on the time‐Doppler frequency domain are presented for different 
aspect angles. The simulation results are compared with results from a handheld K‐band radar used 
for Doppler‐based SHM in a 2015 study.87 The handheld radar employs a simple low‐end analouge to 



digital converter similar to the one used in a computer sound card. The radar was held directly in 

front of the wind turbine blade rotation plane, then at 45° and lastly at 15°. The study concluded 

that the best results are obtained when the radar is at 15° to the blade rotation plane (what in this 

study we refer to as an orthogonal angle that is approaching 90° to the nacelle side). Again, the 

results presented show a time‐Doppler frequency spectrogram. 

A recent study88 has shown that the internal spar structure of the wind turbine affects the radar 

signature when the blade is observed from trailing or leading edge of the rotor blade. This reinforces 

the need to put the GBR at an orthogonal/spectral direction to rotor rotational axis, ie, the GBR is at 

90° to the drive train of the turbine. 

Further, another recent 2017 study89 employed the use of hybrid C band FMCW radar to extract the 

wind turbine blade Doppler information related to the blade velocity as well as determine the range 

(hence blade deflection). The study presents results of C‐band 5.8 GHz radar for the 3.7‐m‐diameter 
small wind turbine and K‐band 24 GHz GBR's for monitoring of blades of the 47‐m wind turbines. The 
study results are presented in time‐Doppler frequency. Basic CP features, namely, time‐frequency 
data are extracted. More detailed CP features like modal frequency or even undertaking a 

hypothesis testing analysis are not done, nor relating it to SHM of wind turbines undertaken. 

Another recent 2017 study39 compares laboratory measurements from a 5.8 GHz C‐band CW 
Doppler radar with that of 24 GHz K‐band radar using time‐Doppler frequency graphs on damaged 
and undamaged wind turbine blades. The horn antennas for the both radars are placed in tight 

formation of a 2 × 2 matrix and operated concurrently. Such a set up provides a challenge in terms of 

antenna interference with the transmitted and reflected radio waves unless a corrective algorithm is 

implemented. The study focusses on the blade tip deflection in a laboratory situation and does not 

consider the changing environmental conditions such as temperature or more specifically wind 

speeds. 

It will be noted that the design of a wind turbine rotor length is limited by how much deflection it 

can undergo. For unloaded conditions, (Figure 2) the distance between maximum blade tip 

displacement up to point T2 and the tower should not be less than 30% of the distance between the 

mast and the T3. Blade deflection measurement of the displacement from T3 to T2, faces a 

challenge, as currently used sensor cannot measure the displacement accurately57 for wind turbines 

in operation. A third sensor may be necessary to enable better accuracy, hence the need of a remote 

GBR. 



 

Figure 2 Deflection of rotor blade tip 

Based on the foregoing results, the unbalanced parameters can be extracted by frequency domain 

and time domain manipulations of the diverse frequency returns between the minimum frequency 

(fL) and maximum frequency (fH) for a quasi‐monostatic radar as shown by Ozdemir.90 

The different delays/ranges of the backscattered waves distinguish them from each other allowing 

sections of the blade or tower to be identified in the corresponding 1D or range profile, ie. profile 

versus time (t). This is obtained by match‐filtering the backscattered signals with the transmitted 
signals or stretch processing. 



The limitation of the FMCW is that to obtain the phase information and velocity; the radar has to be 

turned off on alternate scans. In addition, it sends an impulse directly in the time domain, whereas 

the stepped frequency CW radar synthesize an effective bandwidth in the frequency domain. Two 

spectrogram results are presented in the time‐frequency domain. The study indicates that GBR for 
near field SHM should employ high frequencies for better resolutions. This will require a much more 

refined range resolution for this more studies will be required in this direction.37 

3.2 Guided wave‐based SHM for blades using GBR 

In a laboratory‐based experiment described in Liu et al,14 a bistatic Ka radar operating at 33.4 to 

36.0 GHz is installed at the tower and acquires echoes when the blade is at 6‐o'clock position to 
enable SHM using 3‐dimensional damage localization. Essentially, the methodology employs a 

guided wave‐based SHM13 using differential signal analysis that subtracts the currently acquired 

image from a prior image of an intact/undamaged structure. This essentially means no contact 

sensor is utilized in the system. For data acquisition and analysis, a glass fibre composite structure of 

0.8 × 0.3 × 0.01 m is placed on a pedestal and imaged. The system achieves a localization error of 

±0.15 m (±18.75% error along the longest side of structure). 

The study suggests that method would provide more information than the normal vibration‐based 
SHM approaches. Further that monitoring of frequencies will only identify relatively large defects, 

but information on damage location can be obtained only in special cases like this. It may be borne 

in mind that radar was scanning a small stationary structure, in reality, it will need to scan possibly a 

large wind turbine blade during operation that will produce extremely huge image data footprint 

every 1 to 3 seconds, and the variability of the wind, external loadings, environment, and operating 

conditions may further impact on the accuracy of the results. Guided wave‐based damage detection 
provide the following advantages including low frequency ambient vibration, affordability, and large 

scanning of wind turbines blades. 

3.3 GBR theory on blade deflection 

In the guidelines by Risø and Veritas,91 the aerodynamic loads on a deflecting blade tip as well as 

axial forces for tower bending are determined. For a blade deflecting in the flap‐wise direction, the 
unit blade load at the blade tip can be determined from Equation 1 as shown in Risø and Veritas.91 

 

         (1) 

with ρ as air density, D(r) the chord length of the blade at distance r from the hub to the tip, 

and Cmax is the maximum typical values for lift coefficient or the drag coefficient. It ranges between 

1.3 and 1.5; U10 is the average 10‐minute binned wind for 50‐year wind speed at a height h above 

ground, and ψ is the quasi‐static gust factor.91 

To use a radar, the coherent waves of frequency f are emitted and interact with a surface moving or 

deflecting surface at velocity u, resulting in a change or shift of f—formally called the Doppler shift 

(fD), which is proportional to the target radial velocity (Equation 2)8, 90, 92, 93, where u ·  cos θ is the 

velocity component along the radial axis. 

          (2) 

Using the idea that the damage and normal or abnormal changes in blade deflection (blade tip 

deflection) will cause detectable changes in the modal properties, then the backscattered signal can 

be processed to recover the Doppler information, and from it, the natural frequencies as well as 



mode shapes8, 92 can be extracted. These methods provide a very accurate approach to contactless 

real‐time SHM. 

3.4 Time and frequency manipulations of GBR return signals 

A quasi‐monostatic radar has 2 antennas, 1 for transmitting radio waves and the other to receive 
them, located adjacent to each other, but the separation distance ds between the antenna's is far 

much less than the distance (R) between the receiver and the target (ds ≪ R) when compared with a 

bistatic radar.94 Consequently, the equation to determine the maximum range (Rmax) for monostatic 

radar is employed for quasi‐monostatic radar94, 95 is given by Equation 3. 

        (3) 

where Pr_min is the minimum received power in Watts at the receiver antenna that would allow 

target detection, Pt is the transmitted power in Watts at the transmitter antenna, Grand Gt are the 

antenna gains for the receiver and the transmitter, respectively, while λ is the radar signal 

wavelength in metres and σ is the radar cross‐section area in square metres. 

To measure deflection, the radar must be able to distinguish the 2 maximum points (S1 and S2) of 

wind turbine blade deflections as the blades oscillate back and forth (Figure 2). This is achieved by 

ensuring that 2 distinct pulses are returned through having the difference in range ∆R = Rs2 − Rs1 that 

is greater than or equal to cτ95 (Equation 4). 

         (4) 

Where c is the velocity of light, the pulse width (τ) is the time taken by the radar to hit the target and 

return, N is the total number of range bins or cells, and B is the radar bandwidth of the transmitted 

signal. ∆rmax is the maximum range that can be viewed by the GBR. It should be greater than the 

length of the target to avoid ambiguity.90 The bandwidth can be adjusted as required by the 

measurement. For the best distinction between distinct parts of the rotor blade as it 

deflects, ∆r should be minimized. 

 

4. Case Study 

 

4.1 Case study setup 

Globally, the design of wind turbine blades follows approved certification standards that allow for 

blades design with regard to material strength, structural stability, and blade tip deflection based on 

Equation 1 for fatigue damage as well as for ultimate strength.96 Consequently, the distance d from 

blade tip to the outside of the tower (Figure 3) is used inter‐alia as a determinant of the safety of 
wind turbines and its subsequent certification. Usually, this displacement is taken to probably occur 

during some extreme conditions while the wind turbine is in operation; therefore, studying of the 

wind‐turbine blade‐tip deflection calculation method in Equation 1 and its safety is essential and 

internationally provided for as shown in wind‐turbine design standards.96 For certification purposes, 

the distance d (minimum distance between blade tip and mast) must be greater or equal to 0.3 

times c(Figure 3). 

 



 

Figure 3 Orthogonal placement of the ground‐based radar (GBR) 

The GBR used in this study was an IBIS–L system operating in Ku band with a Rmax of 1‐km, image 
resolution in distance of 0.75 m, angular resolution of 4.3 mrad, and accuracy in measuring 

displacement in the viewing direction of 0.001 m for SNR > 50 dB.97 A transmitting as well as a 

receiving IBIS‐type 3 (IBIS –H15) antennae, with a maximum gain of 15 dBi was utilized. They had a 

horizontal antenna beam polarization at 29° and vertical polarization at 25°. Main beam at −3 dB, 

maximum gain was utilized. 

The wind park consisting of 14 wind turbines is located at latitude N 300 39′ 53.7″ and longitude E 
1210 13′ 14.1″, with the GBR placed at (N 300 39′ 58.51″, E 1210 13′ 24.86″), and its antennae tilted at 

15° to face the wind turbine nacelle (Figure 2 and Figure 3). The GBR was however tilted to 10° when 

facing middle of wind turbine tower. The GBR emits radio waves in Ku band in stepped frequencies, 

and the returned echoes is picked up by the receiving antenna. For best results, the GBR 

measurements must be taken at 2 different time instances, and data extracted from the same EoCs 

cluster, say similar wind speeds bins. 

In this study, measurement of the blade tip deflection was undertaken by focussing the main beam 

radio signals of an orthogonally placed GBR at almost the middle of the tower (Figure 3). The 

reflected/back‐scattered signals are then measured in the time domain to obtain the change in 
range and hence the deflection. A transform is then undertaken on the results of the time‐domain to 
frequency domain to enable acquisition of the natural frequencies of the blade. 

4.2 Case study results 

The GBR resonant natural frequencies are identified at 0.45 ± 5% Hz and 0.9 ± 5% Hz are within the 

range of the Bladed® design frequency of the turbine of 0.49 ± 5% Hz and 0.88 ± 5% Hz. The 

measured GBR frequencies are rounded off to 2 significant figures. In Table 2, the shaded yellow 

part represents the actual GBR measurements obtained from the CP features with the third column 

representing the error bar range with a 5% range. The last 3 rows of the table present the results as 

obtained from the statistical model development (design values). It can be seen that the GBR 

measurements correlate quite closely with the design values. 
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5. Conclusion 

 

Structural health monitoring of typical and atypical unbalanced parameters in rotating in‐field wind 
turbines enables assessing of vibrations and hence better structural understanding. The use of a GBR 

for SHM of wind turbines unbalanced parameters is a potential growing field with that enables a 

novel, fast, simplified, and more precise understanding of rotating systems in hydropower stations 

and wind turbines. It can also be applied to the rotating turbines of hydropower plants and other 

load‐bearing stressed structures like dams and bridges. 

This paper has dealt with 2 aspects: (a) a review of the state of the art of contact and noncontact 

sensors for monitoring the wind turbine rotor blades and (b) presented a novel technique that can 

be applied to monitor the blades and towers of wind turbines. The novel technique consists of 

monitoring the deflection of the rotor blades by estimating the unbalanced parameters (natural 

frequency and mode shapes) to provide an understanding of the structural integrity of the system by 

SVD. Furthermore, this technique is contactless and uses a GBR system that acquires the unbalanced 

parameters in under 5 minutes. The parameters can then be assessed to know if the system is at risk 

of fatigue damage by comparisons with previous results of a healthy state. 

The review demonstrates GBR capabilities in‐field and in‐service blade tests. The GBR can measure 
deflections in structures with amplitudes around a micron. This implies that with an acquisition 

frequency of between 100 Hz to 400 Hz, a GBR may measure the unbalanced parameters of wind 

turbines since the natural frequencies of the blades and tower rarely exceed 10 Hz for its 1P up to 3P 

natural frequencies.98 

For modal analysis, further work is required to fine‐tune the output‐only modal analysis to stochastic 
processes of the type experienced by a rotating wind turbine in an atmospheric turbulence field and 

the simultaneous periodic deterministic excitation originating from mean wind shear and tower 

shadow. An investigation into whether or not it is possible to extract supplemental information of 

value for modal damping characteristics42 during wind turbine operation will also need 

consideration. To achieve this and based on the aforementioned case studies including preliminary 

work in Luo et al,99 the main applicative areas where GBR may contribute in the wind energy field in 

monitoring unbalanced parameters are shown in Table 2. These are in development and testing of 

blades and towers, condition health monitoring, maintenance and operation, and finally in 

verification of simulations. 

The study has additionally addressed 2 knowledge gaps: first is the applicative use of GBR to provide 

data of unbalanced parameters within the wind turbine 3‐tier SHM framework and secondly the 
validation of GBR results with accelerometers and numerical simulation. The study further 

demonstrates GBR use for monitoring during blade design and testing can replace or complement 

accelerometers or photogrammetry approaches. Further is its portability, monitoring of unbalanced 

parameters, and fatigue damage assessment for in‐field operating wind turbines blades composite 
materials—such blades are normally difficult to assess using ordinary contact sensors. 

In conclusion, GBR can be applied for remote condition monitoring for on‐shore wind turbines 
blades and mast. However, more experiential studies will need to be undertaken to determine the 

veracity of GBR applications for wind turbines in offshore situations where vertical subsidence of the 

sea surface plays a role. 
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