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Since Stratton published his famous paper four decades ago, var-
ious transport models have been proposed which account for the
average carrier energy or temperature in one way or another. The
need for such transport models arose because the traditionally used
drift-diffusion model cannot capture nonlocal effects which gained
increasing importance in modern miniaturized semiconductor de-
vices. In the derivation of these models from Boltzmann’s transport
equation, several assumptions have to be made in order to obtain
a tractable equation set. Although these assumptions may differ
significantly, the resulting final models show various similarities,

which has frequently led to confusion. We give a detailed review on
this subject, highlighting the differences and similarities between
the models, and we shed some light on the critical issues associated
with higher order transport models.

Keywords—Numerical analysis, semiconductor device mod-
eling, simulation.

I. INTRODUCTION

At the very beginnings of semiconductor technology, the

electrical device characteristics could be estimated using

simple analytical models relying on the drift-diffusion (DD)

formalism. Various approximations had to be made to obtain

closed-form solutions, but the resulting models captured the

basic features of the devices. These approximations include

simplified doping profiles and device geometries. With the

ongoing refinements and improvements in technology, these

approximations lost their basis and a more accurate descrip-
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tion was required. This goal could be achieved by solving

the DD equations numerically. Numerical simulation of

carrier transport in semiconductor devices dates back to the

famous work of Scharfetter and Gummel [1], who proposed

a robust discretization of the DD equations which is still in

use today.

However, as semiconductor devices were scaled into

the submicrometer regime, the assumptions underlying

the DD model lost their validity. Therefore, the transport

models have been continously refined and extended to

more accurately capture transport phenomena occurring

in these submicrometer devices. The need for refinement

and extension is primarily caused by the ongoing feature

size reduction in state-of-the-art technology. As the supply

voltages cannot be scaled accordingly without jeopardizing

the circuit performance, the electric field inside the devices

has increased. A large electric field which rapidly changes

over small length scales gives rise to nonlocal and hot-carrier

effects which begin to dominate device performance. An

accurate description of these phenomena is required and is

becoming a primary concern for industrial applications.

To overcome some of the limitations of the DD model,

extensions have been proposed which basically add an ad-

ditional balance equation for the average carrier energy [2],

[3]. Furthermore, an additional driving term is added to the

current relation which is proportional to the gradient of the

carrier temperature. However, a vast number of these models

exists, and there is a considerable amount of confusion as to

their relation to each other. The aim of this paper is to clarify

the important differences and similarities between the var-

ious models. To master this task, a closer look at the various

derivations is required, where the important points are high-

lighted. Then the most important models are summarized and

assessed, followed by a critical discussion of the assumptions

made in the derivation.

0018-9219/03$17.00 © 2003 IEEE

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 2, FEBRUARY 2003 251



II. THE DRIFT-DIFFUSION MODEL

The DD model is the simplest current transport model

which can be derived from Boltzmann’s transport equation

(BTE) by the method of moments [4] or from basic princi-

ples of irreversible thermodynamics [5]. For many decades,

the DD model has been the backbone of semiconductor de-

vice simulation. In this model, the electron current density is

phenomenologically expressed as consisting of two compo-

nents. The drift component is driven by the electric field and

the diffusion component by the electron density gradient. It

is given by

(1)

where and are the mobility and the diffusivity of the

electron gas, respectively, and are related to each other by

the Einstein relation

(2)

where is the Boltzmann constant. The current relation (1)

is inserted into the continuity equation

(3)

to give a second-order parabolic differential equation, which

is then solved together with Poisson’s equation. Note that

generation/recombination effects were neglected in (3).

In the DD approach, the electron gas is assumed to be in

thermal equilibrium with the lattice temperature .

However, in the presence of a strong electric field, electrons

gain energy from the field and the temperature of the elec-

tron gas is elevated. Since the pressure of the electron

gas is proportional to , the driving force now becomes

the pressure gradient rather then merely the density gradient.

This introduces an additional driving force, namely, the tem-

perature gradient besides the electric field and the density

gradient. Phenomenologically, one can write

(4)

where is the thermal diffusivity.

Although the DD equations are based on the assumption

that the electron gas is in thermal equilibrium with the lattice,

an estimation for the local temperature can be calculated with

the local energy balance equation [6]

(5)

where is the energy relaxation time. Equation (5) is

obtained under the assumption of a local energy balance.

At the critical electric field , which depends on the electric

field via the mobility, the carrier temperature reaches twice

the value of the lattice temperature. is in the order

of 10 kV/cm, a value easily exceeded even in not very

advanced devices where values higher than 1 MV/cm can

be observed [7]. Note too that the temperature obtained

(a)

(b)

Fig. 1 (a) The carrier temperature of comparable n - n -
n structures with varying channel lengths where the spatial
coordinates have been normalized to get an overlapping electric
field. (b) The average carrier velocity where the velocity overshoot
is caused by the nonlocality of the carrier temperature.

from (5) introduces an inconsistency with the assumptions

made during the derivation of the DD model where the

electron gas has been assumed to be in equilibrium with

the lattice temperature.

For a rapidly increasing electric field, however, the average

energy lags behind the electric field, and the assumption

of local equilibrium becomes invalid [8]. A consequence

of the lag is that the maximum energy can be considerably

smaller than the one predicted by the local energy balance

equation. This nonlocality of the carrier temperature is shown

in Fig. 1(a) for n - n - n structures with varying channel

lengths where the spatial coordinate has been normalized

to make the electric field distribution of all devices overlap.

The bias has been chosen to give a maximum electric field

of 300 kV/cm in all devices. An important consequence of

this behavior is that the lag of the average energy gives rise

to an overshoot in the carrier velocity, as shown in Fig. 1(b).
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Also shown is the saturation velocity , which is the

maximumvelocityobserved instationarybulkmeasurements.

The reason for the velocity overshoot is that the mobility

depends to first order on the average energy and not on the

electric field. As the mobility has not yet been reduced

by the increased energy but the electric field is already

large, an overshoot in the velocity is observed

until the carrier energy comes into equilibrium with the

electric field again.

Similar to the carrier mobility, many other physical pro-

cesses like impact ionization are more accurately described

by a local energy model rather than a local electric field

model, because these processes depend on the distribution

function rather than on the electric field.

Altogether, it can be noted that modeling of deep-sub-

micrometer devices with the DD model is becoming more

and more problematic. Although successful reproduction of

terminal characteristics of nanoscale MOS transistors has

been reported with the DD model [9], the values of the

physical parameters used significantly violate basic phys-

ical principles. In particular, the saturation velocity had

to be set to more than twice the value observed in bulk

measurements. This implies that the model is no longer

capable of reproducing the results of bulk measurements

and as such looses its consistency. Furthermore, the model

can hardly be used for predictive simulations. These so-

lutions may provide short-term fixes to available models,

but obtaining “correct” results from the wrong physics is

unsatisfactory in the long run.

In the following, the derivation and properties of higher

order transport models from Boltzmann’s equation is given.

III. BOLTZMANN’S TRANSPORT EQUATION

Transport equations used in semiconductor device simu-

lation are normally derived from the BTE, a semiclassical

kinetic equation, which reads [10]

(6)

where represents the carrier distribution function

in the six-dimensional phase space, and the term on the right

side represents the rate of change of due to collisions. The

BTE is valid for general inhomogeneous materials with ar-

bitrary band structure [11]. To account for quantum effects,

equations based on the Wigner–Boltzmann equation have

been considered [12]. The group velocity is defined as

(7)

where represents the carrier kinetic energy. The inverse

effective mass tensor is defined as

(8)

where denotes the tensor product [11]. The force exerted

on electrons in the presence of electric and magnetic fields

and inhomogeneous material properties is generally given as

(9)

and depends both on and . The two position-dependent

terms account for changes in the bottom of the con-

duction band edge and the shape of the band structure.

Omitting the influence of the magnetic field (see [6] for a

treatment of this term) and assuming homogeneous mate-

rials, simplifies to the electrostatic force

(10)

In the following, we will consider only position-indepen-

dent masses, but permit energy-dependent masses. General-

izations to position-dependent band structures will be given

in Section VIII.

The BTE represents an integro-differential equation in the

seven-dimensional space . To solve this equation nu-

merically by discretization of the differential and integral

operators is computationally very expensive. A widely used

numerical method for solving the BTE is the Monte Carlo

(MC) method. This method has been proven to give accurate

results, but is still computationally expensive. Furthermore,

if the distribution of high-energetic carriers is relevant, or if

the carrier concentration is very low in specific regions of

the device, MC simulations tend to produce high variance in

the results. Another approach, which is based on an expan-

sion of the distribution function in momentum space into a

series of spherical harmonics, has been successfully used to

solve the BTE [13], [14]. In contrast to the MC method, the

spherical harmonic expansion method is deterministic, and

the computational effort, while still high, is significantly re-

duced. However, by considering only the lower order terms

of the expansion, approximations are introduced whose in-

fluence on the accuracy of the simulation results is still not

fully clarified. Particularly in the ballistic regime, numeri-

cally calculated full-band structures cannot be included, as

opposed to the MC method, where usage of such band struc-

tures is a solved problem.

A common simplification, which will be the subject of this

paper, is to investigate only some moments of the distribu-

tion function, such as the carrier concentration and the carrier

temperature. A moment is obtained by multiplying the dis-

tribution function with a suitable weight function

and integrating over space

(11)

Thus, three coordinates are eliminated at the expense of in-

formation loss concerning the details of the distribution func-

tion.

In the following, we will separate the group velocity

into a random part and the mean value as

. We will assign the symbols given in Table 1 to
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the moments of the distribution function [15]. Furthermore,

we will employ an isotropic effective mass approximation

via the trace of the mass tensor [16]

(12)

IV. BAND STRUCTURE

A common assumption in macroscopic transport models

is that the band structure is isotropic; that is, the kinetic en-

ergy depends only on the magnitude of the wave vector .

With this assumption, the dispersion relation can be written

in terms of the band form function

(13)

The simplest approximation for the real band structure is a

parabolic relationship between the energy and the carrier mo-

mentum

(14)

which is assumed to be valid for energies close to the band

minimum. A first-order nonparabolic relationship was given

by Kane [17]

(15)

with being the nonparabolicity correction factor. Kane’s

dispersion relation gives the following relationship between

momentum and velocity:

(16)

Therefore, the average velocity contains an infinite number

of higher order terms which are not necessarily negligible.

This is problematic because these quantities are additional

unknowns representing higher order moments of the velocity

distribution which prohibits closed-form solutions.

To obtain a more tractable expression, Cassi and Riccò

[18] approximated Kane’s dispersion relation as

(17)

and fitted the parameters and for different energy ranges.

For , the conventional parabolic dispersion relation

is obtained. As pointed out in [19], this expression must be

used with care. In particular, physically meaningful results

could be obtained only by fitting (17) to the energy range

eV . This can be explained by looking more closely at

the density of states, which is obtained as

(18)

and in the particular case of Cassi’s model

(19)

A comparison of different fits to the Kane expression is

shown in Fig. 2, together with the numerical density of states

used by Fischetti and Laux [20]. The fitted values were taken

Table 1

Definition of the Most Important Quantities

Bold symbols denote vector quantities, whereas tensors
are written as .

Fig. 2 Comparison of different expressions for the density of
states.

from [19], and are and when fitted to the

low-energy range eV and and

when fitted to the high-energy range eV , where

has the unusual dimension of eV . For , the shape

of changes from convex to concave; thus, either the

low- or the high-energy range can be fitted properly, but not

both simultaneously. As the dispersion relation is needed for

the evaluation of the moments of the distribution function,

which requires an integration over the whole energy range,

a value smaller than one is required for to accurately fit
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the low-energy region because this is where has its

maximum. However, the resulting density of states shows

a “parabolic-like” behavior; therefore, it is of limited value

for the description of nonparabolic transport phenomena.

V. DERIVATION OF HIGHER ORDER TRANSPORT MODELS

In this section, the basic steps for transforming BTE into

a macroscopic transport model will be reviewed to point out

the principal differences among the models. Generation and

recombination processes are not considered in the following.

A. Stratton’s Approach

One of the first derivations of extended transport equations

was performed by Stratton [2]. First, the distribution function

is split into the even and odd parts

(20)

From , it follows that . As-

suming that the collision operator is linear and invoking a

microscopic relaxation time approximation for the collision

operator

(21)

the BTE can be split into two coupled equations. In partic-

ular, is related to via

(22)

The microscopic relaxation time is then expressed by a power

law

(23)

When is assumed to be a heated Maxwellian distribution,

the following equation system is obtained:

(24)

(25)

(26)

(27)

Equation (25) can be rewritten as

(28)

with

(29)

which is commonly used as a fit parameter with values in the

range . For , the thermal diffusion

term disappears. Under certain assumptions [2], [21], the co-

efficient equals . The problem with expression (23) for

is that must be approximated by an average value to cover

the relevant scattering processes. In the particular case of im-

purity scattering, can be in the range , depending

on charge screening [22]. Therefore, this average depends on

the doping profile and the applied field; thus, no unique value

for can be given.

Note that the temperature which appears in (24)–(27)

is a parameter of the heated Maxwellian distribution, which

has been assumed in the derivation. Only for parabolic bands

and a Maxwellian distribution, this parameter is equivalent to

the normalized second-order moment.

B. Bløtekjær’s Approach

Bløtekjær [3] derived conservation equations by taking the

moments of the BTE using the weight functions one, , and

without imposing any assumptions on the form of the dis-

tribution function. These weight functions define the mo-

ments of zeroth, first, and second order. The resulting mo-

ment equations can be written as follows [15]:

(30)

(31)

(32)

These expressions are valid for arbitrary band structures,

provided that the carrier mass is position independent.

When is allowed to be position dependent, additional

force terms appear in (30)–(32) [23]. The collision terms are

usually modeled employing a macroscopic relaxation time

approximation as

(33)

(34)

(35)

which introduces the momentum and energy relaxation

times and , respectively. A discussion on this approx-

imation is given in [24]. One should note the difference

between the microscopic relaxation time approximation as

used by Stratton, where the whole scattering operator is ap-

proximated by a single relaxation time, and the macroscopic

relaxation time approximation, where a separate relaxation

time is introduced for every moment of the scattering

operator. The latter is assumed to be more accurate.

This equation set is not closed, as it contains more un-

knowns than equations. Closure relations have to be found

to express the equations in terms of the unknowns , , and

. Traditionally, parabolic bands are assumed, which gives

the following closure relations for , , and :

(36)

(37)

(38)
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The random component of the velocity has zero average, that

is, . Under the assumption that the distribution func-

tion is isotropic, the following relation can be derived:

(39)

This assumption is frequently considered to be justified be-

cause of the strong influence of scattering. Approximating

by a scalar temperature as

(40)

(37) and (38) become coupled

(41)

(42)

With (34) and (36), one obtains the following formulation

for :

(43)

where and have been lumped into one new parameter,

the mobility

(44)

Relationship (44) is valid for parabolic bands only, whereas

for arbitrary bands the mobility can be defined directly via

the collision term. As signal frequencies are well below

Hz, the time derivative in (31) can safely

be neglected [25].

Furthermore, a suitable approximation for the energy flux

density has to be found, and different approaches have

been published. Bløtekjær used

(45)

and approximated the heat flux by Fourier’s law as

(46)

in which the thermal conductivity is given by the Wiede-

mann–Franz law as

(47)

where is a correction factor. The artificial introduction of

was based on physical reasoning only because a shifted and

heated Maxwellian distribution gives . This is a major

inconsistency of the model. In addition, as has been pointed

out in [15], this expression is problematic, as (46) only ap-

proximates the diffusive component of . For a uniform

temperature, ; thus, , which contradicts with

MC simulations. The convective component must be

included to obtain physical results when the current flow is

not negligible.

With these approximations, (30)–(32) can be written in the

usual variables as [26]

(48)

(49)

(50)

(51)

to give the full hydrodynamic model (FHD) for parabolic

band structures, which has been supplemented by the phe-

nomenological constitutive relation (51) to close the system.

This equation system is similar to the Euler equations of fluid

dynamics with the addition of a heat conduction term and the

collision terms. It describes the propagation of electrons in a

semiconductor device as the flow of a compressible, charged

fluid. This electron gas has a sound speed ,

and the electron flow may be either subsonic or supersonic.

With and K, cm/s,

while for K, cm/s [27]. In the

case of supersonic flow, electron shock waves will in gen-

eral develop inside the device. These shock waves occur at

either short-length scales or low temperatures. As the equa-

tion system is hyperbolic in the supersonic regions, special

numerical methods have to be used (see Section XIII) which

are not compatible to the methods employed for the parabolic

convection-diffusion type of equations.

When the convective term in the current relation (49)

(52)

is neglected, a parabolic equation system is obtained

which covers only the subsonic flow regions. This is a

very common approximation in today’s device simulators.

Furthermore, the contribution of the velocity to the carrier

energy is frequently neglected, resulting in

(53)

The two assumptions made previously can be justified from a

mathematical point of view because they follow consistently

from appropriately scaling the BTE. The Knudsen number

appears as a scaling parameter, which represents the mean

free path relative to the device dimension [28]

(54)

where is the characteristic time between scattering events,

denotes the velocity scale, and is given by the size of

the simulation domain. Carriers in a semiconductor at room

temperature can be considered a collision-dominated system,

for which . Diffusion scaling assumes the time scale

of the system to be

(55)

In the limit of vanishing Knudsen number, , one

obtains that convective terms of the form are ne-

glected against . The consequences are that the drift
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kinetic energy is neglected against , and that

in the flux equations the time derivatives vanish.

The resulting simplified equations are

(56)

(57)

(58)

(59)

Equations (56) and (59) form a typical three-moment model

which has been closed using Fourier’s law and is commonly

known in the literature as the energy-transport (ET) model.

Actually, this name is misleading, as the model consists of

the two conservation equations (56) and (58) and the two

constitutive equations (57) and (59).

To overcome the difficulties associated with the Fourier

law closure (46), the fourth moment of the BTE has been

taken into account, [15] which gives

(60)

The time derivative is ignored using the same scaling argu-

ment that led to neglecting the time derivative in (31). The

collision term in (60) can be modeled in analogy to (43) as

(61)

which gives

(62)

Now a closure relation for has to be introduced, which can

be, for example, obtained by assuming a heated Maxwellian

distribution. This gives

(63)

Using closure (63) and the same approximations that led to

the three-moments ET model (56)–(59), a more accurate ex-

pression for is obtained from the fourth moment of the

BTE

(64)

which should be used to replace (59) to give a four-moments

ET model. Comparing (64) with (59) reveals the inconsis-

tency of the three-moments ET model. In the four-moments

model, we have the factor

(65)

for both terms. In the three-moments model, however, the

factors are and , which means that the heat flux

can be adjusted independently. This inconsistency can be

avoided only if and . However, the ratio

Fig. 3 Ratio of � and � as a function of the carrier temperature
inside the n - n - n structures obtained from MC simulations.

Fig. 4 Electron mobility inside n - n - n structures obtained
from MC simulations.

strongly depends on the carrier temperature and shows

a pronounced hysteresis when plotted over the average en-

ergy as shown in Fig. 3. Similar observations can be made

for the electron mobility [15] which is shown in Fig. 4.

C. Methods Based on an Ansatz for the Distribution

Function

Another approach which is frequently used in the deriva-

tion of macroscopic transport models appears to be similar

to Bløtekjær’s method. It relies on an Ansatz for the distri-

bution function, which is then used to derive the closure rela-

tions. The difference from Bløtekjær’s moment method will

be outlined in the following, using the average energy as

an example.

During the derivation of (42) only general assumptions

about the distribution function are made, in particular that the
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distribution function is isotropic, that is, . Fur-

thermore, parabolic bands have been assumed. For the sim-

plified expression (53), the convective energy is neglected.

When a certain form of the distribution function is as-

sumed, normally a Maxwellian shape

(66)

the average energy can be directly calculated as

(67)

which is structurally equivalent to (53). However, the tem-

perature appearing in (53) is defined over averages of a

generally unknown distribution function, whereas is the

parameter of (66). Using (66) for the calculation of the other

closure relations, an ET model can be derived which has

the same structure as the previously given four-moment ET

model. This is not the case for different Ansatz functions, and

becomes obvious when, for instance, a Fermi–Dirac distribu-

tion is assumed instead of a Maxwellian distribution [19].

Mixed procedures have been considered as well. In [29],

for example, the author uses Bløtekjær’s moments method to

derive moment equations of arbitrary order. As Bløtekjær’s

method produces more unknowns than equations, closure re-

lations are derived via an analytical expression for the distri-

bution function.

Unfortunately, the analytical Ansatz functions, which are

normally used for the distribution function, give only poor

approximations in realistic devices [30]. As these closure re-

lations are crucial for the accuracy of the transport model,

methods based on analytic expressions have been shown to

perform poorly [31], [32] and require a large number of mo-

ment equations. This has been interpreted as a failure of the

moments method. We believe, however, that this is not a

failure of the moments method but rather a failure of the

Ansatz for the distribution function used in obtaining the clo-

sure relations.

D. Comparison

One of the extensively discussed differences between

Bløtekjær’s and Stratton’s approach is that in Stratton’s

model, the mobility is inside the gradient ,

whereas in Bløtekjær’s it stands in front of the gradient

in the current relation.

This issue was addressed by Stratton himself [33] and

by Landsberg [34], [35]. Other comparisons of the two

approaches can be found in [21], [36]–[39]. It is important

to note that although the parameters and are called

mobilities in both approaches, their definition differs sig-

nificantly. Both approaches are compared in [36] and both

appear to be justified, provided that the respective mobilities

are modeled accordingly. For bulk simulations, the mobili-

ties are equal [36], [40] and can be properly modeled using

conventional energy-dependent expressions [41], [42]. How-

ever, in inhomogeneous samples, where the electric field

varies rapidly, the mobilities are no longer single-valued

functions of the average carrier energy. The advantage of

the formulation lies in the fact that for increasing values

of the electric field, it can be roughly approximated by its

bulk value, whereas is always different. Thus, can be

expected to be more suitable because in most commercial

simulators the mobility is modeled as a function of the

carrier energy only. By expressing empirically as

(68)

where is the homogeneous component and a dimen-

sionless transport coefficient, Tang et al. [43] showed that

Stratton’s model can be obtained from Bløtekjær’s model

with where

(69)

Here, is the bulk mobility, which can be ex-

actly represented as a function of the temperature. given

by (69) is similar to given by (29) in Stratton’s model.

However, a comparison with MC data shows that

in inhomogeneous samples. In [44], it is proposed to use

(70)

VI. EXTENSIONS FOR DEGENERATE SEMICONDUCTORS

The previously given equations predict a Maxwell–Boltz-

mann distribution for the equilibrium case. This can be seen

by solving the current relation for , which gives

(71)

This is problematic for low temperatures and degenerate

semiconductors [45], [46]. In the case of the DD model,

extended models can be derived by putting Fermi–Dirac

statistics into the BTE [47]. Basically, the same procedure

as for extended DD models is applicable for hydrodynamic

models, and a heated Fermi–Dirac distribution has been

used [11], [19], [46]. However, even though a Fermi–Dirac

distribution correctly reproduces the equilibrium case, it

becomes questionable for the description of nonequilibrium

transport.

VII. NONPARABOLICITY EXTENSIONS

The general hydrodynamic equations (30)–(32) are valid

for any band structure. However, parabolicity assumptions

are invoked to derive the closure relations (36)–(42). Fur-

thermore, nonparabolicity effects enter the hydrodymamic

equations through the models used for the collision terms.

A good example is the mobility whose homogeneous values

are frequently obtained through measured characteris-

tics. This mobility contains the full information of a real band

structure, something which is much more difficult to obtain

with MC simulations where the mobility has to be modeled

using microscopic scattering rates [20].

As pointed out in the discussion of (16), there is no simple

relationship between the average energy and the average
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velocity in the general case. For parabolic bands, the car-

rier temperature is normally defined via the average carrier

energy as

(72)

Unfortunately, there is no similar equation for nonparabolic

bands. Another possibility is to define the temperature via

the variance of the velocity as [16]

(73)

Definitions (72) and (73) are consistent with the thermody-

namic definition of the carrier temperature in thermodynamic

equilibrium, and both are identical for nonequilibrium cases

when a constant carrier mass is assumed, which in turn cor-

responds to the assumption of parabolic energy bands. How-

ever, large differences are observed when a more realistic

band structure is considered [16], [48].

A. The Generalized Hydrodynamic Model

Thoma et al. [16], [48] proposed a model which they

termed the generalized hydrodynamic model. Instead of

using the average energy and the temperature as variables

in their formulation, they opted for a temperature-only

description. To obtain a form similar to standard models,

they defined the temperature according to (73), which differs

significantly from (72) for nonparabolic bands. Instead of

the momentum-based weight functions and , they

used the velocity-based weight functions and to derive

the moment equations of order one and three. Without

assuming any particular dispersion relation, they derived the

following equations for the current and energy flux density:

(74)

(75)

(76)

All relaxation times and mobilities are modeled as a func-

tion of , and explicit formulas were given in [49]. The ad-

vantage of this formulation is that it can be applied to arbi-

trary band structures. Thoma et al., however, used parame-

ters extracted from MC simulations employing Kane’s dis-

persion relation. As these parameters are extracted from ho-

mogeneous MC simulations, their validity for realistic de-

vices is still an open issue. In a recent investigation [50],

the relaxation times were calculated from full-band MC bulk

simulations. Good agreement of transit-times of SiGe het-

erostructure bipolar transistors was observed in comparison

with full-band MC simulations.

B. Model of Bordelon et al.

Bordelon et al. [51], [52] proposed a nonparabolic model

based on Kane’s dispersion relation. As weight functions,

they used one, , and , and closed the system by ignoring

the heat flux. To avoid the problem with the missing energy-

temperature relation, they formulated their equation system

solely in . Their model is based on two assumptions: first,

they assumed that the diffusion approximation holds. Re-

garding the energy tensor, this allows for the following ap-

proximation:

(77)

where Kane’s relation has been used. The problem is now to

express the right side of (77) by available moments without

introducing new unknowns. This is not exactly possible, and

the approximation

(78)

has been introduced. Defining ,

they obtained

(79)

(80)

with . In the comparison made in [38], the pre-

dicted and curves agree quite well with the MC data,

even with this simplified model for .

C. Model of Chen et al.

In [53], Chen et al. published a model which they termed

the improved energy transport model. They tried to include

nonparabolic and non-Maxwellian effects to a first order.

Their approach is based on Stratton’s, the use of Kane’s dis-

persion relation, and an Ansatz for the distribution function

(81)

which contains a non-Maxwellian factor . They give the

following equations:

(82)

(83)

with

(84)

(85)

Interestingly, the non-Maxwellian factor does not show up

in the final equations. Sadovnikov et al. [49] showed that

Chen’s model shows some weakness in predicting proper ve-

locity profiles and is not consistent with homogeneous sim-

ulation results.

D. Model of Tang et al.

This model is based on Kane’s dispersion relation and

takes particular care of correctly handling the inhomogeneity

effects, which are commonly ignored [43]. By observing that

and show nearly no hysteresis
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when plotted against the average energy for several n - n

- n structures, Tang et al. proposed the following closure

relations:

(86)

(87)

(88)

with and being single-valued fit functions. The

use of Kane’s dispersion relation for the MC simulation

might limit the validity of the preceding expressions. Un-

fortunately, the additional convective terms are difficult

to handle and cause numerical problems [54]. Therefore,

simplified expressions have been given in [55].

E. Model of Smith and Brennan

Smith and Brennan [19] derived two nonparabolic equa-

tion sets for inhomogeneous and degenerate semiconductors

(see also [56], [57]). They used both Kane’s dispersion rela-

tion and the power-law approximation after Cassi and Riccò

[18] because the former cannot be integrated analytically.

Furthermore, they used Fermi–Dirac statistics to include

degeneracy effects. They showed that the typically em-

ployed binomial expansion of the Kane integrands loses its

validity, and physically inconsistent results are obtained. The

power-law approximation, on the other hand, approaches

the parabolic limit and has a larger range of validity.

Their approach has two drawbacks: first, as pointed out

previously, Cassi’s density of states (19) cannot capture the

nonparabolic nature of the bands; therefore, it is of limited

use for a nonparabolic transport model. The authors them-

selves noted that for , incorrect transport coefficients

are obtained. Therefore, they obtained the parameter by a

fit to the low energy range eV of Kane’s dispersion re-

lation. As can be seen in Fig. 2, this gives near-parabolic be-

havior of the density of states. Second, a heated Fermi–Dirac

statistics provides no improvement over a heated Maxwell

statistic in terms of hot-carrier transport.

F. Model of Anile et al.

Anile and Romano [58] and Muscato [59] derived

closed-form expressions for the closure and using an

Ansatz for the distribution function based on the maximum

entropy principle. In addition, they were able to derive

expressions for the collision terms. They found that their

model fulfills Onsager’s reciprocity principle and gave a

comparison with other hydrodynamic models which violate

the principle. Although Anile’s model has a sound physical

basis, it is of limited practical use. Despite its complicated

nature, the model is based on an analytical expression

for the distribution function, which was assumed to be of

Maxwellian shape. Extended models were given in, e.g.,

[60]. Note, however, that Onsager’s reciprocity theorem

is valid only near equilibrium, a condition significantly

violated in today’s semiconductor devices [61], [62].

G. Comparison

The use of more realistic band structure models than the

parabolic band approximation adds severe complications to

macroscopic transport models. Even for the rather simple

Kane dispersion relation, no closed-form equations can be

given. Therefore, all models rely on more or less severe ap-

proximations. Whereas Thoma’s model is applicable for gen-

eral band structures, Tang’s models attempt to capture non-

local effects. A comparison of the simple ET model with the

expressions given by Thoma, Lee, Chen, and Tang for silicon

bipolar transistors is given by Sadovnikov et al. [49], where

good agreement with MC data was obtained for the models

of Thoma and Tang.

VIII. EXTENSIONS FOR SEMICONDUCTOR ALLOYS

The derivations given previously are restricted to homo-

geneous materials where the effective carrier masses and

the band edge energies do not depend on position. Over the

last few years, extensive research has been made concerning

compound semiconductors where the inclusion of the

carrier temperature in the transport equations is generally

considered a must. To properly account for the additional

driving forces due to changes in the effective masses and

the band edge energies, the ET models have been extended

accordingly. The foundation for these extensions was laid in

the pioneering work by Marshak for the DD equations [47],

[63]. These concepts have been applied to the ET models by

Azoff [11], [23], [64]. In the case of a position-dependent

parabolic band structure, the force exerted on an electron is

given as

(89)

These additional forces give rise to an additional component

in the current relation, and the electric field is replaced by an

effective electric field which also contains the gradient of the

band edges

(90)

(91)

An extension to nonparabolic band structures has been pre-

sented by Smith et al. [19], [56].

IX. MULTIPLE BAND MODELS

Bløtekjær’s [3] equations were originally devised

for semiconductors with multiple bands. Woolard et al.

[65]–[67] extended these expressions for multiple non-

parabolic bands in GaAs. Other models for compound

semiconductors can be found in [68], [69]. Wilson [70]

gave an alternate form of the hydrodynamic model, which

he claims to be more accurate than that reported in [3].

Another multivalley nonparabolic ET model was proposed
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in [71]. Due to the complicated band structure of III–V

semiconductors, the effective electron gas approximation is

even more critical than for silicon. This manifests itself in

large hysteresis loops in the relaxation times [72], [73].

X. BAND-SPLITTING MODELS AND HIGHER ORDER

MODELS

As device geometries are further reduced without ac-

cording reduction of the supply voltages, the electric field

occurring inside the devices increases rapidly. Furthermore,

strong gradients in the electric field are observed. These

highly inhomogeneous field distributions give rise to dis-

tribution functions which deviate significantly from the

frequently assumed Maxwellian distribution. Furthermore,

as has been pointed out in [15], [74], the distribution

function is not uniquely described using just the average

carrier energy. This is depicted in Fig. 5, which shows

some electron distribution functions inside an n - n - n

structure obtained by MC simulation. Points A and B are

in the channel, while points C and D are taken from the

drain region. In the drain region, the overpopulation of the

high-energy tail is obvious, whereas in the channel it is

underpopulated, showing a significant thermal tail [75].

Several moment based models have been proposed so far,

which aim at obtaining information about the distribution

function in addition to the average energy. One approach is

to split the energy range at some characteristic energy and

handle both energy ranges with a two-population and two-

temperature model [76], [77]. As these models were aimed at

modeling impact ionization, the band gap energy was taken

as the characteristic energy. This approach leads to various

additional macroscopic parameters which model the tran-

sitions between the two energy regions. Determination of

these parameters relies on carefully set up MC simulations.

Due to this specialization to impact ionization, this model

would have to be reformulated if another energy range is of

interest, as is the case for the calculation of gate currents.

Thus, this approach is difficult to generalize if both effects

need to be captured at the same time, which is demanded

for state-of-the-art devices. A special formulation using two

electron populations has been proposed in [78] for those re-

gions where the high-energy tail is heavily populated. In [79],

a simplified version of the two-energy model [76] is given

which used assumptions similar to those made by Cook and

Frey [80] for ET models.

In [30], [81], it has been shown that important additional

information about the distribution function can be obtained

from a six-moments transport model. This model can be

derived by the method of moments by including the two

next higher order moments compared to a four-moments ET

model [25], [82].

XI. ELECTROTHERMAL EXTENSIONS

One of the problems resulting from the reduction in device

geometries is that the generated heat has to be kept small

(a)

(b)

Fig. 5 Electron temperature and distribution functions at
four characteristic points inside an n - n - n structure with
Lc = 200 nm. The average energies at the points A and C are the
same, whereas the distribution function looks completely different.
Note the high-energy tail at point D where the carrier temperature
is 370 � K.

because self-heating effects significantly influence the de-

vice characteristics. To capture these self-heating effects, the

lattice heat flow equation has to be added to the transport

models. Furthermore, the moment equations have to be ex-

tended to account for a nonconstant lattice temperature. A

detailed treatment of this subject was given by Wachutka [5]

for the DD equations. Chen et al. gave an extension for ET

models in [83]. Benvenuti et al. introduced a thermal-fully

hydrodynamic in [84].

XII. CRITICAL ISSUES

The previously given models employ various approxima-

tions of different severity. As these approximations have been
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discussed extensively in the literature, they will be summa-

rized in this section.

A. Closure

The method of moments transforms the BTE into an equiv-

alent, infinite set of equations. A severe approximation is the

truncation to a finite number of equations (normally three or

four). The equation of highest order contains the moment of

the next order, which has to be suitably approximated using

available information, typically the lower order moments.

Even though no form of the distribution function needs to be

assumed in the derivation, an implicit coupling of the highest

order moment and the lower order moments is enforced by

this closure. Furthermore, the method of moments delivers

more unknowns than equations which have to be eliminated

by separate closure relations.

One approach to derive a suitable closure relation is to

assume a distribution function and calculate the fourth-order

moment. Geurts [85] expanded the distribution function

around a drifted and heated Maxwellian distribution using

Hermite polynomials. This gives a closure relation which

generalizes the standard Maxwellian closure. However,

these closures proved to be numerically unstable for strong

electric fields. Liotta and Struchtrup [32] investigated a

closure using an equilibrium Maxwellian, which proved

to be numerically very efficient but with unacceptable

errors for strong electric fields. For a discussion on heated

Fermi–Dirac distributions see [19], [57]. Different closure

relations available in the literature are compared in [38].

By introducing a non-Maxwellian and nonparabolicity

correction factor

(92)

in the closure for the highest order moment

(93)

we obtain the following expression for the energy flux:

(94)

(95)

The lower order moment equations are not affected by the

shape of the distribution function. is given by (64) and

represents the energy flux, if the fourth moment is evalu-

ated from a Maxwellian distribution function. The correc-

tion factor is the kurtosis of the distribution function and

gives the deviation from the Maxwellian shape. As shown in

Fig. 6, the kurtosis behaves fundamentally differently than

in bulk [30] where a unique relationship exists.

Especially at the drain side of the structures we observe a

strong deviation from the Maxwellian shape. This deviation

corresponds to the high-energy tail in Fig. 5. Note that (95)

Fig. 6 The kurtosis for different n - n - n structures. Note the
different range on the x-axis which is required for small channel
lengths.

contains both a gradient of and a gradient of . Further-

more, has a different sign in the channel and the drain

region.

B. Tensor Quantities

An issue which has only been vaguely dealt with is the

approximation of the tensors by scalar quantities, such as the

carrier mass and the carrier temperature. One-dimensional

(1-D) simulations have been carried out in [15], which

showed that the longitudinal temperature component is

larger than the transverse temperature component . This

indicates that the distribution function is elongated along the

field direction and thus that the normally assumed equiparti-

tion of the energy is invalid (see Fig. 7). A rigorous approach

has been taken by Pejčinović et al. [86], who model four

components of the temperature tensor. They observed no

significant difference between the scalar temperature and

for ballistic diodes and bipolar transistors but a 15%

difference for submicrometer MOSFETs in the linear region

of the transfer characteristics.

In addition, it has been observed that the energy tensor

is not a single-valued function of the average energy [43],

and models using available moments have been given [see

(86) and (88)].

C. Drift Energy Versus Thermal Energy

Another common approximation is the neglection of the

drift energy in the average carrier energy [80]

(96)

As has been pointed out by Baccarani and Wordeman [87],

the convective energy can reach values comparable to the

thermal energy. A plot of the ratio

(97)
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Fig. 7 Main components of the temperature tensor T̂ for two
different n - n - n structures.

inside n - n - n structures is given in Fig. 8. As can be seen,

the error introduced by this approximation can reach 30% at

the beginning of the channel where the carrier temperature

is still low, and a velocity overshoot is observed. This effect

has been studied in [87], [88].

However, when looking at the transport equations, we see

that the gradient of the convective energy is of even more

importance than its absolute value. A plot of the ratio

(98)

is given in Fig. 8, which indicates that this term is becoming

important for nanoscale devices. In particular, pronounced

spikes are observed at both junctions, the importance of

which on fundamental quantities like the particle current is

yet to be determined.

D. Relaxation Times

The relaxation times have traditionally been derived from

homogeneous field measurements or MC simulations. For a

homogeneous field, there is a unique relationship between

the electric field and the carrier temperature via (5), which

can be used as a definition for . However, due to the scat-

tering operator in Boltzmann’s equation, the relaxation times

depend on the distribution function. Since the distribution

function is not uniquely described by the average energy,

models based on the average energy only are bound to fail.

Furthermore, the band structure plays a dominant role. Nev-

ertheless, all models should be able to correctly reproduce

the homogeneous limit. In the following, some models for

silicon are reviewed.

1) Mobility: Two models for the energy dependence of

the mobility are frequently used, the model after Baccarani

et al. [41], [87]

(99)

(a)

(b)

Fig. 8 The ratio of hmu =2i and hEi and the ratio of the
gradients for different n - n - n structures.

and the model after Hänsch [42], [89]

(100)

Under homogeneous conditions the energy flux is propor-

tional to the particle current

(101)

which can be used to simplify (100)

(102)

As has been shown in [15], [90], (102) reproduces the

mobility quite well in the regions with increasing . How-

ever, for decreasing , (100) should be used [15], [36]. A

comparison of the three models with MC data is given in

Fig. 9 and 10. All models have been evaluated using the data
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(a) (b)

(c)

Fig. 9 Comparison of different mobility models with MC data.

from the MC simulation for an n - n - n structure with

nm, once with kV/cm and once with

kV/cm. For an electric field smaller than 100

kV/cm, (100) gives reasonable errors, but breaks down for

larger electric fields. However, (100) is the only model that

captures the hysteresis properly and thus the mobility at the

beginning of the drain region. The hysteresis in the other

models stems from the doping dependence of .

A different method for modeling the mobility has been

proposed in [43], which is based on a separation of the homo-

geneous and inhomogeneous parts. They suggest modeling

the collision term as

(103)

with being the homogeneous mobility. The second term

of (103) can then be moved to the left side of (31) to give a

Stratton-like energy gradient expression . Ac-

curate results for the quantity were obtained with (70),

which is based on theoretically considerations [44].

2) Energy Relaxation Time: The simplest approach for

modeling the energy relaxation time is the use of a con-

stant value. Typically used values for silicon at room tem-

perature are in the range ps , although values in the

range ps have been used [72]. A constant value

is insofar justified as MC simulations show only a small hys-

teresis and a small energy dependence [43]. However, dif-

ferent energy dependencies have been published. The differ-

ences seem to originate from the different band structures

employed in the various MC codes.
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(a) (b)

(c)

Fig. 10 Comparison of different mobility models with MC data.

Based on theoretical considerations, Baccarani et al. [41],

[87] proposed the expression

(104)

Equation (104) should be used together with (99) to cor-

rectly reproduce the homogeneous limit. Within Hänsch’s

approach, is required only to be independent of the carrier

temperature for (100) to correctly predict the homogeneous

limit. When

(105)

is used in the Hänsch mobility models (100) and (102), the

models are equivalent to Baccarani’s model in the homo-

geneous case. A discussion of the inconsistencies resulting

from mixing arbitrary energy-dependent mobility and energy

relaxation time models can be found in [91].

Agostinelli et al. [92] proposed a model for the energy

relaxation time for silicon which is fit to the data of Fischetti

[93]

ps

for

for
(106)

with eV . Another more elaborate fit to the data

of Fischetti is given in [94]. A maximum value of 0.68 ps

seems to be too high, and yet another fit to newer data from

Fischetti has been published by Hasnat et al. [95] as

ps
(107)

with a maximum value of approximately 0.42 ps.

A detailed comparison of the effects of both relaxation

times and transport models on the performance of silicon

bipolar transistors is given in [49]. As the temperature profile
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occurring inside the device is very sensitive to , this dis-

agreement is rather unsatisfactory, although we believe for

bulk silicon it should be in the range ps .

3) Energy Flux Mobility: The ratio of the energy flux

mobility and the mobility is usually modeled as a con-

stant with values in the range (see, for instance,

[15], [43]). In [43], it is proposed to model as

(108)

which is in analogy to (103). Here, is the homogeneous

energy flux mobility. Expressions for and can be

found in [43].

E. Spurious Velocity Overshoot

Models based on Bløtekjær’s approach have been fre-

quently associated with spurious velocity overshoot (SVO),

that is, nonplausible spikes in the velocity characteristics

which do not occur in MC simulations. This effect can be

seen in Fig. 11, where a spurious peak in the velocity profile

which does not exist in the MC simulation is clearly visible.

Several theories have been put forward to explain this ef-

fect. Some authors argue that it is related to the hysteresis

in the mobility [74], whereas others relate it to nonparabol-

icity effects [52]. Still others argue that it is related to the

closure of the ET equation system [88]. The improvement

obtained by the nonparabolic model [52] is probably due

to the improved closure relation for . As already argued

by [88], SVO is not likely to be caused only by the mo-

bility, because the mobility is not properly modeled in the

whole region and SVO is restricted to a very

small area. In [15], SVO is investigated using different mo-

bility models, and it is found that improvement is possible

when proper mobility models are used. For example, with

the Hänsch mobility model (100), these spikes are strongly

diminished but not completely removed. Unfortunately, MC

simulations show that (100) also overestimates the real ve-

locity overshoot at the beginning of the channel. In [43], SVO

is attributed to the improper modeling of and in (103)

and (108), respectively.

Chen et al. [96] proposed a model based on Stratton’s ap-

proach. In their simplified analysis, they used Baccarani’s

mobility model, which gives in (29) and thus re-

moves any thermal diffusion current inside the whole device,

which is questionable. As a result, SVO is overly suppressed,

and the velocity overshoot at the beginning of the channel is

overestimated.

The error in the closure relation for is important for

explaining SVO [97], as shown in Fig. 11. For these simu-

lations, the relaxation times and mobilities have been taken

from a coupled MC simulator in a self-consistent manner to

rule out any errors introduced by these models. When the

order of the transport model is increased to include six mo-

ments of Boltzmann’s equation [25], the spurious peak is re-

duced. When in addition to the relaxation times, the closure

is also taken from the MC simulation, the spurious peaks dis-

sappear.

Fig. 11 Comparison of velocity profiles delivered by two
transport models with MC data for an n - n - n structure with
L = 200 nm. Both transport models use relaxation times and
mobilities from the MC simulation. In addition, when the ET
model is closed with the data from the MC simulation, the SVO
disappears.

XIII. NUMERICAL ISSUES

The previously given transport models describe the spa-

tial and temporal distributions of continuous quantities such

as the carrier concentration and carrier temperature. As no

closed-form solutions of these equation systems for prac-

tical devices can be given, they have to be solved numeri-

cally. This is done by discretizing the equation systems on

suitable grids. The question of whether a grid is suitable for

the problem under consideration is a complicated issue [98],

[99]. From a practical point of view, however, it can be noted

that improper grids are a common source of errors [100].

The revolutionary idea of Scharfetter and Gummel [1] en-

abled the first successful numerical device simulations and

is still the basis of the most commonly used discretization

schemes. Other schemes based on a different theoretical

background have been proposed, but they still display

similar mathematical properties to the scheme originally

proposed by Scharfetter and Gummel.

As mentioned before, the FHD is hyperbolic in the su-

personic regions, and special hyperbolic methods have to be

used [27], [101]–[103]. Therefore, the Scharfetter–Gummel

scheme cannot be applied to this type of equation. One ap-

proximation is to treat the convective term as a perturba-

tion by freezing its dependence on the state variables at each

linearization step and using the values from the last itera-

tion [104]. However, this approach will degrade the conver-

gence in cases where the variation in space or time is impor-

tant [84]. Thus, to derive a spatial discretization, fluid dy-

namics methods known as upwinding are used [27], [54],

[84], [105]. Other schemes such as essentially nonoscillatory,

and Galerkin methods [106]–[108] also prove to be effec-

tive in solving nonlinear hyperbolic systems. However, these

schemes require a time-dependent term; therefore, they are
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less efficient when applied to steady-state problems. Further-

more, when the convective terms are involved, the handling

of boundary conditions becomes more difficult [103], [109],

[110].

When the convective terms are neglected, Schar-

fetter–Gummel-type schemes can be applied to higher

order transport models. However, as this extension of the

Scharfetter–Gummel scheme is not straightforward, several

variants exist [111]–[116]. In general it can be noted that

the convergence properties degrade significantly when

compared to the classic DD model. Some improvement has

been obtained by refining the discretization scheme [114],

but the problem still persists. Other improvements in terms

of convergence are based on iteration schemes where the

equations are solve in a decoupled manner [8], [117], similar

to an idea of Gummel for the DD model [118].

XIV. VALIDITY OF MOMENT-BASED MODELS

When the critical dimensions of devices shrink below a

certain value (around 200 nm for silicon at room tempera-

ture) MC simulations reveal strong off-equilibrium transport

effects such as velocity overshoot and nonlocality of impor-

tant model parameters. Therefore, the range of validity for

moment-based models has been extensively examined. Fur-

thermore, with shrinking device geometries, quantum effects

gain more importance and limit the validity for the BTE it-

self [119]. Banoo and Lundstrom [120] compared the results

obtained by (56)–(59) with a DD model and a solution of the

BTE obtained by using the scattering matrix approach. They

found that this ET model dramatically overestimates both the

drain current and the velocity inside the device. Tomizawa et

al. [121] found through a comparison with MC simulations

that relaxation time based models tend to overestimate non-

stationary carrier dynamics, especially the energy distribu-

tion. Nekovee et al. [31] compared moment hierarchy based

models with a solution of the BTE and found that their model

fails in the prediction of ballistic diodes because the equation

hierarchy converges too slowly. However, their “moment”

model was based on an Ansatz for the distribution function

using a Maxwellian shape multiplied by a sum of Hermite

polynomials. Indeed, such an expansion of the distribution

function converges too slowly [30], but as there the parame-

ters of the distribution function and not the moments of the

BTE are considered, we do not feel their conclusions are

equally valid for moment-based models. A conclusion sim-

ilar to Nekovee’s was drawn by Liotta and Struchtrup [32],

who found that a hierarchy containing 12 moment equations

was needed to reproduce results similar to those obtained by

spherical harmonics expansions. In their model, the closure

relations were calculated via an Ansatz for the distribution

function; therefore, they cannot easily be generalized to mo-

ment-based models with carefully derived closure relations.

The nonequilibrium transport in nanoscale devices is char-

acterized by the ratio , where is the inelastic mean

free path and is the device characteristic length. Assuming

where and taking the en-

ergy relaxation time to be 0.3 ps for silicon, we have

. This gives – nm depending

on the electron temperature. It takes a distance of at least

for electrons to attain a “local equilibrium” average en-

ergy. Thus, for any device with less than 200 nm, the car-

rier transport in the channel is intrinsically nonstationary. For

– nm, this ratio becomes smaller than one. This

implies that in this quasiballistic regime, even if only 50%

of the transport is ballistic, it is rather difficult to construct

a “universal” hydrodynamic model because the model now

depends on this ratio. In fact, our own simulations show that

in the modeling of , the plot of versus is al-

most a single-valued function of , e.g., . For

nm, is almost linear with a slope of 1.6/3. For

nm, is a straight line with a slope of 3/5.

For nm, is also a straight line but with a slope

of 2/3. This implies that if we want to model in this regime,

we have approximately , where is a func-

tion of . Therefore, when considering devices in the

nanometer regime, it might be wise to compare the solution

of moment-based models to a solution of Boltzmann’s equa-

tion obtained by either MC or other methods.

XV. SIMPLIFIED MODELS

Despite the limitations and approximations contained in

the moment equations given previously, the handling of these

equations is still far more complicated than that of the robust

and well-studied DD equations. Thus, several researchers

have tried to find suitable approximations to simplify the

problem. These approximations were frequently used in

postprocessors to account for an average energy distribution

different from the local approximation. Slotboom et al.

[122] used this technique to calculate energy-dependent

impact ionization rates via a postprocessing model. Cook

and Frey [80], [123] proposed a simplified model by using

the approximations and in a two-dimen-

sional (2-D) silicon MESFET to yield

(109)

Thus, the energy balance equation and the continuity equa-

tion become decoupled, and the complexity of the problem

is considerably reduced. Approximations for GaAs were

also given. Although these approximations might have

delivered promising results, progress in the size reduction of

state-of-the-art devices makes the assumptions and

questionable. In particular, for deep-submicrom-

eter MOSFETs, velocity overshoot influences the electric

field distribution for a given bias condition and effectively

defines a higher drain saturation voltage, which in turn

defines a higher current [124].

To bring the ET equations into a self-adjoint form, Lin et

al. [125] approximated the carrier temperature in the diffu-

sion coefficient by the lattice temperature as

(110)
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which will underestimate the diffusion current by a factor of

– for today’s devices; therefore, this technique cannot

be recommended.

Another simplified model is Thornber’s generalized cur-

rent equation [126], later called the augmented DD model

[127], [128]. In these models, the field dependence of the

transport coefficients is extended to include the gradient of

the electric field. The motivation for this model is very sim-

ilar to (109). However, the augmented DD model incorpo-

rates nonlocality effects using the electric field rather than

the average energy. It can successfully catch nonlocal effects

occurring in the device when the electric field is rising, but

fails to do so when the electric field is abruptly decreasing,

such as near the drain region in MOSFETs. Because of this,

its usefulness in nanoscale device simulation is very limited.

XVI. APPLICATION TO MOS TRANSISTORS

So far, the transport models have been checked with n -n

-n structures. Due to their simplicity, these are the most

commonly used structures when a comparison with MC data

is required. This is mainly because they are 1-D and require

only one carrier type. Therefore, the influence of the various

parameters on basic quantities like the velocity or the carrier

temperature can be more easily separated and interpreted.

As can be seen from the previous examples, even for these

simple structures, such an interpretation is far from trivial.

Although it has been frequently claimed that n -n-n

structures emulate the behavior of MOS transistors, the

most important devices in silicon technology, this is only

partly true. MOS transistors are inherently 2-D devices,

a fact that makes a comparison of moment-based models

with MC more involved. In the following, the most impor-

tant differences to n -n-n structures are compared. The

MC simulations were performed using MINIMOS [129],

whereas MINIMOS-NT [130] was used for the ET model,

which is based on (56)–(58) and (64). Hänsch’s mobility

model (102), a ratio of 0.8, and ps have

been chosen because this is basically the model available in

commercial simulators. No fitting was performed.

The basic quantities velocity and temperature show similar

features for MOS transistors as shown in Fig. 12 and for n -n

-n structures (cf. Fig. 1). However, the velocity overshoot at

the beginning of the channel and the SVO observed in n -n

-n structures coincide in MOS transistors to give a single

overshoot in the pinch-off region.

A striking difference can be observed in the now 2-D elec-

tron concentration, which spreads much deeper into the bulk

than would be expected from MC simulations. A typical situ-

ation is depicted in Fig. 13, where the electron concentration

of an MOS transistor with nm resulting from an

MC simulation is compared with that of an ET simulation.

The overestimated spreading of the carriers in the ET simu-

lation can be clearly seen.

The reason for this effect is that the thermal diffusion of

carriers in the direction normal to the current flow is over-

estimated. Several measures have been taken to reduce this

(a)

(b)

Fig. 12 Comparison of the simulated velocities and temperatures
for two MOS transistors.

Fig. 13 Comparison of the simulated electron concentration of
an L = 130 nm MOS transistor from an MC simulation and
an ET model. Neighboring lines differ by a factor of ten. The
overestimated carrier spreading into the bulk in the ET simulation
can be clearly seen.
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(a)

(b)

Fig. 14 The error in the closure condition given by the kurtosis
� and the ratio of the temperature tensor components T and
T in small MOS transistors.

effect, including the artificial reduction of the heat flux term

by a factor of 0.2 [131].

In a recent study [132], this effect has been related to er-

rors introduced by the closure of the equation system and to

the error introduced by approximating the temperature tensor

with a scalar value. These quantities are shown in Fig. 14

for three MOS transistors. Whereas the kurtosis behaves

qualitatively as in n -n-n structures, the anisotropy ob-

served in MOS transistors is much larger. As the energy is

assumed to be equally partitioned over the components of

the temperature tensor, an overestimation of the temperature

component into the bulk is obtained.

This enhanced spreading of the carriers into the bulk leads

to a complete breakdown of the ET model in the case of par-

tially depleted silicon-on-insulator (SOI) transistors where

the excess carriers recombine in the bulk and virtually turn

the transistor off via the bulk effect. A modified ET model

has been proposed in [132] where both the closure and the

anisotropy was modeled based on empirical corrections. In

MOS transistors, this effect is much less important and has

as such been considered only as a cosmetic problem of ET

models as the body potential is not influenced by this effect.

With respect to the terminal characteristics, it has been ob-

served that ET models deliver higher currents than measure-

ments and MC simulations, whereas the currents from DD

simulations are too low [37], [133]. The sensitivities of the

drain current with respect to a change in the parameter values

were found to be and

for nm and and

for nm. This gives for a 1% change in the en-

ergy relaxation time a 0.01% and a 0.17% change in for

nm and nm, respectively. As such,

is not too sensitive to inaccuracies in the model parameters.

Other quantities, like the impact ionization rate, can be ex-

pected to show a higher sensitivity.

XVII. CONCLUSION

Many different hydrodynamic and ET models have

been developed so far. They rely on either Stratton’s or

Bløtekjær’s approach to find a suitable set of balance and

flux equations. FHDs obtained by the method of moments

are still too complicated to handle due to their hyperbolic

nature. Within the diffusion approximation, hydrodynamic

models simplify to ET models, which form the bulk of the

models in use today. The crucial points are summarized in

the following.

1) Band structure: Accurate description of the band

structure is important for hot-carrier effects. How-

ever, most models in use rely on the single effective

parabolic band model because even for the relatively

simple nonparabolicity correction given by Kane, no

closed-form solutions can be given. By the introduc-

tion of additional relaxation times, information about

the full-band structure can be incorporated into the

macroscopic models. So far, this has been achieved

only for the homogeneous case, and the accuracy of

this approach for deep-submicrometer devices is still

to be determined.

2) Nonhomogeneous effects: The transport parameters

like the mobilities are normally taken from bulk simu-

lations or measurements and modeled as a function of

the average carrier energy. For Bløtekjær’s approach,

this has been shown to give reasonable results inside

the channel region, where the absolute value of the

electric field increases. At the end of the channel

region where the electric field decreases, however,

these models give wrong results. In this region, a cold-

and a hot-carrier population coexist, and the average

carrier energy does not provide enough information to

describe this circumstance. For long-channel devices,
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this region is much shorter than the channel region,

and the error introduced probably small. However, for

devices smaller than approximately nm,

the length of this region is in the order of the channel

length. This implies that the hot-carriers injected into

the drain require a distance similar to the channel

length to relax. Therefore, the influence of this re-

gion will become much more important for future

technologies.

3) Closure: The method of moments transforms the BTE

into an equivalent, infinite set of equations which

has to be truncated to obtain a tractable equation

set. A closure relation has to be formulated for the

highest order moment, which is normally obtained by

assuming a heated Maxwellian distribution function.

This has been shown to be a rather crude approx-

imation for the distribution function occurring in

modern devices. As the lower order equations remain

unchanged by this choice, it is worth noting that the

whole information about the remaining higher order

equations has to be packed into this closure.

4) Anisotropy: For the modeling of the temperature

tensor equipartition of the energy is assumed. This

approximation has been shown to be invalid both in

n -n-n structures and in MOS transistors. As the

lateral component of the temperature tensor has no

influence on the current in n -n-n structures, and

as it only indirectly influences the drain current in

MOS transistors, this feature has been considered of

minor importance. However, the carriers extend much

deeper into the bulk of MOS transistors than predicted

by MC simulations, which influences the modeling

of energy-dependent parameters like the mobility

and impact ionization. For partially depleted SOI

transistors, on the other hand, this feature is crucial,

and ET models cannot be used for the prediction of

transfer characteristics. Rigorous handling of this

issue was found to be difficult, as additional equations

are required for each temperature tensor component,

but empirical corrections achieved promising results.

5) Drift energy: As most ET models are based on the dif-

fusion approximation, the drift energy is neglected. In-

vestigations show that the drift energy can amount up

to 30% of the total energy inside the channel region.

However, to our best knowledge, a detailed investiga-

tion of this approximation on basic parameters like the

drain current and carrier temperature is still missing.

6) Velocity overshoot: As a result of some of the above

mentioned approximations, ET models tend to over-

estimate the velocity overshoot and show an SVO at

the end of the channel region of n -n-n structures. In

MOS transistors, the spurious peak coincides with the

velocity overshoot at the end of the channel and is as

such not explicitly visible. A quantitative study of how

the error in the velocity impairs the overall quality of

ET models in modern MOS transistors is still missing.

7) Hot-carrier effects: As hydrodynamic and ET models

provide only the first two moments of the energy distri-

bution function, modeling of hot-carrier effects is dif-

ficult. It has been shown that the energy distribution

function is not uniquely described by the concentra-

tion and the average energy only. Hot-carrier effects

like impact ionization are particularly sensitive to the

exact shape of the distribution function, and models

based on the local average energy only are bound to

fail. Improvements have been obtained by considering

nonlocal models, which come with their own draw-

backs and heuristics. Extension of the ET model to a

six-moments model has proven to improve the accu-

racy considerably.

From a practical point of view, however, it is of note that only

simple ET models are available in commercial simulators,

which suffer from many of the demonstrated weaknesses. In

such a case, it might be advantageous to compare the results

with MC data or measurements. Of course, this applies also

to devices which operate close to the ballistic limit. Appli-

cation of these models in a “black-box” manner like in the

“golden age” of the DD model m is no longer pos-

sible. This is, however, not related to a principal weakness of

higher order models compared to the DD model, but is rather

a consequence of the complicated physics (e.g., quantum ef-

fects and semiballistic transport) which have to be captured

in miniaturized devices. Despite these limitations, excellent

results have been obtained in carefully set-up simulations.

However, higher order moment based models still require a

lot of fine-tuning and a detailed understanding of the under-

lying physical phenomena.
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