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Abstract—For real-world problems, the task of decision- (generally,M > 2). J and K are the number of inequality
makers is to identify a solution that can satisfy a set of pedr- gnd equality constraints, respectively.
mance criteria, which are often in conflict with each other. Multi- Pareto-dominance for two feasible decision vectoss and

objective evolutionary algorithms tend to focus on obtainng a . - . .
family of solutions that represent the trade-offs between he ¥» X IS said to Pareto dominafg (denoted asx < y ) if

criteria; however ultimately a single solution must be seleted. and only if Vm € 1,2,--- . M, f(x) < fn(y) and3Im €
This need has driven a requirement to incorporate decision- 1,2, -+, M, fi(x) < fim(y)-

maker preference models into such algorithms — a technique  Pareto optimality: a solutionx € R” is said to be Pareto
that is very common in the wider field of multiple criteria optimal inR” if and only if ﬂy ER™ y <x.

decision making. This paper reviews techniques which have . . . .
combined evolutionary multi-objective optimization and multiple queto optimal Set',s defined a§ the §et of all Pareto optimal
criteria decision making. Three classes of hybrid techniqas are Solutions.Pareto optimal front is defined as the set of all
presented:a posteriori, a priori, and interactive, including methods objective functions values corresponding to all solutiams
used to model the decision-makers preferences and examplethe Pareto optimal set— this set represents the performance
a!gorl_thms for each category. To encourage future _re_sear(_:h trade-offs for the problem.
directions, a commentary on the remaining issues within tts The field ofmultiple criteria decision makingCDM) has
research area is also provided. p ) ’
developed well-established methods over the previous afsye
|. INTRODUCTION for helping decision makers_ address MOPs [_2]. Over thg last
. . . 20years a largely separate field — knowreaslutionary multi-
R Eal-world decision problems often require the solutiongiterion optimization EMO) has arisen that is developing so-
|\ to meet multiple performance criteria (or objectives)ytions to similar problems [3]. Historically, the EMO reseh
simultaneously — they are multi-objective problems (MOPS}ommunity has tended to emphasise the search for the Pareto
These objectives are often conflicting, wherein an improvgniima| set, to inform any subsequent work to select a single
ment in one objective cannot be achieved without detrimént g|,tion to a MOP. Within the confines of this perspective

another objective. In this case, there is no single soluioa ere is no modelling of decision maker preferences (beyond
MOP that can be selected objectively; rather a set of salstioy, assumption about a monotonic direction of preference

exists, representing different performance trade-offsveen 5, each objective). Meanwhile, the MCDM community has

criteria. In this setting, a single solution can only be ifé#d  anged to emphasise the use of preference models either as a

(from this set) using the subjective preferences of dewisigecyrsor to, or during, the search for a single preferredtba
makers (DMs) regarding a favourable resolution of the tradgpimal solution. A further point of discrimination is thature

offs. The MOP itself sits within the wider process of deamsio st the search process: even in cases where MCDM methods
making, including governance arrangements, formulatibn Qaye focused on identifying the Pareto optimal set, theckear
the criteria, and specification of models for the appraisg); each solution in that set is regarded as a distinct search
of potential solutions against criteria [1]. Without los$ 0j, jts own right. However, EMO methods are traditionally
generality, a minimization MOP is defined as follows: characterised as employing a parallel search, with inftiona
sharing, such that the Pareto optimal set emerges via aesingl
2, M ‘run’ of the optimizer. Recently, there have been initiatv
subject to g;(x) <0, j=1,2,...J 1) 1o integrate and blend the EMO and MCDM fields together,
hp(x) =0, k=1,2,..,K @ including MCDM special tracks at the two most recent EMO
conferences [4], [5].
According to when decision maker preferences are incor-
A solution x is a vector ofn decision variablesx = porated, i.e., before, during or after the search, MCDM and
(z1,22, - ,x,), x € R™. Each decision variable; is subject EMO approaches can be divided into three classa-iori,
to a lower boundr;;, and an upper bound,;. f,, represents interactiveanda posteriorj respectively.
the m-th objective function.M is the number of objectives In an a priori decision making approach the DM pref-

minimize f,,(x) m=1,2

Ty <oy STy, =120



erences are incorporated prior to the search process. WWeEDM approaches are reviewed. In Section Il challenging
weighted sum approach is one of the most commonly emesearch issues are identified. Section IV concludes.
ployeda priori methods, where the DM preferences are formu-
lated by a weight vector that indicates the relative impuéa I.I.. HYBRID EMO AND MCDM APPROACHES
of the objectives. When the DM preferences can be faithfuly. Decision maker preferences

captured in a mathematical model, arpriori method would  Priori to describing the various approaches, we briefly sum-
be effective and efficient. However, this is rarely the case. marize the methods developed for modelling DM preferences.
In aninteractive decision making approach the DM pref-  According to [18], these methods can be roughly divided into
erences are incorporated progressively during the opditioiz  the following categories: (i) reference point (aspiratipr(ii)
process. This enables a DM to learn about the problem apgights related methods, e.g, lexicographical orderielgtive
fine-tune his/her preferences if needed, effectively gigdhe importance order, reference direction and light beam searc
search towards regions of interest and away from explorigo], (iii) trade-off information, (iv) utility function.Amongst
non-interesting solutions. The main limitation of this eofe these methods, some elicit a direct model of preferencgs, e.
is that DM may need to be involved intensively during theeference point, reference direction, and trade-off imfation.
search process. Other methods construct a preference model indirectlydase
In an a posteriori decision making approach the DM on elicitation of some examples of holistic judgementshsuc
preferences are incorporated after the search; an appateim as utility function. As discussed in [20], eliciting direptef-
of the Pareto optimal front is found first followed by selecti erence information from the DM requires a high cognitive
of a preferred solution by the DM from the set of trade-offfort, and so can be counterproductive in real-world denis

solutions presented. Aa posterioriapproach can be effectivemaking situations. Eliciting indirect preferences tendsbe
for MOPs with 2 or 3 objectives — a good approximation of thpiss demanding in terms of cognitive effort.

Pareto optimal front can be obtained and easily be presented o
to the DM, enabling him/her to confidently select a preferrdg: A Priori schemes
solution. Howevera posteriorischemes become less effective This section review some of representatizepriori ap-
on MOPs with higher number of objectives, sometimes term@doaches. These approaches are classified as referende poin
many-objective problemgMaOPs [6]). Not only does the based, weight information based, trade-off informatiosduh
computational burden for solving these problems becoraed other forms.
very expensive, the approaches become more inefficient sinc1l) Reference point informationThere is a large body of
the DMs often are only interested in particular regions & priori approaches based on the reference point. Perhaps
the Pareto front. Furthermore, the number of Pareto optimdlDGA [7] developed by Fonseca and Fleming is the earliest
solutions required for describing the entire Pareto optimsuch approach. The DM preference is specified as aspirations
front of a MaOP is usually very large. Selecting one preférreand the non-dominated ranking mechanism is extended to
solution from all these solutions is cognitively difficult. accommodate aspiration levels, enabling the search toauk gr
To date, considerable effort has been spent on developimgly guided towards the DM region of interest (ROI). MOGA
efficient EMO approaches for finding a well-converged and further extended by introducing a preferability operato
well-distributed set of Pareto optimal solutions, supipgria  with which both goals and priorities can be accommodated
posteriori decision making, including, for example, MOGAIn the ranking scheme [8]. This new ranking scheme provides
[7], [8], NSGA-II [9], SPEA2 [10], and HypE [11]. See [12] a unification of Pareto optimality, the lexicographic metho
for a review. However, as mentioned above, this scheme fageml programming, constraint satisfaction and constchop
difficulties when applied onto MaOPs, and such problentisnization. MOGA has been successfully used in optimising a
arise regularly in the real-world [13]. Thus, to facilitatiee low-pressure spool-speed governor of a Pegasus gas turbine
process of decision making, the alternative is to considengine and many other applications [21], [13]. The main
incorporating DM preferencea priori or interactivelyinto weakness of this approach is that it requires a DM to know
the EMO approaches. Such hybrid approaches might take ranges of objective values so as to initialize coherent
advantages of both EMO and MCDM methods. aspiration levels. In addition, MOGA uses parallel cooadis
Early work on hybrid EMO-MCDM approaches was reto visualize solutions. Although this method can aid DM
viewed by Coello in 2000 [14], with an update by Rachmawatiognition of high-dimensional trade-offs, it does not pdav
and Srinivasan in 2006 [15]. Since this time, the tempo @iy indication of the location of chosen solutions on theRar
development for hybrid EMO-MCDM schemes has increasagtimal front and lacks quantitative statistical analysighe
considerably. Branke reviewedpriori methods in 2008 [16], solutions. Tan et al. [22] also extended MOGA by introducing
with a further review of interactive methods by Jaszkiewica new goal-sequence domination scheme to allow advanced
and Branke in the same year [17]. Our paper presents gpecifications such as priorities and hard/soft conssambe
updated review of both these classes, whilst also congiglerincorporated.
a posterioriapproaches. The paper also sets out a prospectusnother representative approach that uses aspirations was
for future hybrid developments. The remainder of the paperproposed by Molina et al. [23]. A dominance relation called
structured as follows: in Section Il representative hylMO- g-dominancédg refers to goals) is defined; solutions satisfying



all the aspirations and solutions fulfilling none of the aapi incorporated into an achievement scalarizing functionchlis
tions are preferred over solutions satisfying some aspirat used to guide the search towards a preferred region. Mailtipl
An approach called;-NSGA-Il that combinesy-dominance ROIls are obtained by specifying multiple reference dietdi
and NSGA-II is proposed to search for solutions satisfyinghe efficiency of this approach is demonstrated on MOPs with
the specified aspirations. This algorithm works regardtdss up to ten objectives. Again, the spread range of the ROI is
whether the specified goal vector is feasible or infeasibleontrolled by a user defined parameter.

However, it is demonstrated in [24] that g-NSGA-II faces Deb and Kumar [32] also hybridized the light beam search
difficulties when the provided goal vector is close to theetrumethod with NSGA-Il. The hybridized approach is able to
Pareto front (as the approach does not preserve a Pareth basarch for part(s) of Pareto optimal fronts illuminated by t
ordering). Handling of multiple ROIs by-NSGA-Il is not light beam emanating from a starting point to the reference
considered. Intuitively, the-dominancerelation is not easy point with a span controlled by a threshold. This approach
to extend to handle multiple ROIs as an individual gan also performs well on MOPs with up to ten objectives. The
dominateone goal vector, and simultaneously,gsdominated light beam search is also hybridized with MSPSO algorithm
by another goal vector. in [33]. Again, the issue is how to appropriately control the

Deb and Sundar [25] proposed a reference point basgstead range of the obtained solutions.

NSGA-II (R-NSGA-II) for searching for solutions close to 3) Trade-off information:Branke [34] proposed a guided
a DM specified reference point. The reference point is nevolutionary multi-objective optimization approach, ded
applied in a classical way, i.e. together with an achievémeas G-MOEA. In G-MOEA the DM preferences are manifested
scalarizing function [26], but rather by establishing aski@d through a modification of the dominance relation, specgyin
crowding scheme. Solutions near reference points are eammaximally acceptable trade-off rate between objectives
phasized by the selection mechanisms. The extent and ¢me unit improvement in objectivg; is worth at mosta;;
distribution of the solutions is maintained by a user definadhits in objectivef;. G-MOEA works well for two objectives.
parametee. The efficiency of R-NSGA-Il is demonstrated orHowever, providing all pair-wise information for a problem
MOPs with up to ten objectives. R-NSGA-II can also handieith many objectives is cognitively intensive and neééfgﬂ
multiple ROIs simply by using multiple reference points. comparisons.

Thiele et al. [27] hybridized the reference point with in- 4) Other forms:Branke and Deb [35] suggested a modified
dicator based evolutionary algorithm (PBEA). The refeeen@and controllable biased crowding approach. Their approach
point is applied to an achievement scalarizing functiord amims to search for a set of solutions that are parallel to an
this is then incorporated into the binary indicator funatio iso-utility function defined by a specified reference direction.
the e-indicator [28] (which is Pareto-dominance preservinggpecifically, a parameter is applied to control the range®@F R
The spread range of the obtained solutions is controllednby along the Pareto optimal front. This parameter is defined as
additional parameter which might be not easy to configurethe ratio of the real distances between neighboring saistio

Ben Said et al proposed another reference point based ap-the Pareto optimal front and the projected distance of the
proach, the r-NSGA-II [24]. In their study, the referencénpo same solutions on a plane defined by a linear utility function
is employed to modify the usual dominance principle, résglt  In [36], the authors integrate weight preferences in the cal
in a new dominance relation, namedominance which can culation of hypervolume indicator. The weighted hypervoéu
be used to create a strict partial order over non-dominatedicator serves as a means of integrating the DM prefegence
solutions. The-dominancerelation prefers solutions that areAuger et al. [37] applied this idea to HypE and proposed the
closer to the specified reference point, and simultaneousigighted hypervolume based HypE. W-HypE is demonstrated
preserves the order induced by Pareto-dominance reldtan. to perform well on searching for preferred solutions fortbloit
approach r-NSGA-II is derived from NSGA-II by replacingand many-objective problems. The only issue is that theaspre
the Pareto-dominance relation with thelominancerelation. range of the ROI is controlled by a deviation parameter in the
The algorithm has other two additional paramei@m@nd w. weight distribution function. Defining a proper value foisth
d € [0,1] is used to control the range of the ROIs, ard parameter is not easy for a decision maker.
expresses the bias of the DM. The performance of rr-NSGA-II Karahan and Kdksalan [38] proposed a steady-state elitist
is assessed on a set of benchmarks ranging from 2 to #delutionary algorithm, named the territory defining evolu
objective problems and is shown to be good in guiding th®snary algorithm (TDEA). Similar tce-MOEA [39], TDEA
search towards both single and multiple ROIs. However, defines a territory around each individual so as to prevent
pointed out by the authors, r-NSGA-II faces difficulties omrowding. A smaller territory corresponds to a denser cager
multi-modal problems, such as ZDT4. of solutions (i.e., more neighboring solutions), and a darg

The reference point method has also been used in mutgfritory corresponds to a sparser coverage of solutioase®
objective particle swarm optimization (MSPSO) algorithmen TDEA, the authors developed arpriori approach, named
[29], [30]. The idea of these approaches is to incorporate thrTDEA, in which the DM specifies his/her preferred region
DM preferences (reference points) into the selection afées. by a weight set. Solutions in the preferred region and non-

2) Weight information:Deb and Kumar [31] combined theinteresting region are then assigned different terrisosach
reference direction with NSGA-II. The reference directisn that more solutions are obtained in the preferred region(s)



Although in this review the above approaches are classifiesgbted on multi-objective knapsack problems and is found
asa priori approaches, most of these methods (e.g., [7], [34p perform well. As argued by the authors, this approach
[25], [27], [24], [38]) can be turned intmteractiveapproaches guarantees correct partial orders of solutions provided th
simply by allowing the DM to adjust preferences and continube DM preferences are consistent with the assumed utility
the optimization interactively. For example, Koksalandanfunction forms.

Karahan proposed iTDEA [40] as an interactive extension of Jaszkiewicz [46] proposed another interactive approach
the TDEA. In the iTDEA, the DM is asked to choose his/hebased on the Pareto memetic algorithm (PY1/7] which
preferred solutions from a set of representative solutiains also uses linear value functions to model the DM preference.
each interaction. A territory is then defined around thoSehe DM preference is again elicited from pairwise compariso
preferred solutions so as to obtain more solutions arouonflsolutions. However, this strategy does not aim to idgrsif
them, obtaining denser coverage of these interesting megiosingle most likely utility function but, rather, simultamesly
This procedure continues till the algorithm finds a satigfac maintains a range of utility functions compatible with the
solution. The iTDEA is tested on three problems using thresicited preferences. In other words, the preference médion
different utility function types to simulate the DM respess is not applied to create a single compatible weight vectar bu
Experimental results show that iTDEA converges the DM is to reduce the set of possible weight vectors.

simulated preferred regions well. Greco et al. [48] proposed a method for interactive multi-
objective optimization, which is based on application of a
logical preference model built using the Dominance-based

In interactive approaches, the preference information reRough Set Approach (DRSA). DRSA [49] is a methodology of
guested from the DM is usually much simpler than theultiple criteria decision analysis which is used for stanng
preference information required kg priori methods. Also, the DM’s preferences in terms of the most general and
in comparison toa posteriori methods, they have moderatainderstandable “if ..., then ...” decision rules [50]. IrB]4
computational requirements. More importantly, as the DMnce an approximation of solutions is obtained, the DM isithe
controls the search process, he/she gets more involvedein #sked to indicate those relatively good solutions. Havhig t
process, learns about potential solutions, and can be mim@rmation, a preference model structured in terms of .‘if .
confident about the final choite then ...” decision rules is induced using DRSA. This praiese

Greenwood et al. [43] suggested a procedure which askedel is then applied to refine the obtained solutions, rogitti
the DM to order a provided set of solutions, and use this prefff non-interesting solutions. The procedure continuesl un
erence information to derive constraints for linear weigit a satisfactory solution is found. This main advantage o thi
of the objectives consistent with the given ordering. Thesmproach is that the preference model used during the search
constraints are used in EMO approaches to check whetiecomposed of a set of user-friendly decision rules.
there exists a feasible linear weighting, such that satutics Follow the study of [48], Greco et al. [51] proposed two
preferred over solutiory. Although in [43] this procedure is interactive schemes, called DRSA-EMO and DRSA-EMO-
implemented as aa priori approach, it can easily be appliedPClI, where the preference information from the DM is elitite
interactively. by sorting some solutions in the current population into

Phelps and Koksalan [44] proposed a conceptually similaelatively good” and “others”, or by pairwise comparisoh o
interactive optimizer in which the DM preference is elidite solutions, respectively. The resulting two interactivbesoes
by pairwise comparisons of solutions. This preferencerinfaalso have the potential to take into account robustnesstoac
mation is further used to obtain a “most compatible” weighgimply because DRSA can handle a plurality of scenarios in
vector via linear programming methods, resulting a lineartase of decision making under uncertainty and dynamism [52]
weighted sum of objectives. This aggregate objective is op-Branke et al. [20], [53] incorporated the Generalized Regre
timized in the subsequent generations using an evoluonaion with Intensities of Preference (GRIP) methodology] [54
algorithm till new comparisons of solutions are providedd. into a modified NSGA-II (where the dominance-based ranking
needs to be mentioned that as multiple objectives are cardbiris replaced by theecessary rankingnd the crowding distance
into one single objective, the power of EMO approaches is calculated in utility space rather than objective-spaard
searching for multiple solutions with different tradeoif§ not proposed another interactive multi-objective optimiztre
exploited. Necessary-preference-enhanced Evolutionary Multigilve

Similar to [44], Fowler et al. [45] used a more generaDptimizer (NEMO). In NEMO, the DM is asked to compare
quasi-concave utility function to form the DM preference asome pairs of solutions and specify which is preferred, or
a preference cone consisting of inferior solutions. Comatlin compare intensities of preferences between pairs of solsiti
with Pareto dominance, the preference cone is applied These results are then used to construct all possible elditi
drive the search towards preferred regions. This apprasichvalue functions (based on the robust ordinal regressiohaaet

C. Interactive schemes

1There are other interactive approaches to those preseatedduch asthe  2The PMA employs a scalarizing function with a randomly getexa
Interactive Surrogate Worth Trade-off method [41] and thRIBUS approach weight in each iteration for local search and recombinafidre use of random
[42]. However they have yet to be combined with EMO approacied are weights corresponds to searching for solutions in diffenesgions of the
not reviewed here Pareto front.



[55]) as a preference model. These compatible value fumgtidDM is elicited only after pre-defined progress has been made,
are then applied to guide the search towards regions ofsttersuch progress being measured by the distance between the
to the DM. NEMO is tested on bi-objective problems antest solution and the ideal point [62]. The efficiency of this
performs well. However, its performance scalability has napproach is demonstrated on two to five-objective consthin
been examined on many-objective problems. and unconstrained test problems. Moreover, in [61], it liss a

Some hybrid EMO/MCDM approaches model the DMeen demonstrated that the more DM calls are made, the better
preferences by a value function (VF), such as the framewdte accuracy of obtained solutions (this is also identified i
of PI-EMO-VF [56]. In [56], the DM is asked to order a[40], [57], [59], respectively).
given set of alternatives from best to worst. This prefeeenc A further interactive multi-objective decision supporssm
information is then used to model a strictly increasing polynamed I-MODE has been proposed [63], [64]. This system is a
nomial value function. The construction procedure invelveGUI-based, user-friendly software, and is built over a namb
solving a single-objective optimization problem to detemen of existing multi-objective evolutionary algorithms (M®@E)
the optimal parameters of the value function. This constaic and different decision making approaches. I-MODE alloves th
value function is then utilized to redefine the dominandeM to interactively focus on interesting region(s) of thedta
principle, and drive the EMO approach (NSGA-II is appliedront using tools such as weighted sum approach, Chebyshev
in [56]) to search for preferred solutions for the subsediuefunction approach, utility function based approach andera
iterations until the next “DM call”. In addition, this value off information. These preferences are then incorporatéal i
function is also used to build a preference based termimatia MOEA to search for new solutions in a ROI or multiple
criterion. The effectiveness of PI-NSGA-II-VF is demomséd ROI(s). So far the main limitation of the I-MODE is that it
on MOPs with up to five objectives. However, as identifiedan only consider a maximum of 3 objectives due to the use of
by the authors for future studies, this approach has not &e&artesian coordinate system. However, this can be a@dress
extended to handle constrained problems. Furthermors, thy using parallel coordinates [65]. In addition, other viyde
study has also suggested some interesting directions, suekd decision making tools, e.g., the light beam search [19]
as modelling preferences with other value functions, fgd could be included.
robust value functions, using value function based vanmati
operators, and being more restrictive in the use of DM callp. A posteriorischemes

So far effort has been made along some of these directions, ) L )
Sinha et al. [57] augmented the polynomial value function Most of. th_e evolutionary m_ult|-0bject|ve algorlthms that
into a generalized polynomial value function that fits a widd®Ccus ©n finding a full and satisfactory approximation of the
variety of quasi-concave preference information. The erallf 2610 Optimal front are classic examplesaoposterioriap-
function takes into account the indifference of the decisi(Proa‘_:hes' In th_ese meth_ods, the deC|s_|0n mak'”g aspect is no
maker towards a pair of alternatives. The efficacy of pI-NsG/Aonsidered until the entire Pareto optimal front is gereztat

[I-VF is evaluated on three and five-objective test problen%owever’ as _prey|0u§ly ment!oned, postenorllapp.roaches
with constraints. Moreover, in [57], the value functionifit often face difficulties in obtaining a full approximation tife
(Ia]rgtire Pareto optimal front. It has been demonstrated Heat t

procedure is tested on other commonly used value functio ” ,
like the Cobb-Douglas value function and the CES Vam%earch ability of Pareto-dominance based methods degrades

function in the literature [58], and the generality of the pisignificantly as the number of objectives increases [66]aAs

EMO-VF is demonstrated. Sinha et al. [59] proposed anotH&sult, the obtained solutions are usually not close tothe t

progressively interactive EMO algorithm (PI-EMO-PC), wiae —areto front [67], [68], [69]. o _

a polyhedral cone is used to construct the DM preference.'n order.to obtain a sa‘usfactory approximation of.the .@’ltll’
The constructed polyhedral cone is then applied to modigy tfpareto optimal front, considerable el_‘fort has been ingeste
domination principle of an EMO and drives the search towar@her types of MOEA, many of which draw on preference
a preferred region. Instead of providing an order of sohgio Schemes originally developed by the MCDM community.
in PI-EMO-VF, in PI-EMO-PC the DM is asked to choosdiowever these preferences are not used to steer the search
the best solution from a provided set of alternatives. Thst hdoward a specific subset of preferred solutions — ratheraney
solution is selected using an advanced selection techniitYé“he“C preferencethat act only to provide discrimination
known as VIMDA [60]. This is a visual interactive method®&tween solutions in _h|gh—d|men5|onal objective spaces. A
that uses the reference point technique to allow the DM f§!mber of representatives are:

select the best point from a set of non-dominated points(i) modified Pareto-dominance relation based MOEAs, e.g.
Using the best point, a polyhedral cone is constructed based ¢-MOEA [39], [70];

on the end points (that have the best value in one objectiveli) decomposition based MOEAs, e.g. CMOGA [71],
An instantiation of PI-EMO-PC, PI-NSGA-II-PC, is evaludte MSOPS [72] and MOEA/D [73];

on two to five-objective unconstrained test problems and {§i) preference-inspired co-evolutionary algorithms,.g.e
shown to be effective. In [61], Sinha et al. studied how the PI PICEA-g [74], [75], PICEA-w [76].

EMO-PC and PI-EMO-VF framework is used under a limited(iv) use of a predefined multiple target approach, e.g. NSGA-
budget of DM calls. The preference information from the " [77].



There remains some debate about the usefulness of atterhgbrid approaches — which set of solutions should be predent
ing to obtain trade-off surfaces for MOPs with greater thaio the DMs? The overlapping preferences may be dealt with
three objectives. The number of solutions required to e incorporating uncertainty within the hybridized framewor
such a surface at a given resolution grows exponentiaiowever, this is not often incorporated within the EMO-lzhse
with the number of objectives. Also it might be cognitivelyapproaches and for approaches that do incorporate unrdgytai
challenging for the DM to choose the most preferred solutiappropriate measures should be taken to ensure its suéfjcien
from such large sets of candidate solutions. Appropriate measures should also be developed for handling
divided preferences.

Despite a number of reports on hybridizing MCDM ap-
proaches with MOEAs, the literature currently lacks tech-

We have briefly discussed the approaches used to modigjues to provide a performance measure of how well these
the preferences of decision makers for use within MOEAgpproaches deliver the needs of the DMs. The main drive of
and raised particular attributes or shortcomings of each ahis research area is to provide assistance to DMs in MCDM
proach. We now place these findings in a more genefgith use of MOEAs. In order to encourage a fair comparison
context concerning the performance and applicability dffitdy among these technigues, or at least a guide for potential
EMO/MCDM approaches. Specifically, we will discuss issuestudies, a measure of performance of these approachesishoul
raised concerning: (i) preservation of Pareto-dominafide; be developed. There are difficulties such as imprecision of
transitivity of preferences; (iii) scalability of the amaches DM preferences as expressed in [13]. A technique enabling
based on the number of objectives; (iv) presence of more thée performance of these approaches to be measured would
one DM; (v) performance measures for assessment of thesgourage the growth of this research area and help identify
hybridized approaches; (vi) unification of preferencesi) (v weaknesses that may be resolved from the insight gained. To
limiting the burden on the DM; and (viii) fuzzy preferences.date, there are few studies addressing this issue — onel@otab

Most MOEAs rely on the Pareto dominance concept txception is [78].
effectively drive the search toward solutions that are @awp- Obtaining a preferred solution under a limited budget of
timal. However, the introduction of preferences within M&E DM calls is another challenging problem. A first attempt has
alters the standard dominance relation between solutisnsbaen made in [61]. However, the method is rather limited and
shown in theg-NSGA-II [23]. This alteration of the Pareto- more effective strategies are required. Other relatedcauies
dominance relationship may introduce difficulty in obtaimi include that of Todd and Sen [79], who used preference
a robust ordering between the solutions. information provided by the DM to train an artificial neu-

Often, DM preference information is attained by requestingl network, which was then used to automatically evaluate
the decision maker to select his preferred solution from smlutions for the subsequent iterations of an evolutionary
subset of solutions (e.g. solutianor b). However, this ap- algorithm. Similar studies are also found in [80], [81]. Fhi
proach to elicitation affects the transitivity of the prefiaces. literature is limited, and further studies that focus on the
If solution a is better than solutioiy, and solutiorb is better reduction of DM calls are urgently needed.

Ill. CHALLENGING ISSUES IN HYBRIDIZED EMO AND
MCDM APPROACHES

than solutiorc, it does not necessarily mean that solutinis It is interesting to note that all of the works to date
better than solutiow. This is issue is particularly pertinent inconstrain the DM to a particular formulation of preferences
the outranking method of modelling preferences. However different DMs may be more comfortable expressing

Another common problem with most of these hybrid apheir preferences in different ways. Search methodolatias
proaches is their applicability to problems with many objecan unify different preference models, or retain flexililit
tives, which is a common trait for real-world problems. Modwith regard to expressions of preference, would be highly
elling the preferences for MaOPs becomes more taxing abeneficial. Some early steps have been made in this direction
may lead to other issues involving computational compyexi{82]. With human DMs It is usually natural for preferences to
and accuracy of the preferences models. be expressed linguistically. Fuzzy logic offers an appiatpr

The presence of more than one DM introduces a set miethodology, with some existing works in this directiorg(e.
preferences which may be overlapping or fundamentally dB3], [84], [85]), although construction of a suitable fyzz
vided. For instance, we may extract information from a groupference system requires substantial further research.
of DMs to integrate into the hybrid approaches to form a set
of preferred solutions. For overlapping preferences, tloeg
of decision makers may not select the same solutions: DMs AEMO methods can used together with MCDM techniques
and B may express their preference of solutiar@db, while to assist DMs in finding the best solutions satisfying mistip
DM C prefers solutions, b, andc, where solutions, b, andc  objectives. In this paper we reviewed hybrid EMO/MCDM
are similar. For cases where the set of preferences areedividapproaches based on the interaction between the DM prefer-
the DMs are in disagreement: DMs A and B may expressce model and the optimization process. We have identified
their preference of solutioa over solutionb, while DM C eight key challenges for hybrid approaches and argue thaéth
prefers solutiorb over solutiona, where solutions andb are challenges should be priority research themes for new work
different. This raises an issue during the implementatich® blending EMO and MCDM methods.

IV. CONCLUSION
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