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Abstract: Higher order ionospheric effects are increasingly relevant as precision requirements on GPS data and 

products increase. The refractive index of the ionosphere is affected by its electron content and the magnetic 

field of the Earth, so the carrier phase of the GPS L1 and L2 signals is advanced and the modulated code 

delayed. Due to system design the polarisation is unaffected. Most of the effect is removed by expanding the 

refractive index as a series and eliminating the first term with a linear combination of the two signals. However, 

the higher order terms remain. Furthermore, transiting gradients in refractive index at a non-perpendicular angle 

causes signal bending. In addition to the initial geometric bending term, another term allows for the difference 

that the curvature makes in electron content along each signal. Varying approximations have been made for 

practical implementation, mainly to avoid the need for a vertical profile of electron density. The magnetic field 

may be modelled as a tilted co-centric dipole, or using more realistic models such as the International 

Geomagnetic Reference Field. The largest effect is from the second term in the expansion of the refractive 

index. Up to several cm on L2, it particularly affects z-translation, and satellite orbits and clocks in a global 

network of GPS stations. The third term is at the level of the errors in modelling the second order term, while 

the bending terms appear to be absorbed by tropospheric parameters. Modelling improvements are possible, and 

three frequency transmissions will allow new possibilities. 
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1. Introduction 

1.1. Significance of higher-order ionospheric corrections 

The potential precision of Global Positioning System (GPS) data has developed significantly since the launch of 

the first GPS satellite in 1978 and since the achievement of initial operational capability with a 24 satellite 

constellation at the end of 1993. For a quick introduction to GPS see e.g. Kintner and Ledvina (2005) while for 

further background several textbooks are available such as those by Hofmann-Wellenhof et al. (2001) or Leick 

(2004). This development in precision has been possible not only due to advances in receiver technology, but 

also to improved understanding of systematic errors affecting GPS signals and modelling of these errors in 

scientific GPS processing software. One such systematic error is the effects of the ionosphere on GPS signals. 

The signals are electromagnetic waves with a pseudo-random code modulated on to a carrier phase, transmitted 

at two frequencies. Ionosphere related errors are of particular interest; the activity of the ionosphere varies in 

~11 year cycles, as well as seasonally and on a daily scale, so the errors have the potential to produce long term 

systematic variations.  

The presence of the free electrons making up the ionosphere alters the refractive index of the atmosphere. The 

effect is frequency dependent (see Section3 for further details) and results in the phase of the transmitted signal 

being advanced and the code transmitted along the GPS signal being delayed. In addition to the carrier phase 

advance and code delay, there are other effects such as scintillation and fading (see e.g. Klobuchar, 1996). 

Scintillations occur when the GPS signal traverses a region of irregularities in the refractive index, and both 

phase and amplitude scintillations exist (Kintner and Ledvina, 2005). However, while they are of interest (e.g. 

Kim and Tinin, 2009), they are outside the scope of this review. 

The design of the GPS signals with two transmitted carrier frequencies (L1 and L2) aimed to minimise the 

effects of the ionosphere by making signal combination possible. However, while combining the two signals in 

the ‘ionosphere-free’ linear combination cancels the first term in a series expansion of the refractive index of the 

ionosphere (see Section 4.2), it leaves errors due to the higher order terms in the series which do not completely 

cancel. There are also systematic errors due to bending of the signals, caused by the signals passing at an angle 

through gradients in refractive index. The bending also affects L1 and L2 frequencies differently so they take 

slightly different paths, meaning that the ‘ionosphere-free’ linear combination may no longer completely cancel 

the first refractive index term. 

As the relative size of these higher order errors is much smaller – mm to cm at times of high ionospheric content 

compared to tens of metres for the main first order ionospheric error – until recently the higher order errors were 

considered negligible. However, geodetic GPS processing is now aiming for rates of movement known to well 

within 1mm/yr (Plag, 2005).  There is a wide range of applications, varying from  vertical land motion estimates 

for calibration of tide gauges and comparison with glacial isostatic adjustment (Bouin and Wöppelmann, 2010), 

to tectonic strain (e.g. Calais et al., 2005) and long term subsidence monitoring of oil rigs (Plag, 2005). An 

excellent review of some of the many geodetic applications of GPS can be found in Herring (1999). Due to this 

developing requirement for precision, higher order ionospheric effects have become an area of active research 

for the past few years. They are also relevant to the rapidly developing field of radio occultation (Hoque and 
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Jakowski, 2010), which uses satellite-based receivers to study the atmosphere. A review of higher order 

ionospheric effects on GPS is thus very timely. 

Readers who are primarily interested in the effects of the corrections may wish to omit section 3, dealing with 

the magneto-ionic theory. Those who wish to understand the derivation of the corrections will hopefully find it 

provides a useful synthesis of what can be a rather complex literature. Any readers interested purely in the 

magnitudes and geographic distribution of the effects will find this information in section 7.  

1.2. Brief review of historical context 

The following is a brief review of most of the significant papers relating to higher order ionospheric corrections 

on GPS signals. Aspects of the papers will be discussed in much greater depth in later sections, but below is a 

brief chronological outline of developments in both the refractive index terms and bending terms as applied to 

GPS. 

Hartmann and Leitinger (1984) gave an excellent discussion of the higher order ionospheric effects on signal 

frequencies above 100 MHz, in terms of residual errors. Brunner and Gu (1991) applied some of the concepts to 

GPS using ray tracing methods. Bassiri and Hajj (1993) proposed simplifications to the modelling such that the 

terms could be modelled practically, and limited their consideration to second and third order effects, with no 

bending effects. Kedar et al. (2003) were the first to consider the effects on GPS coordinates of the second order 

term. However, they did not estimate the effects on the orbits, so the coordinate results were somewhat 

misleading. Munekane (2005) performed a semi-analytical simulation looking at coordinates and transformation 

parameters and noted that the effects of the second order term on coordinates are considerably reduced if orbits 

are estimated. Fritsche et al. (2005) used a global network of sites to estimate the effects of the second and third 

order terms on translations over a three year period and coordinate effects for a single day. Steigenberger et al. 

(2006) used the same data set but showed mean coordinate effects over a three year period. Hernandez-Pajares 

et al. (2007) implemented a more sophisticated magnetic model and also obtained the Total Electron Content 

(TEC) along the signal path directly from the GPS results. A study by Petrie et al. (2010b) extended the 

comparison period to 14 years, which enabled the assessment of effects on GPS rates. This study also 

considered the effects on co-ordinates and transformation parameters and investigated different modelling 

options. To look at the behaviour over still longer time periods, simulation is necessary. Palamartchouk (2010) 

used the International Reference Ionosphere (IRI) model to simulate higher order ionospheric effects on a 

uniform GPS network over several solar cycles. Pireaux et al. (2010) consider the effects of second and third 

order errors on time transfer. Morton et al. (2009b) used incoherent scatter radar data from Arecibo to 

investigate more accurate modelling of the second order error, while Morton et al. (2009a) extended the work to 

include the third order error and simulation of potential effects on GPS coordinates at Arecibo. 

Linked to the issue of the higher order terms of the refractive index series expansion is the geometric bending 

effect that the changes in the refractive index have on signals transiting the gradient in a non-perpendicular 

fashion. Hartmann and Leitinger (1984) also include this term as part of their analysis of residual errors. 

Brunner and Gu (1991) include it in their ray tracing study, but most of the initial practical studies applying 

ionospheric corrections to GPS mentioned above focused on the initial higher order refractive index expansion 

terms. Jakowski et al. (1994) studied the effects on the signal and suggested a simplified approach. Hoque and 

Jakowski (2008b) consider the theory behind the corrections and suggest an additional term due to the TEC 
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difference between the two signals that arises because they are bent by different amounts and so travel by 

slightly different paths through the atmosphere. Hoque and Jakowski (2010) extend this work to look at higher-

order effects on radio occultation measurements. Petrie et al. (2010a) investigates the potential effects of the 

bending terms described by Hoque and Jakowski (2008b) on global GPS network processing using the 

International Reference Ionosphere (IRI) to provide estimates of additional ionospheric parameters.  

Studies have also been done on the significance of higher-order ionospheric effects for Very Long Baseline 

Interferometry (VLBI), (e.g. Herring, 1983; Hawarey et al., 2005) and satellite altimetry (Imel, 1994). At 

present higher-order ionospheric effects are still considered negligible for these techniques due to the higher 

frequencies used. For the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) system, 

the situation is more complex, as it has a larger frequency gap and uses Doppler measurements. The draft 

International Earth Rotations and References System Service (IERS) conventions chapter on models for 

propagation delays provides a table of transmission frequency and estimated size of higher order ionospheric 

corrections for “a representative subset of typical frequencies used in radio astronomy 

(http://tai.bipm.org/iers/convupdt/convupdt_c9.html, accessed 28 Jan 2010: p10, Table 2). It is also a good 

reference for general information on higher order ionospheric effects. 

In this paper both the theory and application of higher order ionospheric corrections to GPS will be discussed, 

with more emphasis on areas where approaches have differed or there has been confusion or disagreement. To 

begin, it is necessary to have a basic understanding of the ionosphere, in order to then consider its higher order 

effects on GPS.  

2. The ionosphere 

2.1. Characteristics and variability  

Definitions of the ionosphere vary, but the following summary by Langley (1998: p134) is suitable for the 

present purpose: 

‘The ionosphere is that region of the earth’s atmosphere in which ionising radiation 

(principally from solar ultraviolet and x-ray emissions) causes electrons to exist in sufficient 

quantities to affect the propagation of radio waves. This definition does not impose specific 

limits on the height of the ionosphere. Nevertheless, it is useful to delineate some sort of 

boundary to the region. The height at which the ionosphere starts to become sensible is about 

50 km and it stretches to heights of 1,000 km or more. Indeed, some would argue for an upper 

limit of 2,000 km. The upper boundary depends on what particular plasma density one uses in 

the definition since the ionosphere can be interpreted as thinning into the interplanetary 

plasma. Although the interplanetary plasma affects the propagation of the signals from space 

probes and the quasar signals observed in VLBI, it may be considered to lie beyond the orbits 

of the GPS satellites and therefore will be ignored here.’  
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The above definition is a fairly simple one. For example, the true situation is more complex than the impression 

given by “thinning into the interplanetary plasma”. However, it provides a good introduction to the basic 

structures relevant to this paper.  

The ionosphere is formed when molecules and atoms in the atmosphere are ionised by radiation and energetic 

charged particles from the Sun. While the flux of visible energy to the surface of the Earth from the Sun varies 

little (<0.5%), activity at shorter wavelengths varies by orders of magnitude, depending on the solar activity and 

number of sunspots on the Sun (Davies, 1990: p28). The number of sunspots and hence the solar and 

ionospheric activity varies on several timescales, the most prominent being an ~11 year cycle (see Fig. 1).  

 

Fig. 1   Variation in solar activity (monthly average sunspot number) since 1950. Data from NASA 

(http://solarscience.msfc.nasa.gov/greenwch/spot_num.txt, accessed 10 Jan 2010) 

 

The ionosphere has different concentrations of electron density at different heights which are known as the D, E, 

F1 and F2 layers (see Fig. 2). These layers are associated with ionisation 

of particular molecules or atoms by certain frequencies of high energy 

solar radiation. 

 

Fig. 2   Layers in the ionosphere. Reproduced from Anderson and Fuller-Rowell 

(1999). Note that the height boundaries between the ionospheric layers are not 

generally agreed; the boundaries shown above differ slightly from those suggested 

by Klobuchar (1996), given in the text 
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There is also usually a ~27 day periodicity associated with solar rotation (see e.g. Liang et al., 2008; Hocke, 

2008; Min et al., 2009), together with seasonal variations in the activity of the ionosphere at different latitudes 

and heights (e.g. Liu et al., 2009). For more information, see e.g. Rishbeth (2003: Chapter 15) or Davies (1990: 

Chapter 2). 

Klobuchar (1996) provides a summary of the layers existing in the ionosphere and their significance to GPS 

signal propagation, listing the layers in order of increasing height as follows: 

D region, approx 50-90 km. No measureable effect on GPS frequencies. 

E region, approx. 90-140km. Minimal effect on GPS frequencies in normal conditions. 

F1 region, approx 140-210km  

“The normal F1 region, combined with the E region, can account for up to 10% of the 

ionospheric time delay encountered by GPS. Diffusion is not important at F1 region heights, 

and, as with the normal E region, it has a highly predictable density from known solar 

emissions.” 

F2 Region, approx. 210-1000km.  

“The F2 region is the most dense and also has the highest variability, causing most of the 

potential effects on GPS receiving systems. The height of the peak of the electron density of 

the F2 region generally varies from 250 to 400km, but it can be even higher or somewhat 

lower under extreme conditions [such as at low latitude, night time or during geomagnetic 

storms]. … The F2, and to some extent the F1 regions cause most of the problems for 

radiowave propagation at GPS frequencies.”  

H+ > 1000km. The protonosphere or plasmasphere (actually a torus rather than a sphere). Low electron density, 

but extends out to approximately the orbital height of GPS satellites. 

“Estimates of the contribution of the protonosphere vary from 10% of the total ionospheric 

delay during the daytime hours, when the density of the F2 region is highest, to approximately 

50% during the nighttime, when the F2 region density is low.” 

In summary, the F2 layer is responsible for most of the effect on GPS signals although the contribution of the 

layer above 1000km, which Klobuchar (1996) terms the protonosphere, may be proportionally higher during the 

local night. Studies using data from satellites at different elevations can help quantify their respective 

contributions (e.g. Ciraolo and Spalla, 1997) with further discussion of the effects of the layer above 1000km in 

e.g. (Mazzella, 2009). For more detailed information on the ionosphere, see e.g. Schunck and Nagy (2009), 

Kelley (2009), or Kamide and Chian (2007). 
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2.2. Modelling the ionosphere 

In the simplest ionospheric models, the ionosphere is often considered as one or more Chapman layers. The 

formula for a simple Chapman layer (in a planar, horizontally stratified, isothermal ionosphere, under 

hydrostatic equilibrium and neglecting the detailed radiative transfer of photons through neutral gas, see for 

instance Kivelson and Russell, 1995: p183-188) is: 

( )( ) ( )maxElectron density, exp 1 exp    where                        (1)
Ch

h h
N z z z

H

-
µ - - - =  

where: 

 h is height in the atmosphere, hmax the height of the peak electron density, and HCh the Chapman scale height 

(Hartmann and Leitinger, 1984: p124; see also Budden, 1985: p9). As the F2 layer is the most dense, the 

ionospheric peak electron density is typically written as hmF2 and the height of the peak electron density as 

NmF2. 

Examples of the form of a Chapman layer with varying Chapman scale heights can be seen in Fig. 3.  

 Fig. 3   Examples of Chapman layers with hmax = 350 km, peak 

electron density,  Nm = 6 x 1012 electrons m-3, and Chapman scale 

heights HCh as shown 

 

Chapman layers can also be combined by using different 

scale heights above and below hmax, as was done in the 

study by Brunner and Gu (1991). In addition to simple 

representations of the ionosphere such as Chapman layers, 

more complicated models also exist. Cander (2008) lists 

some of the many ionospheric models in existence and 

summarises:  “Empirical models, like the global IRI model, 

the NeQuick model, the European region COSTPRIME, 

and COSTPROF family of models, attempt to extract 

systematic ionospheric variations from past data records … Physics-based theoretical and/or numerical models 

attempt to solve a set of first-principles equations for the ionospheric plasma, starting from the continuity, 

energy, and momentum equations for electrons and ions. … Parametric models simplify the theoretical models 

by expressing them in terms of solar-terrestrial parameters and geographical locations, giving a realistic 

representation of the ionospheric spatial and temporal structure using a limited number of numerical 

coefficients”. 

There are also models that combine theory and data, such as the global assimilative ionospheric model (GAIM) 

(Wang et al., 2004) that combines first principles physics based models with data assimilation. For the future, a 

discussion of ionospheric imaging using tomography can be found in Bust and Mitchell (2008). 
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However, while the GPS signal is affected by interaction with the electron content of the ionosphere, it is not 

just the electron content that affects it, but also the presence of the Earth’s geomagnetic field. The next section 

discusses the theoretical basis for modelling how the signals travel through such a medium.  

3. Refractive index for GPS signals transiting the 

ionosphere  

The mathematics describing how electromagnetic waves, such as GPS signals, travel through a partially ionised 

medium in the presence of a magnetic field has been a subject of interest for decades. While there are more 

complex versions, the theory that is typically applied for GPS frequencies is termed the magneto-ionic theory. 

The applications of this theory to GPS will be reviewed here. 

 The refractive index of a medium defines the phase speed in the material relative to the speed in a vacuum. For 

a magneto-ionic medium such as the ionosphere, the refractive index depends upon several factors, as this 

section will demonstrate. The factors include the frequency of the signal, its polarisation, and the angle between 

the signal and the magnetic field. As will become clear, the decision to transmit GPS signals with circular 

polarisation reduces the ionospheric effects on the signal. 

A helpful in-depth treatment of the magneto-ionic theory can be found in Yeh and Liu (1972), with a simpler 

overview in Davies (1990). There is an excellent early monograph by Ratcliffe (1959) that describes the 

previous development of the theory as well as the details of its derivation and some implications. A later work 

by Budden (1985) also discusses the theory and derivation in some depth, and there are several other works that 

deal with the subject (e.g. Rawer and Suchy, 1967; Papas, 1965).  The different works define coordinate systems 

and some conventions differently which can be a source of confusion; in the following description, the 

conventions in Yeh and Liu (1972) are generally followed. 

3.1. Defining the ionosphere as a magneto-ionic medium 

A magneto-ionic medium is one in which “free electrons and heavy positive ions are situated in a uniform 

magnetic field and are distributed with statistical uniformity, so that there is no resultant space charge.” Ratcliffe 

(1959: p8). A collection of charged particles in a magnetic field may also be known as a magneto-plasma, and 

has a characteristic frequency of oscillation, known as the plasma frequency, fp. Considering electrons only (as 

all ions are so massive in comparison that their motions are negligible), fp is related to the electron charge, e, the 

electron density, Ne, the electron mass, em , and the permittivity of free space, 0e  as follows: 

e

e
p

m

Ne
f

0
2

2
2

4
 

ep
=  ,        (2) 

or, if the constants are evaluated (Table 1), epp NAf =2
 where 80.62pA = m3s-2. 

However, the presence of a magnetic field also influences the magneto-plasma. Charged particles tend to spiral 

around the lines of magnetic force at a characteristic frequency known as the gyrofrequency, fg. For electrons, 

the gyrofrequency depends on me, e, and the magnetic field vector, B, in the following relationship:  
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2 e

e

mp
= - B

g
f        (3) 

or  

 gA= Bgf  , where 
10x1080.2=gA  sA/kg if the constants are combined.  

Table 1 Values of physical constants   

Symbol Quantity Value Unit 

0e  permittivity of free space 8.854x10-12 farad/metre 
kgm

As
farad

2

24

: , 

em  electron mass 9.107x10-31 kg 

e  electron charge -1.602x10-19   Coulomb    Coulomb: A s 

 0m  permeability in a vacuum 12.57x10-7 Henry/m     Henry : 
22

2

As

kgm
 

 

When defined as above (Eqn. 2), the plasma frequency is always a positive scalar. However, the gyrofrequency 

(Eqn. 3) is a vector, representing the direction around which charged particles will orbit in a clockwise manner 

(and may thus be negative for particles with a positive charge). Klobuchar (1996: p488) states that “the electron 

gyro frequency … is typically 1.5 MHz; the plasma frequency … rarely exceeds 20 MHz”. This translates to a 

magnetic field strength of ~53500nT (nanoTesla) and electron density of ~ 4.96 x 1012 electrons m-3.  

To allow consideration of the effects on signals travelling through a magneto-plasma, it is necessary to set out a 

consistent set of conventions. We can define a coordinate system with orthogonal axes such that the signal 

propagation direction k is along the z-axis, with the magnetic field vector B in the z-y plane and where θ is the 

angle between the B and k vectors (see Fig. 4).  

  

Fig. 4   Coordinate system with signal vector k and magnetic vector B 

 

Bcosθ 

x 

Bsinθ 

B 

y 

k 

θ 

O 

z 
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It is also worth noting that there is no common convention in the literature (e.g. Ratcliffe, 1959; Yeh and Liu, 

1972; Budden, 1985; Davies, 1990) regarding the assignment of the magnetic field vector and signal vector to 

particular axes orientations, which complicates the process of comparison. Where formulae from different 

authors vary, it can usually be shown to be due to the different conventions that have been used in the 

derivation. Having defined the magneto-ionic medium and coordinate system, we now consider the properties of 

the electromagnetic signal passing through the medium. 

3.2. Defining the GPS signal and its polarisation 

An electromagnetic signal such as a GPS signal consists of linked time-varying electric and magnetic fields 

propagating through a medium. It will have a certain polarisation, which can also affect its propagation. A 

formal definition of the polarisation of an electromagnetic wave is “that property of a wave describing the time-

varying direction and relative magnitude of the electric field vector; specifically the figure traced in time by the 

extremity of the vector at a fixed location in space, and the sense in which it is traced, as observed along the 

direction of propagation.” (Balanis, 2005: p71). The polarisation of signals emitted by an antenna may be linear, 

circular or ellipsoidal, depending upon the antenna design (see, e.g., the excellent summary by Balanis (2005: 

p74) for further information). 

As set out in the technical document ICD-GPS-200 (2000), GPS signals are effectively right-hand circularly 

polarised (RHCP), with RHCP defined as the electric vector of the wave being of constant amplitude and 

rotating clockwise when viewed from the source of the signal (see Fig. 5a,d). An electric vector of constant 

amplitude will appear to trace a circle in a plane perpendicular to the signal as it rotates. While this is the usual 

definition of RHCP according to the Institute of Electrical and Electronics Engineers (IEEE), it should be noted 

that in optics the traditional definition is completely the opposite, i.e. RHCP is clockwise motion as viewed by 

an observer facing the oncoming wave (Born and Wolf, 1999).  

So, how can the electric field vector of such a wave be represented mathematically? If we assume that the wave 

is of a simple harmonic form with RHCP polarization, then using the coordinate system set out above, the two 

components of the electric vector along the axes perpendicular to the line of travel are Ex and Ey. For the electric 

vector to be of constant amplitude, a, we need 
222

aEE yx =+ . To achieve this, the amplitudes of the two 

components must be the same, and the two components must be out of phase in time by a multiple of π/2 (see 

Fig. 5c,d). For the electric vector to rotate clockwise as specified above, the Ey component must lag the Ex 

component. A simple harmonic wave with clockwise (RCHP) rotation may then be represented mathematically 

as follows:  

cos( )

sin( ) cos
2

and   

x x

y y y

x y

E a t kz

E a t kz a t kz

a a a

w f

p
w f w f

= - +

æ ö= - + = - + -ç ÷
è ø

= =

    (4) 

where angular rotation, ω, equals 2πf (Hz), and angular wave number, k, equals 2π/λ with f the frequency, λ the wavelength 

of the wave andf is the initial phase. The components of the wave vary in time through the factor ωt and in space along the 

direction of propagation (z-axis) through kz. Fig. 5a illustrates how the tip of the electric vector rotates clockwise with time 
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at one point in space, as described by the IEEE definition. In contrast, Fig. 5b shows what the electric vector looks like in 

space at a fixed instant of time. In space the wave becomes a left hand helix, which can lead to misunderstanding of the 

RHCP definition. Fig. 5c is a graphical representation of the phase lag between the Ex and Ey components needed to produce 

a RHCP wave. Fig. 5d has three snapshots of Ex and Ey with time, showing how the electric vector rotates in a clockwise 

manner with time, that is from the positive x-axis towards the positive y-axis in our coordinate system. 

 

 

 

   

 

 

 

 

 

 

 

 

 

Fig. 5    RHCP wave (IEEE convention). a) RHCP wave demonstrating change with time at a location in space. b) RHCP 

wave demonstrating the shape in space at one instant of time. c) Graphical representation of an RHCP wave showing how 

the x and y components of the wave, Ex and Ey, vary with time (see Eqn. 4). d) Rotation of electric vector of an RHCP wave 

with time. Direction of wave travel is along z, into the page 

 

Polarisation is most often described mathematically by using complex number notation. Using this notation, the 

components in the x and y directions of electric field of a GPS transmission set out above can be expressed as 

(with the complex number i =√-1): 

c 

t1 t3 

a 

lag of π/2 

t2 

Ex
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t1 t2 t3 
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Ratcliffe (1959) shows the magnetic vectors, Hx, Hy are related to the electric vectors and that, when using 

complex notation, the polarisation of the wave can be represented as  follows (see also Yeh and Liu(1972: 

p163)): 

y

x

x

y

E

E

H

H
R ~

~

~

~

=-=   (6) 

Using Eqn. 6, above, for the polarisation, then for a RHCP wave in the IEEE convention, such as a GPS signal, 

the polarisation can be described in complex notation as follows:  

ie
E

E i

y

x == 2
~

~
p

      (7) 

(while for a LHCP wave, the polarisation would be  ie
E

E i

y

x -==
-

2
~

~
p

). 

For further information see Born and Wolf (1999: p18, 29-31) or for details of complex representation see Hecht 

(1998: p23-28), though convention differences should be noted. For example, both books use the optics 

convention rather than the IEEE convention for RHCP and Hecht (1998) defines harmonic waves using (kz-ωt) 

rather than (ωt-kz). The equations above are consistent with the conventions in both Ratcliffe (1959) and Yeh 

and Liu (1972). 

3.3. Waves passing through a magneto-ionic medium 

An expression for the refractive index of a magneto-plasma can be derived using Maxwell’s equations relating 

electric and magnetic fields to electric charges and currents and the constitutive relations describing how the 

ionospheric plasma responds to electromagnetic waves. Following the conventions set out above in Fig. 4, the 

resulting expression for the phase refractive index is:  

( ) ( ) ÷÷
ø

ö
çç
è

æ
+

-
±

-
-

-=±

q
qq 22
2

4422

2

cos
14

sin

12

sin
1

1

Y
X

Y

X

Y

X
n

   (8) 

where X is the normalised plasma frequency,  ,  
22

2

f

N
A

f

f
X e

p

p ==  (see Eqn. 2), and Y is the modulus of the 

normalised gyrofrequency, i.e.   
f

AY g

B
Y == (see Eqn. 3).  The expression is generally known as the 

Appleton-Lassen equation or Appleton-Hartree equation. Though “Appleton-Hartree” is frequently used, 
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“Appleton-Lassen” would be the preferred nomenclature, as Lassen (1927) independently derived the same 

formula as Appleton (1932), while Hartree (1931) derived an alternative version of the formula. 

The derivation includes a linked formula for the polarisation of waves that can travel through a medium with the 

given refractive index with their polarisation unchanged (see e.g. Ratcliffe, 1959). Such waves are called 

characteristic waves, and the linked expression giving their polarisations is: 

( )
)

1
1(

cos
cos

14

sin

)1(2

sin

cos 2
2

2

422

±-
-=

ú
ú
û

ù

ê
ê
ë

é
÷÷
ø

ö
çç
è

æ
+

--
=

n

X

Y

i

X

Y

X

Yi
R

q
q

qq
q

m
m

 (9) 

R+ , the lower sign in Eqn. 9, is linked to the lower sign of the refractive index formula, n- , and similarly for 

the upper signs R- and n+ .  

The equations above for the polarisation and the refractive index have been simplified to exclude the effects of 

electron collisions (which are generally considered negligible at the frequencies used by GPS). Additional 

assumptions are necessary for the derivation, including that: 

- positive ions are infinitely massive so do not affect the wave;  

- the plasma is a ‘cold’ plasma (i.e. the thermal motions of the electrons are much smaller than the phase 

velocity of the wave) and 

- there is a uniform magnetic field 

(see e.g. Davies (1990: p70) for a summary or Yeh and Liu (1972) for further information). 

3.4. Evaluating the polarisation formula for GPS signals 

The two polarisations of Eqn. 9, R+ and R-, thus represent the two possible characteristic waves of the magneto-

plasma. Waves that are not one of the characteristic waves are separated into components with the characteristic 

polarisations. These components may then travel at different speeds through the medium before recombining 

(which is the origin of Faraday rotation for a linearly polarised wave).  

However, when Eqn. 9 is evaluated for the GPS L1 and L2 frequencies, the result is a polarisation of i (or 

RHCP, see Eqn. 7) using the lower sign (R+) when 0 ≤ θ < π/2, and the upper sign (R-) when π/2 < θ  ≤ π. This is 

true for all values of θ except ~ 89.5-90.5 degrees (see Fig. 6). This is excellent as it implies that for almost all 

values of θ, GPS signals are characteristic waves.  

 

Fig. 1    Polarisations of the characteristic waves at the GPS L1 

frequency (multiply y-axis by i) showing changes when θ is 

close to 90 degrees. Obtained by evaluating Eqn. 9. 
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For values of θ very close to 90 degrees, the characteristic wave polarisations are no longer i and -i and so no 

longer RHCP and LHCP (see Fig. 6). This was also recognised by Hartmann and Leitinger (1984) who state: 

‘For frequencies above 100MHz the “characteristic polarisations” are, to a very good 

approximation, the right-hand and the left-hand circular polarisations except for propagation 

perpendicular to the vector of geomagnetic field strength (and deviations of some tenths of a 

degree from this direction). The latter exception has no practical implications’. 

This is a very useful result, as it implies that the RHCP GPS signals can travel with unchanged polarisation for 

almost all values of θ. 

 

3.5. Simplified refractive index for GPS signals 

We have seen that for all practical intents and purposes, GPS signals will be one of the two characteristic waves. 

However, to predict the ionospheric effects on the characteristic wave/GPS signal as it travels, we need the 

refractive index of the medium. The expression for the refractive index in Eqn. 8 is fairly complex to evaluate, 

and is usually simplified. 

 For GPS frequencies, X is generally less than  2.7 x 10-4 and Y is less than 1.3 x  10-3  (using an approximate 

maximum value for plasma frequency and typical value for gyrofrequency of 20MHz and 1.5 MHz respectively 

(Klobuchar, 1996), and the L2 frequency, 1227.6MHz). 

 On rearranging Eqn. 8, then expanding it as a binomial series, discarding terms smaller than 1 part in 10-9 as 

suggested by Brunner and Gu (1991), taking the square root and again expanding and discarding, the following 

simplified expression for the Appleton-Lassen equation is obtained:  

2
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2
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2

1
1 X

YX
Xn -±-=±

q
.     (10) 

Other derivations leading to essentially the same result are summarised in the appendix to the excellent paper by 

Datta-Barua et al. (2006). The paper also examines the size of the largest discarded terms and confirms that their 

effects are sub-millimetre. 

Now, for the formula to be correct for the GPS RHCP polarisation the lower sign must be used when 0 ≤ θ < 

π/2, and the upper sign when π/2 < θ  ≤ π. Eqn. 10 is then equivalent to:  

2
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2
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2

1
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XY
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q
          (11a) 

or equivalently to: 

2 2
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2 2 8
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n
f f f

q
= - - -          (11b) 

on using the notation of Eqns. 2 and 3. 
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In the above expanded and simplified equation for the refractive index of the ionosphere, the term in f 2 becomes 

the first order term, I1. On evaluation (from Eqn. 2, Ap = 80.6), it reduces to the more familiar 40.3Ne / f 
2. The 

second order (I2) and third order (I3) refractive index terms then arise from those in f3
 and f 4 respectively.  

3.6. Comparison with previous literature 

Linking the derivation above with the previous literature reveals inconsistencies in a few places, but generally 

only in the justification for the formula used rather than in the end results.  

Hartmann and Leitinger (1984: p122) give a formula for the refractive index as follows: 

( ) ...)cos2sin
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This formula would agree with the result of the derivation above (Eqn. 11b), with the exception of a missing ½ 

in the third term which may be a misprint. The equivalent of the fifth term shown here, which Hartmann and 

Leitinger call ÄSc, has been discarded in Eqn. 11b above due to its size. The authors also state “It is clearly seen 

that ÄSc can be neglected against ÄSa [I2] and ÄSb [I3]” Hartmann and Leitinger (1984: p124).  

In the subsequent paper by Brunner and Gu (1991) the following statement is made and attributed to Hartmann 

and Leitinger (1984): ‘The ionosphere is a birefringent medium, and thus causes the EM wave to split into two 

propagation modes, the ordinary and the extra-ordinary mode. The ordinary mode corresponds to the upper (+) 

sign in Eq. (A.1.) [the Appleton-Hartree formula] and is left-hand circularly polarized, while the extra-ordinary 

mode corresponds to the lower (-) sign in Eq. (A.1) and is right-hand circularly polarised, Hartmann and 

Leitinger [1984]’.  The actual sentence in Hartmann and Leitinger (1984) limits the link between the lower (-) 

sign and RHCP to the geomagnetic north hemisphere; it reads ‘In the geomagnetic north hemisphere the + sign 

corresponds to the left-hand circular component, the – sign to the right-hand circular component’. This is 

because, as seen in section 3.5, the appropriate sign depends on the angle between the signal and the magnetic 

field. While this may seem a somewhat pedantic point to make, it is from this point onwards that some 

confusion about which sign should be used and why seems to spread in the later literature. 

The assertion of Brunner and Gu (1991) that the lower sign in the Appleton-Hartree formula always represents a 

right-hand circularly polarised wave would seem to apply only to the northern hemisphere. However, if formula 

A.5 of Brunner and Gu (1991: p214), qcos
282

1
2 XYXX

n ±--= , is taken and the lower sign is used as 

they suggest, it is equivalent to that derived above (Eqn. 11a).  

Brunner and Gu also suggest that because they derive their formula with no assumptions about the angle θ, it is 

valid for all values of θ. While the refractive index formula is valid, it should be considered together with the 

polarisation formula which describes the form of the two characteristic waves. As mentioned in section 3.4, 

between ~89.5 and ~90.5 degrees neither of the characteristic waves is circularly polarised (see Fig. 6) so the 

formula does not properly represent (RHCP) GPS signals for a small (and probably insignificant) range of 

values of θ. 
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Bassiri and Hajj (1993: p282) give a refractive index expansion up to the fourth inverse power of frequency: 

( )úû
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êë

é -+-±-=± qq 22 cos1
2

1

4

1
cos

2

1

2

1
1 YXXXYXn . This simplifies and rearranges to be identical 

with that derived here (Eqn. 11a). However, when they apply the formula, the assumption is again made that the 

lower sign represents the extra-ordinary wave and is RHCP. This means that, referring to the derivation above, 

this formula is only appropriate in certain conditions (0 ≤ θ < π/2, approximately the northern hemisphere). 

Bassiri and Hajj (1993) consider the issue of the effects on the refractive index formula when θ is near 90 

degrees, but again do not mention the linked change in polarisation of the characteristic waves. 

Kedar et al. (2003) give a formula for the error in length of the ray path which is corrected from Bassiri and Hajj 

(1993). It equates to the formula for the refractive index derived above (see Section 4.1). Subsequent papers 

(e.g. Fritsche et al. (2005),  Hernandez-Pajares et al. (2007), Petrie et al. (2010b)) continue to use this 

formulation, which is consistent with the one derived above (Eqn. 11a) . 

4. Correction to GPS signal from ionospheric refractive 

index expansion terms 

4.1. Expressions for phase advance and code delay 

Integrating the effect of the refractive index of Eqn. 11b along the curved path leads to the following equation 

for the ionospheric effects on the carrier phase in units of length: 
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q
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,          (12) 

where ρ is the geometric range between the satellite and the receiver, λ the wavelength and dL denotes integrals 

along the path. In Eqn. 12 and subsequently we denote N1 to be the integer ambiguity. The subscript here refers 

to the GPS signal with frequency f1, often known as L1. An analogous formula holds for the GPS frequency f2. 

For the sake of simplicity, Eqn. 12 does not show corrections for non-dispersive errors, such as tropospheric 

delay, or for the effects of phase wind-up.  

Once the values for the constants in Ap and Ag are inserted, the effect on the carrier phase becomes (with units 

of metres): 
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and we can define the first, second and third order refractive index correction terms as: 
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These corrections are for the GPS carrier phase. To implement the corrections in a practical GPS analysis, 

approximations of the integrals are usually performed to reduce computing time and avoid the need for a profile 

of Ne with height. Typical approximations are discussed in Section 6. 

For the modulated GPS code, the following information is useful:  

“A signal, or modulated carrier wave, can be considered to result from the superposition of a group of waves of 

different frequencies centred on the carrier frequency. If the medium is dispersive, the modulation of the signal 

will propagate with a different speed from that of the carrier; this is called the group velocity. Corresponding to 

the phase refractive index, n, we can define a group refractive index, ng, where:     .
df

dn
fnng += ” (Langley, 

1998: p124). 

The equivalent formula for the refractive index for the modulated code can then be derived from the formula for 

the phase: 
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and the expression for the ionospheric effect on the pseudorange follows, 
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which becomes 
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  (16b) 

where c is the speed of light in a vacuum. 

4.2. �Ionosphere-free� linear combination 

The traditional approach to removing the effect of the ionosphere is the ‘ionosphere-free’ linear combination, 

often known as the LC or L3 combination: 

2 2
1 2

1 22 2 2 2
1 2 1 2

LC

f f

f f f f
F = F - F

- -
   (17) 

where iF is the expression for the phase from Eqn. 13, and again the units are metres. 

While this combination cancels the first order term (assuming that eN dLò is identical for both the L1 and L2 

frequencies), the second and third order terms do not cancel completely. 

Defining K1 and K2 equal to cosp g eA A N B dLqò  for the L1 and L2 carrier phases respectively, the effect of 

I2 on the phase LC combination is:   
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Similarly, if J1 and J2 are defined as equal to 
2 2
p eA N dLò  for the L1 and L2 signals, then 

the effect of I3 on the phase LC combination is: 
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Alternative linear combinations of the signals are often made for other purposes (e.g. Hofmann-Wellenhof et al., 

2001: p93) and should not be confused with the combination described above. 

5. Bending 

In addition to the higher order refractive index terms there are also bending terms; when a wave crosses a 

gradient in refractive index in a direction that is not perpendicular to the surfaces of constant refractive index the 

wave is refracted or bent. This process will be termed geometric bending in this paper. Due to their differing 

frequencies, the L1 and L2 signals bend slightly differently, so the slant total electron content (STEC) integrated 

along each signal path is not quite the same.  This difference in STEC means that there is also a small residual 

effect from the first order term even after forming the LC combination (Hoque and Jakowski, 2008b). In this 

paper we term this residual correction the “TEC difference bending effect” or dTEC correction.  

Neither the geometric bending term nor the dTEC bending term are routinely implemented in practical GPS 

processing and there is no real consensus as to how the bending terms should be computed. Below we outline 

where the errors arise. We review approaches for estimating the errors, and compare the results from the various 

formulae that have been suggested for the geometric bending error for a standard case. While after formation of 

the ‘ionosphere-free’ linear combination the dTEC bending correction is the larger of the two bending 

corrections, for a proper illustration of the effects, both corrections should be modelled. This is particularly so 

because in the residual range error expression for the phase combination the geometric bending correction is of 

the opposite sign to the other terms in the expression. Omitting the geometric bending correction may thus make 

the impact of the bending terms appear larger than it actually is. The first study on applying bending terms to 

GPS data when determining coordinates is Petrie et al. (2010a, (see Section 7). 

Finally, all of the following discussion is based upon a uniform ionosphere, either flat or spherically symmetric. 

Horizontal gradients do exist and may be fairly abrupt (e.g. Doherty et al., 2004; Stankov et al., 2009) but a 

method for dealing with such gradients for GPS analysis has not yet been described. Finally, such gradients are 

not necessarily well characterised on a day to day basis. 

5.1. Geometric bending term 

The geometric bending term, bgm, is also known as the curvature term or refraction error (Leitinger and Putz, 

1988). There are several papers that have considered the concept at the signal level and we review their 
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approaches below. As each paper uses different ionospheric parameters, we both review the original results and 

attempt to produce equivalent results for a standard case, for an improved comparison. 

As a foundation for the discussion, consider the underlying geometry of the situation. The 

geometric bending term is the difference between the geometric range (the straight line 

shown in Fig. 7) and the range when signal bending due to the ionospheric refractive index is 

taken into account (curved line in Fig. 7). 

 

Fig. 7   Difference between curved signal path and geometric straight line range (not to scale) 

 

In their classic paper on range errors, Hartmann and Leitinger (1984) considered bending of the signal path as 

part of the residual ionospheric errors. They indicated that: “Model calculations have shown that the resulting 

additional range error ∆Sd [bgm] is approximately proportional to (1/f 4)” and stated that by means of series 

expansions one can show that the following formula is a good approximation: 
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or, using the symbols defined in this paper: 
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where bgm is the geometric bending term in m; 'z (or χ) the zenith angle of the ray at the mean ionospheric 

height; η (or y) the shape factor; VTEC/NmF2 (or τ) represents the ionospheric slab thickness and VTEC is 

vertical total electron content, hs is the height of the satellite transmitter and Ap represents physical constants 

that evaluate to 80.6 (see section 3.1). 

The derivation of Eqn. 20a for both planar and spherical layering can be found in Leitinger and Putz (1988). 

While they indicate in the derivation that using 1/hs (as in Eqn. 20a) may be an approximation most suitable for 

hs ~ 1000km, their alternative approximations deviate by less than 1mm at an elevation angle of five degrees. As 

always the sign of the correction should be defined to avoid confusion. For Leitinger and Putz (1988) 

GPS receiver 

GPS satellite 
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‘propagation “error” means length of optical path, Sn, minus true (geometric) range, SO’. One complication in 

the derivation is that χ is the zenith angle of the ray at the mean ionospheric height rather than the zenith angle 

of the geometric straight line. However, this difference in angle is very small even in fairly extreme conditions. 

Calculations using GPS data from the SAC-C satellite at solar maximum, equatorial noon conditions, and 

occultation scenarios show the typical top value between the transmitter and receiver tangent directions is less 

than 1 thousandth of a radian, which implies it can be neglected. SAC-C data is available at 

http://www.gsfc.nasa.gov/gsfc/service/gallery/fact_sheets/spacesci/sac-c.htm.  

Hartmann and Leitinger (1984) considered the potential size of this range error, or geometric bending error, for 

a worst case scenario for several different frequencies. They consider their formula valid for elevation angles 

greater than 30 degrees and suggest it may need adjusting by using a lower mean ionospheric height at lower 

angles. We reproduce the part of their Table 6 that is most relevant to GPS as Table 2 below, and also add the 

equivalent numbers for GPS frequencies.  

Table 2 Worst case predictions for bgm after Hartmann and Leitinger (1984), extended to GPS frequencies 

Frequency Elevation angle /deg bgm (‘ÄSd’) /m Parameters 
400MHz 60 

45 
30 

-0.2 
-0.5 
-1.7 

Shape factor = 1 
Ionospheric slab 200km thick 
Mean ionospheric height 400km 
Transmitter height 1000km 2GHz 60 

45 
30 

-3 x 10-4 
-1 x 10-3 
-3 x 10-3 

1575.4 MHz 

GPS L1 

 

60 

45 

30 

-5.5 x 10-4 

-1.8 x 10-3 

-8.9 x 10-3 

As above, but transmitter height 
20200 km 
If L1 and L2  bgm estimates are 
combined to form LC: 

1227.6 MHz 

GPS L2 

 

60 

45 

30 

-2.28 x10-3 

-7.53 x 10-3 

-24.14 x 10-3 

1.38 mm 
4.57 mm 
14.66 mm 

 

Fig. 8 plots bgm for the GPS frequencies, using the Hartmann and Leitinger (1984) formula, for two scenarios. 

The first scenario uses the conditions they suggest in their paper, the second is conditions selected by the authors 

to allow a ‘standard’ comparison between the various formulae.  

 Fig. 8   Geometric bending errors 

calculated with the formula of Hartmann 

and Leitinger (1984). Original is using the 

conditions from the original paper, standard 

is equivalent to Case 1 of Brunner and Gu 

(1991), Äbgm shows the effect on the LC 

combination 

 

Brunner and Gu (1991) also considered 

bending effects during their study of 

higher order ionospheric effects on 

GPS signals using three dimensional 

ray tracing calculations. They took a 
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slightly different approach, examining the curvature correction from the straight path for L1, and adding a small 

perturbation term to account for the difference between the L1 and L2 paths (the derivation for these terms can 

be found in Gu and Brunner (1990)).  They provided results for the LC combination for two different cases. 

Case 1 was chosen as VTEC = 138 TECU (1TECU=1016electrons/m2) and NmF2 = 6 x 1012 electrons m-3. Case 1 

was intended to represent ‘high Nm[F2] values which are frequently observed’ and we have selected these 

parameters as the basis for a standard comparison with equations from other papers. Case 2 was chosen to 

represent a scenario with extremely high ionospheric activity (VTEC = 455 TECU and NmF2 = 20 x 1012 

electrons m-3). They approximated the satellite altitude as 1000km rather than ~20000 km as they assumed that 

above 1000km the ionosphere would have little effect on signal propagation. 

In addition, in their conclusions they note that their method requires information about the structure of the 

ionosphere and provide “an empirical formula which gives sufficiently accurate results” for residual range error 

(RRE) due to geometric bending in metres (shown here with slightly altered notation): 
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b N

f
b bD = ´ .  (21) 

Results are shown in Fig. 9. The large increase from Case 1 to Case 2 is as expected, and the empirical formula 

appears to give reasonably similar results. 

 Fig. 9   Bending RRE, Äbgm. 

after Brunner and Gu (1991) for 

Case 1, Case 2 and empirical 

formula (using NmF2 as for Case 

1, Case 2) 

 

 

Brunner and Gu (1991) also 

provide the maximum 

separation from the straight 

line path for L1 and L2 

signals which can be used to 

check the separation between 

the signals (see Table 3). 

 

Table 3   Path separation from straight line path (metres) (Brunner and Gu, 1991) 

Elevation 
angle 
(degrees) 

Case 1 
L1 

Case 1 
L2 

Difference Case2 
L1 

Case 2  
L2 

Difference 

90 0.0004 0.0007 0.0003 0.0015 0.0024 0.0009 
60 4.3190 7.1144 2.7954 14.1979 23.3876 9.1897 
30 27.2780 33.4000 6.1220 66.6608 109.8183 43.1575 
15 55.5253 91.4643 35.9390 182.5863 300.8688 118.2825 
7.5 92.7348 152.7742 60.0394 305.0658 502.9136 197.8478 
 



23 

Jakowski et al. (1994) considered the geometric bending effect and derived an empirical formula for satellites at 

altitudes of 1000km and 20000km to represent its effect. They investigated several frequencies including those 

appropriate for GPS. They used a Chapman layer to represent the ionosphere and performed numerical ray 

tracing on 2000 parameter sets. 

Their resulting empirical formula (with coefficients for 20000km) is shown below with slightly altered notation: 

( ) ( ) ( )( )( )
1/2

22 48 5 4 2

4

1.319 10 2 ( 0.105 10 ) 2 2 1 1 0.678 10 2 cos 1

gm

STEC foF foF hmF hmF

b
f

b
-

-é ùé ù´ × + - ´ × - + - ´ × -ê úë û ë û=

 (22a) 

The units they used are not SI units but are as follows: 

Ray path geometric bending error, bgm, in mm, STEC in TECU, critical ionosonde frequency foF2 and signal 

frequency f in MHz, peak height of the F2 layer hmF2 in km and elevation angle β in degrees or radians as 

appropriate. 

Substituting into their Eqn. (4) giving the relationship of the peak electron density (NmF2) to the critical 

ionosonde frequency (in SI units), NmF2 = 1.24*10-2(foF2)2, the formula becomes: 

( )( )( )
2 1/2

28 5 4 2

10 10

4

2 2
1.319 10 ( 0.105 10 ) 2 1 1 0.678 10 2 cos 1

1.24 10 1.24 10
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b
f

b
-

-
é ù é ùæ ö´ × + - ´ - + - ´ × -ê úç ÷ ê ú´ ´è øê ú ë ûë û=

  (22b) 

if peak electron density NmF2 is in electrons/m3 (and converting for foF2 in MHz). 

As they recognised that ionospheric parameters such as hmF2 and NmF2 are often unavailable, they also provided 

a simplified formula which is only a function of slant TEC (TECU) and elevation angle, again with bgm in mm: 

( ) 1/28 2 2

4

2.495 10 1 0.8592cos 1

gm

STEC
b

f

b
-é ù´ × - -ê úë û=     (23) 

This formula is in 1/f 4 and if the ‘ionosphere free’ linear combination is performed and Eqn. 22a is represented 

as 
4

,gm

A
b

f
= it reduces to the following residual range error: 

( ) ( )
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                 (24)  

Jakowski et al. (1994) found residual range error values for GPS with VTEC of 124 TECU ranging from 9.1mm 

(10 degrees elevation) through 2.6mm at 25 degrees to 0.4mm at 50 degrees elevation (see their Table 3). They 

suggest that their full formula would ‘calculate the bending error with an accuracy of better than 1mm at 

elevation angles greater than 10º for GPS users’, while their simplified formula performs equivalently ‘ignoring 

unusual ionospheric conditions’. 
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The recent study by Hoque and Jakowski (2008b) then expands on the previous work by Jakowski et al. (1994) 

and defines the two terms: ‘excess path length’ or geometric bending, and ‘range error due to TEC difference at 

two frequencies’ (which is called the TEC difference or dTEC bending error in this paper). They derived 

empirical formulae using raytracing simulations with a spherically symmetric ionosphere and checked the 

results using comparisons with reconstructed CHAMP profiles. 

The formula for the geometric bending or ‘excess path length’ as it is called by Hoque and Jakowski, is slightly 

different from that mentioned in the previous work: 

( )
( )

5 2

1/84
2 2

7.5 10 exp 2.13
gm

m

STEC
b

f HF h F

b-´ × × -
=

×
    (25) 

in millimetres, where STEC is in TECU, frequency f in GHz, F2 layer scale height HF2 and peak ionization 

height hmF2 in kilometres and elevation β in radians. 

Comparing the three formulae, it can be seen that the dependent parameters differ: 

Jakowski et al (1994) full (Eqn. 22b) depends on STEC, NmF2, hmF2 and 1/cos(elevation angle) 

Jakowski et al (1994) approx (Eqn. 23) depends on STEC2, and 1/cos(elevation angle) 

Hoque and Jakowski (2008b) full (Eqn. 25) depends on STEC2, a negative exponential of the elevation angle, 

HF2 and hmF2. 

 

If 70km and 350km are chosen for HF2 (the F2 layer scale height) and hmF2, the F2 layer peak height, as 

suggested by Hoque and Jakowski (2008b), the ‘2008 full’ expression gives results very similar to the ‘1994 

approx’ expression (see Fig. 10). 

  

 Fig. 10   Äbgm using geometric bending formulae from 

Jakowski et al. (1994) and Hoque and Jakowski (2008b). a) 

using hmF2 =350km and HF2 = 70km, b) using hmF2=350km 

and HF2 = 56km (HF2 calculated as suggested by Hoque and 

Jakowski (2008b)) 

 

 

 

 

 

 

 

a 

b 
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If the six suggested formulae from different authors are compared (Fig. 11), the agreement is reasonable, though 

the approximate formula from Jakowski et al. (1994) is much lower. All the formulae are related to 1/f 4. The 

formula of Hartmann and Leitinger (1984) results in the largest estimate for the error, and is also the only one to 

specifically include satellite height, probably because the paper was not specific to GPS. Interestingly, if 

1000km is substituted for the 20200km used to evaluate the formula in Fig. 11, the result is close to the lowest 

formula, the approximate formula of Jakowski et al. (1994). Hartmann and Leitinger (1984) suggested their 

formula might need amendment at angles below 30 degrees. The empirical formula of Brunner and Gu (1991) 

has a slightly different elevation dependence to the remaining formulae; Äbgm rises more quickly as the elevation 

decreases below 20 degrees. 

 

 

Fig. 11   Comparison of different 

formulae for Äbgm using standard 

conditions equivalent to Brunner and Gu 

(1991) Case 1 (VTEC = 138 TECU, NmF2 

= 6 x 1012 electrons m-3).The other 

formulae used are as follows: ‘H & L 

1984 edit’, Eqn. 20b; B&Gu1991 

empirical, Eqn. 21; J.et al. 1994 full edit, 

Eqn. 22b; J et al. 1994 approx edit, Eqn. 

23; H&J 2008 edit, Eqn. 25 

 

 

 

 

The full formula of Brunner and Gu, the full formula of Jakowski and the formula of Hoque and Jakowski all 

agree fairly closely (Table 4).  

Table 4   Size of Äbgm
 for formulae from different authors at 10 and 30 degrees elevation, using standard conditions 

equivalent to Case 1 of Brunner and Gu (1991).  

Formula Äbgm /mm at 10 degrees 
elevation 

Äbgm /mm at 30 degrees 
elevation 

H & L 1984 edit (Eqn. 20b) 16.3 3.8 
B & Gu 1991 high (Case1) 14.1 2.6 
B & Gu 1991 empirical (Eqn. 21) 12.3 2.9 
J et al. 1994 full edit (Eqn. 22b) 14.1 3.2 
J et al. 1994 approx edit (Eqn. 23) 10.4 2.3 
H & J 2008 edit 12.7 2.9 
 

Given that the Jakowski et al. (1994) paper modelled the ionosphere as a single Chapman layer, and the 

empirical formulae were derived by ignoring the plasmasphere, while the formula in the Hoque and Jakowski 

(2008b) paper is based on modelling of three Chapman layers and validated using profiles from radio 
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occultation measurements from the CHAMP satellite, the expression from the 2008b paper is presumably more 

correct. 

An extension of the formulae of Hoque and Jakowski (2008b) for both the geometric and TEC difference 

bending terms to encompass the challenges of radio occultation scenarios can be found in Hoque and Jakowski 

(2010).  

5.2. Total Electron Content difference bending term 

The TEC difference bending error, bTEC arises because ‘due to the dispersive nature of the ionosphere, two radio 

signals do not follow the same curved path’ (Hoque and Jakowski, 2008b). This means that the STEC 

accumulated along the signal path is not quite the same for the L1 and L2 GPS frequencies. The complete 

elimination of the first order ionospheric term relies on STEC1 and STEC2 being the same, so the TEC bending 

term is effectively a residual cancellation error from the first order refractive index term. Hoque and Jakowski 

(2008b) derive an analytical formula for a Chapman layer, but to represent a more realistic ionosphere have 

derived an empirical correction formula to determine the excess STEC in addition to the straight path STEC. 

With slightly altered notation, their formula is: 

( )
( )

2

0.32
2 2

0.1108 exp 2.1844
,i

i m

STEC
TEC

f HF h F

b× × -
D =

×
   (26) 

where β is in radians, HF2 and hmF2 are in km, fi is in Hz and STEC is in electrons m-2. 

To turn this TEC difference into a signal difference, the same formula used for the first order correction is 

appropriate. 

2

40.3 i
TEC

i

TEC
b

f

×D
=       (27) 

Elevation angle, slant TEC, and signal frequency are quantities used in estimating I2 and I3, the higher order 

refractive index expansion terms (see Section 6 for further details). However, the F2 layer scale height, HF2, and 

the peak ionisation height, hmF2, are not. Hoque and Jakowski (2008b: p11) observe that ‘in practical cases, the 

information about F2 layer scale height and peak density height hmF2 are not easy to estimate.’ They go on to 

suggest that ‘using assumptions for HF2 and hmF2, a significant amount of error can be corrected. For HF2 = 

70 km and hmF2 = 350 km, about 80% error will be removed on average.’ This is calculated when modelling 

the ionosphere as four Chapman layers.  However, they find that when using values from real profiles from 

CHAMP, with HF2 and hmF2 obtained from radio occultation data, on average 65% of error is corrected by the 

formula. This suggests that using constant values of HF2 and hmF2 for real data could correct an even lower 

percentage of the error, and indicates that investigating sources of HF2 and hmF2 estimates could be worthwhile. 

This is particularly so because the ionosphere has latitudinal (geographical) and seasonal dependence, so 

systematic biases could be potentially be introduced. 

Hoque and Jakowski (2008b) recommend using their Equation (19) to find HF2, given the other quantities in the 

equation: 
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where H = scale height in m, giving STEC in units of electrons m-2 and Nm = maximum ionisation at altitude hm 

in electron m-3. 

The equation can be rewritten more specifically as: 
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Petrie et al. (2010a) used VTEC to estimate STEC, so chose to use the vertical case to estimate HF2 from NmF2 

(the above expression is based on representing the ionosphere in a simplified way as a Chapman layer). 

With vertical elevation, the equation simplifies to: 

 
( ) 22
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13.41exp2 FN

VTEC

FN

VTEC
HF

mm

»»
p

   (29) 

However, Eqns. 26 and 29 still leave the issue of where to obtain estimates of NmF2 and hmF2. This is discussed 

in the next section, which discusses implementation of the corrections in practical situations. 

6. Implementation 

Section 6 reviews and discusses the compromises between analytical rigour and computational efficiency that 

are often needed when implementing corrections for the higher-order ionospheric terms. To recap, the I1,I2, I3 

(and the remaining I4+) terms are the result of expanding the refractive index of the ionosphere as a series. I1 

contains the majority of the effect (but is usually cancelled in a two frequency combination, see Eq. 17) and I2 

and higher are thus known as higher-order terms. There are also two bending terms: bgm, which is simply the 

effect of bending due to refraction, and bTEC, which arises when the I1 term is not quite cancelled in the 

combination due to the frequency dependent curvature of bgm. A summary of the terms, necessary inputs and 

general implementation choices is given in Fig. 12. 
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Fig. 12   Summary of corrections, choices made when modelling them and necessary inputs 

 

6.1. Magnetic field 

As shown in Fig. 12 and Section 4, the magnetic field contributes to the I2 correction. This section first 

discusses possible models for the magnetic field, moves on to forming the dot product between the magnetic and 

signal vectors, before concluding with a discussion of the thin shell model and the effect of taking Bcosθ at a 

single height. 

6.1.1. Magnetic field models 

To a first approximation, the Earth is a sphere uniformly magnetised in the direction of the dipole axis (Davies, 

1990: p39) so one of the simplest ways of representing the Earth’s magnetic field is as a simple co-centric dipole 

model. Returning briefly to basics, Fowler (1990: p37) derives the equations in spherical geomagnetic 

coordinates for the components of the magnetic field due to a dipole at the centre of the Earth. The radial 

component of the field, Br, is as follows:  
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while ‘the component of the field in the θ direction’, Bθ, (or south (Parkinson, 1983: p122)) is: 
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where r is radius, θ is colatitude and φ is longitude. This means that in a local geomagnetic North East Up 

(NEU) coordinate system, if we define RE = 6371km as the approximate radius of the Earth, and rm as the height 

above RE, we can use the estimate of Beq = 3.12x10-5 nT at the Earth’s surface at the geomagnetic equator 

(Bassiri and Hajj, 1993) to estimate the magnetic dipole vector at a point in the geomagnetic NEU coordinate 

system: 
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One alternative to a dipole model is the more accurate International Geomagnetic Reference Field (IGRF), the 

latest version of which (IGRF-11) was released in December 2009. The IGRF consists of spherical harmonic 

coefficients, representing the Earth’s main field and its secular variation. Each release incorporates predicted 

coefficients for five years of secular variation which are then revised to definitive coefficients as measurements 

are incorporated. The coefficients are available at the following url: 

http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html (accessed 12 Jan 2010). For further information on the IGRF 

see e.g. Maus et al (2005), Maus and Macmillan (2005), and the IGRF “health warning” webpage at 

http://www.ngdc.noaa.gov/IAGA/vmod/igrfhw.html (accessed 12 Jan 2010). Other models such as the World 

Magnetic Model (WMM) are also available (http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml, 

accessed 28 Jan 2010). 

It should be noted that the IGRF and WMM model only that part of the field that originates from the Earth’s 

core. This is often known as the ‘main field’ and represents the vast majority of the magnetic field intensity. 

Langel (1987) states ‘it is now known that the magnetic field at any location near the Earth can be attributed to a 

combination of three sources located respectively in the Earth’s core, in the Earth’s crust, and in the Earth’s 

ionosphere and beyond. By far the largest in magnitude is the field from the core, or the ‘main’ field. Near 

dipolar in nature, the strength of the main field is approximately 60 000nT (nanoTesla) at the poles and 

approximately 30 000nT at the equator.’ (see e.g. Parkinson (1983: p6) for a table with the typical strengths of 

the various different components).  
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One external source of magnetism is from geomagnetic storms. Pireaux et al. (2010: Fig. 6) show an example of 

the impact of a geomagnetic storm on vertical B, with variations of almost 300nT. However, when considered in 

the context of the background typical quiet night level of over 45000nT at the location the percentage change is 

less than 1%. In major magnetic storms effects of up to several thousand nT are possible (CM4 website 

http://denali.gsfc.nasa.gov/cm/, accessed 12 Jan 2010).  In most regions, several thousand nT will still be a 

minor secondary effect in comparison to the strength of the main field, so this is not a major source of error. 

However, in future it may become possible to use a model such as the CM4 model (Sabaka et al., 2004). This is 

a “comprehensive model” and includes other sources, such as the ionospheric field, in addition to the main field.  

Looking at the magnetic models applied in the studies to date reveals a mixture of approaches. While the initial 

ray tracing study of Brunner and Gu (1991) did use the IGRF-1985, the subsequent approximation studies 

(Bassiri and Hajj, 1993; Kedar et al., 2003; Fritsche et al., 2005) used a co-centric tilted dipole model in which 

the magnetic field can be represented using the equations outlined above. When using a dipole field, the 

geomagnetic pole must be defined. Bassiri and Hajj (1993) used a geomagnetic north pole at an angle of 78.5N, 

291.0E. Kedar et al. (2003) modelled their dipole after that of Bassiri and Hajj. However, Fritsche et al. (2005) 

used an annually changing geomagnetic pole. 

In contrast, Hernandez-Pajares et al. (2007), Palamartchouk (2010), Hawarey et al. (2005), Morton et al. 

(2009a,b) used the IGRF. Hernandez-Pajares et al. (2007) note that there can be up to 60% difference between 

the dipole and IGRF models, most prominently in the South Atlantic Anomaly, and plot the I2 correction with 

the contrasting models for ASC1, a site in the South Atlantic. However, it is challenging to compare results from 

papers with different processing strategies as it is hard to definitively attribute the differences. As part of a study 

into comparisons of different aspects of higher order ionospheric modelling, Petrie et al. (2010b) compared 

otherwise identical processing runs and looked at differences in the results due to using the two models. They 

found up to 2mm difference in the transformation from the GPS reference frame to ITRF2005 and small but 

noticeable shifts in the mean coordinates in areas with the largest differences between the two magnetic field 

models (see Fig. 13). 

 Fig. 13   Mean coordinate differences 

(2001.0-2004.0) between runs using a 

co-centric tilted dipole or the IGRF-10 

to model the second-order ionospheric 

correction (dipole – IGRF-10). Sites 

have > 2.5 years of data. Geomagnetic 

equator shown as dashed line, arrows 

represent shifts in plan. Data from Petrie 

et al. (2010b) 
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6.1.2. Evaluating B.k or B cosθ and coordinate system effects 

Estimating B . 
k or Bcosθ at a point or points along the GPS signal is part of estimating the I2 term (see Section 

4.1). Mathematically, the dot product of a vector with a unit vector (B
 . 
k) is equivalent to the size of the first 

vector multiplied by the angle between the two vectors (Bcosθ). However, some issues can arise in the way the 

mathematics is implemented. This is particularly true if using a dipole field, as it is naturally in a geomagnetic 

coordinate system, aligned to the geomagnetic poles rather than the geographic ones. 

Evaluation of the magnetic dipole vector at a particular point along the line between the satellite and receiver 

can be achieved in two ways; 

Method 1:  Calculation of a point along a line between two sets of coordinates in a particular frame (see section 

6.1.3 below) and evaluation of the dipole field at that point. The geographic coordinates for the desired point can 

be converted to geomagnetic coordinates (see Bassiri and Hajj (1993) Eqs. 22 and 23). These geomagnetic 

coordinates together with the height of the point are then used to estimate the vector of the magnetic field due to 

the dipole (Eqn. 32). Once the magnetic vector is known, it can be converted first into a vector in geomagnetic 

Cartesian coordinates (components along Xmag,Ymag,Zmag axes), then to a geographic Cartesian system 

(components along X, Y, Z axes). Once in the same reference frame as the satellite-site unit vector, the dot 

product of the two can be found successfully. 

This is probably the best method, but care must be taken to correctly rotate the resulting vector into the same 

frame as the site-satellite unit vector (or vice-versa). This method is used by Fritsche et al.(2005), Petrie et al. 

(2010b).  

Method 2: Using the azimuth and elevation of the satellite from the site to define the signal vector, together with 

an adjustment to colatitude. This approach is suggested by Bassiri and Hajj (1993), and is also followed by 

Kedar et al.(2003), but as outlined below it may be not be as mathematically rigorous as Method 1 at high 

latitudes. 

If Method 2 is used, the satellite site unit vector, k, is defined in terms of local (at the site) geomagnetic East, 

North, Up unit vectors, (Xm, Ym, Zm): 

( )mcos sin cos cos Y sinm m m m mE A E A E= - + +m mk X Z  where Em is elevation and Am is azimuth 

measured from magnetic North (after Eqn. 18, Bassiri and Hajj (1993)). 

However, Bassiri and Hajj (1993) seem to take the dot product of k with a magnetic dipole vector, obtained in a 

coordinate system where the colatitude is adjusted to the same value as the desired point (in their case the pierce 

point), but the longitude is not. In terms of magnitude of B, this has no effect, but in terms of B . 
k, it introduces 

an error; the local NEU reference frame at the pierce point is not the same as that at the adjusted point, unless 

the geomagnetic longitudes are the same (see Fig. 14 below). The error is largest at high geomagnetic latitudes, 

where a given distance can cross more meridians of longitude. 

If using the IGRF, the software available from the National Geophysical Data Center 

(http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html, accessed 10 Feb 2010) is set up to provide data in a geodetic 

(WGS84 ellipsoid) or geocentric (spherical) coordinate system as requested. 
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 Fig. 14   Effect of longitude difference on B . k 

when assuming East North Up is the same frame at 

the site and the desired ionospheric point. Viewpoint 

is from above geomagnetic boreal pole, marked as 

N. Dotted arrow represents magnetic vector adjusted 

for colatitude but not for longitude. Circles represent 

geomagnetic parallels of latitude 

 

 

 

 

 

 

6.1.3. Integration at a point – the thin shell model 

To be most accurate the terms in the refractive index formula should be integrated over the full path length. 

However, this is usually not practical, mainly due to the computational burden. The vertical distribution of the 

electron content in the ionosphere is also not well known on a daily basis, which makes integrating 

cos dLeB Nqò  along the length of signal challenging. If Bcosθ is removed from the integral, dLeNò is 

simply STEC, which is much easier to obtain. Thus Bcosθ is usually taken outside the integral; the question is 

then what to use for the value of Bcosθ.  Brunner and Gu (1991) used the average value along the path. In 

general, it is not easy to average Bcosθ for practical uses, although Hoque and Jakowski (2008a) calculated a 

specific set of parameters for approximating the average value specifically over Europe.  

The most commonly used solution at present is to calculate the correction as if all the electron content is in a 

‘thin shell’ at a selected height, 

hi, and take the value of Bcosθ at 

the point where the signal 

crosses the thin shell. This 

crossing point is often known as 

the ‘pierce point’ (see Fig. 15).  

 

 

 

 

 

Fig. 15   Pierce point geometry 
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The coordinates of the point where the straight line path from the satellite to the receiver crosses a shell at hi can 

be found as follows: 

It can be seen that (Fig. 16): 

 

      (33) 

where 0 1l£ £  (λ represents fraction of distance from receiver to satellite). 

It can be shown that: 
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+----×+-×-
=l   (34) 

From the above, it is apparent that if the coordinates of the satellite and the receiver are known, R and D are 

6371 and 450 km respectively and the equation for λ is substituted into Eqn. 33, the coordinates of the pierce 

point can be found.  

 Fig. 16   Vectors in pierce point calculation 

  

 

    

The concept of a pierce point is also useful if calculating 

slant TEC from a global ionospheric map of VTEC, as if 

the VTEC directly above the receiver is used, it may not 

correctly represent the ionosphere that the signal has 

travelled through. To improve the value, typically the 

VTEC at the coordinates of the pierce point is used (see 

Section 6.2.1 for further discussion on issues regarding 

global ionospheric maps). 

So, how does the thin shell approximation compare, and is there an optimum shell height? Gherm et al. (2006) 

and Morton et al. (2009b) show that Bcosθ can vary substantially with height along potential GPS signal paths.  

Fig. 17 shows an example of such variation, at Arecibo (Morton et al., 2009b). Strangeways and Ioannides 

(2002) point out that “since this term is everywhere weighted by the local electron density, the major 

contribution to the integral will occur where the electron density is greatest, which will be around the F layer 

peak”. This would be expected to be between ~250-550 km, reducing the effect of the variability somewhat. The 

effects shown in Fig. 17 would also be very geographically dependent. On the other hand, it has been suggested 

that the height of the first moment of the height distribution of electron density or “center of gravity” of the 

ionosphere would be appropriate, with a rule of thumb formula of hi=hm+50km, where hi is evaluation height 

(Leitinger and Putz, 1988). The approximation was tested by Bassiri and Hajj (1993) by comparing precise and 

approximate calculations on an ionospheric model and found to be accurate to within 90%, using a shell height 

of 300km.  

( )rec sat recx x x xl= + -

x sat 

x rec 

x  

O  
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Fig. 17   Bcos(θB) versus altitude above Arecibo 

Observatory (latitude: 18°20′36.6″N, longitude: 

66°45′11.1″W) in 2008. Examples are given for 

GPS signals arriving from zenith, 10 degrees 

elevation from North, South, East, and West, and 

35 degrees from North, respectively. (Reproduced 

from Morton et al., 2009b) 

 

 

 

Hoque and Jakowski (2008b) also assess the effect of using a value of Bcosθ at a particular height, in contrast to 

calculating Bcosθ along raypaths. For a shell height of 400km, and the ionosphere represented by a Chapman 

layer with a VTEC of ~143TECU and maximum electron density of 4.96x1012 electrons/m3 at a height of 

400km, they find a maximum difference to the second order ionospheric LC correction of ~ ±1.9mm at low 

elevation, with the maximum correction ~ ± 29mm. This is ~7%, so agrees with the findings of Bassiri and Hajj 

(1993). They also provide plots showing the geographical distribution of the error, which is generally largest 

close to the geomagnetic equator. 

Strangeways and Ioannides (2002) performed ray-tracing calculations. They investigated the height at which 

Bcosθ would equal the average value, but found that due to azimuth changes an average value could still 

underestimate the effect. They finally conclude that “For a variety of Earth station locations, it has been found 

that by taking the value of B · | cos Θ | at 330 km for elevation angles < 25˚ and at 520 km for elevation angles ≥ 

25˚ degrees, the field effect can be approximated to an accuracy of 2mm.” 

However, all three studies mentioned above seem to have assessed the effect using a selected modelled 

ionosphere, so the question of the effect of selecting a shell height which does not match the modelled peak 

electron density height, hmax, is not completely addressed. 

6.1.4. Height of the thin shell 

 Opinions on the height of the thin layer vary. Hartmann and Leitinger (1984: p124) suggest that “the ionosphere 

[can be considered] to be a thin layer around a “mean ionospheric height” for which 400km is a good 

approximation for mid-latitudes and in the absence of severe ionospheric disturbances. (“Thin” means thin 

compared with the radius of the earth.)”. 

 Bassiri and Hajj (1993) state that “dependence ..[on the height of the assumed thin layer] is weak and a nominal 

value of H depicting the peak height of the ionosphere, should serve the purpose of obtaining a working formula 

to approximate the second-order effect”. They choose “a representative global average peak height” of 300km. 

Kedar et al. (2003) also use this approximation, but with a peak height of 400km. Fritsche et al.(2005) quote a 

value of 400km, but in fact used 450km (Fritsche 2007 pers. comm.). Hernandez-Pajares et al. (2007) also use 

450km, as do Petrie et al. (2010b).  
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If the preferred height for the thin layer is considered to be at the height of the peak electron density, this can be 

very variable. Klobuchar (1996) reports that “the height of the peak of the electron density of the F2 region 

generally varies from 250 to 400 km, but it can be even much higher or somewhat lower under extreme 

conditions”. Fig. 18 shows modelled variability in hmF2 for a day during ionospheric maximum. 

 Fig. 18   Variability of estimated hmF2 at 270 

degrees longitude on DOY 301, 2001 with latitude 

and time.  Data from the IRI2007 model. 

(Reproduced from Petrie et al., 2010a) 

 

While there have been studies including the 

effect of shell height when calculating VTEC 

from GPS data, (Komjathy and Langley, 

1996; Horvath and Crozier, 2007; Mushini et 

al., 2009), there is a lack of published 

information on how the shell height affects 

the second order ionospheric correction.  

In general the geomagnetic field decreases with increasing height above the Earth surface, so selecting a lower 

height at which to evaluate B.
k would tend to increase the size of the correction. Fig. 19 shows an example of 

the size of the effects that might be expected if a magnetic field 

(in this case the IGRF) is evaluated for pierce points for a range 

of heights from 250-500km.  

 

Fig. 19   Effects of changing pierce point height for the magnetic field 

on the GPS signals received at DARW (12.84S, 131.13E), DOY 301, 

2001. a) Magnetic field strength (IGRF-10) percentage difference to 

value at 450km. b) I2 correction c) I2 difference to value at 450 km. 

Height values plotted: 250km-magenta, 300km-yellow, 350km-blue, 

400km-cyan, 450km-black, 500km-red 

 

 

The percentage difference in magnetic field strength from the 

commonly adopted 450km (evaluated as (test height value-

450km value)/450km value) is up to ~16%. The difference in I2 

is up to ~10mm for L2, but depends on the size of the 

correction. The percentage difference in I2 is similar to that in 

the magnetic field (though much larger values are possible 

when the reference value is close to zero).  

Palamartchouk (2010) uses a variable shell height based on the 

electron density from the IRI2007 model. This is a simulation 
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study with the IRI model supplying all the ionospheric data, including the TEC. It would be very interesting to 

see how the simulated values would compare with those using a fixed ionospheric height. However, sufficient 

ionospheric information may not yet be available to make this possible for practical error reduction.  

6.2. Slant Total Electron Content 

If we accept the thin layer approximation as a valid simplification, then Bcosθ can be removed from the integral 

in the I2 term leaving simply the integral of the electron content along the line of the signal. The bending terms 

and potentially the I3 term also require the same information, often described as slant total electron content 

(STEC). STEC can be obtained from available pre-existing ionospheric data, or it can be solved for directly 

from the GPS signals. 

6.2.1. STEC from pre-computed ionospheric data 

One method of obtaining the STEC along a given signal path is from a pre-existing dataset. Global ionospheric 

maps (GIMs) of vertical total electron content (VTEC) are created at different IGS analysis centres and 

combined to form the IGS product (Feltens, 2003; Hernández-Pajares et al., 2008). The information is stored in 

the IONEX format (Schaer et al., 1998). In a daily IONEX file there are 13 maps spaced two hours apart, with a 

resolution of five degrees longitude and two and a half degrees latitude. The combined IGS IONEX files are 

available from IGS data centres (e.g. CDDIS ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex/) for day of year 

152, 1998 onwards. IONEX files for the period back to 1995 are available from the Centre for Orbit 

Determination in Europe (CODE), though there are fewer maps per day. While the standard maps are produced 

purely from GNSS data, Todorova et al. (2008) suggest that combining TEC maps from GNSS and altimetry 

would lead to improved accuracy over the oceans. 

The values of VTEC in the file must be interpolated to obtain a value at the pierce point where the GPS signal 

crosses the single layer. The coordinates of this point can be found using the calculation outlined in Section 

6.1.3. Suggested interpolation strategies are provided by Schaer et al. (1998). 

To convert the ionospheric information from VTEC to STEC a mapping function must be used. It is generally 

appropriate to select the mapping function used to convert the original data to VTEC during the file production. 

Typically the mapping function used is the single layer or thin shell mapping function: 

( ) ( )1
  with  sin ' sin

cos ' i

R
F z z z

z R h
= =

+
     (35) 

where z is the zenith angle of the signal at the receiver, R is the mean Earth radius (~6371km), hi is the height of 

the thin shell above the Earth’s surface and z’ is then the zenith angle at hi.  For the IGS IONEX files hi is set as 

450km. For CODE IONEX files hi is 450km after DOY 087 1998, and 400km on and before DOY 086 (Schaer, 

1997)). However, after DOY 251 in 2001, the CODE IONEX files use the Modified Single-Layer Model 

Mapping Function:  

 ( ) ( )1
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  (36) 
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with values of R = 6371 km, H = 580.1 km and α = 0.9782 which best approximate the JPL extended slab model 

mapping function, assuming a maximum zenith distance of 80 degrees (CODE, 2007). 

However, the assumptions made when using the simple mapping functions described above can lead to errors.  

It is usual to assume a 2D distribution of the electron content at a given ionospheric effective height (such as 

450 km for the IGS VTEC maps) which is constant in time and space. This assumption is quite reasonable for 

mid latitude and day time conditions, but it can induce significant errors elsewhere, in particular at low latitudes 

where the higher order ionospheric effects are more important due to the higher electron content. Komjathy and 

Langley (1996) and Komjathy (1997) consider errors due to shell height when calculating VTEC, and find 

errors of up to 1 TECU. However, the studies were considering a period with low solar activity (Oct-Nov 1995) 

and mid-latitudes, where the height of the ionosphere is less variable. 

From Eqn. 35, it is possible to calculate the equivalent VTEC for a STEC of 350 TECU, using a thin layer based 

at different heights (Table 5) and a signal at ten degrees elevation. A difference of 150 km leads to an error in 

the resulting VTEC of between 15-20 TECU. The pierce point will also be above a different geographic 

location, so the coordinates attributed to the VTEC will be different.  

Table 5   Variations in estimated VTEC with varying thin layer height, hi, based on an STEC of 350 TECU and a signal at 10 

degrees elevation. 

hi /km F VTEC /TECU 

300 2.943 118.908 

450 2.549 137.305 

600 2.295 152.529 

 

Now, for a single signal, resulting in a single value of VTEC, the process is reversible, as long as the same value 

is used for hi. However, in practice, values are averaged spatially and temporally, so the process is not directly 

reversible. Also, supposing a perfect map of VTEC was obtained by other means, if an incorrect hi was used in 

the mapping process to estimate STEC, the errors described above would apply directly. 

An optimal height for a thin layer model, or “effective ionospheric height” can be calculated (see Hernández-

Pajares et al. (2005) for further details). Fig. 20 shows a snapshot of effective ionospheric height computed from 

actual ground GPS data, validated with occultation measurements. Discrepancies in effective height compared 

to a reference value of 450 km can be seen to be up to ±200 km and larger discrepancies are possible during 

geomagnetic storms. Fig. 20 also shows that the effective height varies substantially from 450km in equatorial 

regions, where high TEC and thus large higher order ionospheric effects are found. Mushini et al. (2009) 

consider this issue for polar regions at ionospheric minimum and comparison to a fixed shell at 350km. The 

small differences they find (up to 0.3 TECU) would be expected to increase at ionospheric maximum and with a 

comparison shell at 450km. Finally, there is also a small purely geometric mapping function error from treating 

the ionosphere as an infinitely thin shell (Smith et al., 2008). 
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Fig. 20   Example of GPS ionospheric 

effective height (in km) computed from 

global IGS data in Solar maximum but 

geomagnetically quiet conditions, for 

0700UT, day 261 of 2002 (top plot). Colour 

scale from 450km (dark) to 650km 

(pale).The corresponding VTEC map (in 

tenths of TECU, from 0 (dark) to 90 TECU 

(white)) is shown in the second plot (both 

figures extracted from Hernández-Pajares et 

al. (2005)) 

 

 

 

An alternative potential source of pre-

computed STEC would be an 

ionospheric model such as the 

International Reference Ionosphere 

(IRI). The IRI is ‘based on a wide range 

of ground and space data. It describes 

monthly averages of ionospheric 

densities and temperatures in the 

altitude range 50 – 1500 km in the non-

auroral ionosphere’ (Bilitza and 

Reinisch, 2008) and the latest version at 

the time of writing is IRI2007.  

A comparison between the IRI 2001 model and data from the CHAMP satellite showed general agreement 

between CHAMP data and the IRI model in the seasonal variation of the electron density and temperature, with 

some exceptions (Liu et al., 2007). A later study performed a comparison with Slant Total Electron Content 

(STEC) data and found that IRI2007 is much improved compared to IRI2001 (Coïsson et al., 2008). However, 

while models such as the IRI or PIM may be useful for simulations (e.g. Palamartchouk, 2010),  the TEC data 

they provide is currently not sufficiently accurate for correcting real data – it represents ionospheric climate, 

rather than daily (and subdaily) variations in ionospheric weather (see e.g. Leitinger et al.(2000) for a discussion 

of space weather).  

 

6.2.2. STEC from GPS signals 

The alternative method of obtaining STEC directly from the GPS signals received has an attractive simplicity – 

no outside ionospheric data is necessary. This section will review the method outlined by Hernández-Pajares et 

al. (2007) for calculating STEC for higher order ionospheric effects based on combining phase and code 
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measurements. A similar method is described in some detail in Komjathy (1997: p89-96). Further discussion of 

this topic can be found in e.g. Ciraolo et al. (2007) and Brunini and Azpilicueta (2009). 

Simple linear combinations can be formed for phase and code by subtraction (using the first order ionospheric 

approximation, see Eqns. 13, 14 and 16b). We will denote the combinations by LN (to distinguish them from the 

‘ionosphere-free’ linear combination, LC, described above): 

1 2LN LNxSTEC bF =F -F = + ,   (37) 

'
2 1LN LN LNP P P xSTEC D D= - = + +   (38) 

where 
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è ø
, bLN includes the carrier phase ambiguity and interfrequency phase biases, and 

LN
D , 

'

LN
D are interfrequency delay code biases (also known as differential code biases (DCBs)) for receiver and 

satellites respectively. Note that the order of subtraction is different for the phase and code combinations due to 

the sign of the ionospheric effect. 

The phase combination is more precise due to its smaller wavelength, but there is the issue of the unknown 

integer ambiguities. This can be fixed by aligning the ionospheric carrier phase combinations ΦLN for each 

continuous satellite-receiver arc to the code combination, PLN, corrected with the interfrequency code delay 

biases, LND  and 
'
LND , for receiver and satellites respectively. A continuous arc is one where the integer 

ambiguities remain the same for each successive observation, i.e. no cycle slips occur. 

The STEC can thus be computed as follows: 

( )'e LN LN LN i iSTEC N dL P D Daº = F - F - - -ò  (39) 

where LN LNPF -  is the mean value over a continuous satellite-receiver arc, and α = 1/x = 9.52 

TECU/metre.  

Horvath and Crozier (2007) discuss practical issues when implementing this strategy, such as cycle slip 

detection, with examples of issues from real GPS data. Burrell et al. (2009) discuss issues arising from and 

methods for performing real time TEC calculation, when averaging over a full satellite receiver arc is not 

possible. Hoque and Jakowski (2010) discuss higher order ionospheric effects on TEC estimation using radio 

occultation when the receiver is located on a satellite.  

6.2.3. Comparison of methods for obtaining STEC 

In order to evaluate the error of directly obtaining the STEC for each given transmitter-receiver dual-frequency 

observation, compared with the procedures relying on  global VTEC maps (see section 6.2.1) we can focus on 

the following main sources of error (the first order approximation can be used with typically less than 0.1% of 

error): 

Errors that affect the direct approach arise mainly from the code pseudorange measurements, due to multipath 

and thermal noise. Ciraolo et al. (2007) suggest that the major contributor is the code delay multipath and find 
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errors up to 5.3TECU. In theory, multipath could be almost cancelled by applying sidereal-day filtering for 

permanent stations (due to the repeatability of the GPS constellation every ~23h56m, see for instance Larson et 

al. (2007), paragraphs 13-14 and cited references for details). The code pseudorange thermal noise, σ, (~1 metre 

for a single ionospheric measurement) can be significantly reduced when the average over the phase-continuous 

arc of data is taken in the previous equation: 

average
n

s
s a=    (40) 

where n is the number of measurements in the continuous arc of data used for the carrier phase levelling. In this 

way the thermal noise error can easily be reduced by an order of magnitude, leaving from one to a few TECUs 

of error, and it is independent of the magnitude of the STEC. 

DCB errors are typically at the level of ~0.1 ns for satellite transmitters and ~1ns for receivers. This implies 

typical errors in DCBs of less than 5 TECU, although Ciraolo et al. (2007) found intra-day variations of DCBs 

of up to 8.8TECU. However, DCB errors also affect VTEC maps to a roughly similar extent as the maps are 

generally estimated simultaneously with DCBs. (see e.g. Hernández-Pajares (2004) for supporting values of 

DCB and VTEC assessments).  

Fig. 21 shows an example comparison of STEC interpolated from an IONEX file with that obtained directly 

from the GPS signals. 

Fig. 21   Comparison of STEC estimated using a global 

ionospheric map (CODE IONEX file, red line) and using 

the method of code alignment proposed in Hernández-

Pajares et al. (2007) (taking the instrumental delays from 

the same IONEX file, blue points). Both estimations are 

compared with the ground truth provided by the 

geometric-free combination of carrier phases (LI), in 

green. The data correspond to the ASC1 receiver (14W 

08S), DOY 103 of 2003 (reproduced from Hernández-

Pajares et al. (2007)) 

 

 

 

To summarise, it would seem that deriving the STEC directly from the code and phase ionospheric 

combinations using previously calculated DCBs would usually involve lower errors than using VTEC maps 

with a mapping function to convert to STEC. This is especially true for low latitude and solar maximum 

conditions (errors of less than 10 TECU compared to errors of potentially up to about 40 TECU), i.e. when the 

higher order ionospheric effects are largest. It is also true pre-1998 as available IONEX files have only one map 

of VTEC per day, so interpolation errors are large. This suggests direct STEC derivation may be preferable for 

providing the STEC in real-time situations or for runs for computing long time series of geodetic parameters, 

such as those including higher order ionospheric mitigation. However, no detailed comparison studies have yet 

been performed.  
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6.3. Shape factor 

For the I3 term (Eqn. 14), obtaining the vertical distribution of Ne in order to integrate Ne
2 is still an issue. To 

deal with this, Hartmann and Leitinger (1984: p123) introduce the idea of a shape factor.  

The shape factor can be defined as 

2
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    (41) 

This definition uses notation after Hartmann and Leitinger (1984) but the form of the definition is as given by 

Brunner and Gu (1991). However, if rearranged, the definition is the same as the original definition of Hartmann 

and Leitinger. Using the shape factor or parameter therefore allows ò
sh

e dhN
0

2
 to be replaced by η Nm ò

sh

edhN
0

  

(effectively VTEC multiplied by NmF2 and the shape factor). 

Hartmann and Leitinger (1984) suggest for a worst case scenario, estimating higher order ionospheric errors 

assuming a slab of constant thickness t and a shape factor 1. They then extend the concept to allow 

consideration of other shapes – a triangular shape where the electron density increases linearly to a maximum 

then decreases again has a shape factor of 2/3, while a simple Chapman layer has a shape factor of 0.680.  

Brunner and Gu (1991: Table 2 p211) calculated values for the ‘shape parameter’ for two cases and found that 

they hardly varied with elevation angle and maximum electron density. They concluded that the shape 

parameter ‘may be assumed with 0.66 as the appropriate value for any profile of the electron density in the 

ionosphere with suficient accuracy’. Bassiri and Hajj (1993) also use an estimate of 0.66 for the shape 

parameter, as do Fritsche et al (2005) and Petrie et al. (2010b). Hoque and Jakowski (2008b) derive a similar 

number analytically for a Chapman function. 

Brunner and Gu (1991) and Bassiri and Hajj (1993) used modelled ionospheres, so could extract values of NmF2. 

In order to make practical use of the technique for real data it is necessary to obtain an estimate for the values of 

NmF2 along each GPS signal path. Potential strategies for this are discussed in the next section. 

6.4. Peak electron density, NmF2 and height of peak electron density, hmF2 

6.4.1. NmF2 

NmF2 is required for the I3 term, if the shape factor approach described in the previous section is taken. It is also 

needed for both bending terms, if the expressions of Hoque and Jakowski (2008b) are used.  

Fritsche et al. (2005) solved this issue for the I3 term by using the values for the two ionospheric cases from 

Brunner and Gu (1991) as the basis for a linear interpolation of NmF2 (also known as Nm and Nmax). While the 

equation in Fritsche et al. (2005) is: 
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where TEC represents STEC, their intended equation (Pireaux et al., 2010) for correct interpolation was: 
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Fritsche et al. (2005) used STEC for the interpolation as a means of allowing for the integral of Ne
2 to be along 

the signal path. However, as NmF2 is the peak electron density and Brunner and Gu (1991) declared that the 

shape factor hardly varies with elevation, Petrie et al. (2010b) used VTEC, as did Pireaux et al. (2010).  

However, a final note is that the interpolation results in negative values of NmF2 for values of VTEC of a few 

TECU and below. While VTEC values of this size result in a completely negligible I3 correction, this method 

may not be a suitable method of estimating NmF2 for other purposes. A serious limitation of this method is that it 

effectively assumes the profile or ‘slab thickness’ of the electron density is constant. This assumption would not 

be true in various cases, particularly during storm conditions (see e.g. Jakowski et al. (1990), Jakowski et al. 

(1991)). 

Alternatively, an estimate of NmF2 can be obtained from an ionospheric model such as the IRI. While this 

method allows for more geographical variability in the shape of the ionosphere rather than a constant ratio 

between NmF2 and VTEC, the IRI is a climatic model with monthly median values, so would not represent 

actual daily departures from the median due to e.g. storm conditions. Petrie et al. (2010a) use both NmF2 and 

VTEC from the IRI2007 to obtain a scale factor to estimate the bending corrections (see Eqns. 28-29). However, 

they consider their study to demonstrate the potential size of the bending corrections rather than produce 

accurate corrections. 

The interpolation of NmF2 means that the only other quantity that is necessary for the third order term is the 

STEC, which can be obtained by either of the methods described above in sections 6.2.1 and 6.2.2. 

6.4.2. hmF2 

An estimate of hmF2 (the height at which NmF2 is located) is needed if applying bending terms using the 

formulae of Hoque and Jakowski (2008b). Recognising that accurate values for hmF2 and HF2 (or NmF2) are not 

easily obtained, they suggest using constant values of 350 and 70km. However, hmF2 can vary significantly (Fig. 

18) leading to potentially considerable effects on the bending corrections (Fig. 22).  While the values suggested 

by Hoque and Jakowski (2008b) are a good compromise, the combined LC bending correction, Äbcomb, varies 

from ~9-20 mm at ten degrees elevation for a range of values of hmF2 and HF2  similar to those shown above 

(Petrie et al., 2010a). Due to this variation, Petrie et al. (ibid) chose to use values of hmF2 from the IRI2007 to 

implement the bending corrections in their study, which applied the suggested equations of Hoque and Jakowski 

(2008b) to a global GPS network. Another recent study (Gulyaeva, 2009) compared values from IRI 2007 for 

hmF2 to values from topside sounding electron density profiles and found general agreement. 
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Fig. 22 Sensitivity of the bending terms to changes in HF2 and hmF2. a) 

Geometric, b) dTEC, c) combined (for the phase LC observable). 

Calculated for VTEC = 150 TECU. (Reproduced from Petrie et al., 

2010a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5. Summary of implementation choices 

A summary of implementation choices in the most relevant literature can be found in Table 6. 

Three of the major scientific GPS processing software packages are Bernese, GAMIT, and GIPSY-OASIS. 

Currently the I2 and I3 corrections have been implemented in versions of Bernese (Fritsche et al., 2005) and 

GAMIT (Petrie et al., 2010b), but are not yet generally released. GIPSY-OASIS can correct for I2 using an 

altered linear combination (after Brunner and Gu (1991)), which removes the I2 effect but results in variable 

carrier phase ambiguities.  

 

Table 6   Summary table of implementation choices in the most relevant literature 

Paper Thin shell 
height 

2nd 
order  

Third 
order 

Bending IGRM/ 
dipole 

Simulated/ 
real data 

Hartmann & 
Leitinger 
(1984) 

400km centre 
of slab (p126) 

As 
error 

As error As error n/a Estimating 
errors 

(Leitinger and 
Putz, 1988) 

400km as 
example 

no no Yes n/a theory 

Brunner & Gu 
(1991) 

Hi=hm+50km 
(L&P1988) 

yes yes yes IGRF 
1985 

3D raytracing 

Bassiri & Hajj 
(1993) 

300km yes yes no dipole Models, 
chapman layer 
vs thin shell 
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Strangeways 
(2002) 

suggest 
elevation 
dependent 
height 

full Appleton-Lassen formula dipole raytracing 

Odijk (2002) 350km yes yes yes dipole example 
calculations 

Kedar et al. 
(2003) 

400km yes no no dipole real data – 
equatorial 
sites, PPP 

Fritsche et al. 
(2005) 

400km (pers 
com. 450km) 

yes yes no dipole real data, 
global 
network 

Munekane 
(2005) 

use thin shell, 
no height 
specified 

yes no no IGRF 
2000 

semi-
analytical 
simulation 

Datta-Barua et 
al. (2006) 

350km 
(magnetic 
field value) 
100km slab 

yes yes no IGRF-10 bounding 
errors using 
WAAS data 

Hoque & 
Jakowski 
(2006) 

evaluated 
along signal 

yes no no IGRF One reference 
location in 
Germany 

Hernández-
Pajares et al. 
(2007) 

450km yes no no IGRM 
Geopack 

real data, 
simulated 
global 
network 

Hoque & 
Jakowski 
(2008a) 

investigate 
average values 

yes no no IGRF 
2000 

simulation 
study, Europe 

Hoque & 
Jakowski 
(2008b) 

400km, 
compare along 
raypath 

yes yes yes IGRF-8 2D raytracing 
compare 
CHAMP 
profiles 

Morton et al. 
(2009b) 

along raypath yes yes no IGRF-10 investigating 
effects using 
incoherent 
scatter  radar 
data at 
Arecibo 

Morton et al. 
(2009a) 

along raypath yes yes no IGRF-10 simulation at 
Arecibo of 
position 
effects 

(Pireaux et al., 
2010) 

thin shell 
height not 
specified 

yes yes no IGRM 
Geopack 

example 
studies for 
time transfer 

Palamartchouk 
(2010) 

variable, based 
on IRI2007 

yes yes no IGRF 
2005 

simulated 
even global 
network 

Petrie et al. 
(2010b) 

450km yes yes no IGRF-10 real data, 
global 
network 

Hoque & 
Jakowski 
(2010) 

along raypath yes yes yes IGRF 
2000 

effects on 
radio 
occultation for 
2 CHAMP 
events 

Petrie et al. 
(2010a) 

450km yes yes yes IGRF-10 real data, 
global 
network 
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7. Effects 

Having considered the theory, approximations and implementation methods, this section now reviews the main 

effects seen in the GPS solutions when some or all of the higher-order ionospheric terms mentioned above are 

implemented. Different studies have looked at different ionospheric conditions for different purposes. A review 

of their results below can give a feeling for the general size of the corrections.  

7.1. On signals 

7.1.1. Maximum size 

Datta-Barua et al. (2006; see also Datta-Barua et al., 2008) specifically aim to bound the size of the higher order 

ionospheric errors – (neglecting bending). With this in mind they choose all parameters to produce larger errors. 

The value of the magnetic field is taken at 350km, with a shape factor of 1 used for the I3 term. For a day with 

very active ionospheric conditions (29 October 2003), they find maximum errors for phase of up to 45mm for 

I2 and 35mm for I3. Combined, this results in up to 80mm error for the LC phase observable, and up to 

~180mm for the LC group observable. While their study is limited to some extent geographically by the data 

(WAAS ‘supertruth data’), these values are unlikely to be exceeded frequently. If we consider where the 

majority of points lie, rather than their maximum values, the magnitudes become approximately: I2 (phase) < 

15mm, I3 (phase) < 5mm, LC (phase) < 20mm, LC (group) < 40mm. The maximum values at 30 degrees 

elevation are I2 ~ 25mm, I3 ~ 15mm, LC (phase) ~ 40mm. 

If we compare these values with others in the literature, Hartmann and Leitinger (1984) were not dealing 

specifically with GPS signals, and considered higher-order ionospheric terms as residual errors. However, they 

do attempt to quantify these errors at various frequencies above 100MHz. The closest frequency to GPS in the 

paper is 2GHz, but if the results are adjusted to the L2 frequency, their equivalent (worst case) estimates for 

vertical incidence are: I2 (ÄSa) = ±86mm, I3 (ÄSb) = -7mm and discarded term (ÄSc) = -10.6 x 10-2mm. This is 

based on a VTEC = 200 TECU, fg = 1.74 MHz (equivalent to ~ 62143nT, which is quite large), and a slab of 

uniform electron density 200km thick (with shape factor = 1) 

When considering non vertical incidence then the height of the slab and transmitter become relevant, and 

geometric bending is also a factor. The following worst case results are for an elevation angle of 30 degrees, 

with the electron density centred around 400km and a transmitter height of 1000km: I2 (ÄSa) = ±130mm, I3 

(ÄSb) = -14mm, bgm (ÄSd) = -21mm. The larger value of I2 compared to the 30 degree value in Datta-Barua et 

al. (2006) is probably due in part to the large magnetic value but may also be due to calculating for all values of 

θ or to a higher VTEC. For I3 the value is similar, which suggests a higher VTEC is compensating for the effect 

of the thicker slab (which means a lower value of NmF2). 

Brunner and Gu (1991) was the first study to consider GPS specifically. They compared results from their 

suggested model with results for rigorous raytracing technique. Their results are shown as residual range error 

(RRE) for LC in relation to their raytracing results, for both the normal ‘ionosphere-free’ linear combination and 

their improved model which includes curvature of the ray path. They look at two cases, Case 1 with very high 

ionospheric activity and Case 2 with extremely high ionospheric activity. Case 1 has a VTEC of 138 TECU and 
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peak electron density of 6.0 x 1012 electrons m-3, while Case 2 has a VTEC of 455 TECU and peak electron 

density of 20 x 1012 electrons m-3. For vertical incidence, the LC (phase) RRE values are: Case1, 3mm, Case 2, 

23.6 mm, while for an elevation angle of 30 degrees they are: 19.6mm, 99.4 mm. It is worth noting that while 

the conditions of Case 1 may be reached in equatorial regions during ionospheric solar maximum, those of Case 

2 are so high as to be unlikely to be seen even at ionospheric maximum. The Case 1 RRE value at 30 degrees 

elevation is roughly half that estimated by Datta-Barua et al. (2006), probably due to the VTEC being lower and 

a smaller contribution from I3, with a shape factor now at 0.66 rather than 1. 

Bassiri and Hajj (1993) STEC 100 TECU I2: ~-16.5mm (L2 phase), �I2 ~5.5mm (phase) I3: ~-0.8mm (L2 

phase), ÄI3 ~0.2mm (phase). If we multiply by 1.5 to increase the STEC to 150TECU, this becomes I2 ~25mm 

(L2 phase). 

Odijk (2002) examines the potential size of the corrections for the area of the Netherlands, using a maximum 

value of 100TECU and a shape factor of 0.66. He suggests maximum magnitudes at ten degrees elevation of I2: 

~ 43mm (L2 phase) and 48mm (L5 phase); I3: ~2mm (L2 phase) and ~2.3mm (L5 phase); bgm: ~13mm (L1 

phase) and ~16mm (L5 phase) in addition to estimating details of likely effects on baselines up to 400km. 

Jakowski et al. (1994) estimate a geometric bending effect at 10 degrees elevation and VTEC of 100 TECU of 

~10mm (L2 phase). Hoque and Jakowski (2007) estimate ÄI2 geographically as up to ~±10mm again using a 

VTEC of 100VTEC and 90 degree elevation. Hoque and Jakowski (2008b) estimate (for a global VTEC of 

~143TECU and elevation of 5 degrees) ÄI2 to be up to ±25mm, ÄI3 up to ~3mm, ÄbTEC up to ~40mm. They 

note that bgm is “higher for a thin profile with large maximum ionisation than for a thick profile with small 

maximum ionisation”. For varying profile shapes (all with VTEC=100TECU), they find a maximum Äbgm of 

17mm. When considering higher order effects on radio occultation measurements, Hoque and Jakowski (2010) 

find values of up to 50mm for ÄI2 and 12mm for ÄI3. Once the effects of bending are included, they find a 

combined maximum RRE of 1187mm. In addition, they find that the separation of the signal paths may be over 

a kilometre. 

7.1.2. Geographic distribution  

Hoque and Jakowski (Hoque and Jakowski, 2008b) plot geographic patterns of the ÄI2 term with a constant 

global VTEC for various azimuths, revealing the strong hemispheric asymmetry. The ÄI2 term is predominantly 

positive in the northern hemisphere and negative in the southern hemisphere. In contrast, Fig. 23 shows how the 

actual geographical pattern of VTEC for a day during ionospheric maximum is reflected in the patterns for the 

combined Äb term and for the ÄI2 term.  

While the values are not ‘maximum values’, they are probably close to the highest that could be expected for the 

last solar maximum (solar cycle 23). It is worth noting that solar cycles do vary in magnitude, however (Fig. 1). 

When applying the bending terms of Hoque and Jakowski (2010b) to a global GPS network for a sample day 

with high TEC, Petrie et al. (2010a) note that it is only in equatorial regions that the effect on the combined LC 

phase reaches over 3 mm. 
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Fig. 23   a) Global distribution of VTEC (TECU), b) combined bending effect on the LC observable (mm) and c) second 

order ionospheric effect on the LC observable (mm). Data are for one day during ionospheric maximum (DOY 301, 2001) 

showing values used/modelled in the GPS processing.  Values are estimated and plotted geographically at the point where 

the GPS signal crosses a 450km high ‘shell’ around the Earth. VTEC data are from IONEX files provided by CODE. 

(Reproduced from Petrie et al., 2010a) 

 

7.2. On positions and other estimated parameters 

7.2.1. Positions and rates 

The first paper to consider the potential effects of the I2 term on receiver coordinates was that of Kedar et al. 

(2003) who found that all stations move southwards when the I2 term is modelled. However, as they noted, their 

precise point positioning analysis forces the corrections to be absorbed solely by receiver parameters, with 

satellite orbits and clocks held fixed. Their finding was later revised by the study by Fritsche et al. (2005), which 

estimated both receiver and satellite parameters. Fritsche et al. (2005) find that the majority of the effect is taken 

up by the satellite orbits. This equates to a translation of the frame origin in the z-direction (discussed in section 

7.3). They find that stations in the southern hemisphere still appear to move southwards, but those in the 

northern hemisphere remain fixed (Fig. 24). 
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Fig. 24    Residuals after a coordinate 

transformation (3 translations) on 2 April 

2000. A standard solution (1st–order 

ionospheric term only) is compared with a 

modified solution in which the 2nd and 3rd–

order corrected observations are used to 

adjust all relevant parameters (including 

orbits, ERPs, tropospheric delays etc).  

Reproduced from Fritsche et al., 2005) 

 

A second paper includes a figure of mean coordinate differences over a three year period (2001.0-2004.0) 

(Steigenberger et al., 2006) reproduced here as Fig. 25. 

 Fig. 25   Mean effect of higher order 

ionospheric (I2+I3) corrections on global 

station positions from 3 years GPS 

observation (2001.0-2004.0). The arrows 

indicate a predominant southward shift of 

horizontal station positions. The colour 

scale indicates the changes in station heights 

(Reproduced from Steigenberger et al., 

2006) 

 

However, a later paper by Hernandez-Pajares et al. (2007) found a slightly altered pattern, with high latitude 

sites moving north and mid latitude sites moving south (Fig. 26, Fig. 27). They suggested that the difference to 

the finding of Fritsche et al. (2005) could be attributed either to the fact that they used STEC from GPS signals 

instead of from GIMs as the earlier paper did, or because their station network was much more globally 

balanced than that of Fritsche et al (2005), which had many more stations in the northern hemisphere.  

 

 Fig. 26   Mean I2 effect on receiver positions for 21 

months of GPS observations during ionospheric 

maximum (DOY 100 of year 2002 to DOY 365 of year 

2003). Only receivers with more than 200 days of data 

are represented (Reproduced from Hernández-Pajares et 

al., 2007) 
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 Fig. 27 Polar projections of data in 

Fig. 26. “In this case, receivers with 

at least 100 days of data are plotted. 

The northward shift of the high-

latitude receivers is confirmed” 

(Reproduced from Hernández-Pajares 

et al., 2007) 

 

 

 

 

 

 

The study by Petrie et al. (2010b), over a longer time period, revealed a similar pattern of coordinate shifts (Fig. 

28) to that of Hernandez-Pajares et al. (2007). This suggests that it is the balanced site network rather than the 

method of obtaining STEC that results in 

the different pattern, as Petrie et al. 

(2010b) use a similar method to Fritsche 

et al (2005). 

 

Fig. 28   Mean coordinate differences due to 

modelling second and third order ionospheric 

effects (2001.0-2004.0). Sites shown have at 

least 2.5 years data. Top:  Robinson 

projection, bottom polar projections. Data 

previously published in Petrie et al. (2010b) 
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I2 + I3 effects on GPS vertical rates are estimated by Petrie et al. (2010b) at less than 0.4mm/year in magnitude. 

The sign depends upon whether solar activity is rising or falling (Fig. 29). 

 

Fig. 29   Velocity differences (run with no higher order corrections minus run with I2 and I3 corrections). a) Velocity 

differences over the period 1996.0-2001.0.  b) Velocity differences over the period 2001.0-2006.0. Geomagnetic equator is 

shown as dashed line and arrows represent motion in plan. Sites shown have data spanning at least 4.5 years of the 5 year 

period, with a minimum of 2.5 years of data. Empty circles show sites processed which did not meet these criteria. 

(Reproduced from Petrie et al., 2010b) 

 

The only study to date of potential bending effects on positions is Petrie et al. (2010a). While the study used the 

IRI2007 to estimate hmF2 and NmF2, meaning the corrections were rough approximations, “For the three years 

spanning ionospheric maximum (2001-2003), the mean difference at any site is less than ±0.3mm”, which 

suggests bending corrections can reasonably be neglected at present. This result would appear to be due to the 

similar elevation dependence of the LC bending terms and the tropospheric mapping functions. 

Sub-daily effects have also been considered by a limited number of authors. Due to the rotation of the Earth 

with respect to the sun, the peak of ionospheric activity moves around the world and occurs close to 2pm local 

time (visible in Fig. 23). Hernandez-Pajares et al. (2007) look at subdaily effects during ionospheric maximum 

on differential positioning of equatorial receivers and find shifts of up to several millimetres in position. 

Palamartchouk (2010) shows examples of simulated displacements at 04UT and 16UT on the 1 Jan 2000. 

However, over longer periods coordinate shifts due to modelling higher order ionospheric effects appear limited 

to less than ~1.5mm. Morton et al. (2009a) also simulate subdaily position changes at Arecibo, in Puerto Rico, 

and find effects of up to 2cm based on direct error computation, but suggest this would be somewhat reduced 

when using LC, as the higher order effects are partially cancelled. 

7.2.2. Orbits and clocks 

The majority of the I2 effect appears to be absorbed by satellite clocks and orbits (Hernández-Pajares et al., 

2007). Due to the contrast of day and night time effects, the orbit will “present a northward displacement for 

dayside observations, when the satellite is at high latitudes, and a southward shift when the satellite is, for 

instance, at  low latitudes or nightside observations” (Hernández-Pajares et al., 2007), see Fig. 30.  
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They also report that “the I2 effect on satellite clocks is typically the greatest one: it can be larger than 1 

centimeter, i.e., comparable with the reported IGS clock estimations accuracy”. 

Fig. 30   Representative example 

of the effect of I2 on the north 

component of the satellite 

position. (DOY 103 of year 2003). 

All satellites basically experience 

a southward shift, except for those 

in high latitudes during day time. 

(Reproduced from Hernández-

Pajares et al., 2007) 

 

 

 

 

Pireaux et al. (2010) consider higher order effects on geodetic time and frequency transfer and find effects from 

I2 of up to ~10ps for receivers in common view, but that I3 can be neglected. 

7.3. Reference frame parameters 

The transformation to change coordinates in one reference frame into coordinates in another is usually 

performed using a seven-parameter transformation, also known as a Helmert transformation. The seven 

parameters are: three translations, one along each of the X, Y and Z axes; three rotations, one around each axis; 

and a scale factor. The average transformation between two sets of coordinates obtained e.g. by processing with 

and without the I2 and I3 effects modelled can thus be described in terms of these seven parameters. Below we 

review the findings of several authors who have investigated these transformations relating to higher order 

ionospheric effects. 

Munekane (2005) performed a semi-analytical analysis and found an annual oscillation of 0.1ppb in scale, with 

a z-translation offset of 1.8mm and semi-annual oscillation of 1mm. Fritsche et al. (2005) analysed three years 

of data during ionospheric maximum and showed an effect of up to ~12mm on the z-translation, with similar but 

smaller effects upon the x and y-translations (Fig. 31). Effects on scale were found to be negligible at ~ -0.1ppb.  

Fig. 31 Top panel: time series of maximum TEC 

values (daily means). Bottom panel: origin 

component differences (frame without minus 

frame with higher–order corrections). The 

differences reveal mean biases of Äx ≈ −0.2 mm, 

Äy ≈ +0.6 mm and Äz ≈ −6.2 mm for the period 

2001.0-2004.0. The temporal representation of the 

differences is obviously correlated with the TEC 

variations. (Reproduced from Fritsche et al., 2005) 
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Petrie et al. (2010b) distinguished between the effects of the I2 and I2+I3 corrections on the z-translation and 

scale and found that the I3 term has very little effect (Fig. 32a, b). Petrie et al. (2010a) extended the comparison 

to the bending terms and showed that they have a similarly small effect (Fig. 32c, d), leaving the I2 term as the 

major contributor. 

 Fig. 32   Z-translation and scale 

differences when modelling I2 

(IG2), I2+I3 (IG) and 

I2+I3+Bending (IGB).  

 

Top panels: Reproduced from 

Petrie et al. (2010b). Bottom 

panels: Reproduced from Petrie et 

al. (2010a). 

 

 

 

 

 

Palamartchouk (2010) performed an interesting simulation study with a homogeneously spaced GPS network 

and the I2 and I3 corrections, modelled using the IGRF v10 and the IRI2007 model. The simulation method 

used considers the orbits as perfectly known and fixed. As a simulation requires no actual GPS data, the time 

span could be greatly extended over several solar cycles (1970-2008). The study found that “The z-component 

of the degree-1 deformation shows long-term changes with the amplitude of about 4 mm and long-term mean of 

4.1 mm.” and also that “The amplitude of oscillations in z direction reach 2.5 mm for the semi-annual and 3.5 

mm for 11-year components when satellite orbits are considered and degree-1 parametrization is used”. 

Oscillations in the z direction found using the Helmert transformation method were even smaller. The effects are 

considerably smaller than those found by both Fritsche et al. (2005) (Fig. 31) and Petrie et al. (2010b). This may 

be due to the fixed orbits used in the study or to the homogeneously spaced network, as studies using real data 

lack sites in ocean regions and tend to be biased at least to some degree towards the Northern Hemisphere. 

Alternative reasons may be the use of the variable IRI hmF2 values for the thin shell height, or the IRI model 

may represent extremes of electron content poorly. Palamartchouk (2010) also found that “The scale parameter 

also shows pronounced diurnal oscillations with amplitude of order 0.04 ppb, experimentally undetectable at the 

moment”. Another interesting finding of the study is that using elevation dependent weighting reduces the 

effects of modelling the second order correction (Fig. 33). However, this weighting was also performed by 

Petrie et al. (2010b), so cannot explain the difference. 
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 Fig. 33   Simulated degree-1 

z-deformation when 

modelling second order 

ionospheric effects. 

(Reproduced from 

Palamartchouk, 2010) 

 

 

 

 

 

 

 

Rotations were described as negligible by Fritsche et al. (2005) while Palamartchouk (2010) found that “The 

rotation parameters did not show any dependence on the phase of the solar cycle except that the amplitude of the 

subdaily oscillations is higher during the solar maximum”. 

8. Summary  

8.1. Current state of the art 

The I2 term affects satellite clocks by up to 1cm, and time and frequency transfer for stations in common view 

by up to ~10ps. Satellite positions are affected by up to a few mm while effects on site coordinates positions are 

limited to less than ~1.5mm, though subdaily effects may be larger. Rates are affected by up to ~0.3mm/yr. If 

reference frame parameters are of interest, the z-translation is the most strongly affected, by up to ~12mm. The 

x and y translations are also affected, but to less than 2mm and the effects on scale are limited to ~0.1ppb. The 

maximum effects described above are generally based around the top end of the electron densities seen in the 

last solar cycle (cycle 23). As solar cycles vary in intensity, it is possible that they could be exceeded if there is a 

very intense solar cycle in future. To summarise, the I2 correction is relevant to precise GPS analysis, though it 

is not yet performed routinely. 

The I2 correction is commonly implemented using the thin shell approximation at a single fixed height, with 

STEC either estimated from the signals or from maps of VTEC. Using STEC from GPS should be of benefit in 

real time applications, for dates pre1998 (when IONEX files have less resolution) and in remote areas with 

limited amounts of GPS data. However, in general using IONEX VTEC files appears to give broadly similar 

results. 

While the dipole model is a simpler representation of the Earth’s geomagnetic field than the IGRF, it is not 

necessarily simpler to implement. While the resulting coordinate differences are not large, the IGRF or similar 

magnetic model is probably the preferred option. 
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The I3, bgm and bTEC terms are both smaller than the I2 term and somewhat more complex to implement. While 

the NmF2 interpolation method of Fritsche et al. (2005) was a reasonable approach to obtaining rough estimates 

of NmF2 for long term global GPS processing, it is far from ideal.  However, current publically available 

ionospheric data with a global geographic and sub-daily temporal scale are not sufficient. At present, given the 

size of the bending terms and the errors in implementing them, further research is required before 

implementation can be recommended. 

8.2. Future developments 

In future it will become feasible to determine the free electron density distribution at global scale thanks to large 

constellations of GNSS receivers on board low Earth orbit satellites (LEOS) augmenting the present 

FORMOSAT-3/COSMIC constellation). As the ionospheric data available becomes more detailed, it may be 

possible to look at the impact of variable hmF2 height on the appropriate height at which to evaluate the magnetic 

field effect upon the signal. Eventually, integrating both the magnetic field and the electron content along the 

signal may become practical. Further investigation into mapping function errors and the differences on a global 

scale between obtaining STEC from GIMs of VTEC and direct STEC derivation using code alignment would 

also be of interest. 

While the external components of the magnetic field are small compared to the main field, if a model is 

available for the required date range, they could be included. 

To date, studies of ionospheric bending effects upon GPS have used spherically symmetric ionospheres. As the 

ionosphere has a distinctly unspherical equatorial anomaly, an investigation of its effects, perhaps by a 

raytracing study would be of interest. 

In terms of the effect on transformation parameters and particularly on the z-translation, an investigation into the 

network dependence of the effects could be of interest. For example, what is the effect on a network consisting 

of the IGS reference frame sites in comparison to a uniform network?  

The desire for precise near-real time processing for applications such as tsunami warning systems (Blewitt et al., 

2009) could lead to second-order effects becoming of interest, particularly as solar activity will now increase 

towards the next ionospheric maximum.  

While in this paper we have reviewed the steps taken to deal with higher order corrections to dual frequency 

GPS, developments to GPS and other positioning systems such as Galileo mean that three or more frequencies 

will become available in future. An early paper presenting a theoretical analysis for Galileo was written by 

Groves and Harding (2003), while papers dealing with the first data for Galileo are beginning to appear (Fleury 

et al., 2009). Technical details of dealing with three frequency combination have also been assessed (e.g. Odijk, 

2003; Wang et al., 2005), though noise increase is an issue (IERS, 2009). However, while the increase in 

frequencies will bring new possibilities, simply dealing with the archive of current data means the second order 

correction will certainly remain a concern for some time to come. 
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