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Abstract: The complex structure of turning aggravates obtaining the desired results in terms of
tool wear and surface roughness. The existence of high temperature and pressure make difficult to
reach and observe the cutting area. In-direct tool condition, monitoring systems provide tracking
the condition of cutting tool via several released or converted energy types, namely, heat, acoustic
emission, vibration, cutting forces and motor current. Tool wear inevitably progresses during metal
cutting and has a relationship with these energy types. Indirect tool condition monitoring systems
use sensors situated around the cutting area to state the wear condition of the cutting tool without
intervention to cutting zone. In this study, sensors mostly used in indirect tool condition monitoring
systems and their correlations between tool wear are reviewed to summarize the literature survey in
this field for the last two decades. The reviews about tool condition monitoring systems in turning
are very limited, and relationship between measured variables such as tool wear and vibration
require a detailed analysis. In this work, the main aim is to discuss the effect of sensorial data on
tool wear by considering previous published papers. As a computer aided electronic and mechanical
support system, tool condition monitoring paves the way for machining industry and the future and
development of Industry 4.0.

Keywords: indirect tool condition monitoring systems; turning; machining; vibration; cutting force;
acoustic emission; temperature; current; industry 4.0
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1. Introduction

As soon as the machining process starts, the contact between tool and workpiece
leads to various events for chip removing and generating a fresh surface [1,2]. The relative
movement between tool and workpiece causes deterioration and is commonly known as
tool wear (TW) [3]. Several types of TW become active during cutting operation; however,
flank wear (FW) is accepted as the main tool life criteria and will be the research subject of
this paper [4].

Prediction of tool life is a serious issue because of the non-linear and dynamic structure of
cutting operations [5]. The complex relationship between parameters is revealed to consider
each operation in itself as a result of dynamic interaction which occurs instantly. Sensors act
as information sources situated around the cutting area and transmit the obtained data as
rapid as possible [6]. Since sensor signals show different behavior according to machining
conditions and TW, then it becomes hard to state the tool condition. For this reason, multiple
sensor systems are preferred for confirmation of the different sensor signals.

Tool condition monitoring system (TCMS) provides online monitoring of cutting oper-
ation bringing several advantages such as prediction of tool life, preventing catastrophic
failures and increasing the productivity and component quality [7]. Cutting tool has a
specialized form produced with a certain material to work under harsh conditions [8].
Basically, monitoring of cutting tool condition avoids unexpected changes, reduces down-
time, obtains desired workpiece dimensions and eventually reduces production costs
and labor [9]. In this manner, FW becomes significant as the first tool life criteria and
optimization of FW is highly necessary depending on optimal cutting conditions [3].

With the increasing prospects from manufacturers such as precise and punctual deliv-
ery which is basically associated with determining the optimum machining environment,
several TCM approaches supported by different methods such as deep learning have been
proposed [10]. In order to overcome the challenges in the future, a new perspective is
required to integrate the TCMS into Industry 4.0 which is defined as the transformation
from machine based manufacturing into digital manufacturing [11,12]. The idea covers
non-human manufacturing environment making enabling it with internet of things and
communication of machines [13]. It is in common with the TCMS and Industry 4.0 target.
As known, for better evaluation and monitoring of tool condition, numerous factors should
be considered in each operation. Therefore, requirements exists such a which system can
correlate the turning variables and tool wear, capable of sensing the changes bad or good
and their effects on tool wear more or less. That is why indirect TCMS and decision-making
methods in turning are discussed trying to demonstrate the trends.

The main aim of this study is to summarize the indirect TCMS in detail. The subdivi-
sions of these systems, past studies about TCMS in turning and the relationship of different
sensor signals with FW will be investigated. These systems play a fundamental role for
Industry 4.0 and heads for cost optimized manufacturing. An increasing trend named
hybrid approaches motivates researchers to combine different methods for robust design
and accurate evaluation of results [14–16]. TCMS allows for the research complex relations
between turning parameters and process variables if it is accommodated to these systems
traditional methods, i.e., analysis of variance, Taguchi, artificial neural network and fuzzy
logic or a newly developed method, i.e., the bees’ algorithm [17]. This approach enables
to correlate sensorial data with TW and to understand the progression of wear without
stopping the operation.

In this study, TCMS and its subsection, indirect TCMS, are summarized, supported
with the published literature covering their structure and main approaches first. Then,
sensors used in indirect TCMS such as cutting forces, AE, vibration, temperature, current,
sound and image processing along with FW and SR are outlined with their advantages and
disadvantages. Data acquisition and signal processing methods are evaluated considering
decision-making approaches such as artificial neural networks, fuzzy logic, hidden Markov
model, support vector machine and ANFIS. Lastly, critical analysis and trends are outlined
to demonstrate the current developments in this field in the perspective of the authors.
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2. Tool Condition Monitoring Systems

During more than 40 years of the studies about TCMS, the main focus has remained
the same in terms of researchers and manufacturers: to recognize the tool state with several
detection systems based on sensors and signal features. Since a single sensor had no
capability to detect all or majority of the changes in an operation, multiple sensors needed
to be applied in the past. The other side of this issue covers the software part for better
understanding of the machining. In the first efforts in this field, Dornfeld and Pan [18]
integrate AE for chip formation and Balakrishnan et al. [19] utilized both cutting force and
AE together. After these studies, neural networks and pattern recognition based approaches
were tried for decision making for real time monitoring in several papers [20–22]. From
this point, commercial types of TCMS endeavored to integrate covering plenty of industrial
companies [23]. Advanced TCMS have been extended with expedition of communication
systems and the increase of internet from 2000 due to the possibility of purchasing sensor
systems worldwide from the researchers in this field [24]. To date, comprehensive sensor
technologies, signal processing and decision-making strategies have been applied, which
will be further explained. Therefore, there was a striving in the long past of the TCMS to
improve the machining operations integrating intelligent systems and to reach unmanned
manufacturing with minimized error and high reliability.

Cost optimization and productivity became the main purpose in industry [25,26].
Breakdowns depend on tool breakage cause cutting tool-related downtime and expense
which possess a significant place in overall cost [27]. In unmanned manufacturing, online
monitoring of TW is necessary for productive usage of tool in lifetime and to prevent tool
breakage. FW develops on the main cutting edge of a cutting tool as a result of the friction
between cutting tool and workpiece [8]. Additional to determining desired tool life, FW
affects directly SR and dimensional accuracy of workpiece. In the absence of TCMS, power
consumption and manufacturing cost increase, dimensional accuracy, authority on process
and sustainability decrease [28].

TCMS are examined in two different categories according to the approach of evalua-
tion of TW in machine tools [29]. Direct methods require measuring the TW on cutting tool
as area, length or width via an imaging technology. Main disadvantage of this method is to
cause machine downtime and prolong manufacturing times [30]. Indirect methods on the
other hand enable online monitoring of TW without intervention to process using sensor
systems. Indirect methods are based on the measurement approach establishing a correla-
tion between TW and sensor signals (CF, acoustic emission (AE), vibration, temperature,
motor current/power, sound, SR). Some studies have been performed in the past which
reviewed the TCMS from different viewpoints. The success of sensorial data in detecting
TW is an aim in this study, primarily. In this context, TW types except for FW were not
considered deliberately, and mostly preferred sensors and signal processing methods in
TCMS in turning were investigated to outline the literature.

3. Indirect Tool Condition Monitoring Systems

Monitoring of tool condition is a constraining and unstable process in machining
operations [31]. TW is both inevitable and necessary for chip removing and manufacturing
new product. With generating new surface, TW proceeds with time, and sudden changes
occur which affect the wear progression more or less. Depending on chip formation,
vibration occurrence, or inhomogeneity of material structure, some unintended contacts
between tool and workpiece take place [32]. These unpredictable challenges make difficult
to determine tool life precisely. The need for TCMS arises from the natural development of
TW and mentioned difficulties. It was stated from [33] that it can be possible to arrange the
tool position for determined contact conditions between tool and workpiece with prediction
of TW. At this point, indirect TCMS presents a non-destructive, easy and sustainable
approach without interference to machining system [34]. The main focus is to demonstrate
and investigate the papers which have motive to associate the sensor signals with FW via
indirect TCMS. As it is demonstrated in Figure 1, to evaluate TW with various measurement
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devices, it is preferred roughness probe to measure SR, dynamometer to measure cutting
forces, current sensor to measure motor current, accelerometer to measure vibration,
pyrometer to measure temperature, AE sensor to measure AE, microphone to measure
sound. Moreover, Figures 2 and 3 show examples of TCMS developed before to monitor FW
in turning. In the aspect of indirect TCMS, two types of measurement become prominent
to further evaluation of gathered data. The first one is online monitoring of various data
performed with sensors such as vibration, AE, CF, temperature, sound and current. The
data collection from these sensors continues throughout operation without stoppage. The
other type of measurement is off-line monitoring namely SR and TW which needs to be
stopped of machining. In Tables 1 and 2, publications used different methods in indirect
tool condition monitoring system, and publications that used decision making methods in
indirect tool condition monitoring system are listed respectively.

 

Figure 1. General outline of indirect tool condition monitoring system (TCMS) for turning.

 

Figure 2. An example for an indirect tool condition monitoring system [5].
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Figure 3. An example for an indirect tool condition monitoring system [35].

Table 1. Publications that used different methods in indirect tool condition monitoring system.

Method
Cutting
Forces

Acoustic
Emission

Vibration Temperature Sound Current
Image

Processing

Publications [4,35–46] [4,5,43,47–53] [5,33,36,40,50,54–60] [31,39,48,61–68] [69–73] [5,6,73–75] [72,76–81]

Table 2. Publications that used decision making methods in indirect tool condition monitoring system.

Method
Artificial Neural

Network
Fuzzy Inference

System
Hidden Markov

Model
Support Vector

Machine
Adaptive Network Based
Fuzzy Inference System

Publications [35,82–86] [5,84] [60] [87–91] [92–98]

3.1. Cutting Forces

At the beginning of the machining, the cutting tool is sharp [99]. With the effect of
high pressure and temperature, material loss occurs, and the contact conditions between
tool and workpiece change in the progressive passes of machining [100]. The sharpness
of the cutting tool reduces and the cutting process becomes difficult continuously [101].
Inevitably, there is need for higher CF to remove chip from material surface under same
cutting conditions [102]. This situation refers to a relationship between TW and CF in
theory. Besides, with the increased area between tool and workpiece as a result of TW,
the same pressure generates more CF. Researchers intended to use the direct proportion
between these two-process variable, CF measurements performed via several methods in
the past. An example for cutting force based TCMS is given in Figure 4.

It is suitable to measure the three components of cutting forces during turning op-
eration since each of them can be related to different kinds of TW. Different types and
mechanisms of TW can progress on flank face or rake face depend on the load factors [4].
In addition, the cutting forces were generally measured in three dimensions, namely, tan-
gential, axial and radial axes. For a clear definition between TW and CF components, it is
necessary to investigate for each type of TW separately.

Kuntoğlu and Sağlam [5] performed an experimental study to investigate the sensor
features and to find the relationship between CF components and FW in turning of AISI
5140. It was stated that tangential and axial cutting forces were highly reliable on mon-
itoring of FW. Aslan [36] executed optimization and analysis of CF components during
turning of AISI 5140 steel. The prediction accuracy and total percent contribution of cutting
parameters were found lower for radial CF than tangential and axial cutting forces. Davim
and Baptista [38] intended to find relationship between TW and cutting forces in machin-
ing silicon carbide reinforced aluminum. According to them, FW was the predominant
TW, and three components of cutting forces demonstrated an increasing trend with FW.
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Moreover, axial and radial cutting forces were found more sensitive to FW. Suarez et al. [45]
committed an investigation on turning of a nickel based alloy Haynes 282 to relate cutting
force and TW. They reported that there was no visible relation between cutting forces and
TW. Remedna and Rigal [42] investigated the evolution of tangential CF and TW during
time in hard turning of an alloyed steel. It was observed that because of the mechanical
contact between cutting tool-workpiece and machine tool cutting tool causes increasing in
CF and changes its direction. Oraby and Hayhurst [41] demonstrated that tool force ratios
provide more sensitive information using non-linear regression model for prediction of
TW and tool life. They reported that force ratios are more accurate than absolute values
of forces in predicting TW and tool life. El Hakim et al. [39] showed that in hard turning
of high alloy steel with secondary hardening operation, CF and FW represented increas-
ing trend simultaneously. Kuntoğlu and Sağlam [4] observed that tangential CF signal
and FW increases with pass number in dry turning of AISI 1050 steel. Scheffer et al. [43]
developed a system based on monitoring of FW in hard turning using three component
dynamometer. All CF components demonstrated increasing behavior with increasing
TW. Özel and Nadgir [35] developed a model based on CFs during hard turning of H-13
steel. According to results, it was possible to predict the FW for various cutting conditions.
Sikdar and Chen [44] tried to correlate FW and component forces in turning of AISI 4340
steel. It was reported that tangential CF had the largest value pursued by axial and radial
forces, respectively. It was seen that with increasing FW area, all components of CFs begin
to increase. Kene and Choudhury [40] carried out an experimental investigation based on
hard turning of EN24 steel for sensor fusion using CF alongside SR and vibration. Tool FW
was predicted using different sensor signals and fusion approach provided better results
than single sensor. Brinksmeier et al. [37] focused on measuring CFs and TW in high speed
diamond turning, and it was found that both CFs and FW demonstrated increasing trend
in time. Wu et al. [46] investigated micro groove tools for improving TW resistance in
turning of AISI304. The authors researched FW and CF components and found that they
indicated both forces and FW increase during time.

sented increasing trend simultaneously. Kuntoğlu and Sağlam 

 

–

Figure 4. An example for cutting force based indirect tool condition monitoring system [103].

In references [4,5,35–46], a general opinion about the CFs is the increase in time
with TW, shows sudden increase before tool breakage and decrease after tool breakage.
Moreover, it can be stated that there is a consensus for dynamometer; this sensor is
necessary for monitoring tool condition safely, reliably and accurately providing online
information about tool life, TW condition and possible tool breakage.

Advantages and disadvantages: Dynamometer is a favorable sensor for this purpose
due to its sensitivity and high reliability on measuring cutting forces. Dynamometer
based CF measurement seems very popular and proper for reliable applications. Since
the sensor is situated under the cutting zone, even small load changes can be detected.



Sensors 2021, 21, 108 7 of 32

Although having serious investment cost, dynamometer was the most preferred sensor
in the last 20 years in indirect TCMS. Dynamometer is the first choice for researches in
terms of using sensor-based systems in turning which exhibits the reliability of this sensor
in developing industry. On the other hand, the integration of the sensor is a challenging
issue on occasion since its connection needs to be arranged considering the carriage and
tool holder mechanism. In the scope of this study, FW related dynamometer usage is about
19.6% of all the presented papers in the last 20 years. The preference rate is high compared
with the other indirect sensors which indicate the success of this sensor. For the future
prospects, dynamometer integrated to machine tools initially is needed considering the
importance of this sensor mentioned before.

3.2. Acoustic Emission

Acoustic means the science of sound including the vibration and noise which re-
searches the propagation of their waves in solid, liquid or gas mediums. However, AE
states the radiation of strain waves in a material subjected to an external load. This exposure
leads to deformation of material in different levels such as degradation, breakage or wear.
In other words, AE can be defined as the energy release that takes place in the material
in micro scale which is deserted from other types of energies for example vibration, force
and sound [6]. In machining and especially during turning, continuous contact among
the cutting tool and workpiece produces a variety of shaped chips which causes different
types of wear on the cutting tool as a result of plastic deformation [4]. The interaction
between cutting tool, workpiece and chip appears as the main source of AE which end
up with the friction, TW and tool breakage, deformation at contact zones, chip collision,
chip breakage and chip tangling [104]. Among these effects, tool and chip breakage and
some of the TW types, namely, chipping or built up edge, generate high amplitude AE
signals, more commonly known as AE burst signals [84]. On the other hand, continuous
type AE signals which possess low amplitude are generated with chip removing, TW and
chip tangling. The characterization of AE signals provides information about machining
mechanism and ensuing events in the cutting area throughout metal removing. Several
AE signal features were applied in the past to distinguish worn and undamaged cutting
tool [105]. That is why AE applications became the most popular technological approach in
monitoring turning operations among the sensor systems in the last two decades compared
to earlier. In Figure 5, an AE based TCMS is demonstrated.

The prominent motive of using the AE method is its capability of the sense the
oncoming events and provides opportunity to take precautions for unexpected develop-
ments [106]. A similar approach was utilized in detecting earthquakes as it can be applied
to determine the magnitude, duration and center of the earthquake. In this manner, AE
method can be used as an early warning system especially in preventing failures which
can be useful in practice for reducing cost during manufacturing processes. As a result, AE
sensor is a very significant tool for the improvement of tool life, sustainability of machining
process and administration of metal cutting operation [107].

In addition to providing information about different components such as cutting tool,
workpiece and produced chip, easy implementation of the AE sensor brings esteemed
advantage [108]. Since the closeness of a sensor to the cutting area increases the precision
of the collected signals, small-dimensioned AE sensor possesses another advantage. The
adaptation of the sensor can be performed with screw-nut connection which provides great
convenience in determining the location.

Considering its benefits, wide range of usage of the AE sensors is an expected result
with the reflection capability of the healthiness of the cutting tool. Kuntoğlu and Sağlam [4]
compared the AE and tangential CF signals at the time of tool breakage during turning
AISI 1050. They found that tangential CF provides significant information at the breakage
moment; however, AE signals detect chipping before the failure and give considerable clue
about the oncoming event. Bhuiyan et al. [48] applied AE sensor into turning operation
during machining ASSAB 705 steel to research the frequency ranges of TW and plastic
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deformation of workpiece material. It was reported that the separation of the frequency
of TW and plastic deformation was difficult during turning. According to them, when
the material removal rate or TW demonstrates increasing trend, AE signal also increases.
Maia et al. [51] proposed an innovative approach using AE sensor during turning of AISI
4340 steel to determine the tool life and wear mechanisms. According to the results, newly
developed method of power spectral density used for processing AE signal provides
notable information about TW rate and tool life. Moreover, the proposed method was
found as sensitive and effective in detection of wear mechanisms. Kuntoğlu and Sağlam [5]
indicated that AE sensor signal is one of the major indicator of tool breakage alongside
vibration and CF signals. Scheffer et al. [43] proposed a TCMS based on monitoring
of FW in hard turning using AE sensor. AE signals indicated decreasing trend during
the normal worn phase and increasing behavior because of high temperatures as FW
increases. Bhuiyan et al. [47] proposed an AE sensor based monitoring system in turning
of ASSAB-705 steel as it represented the chip formation on tool state. It was found that
TW can be detected as decreasing with chip breakage and verification was performed.
Neslusan et al. [52] detected tool breakage successfully during hard turning of 100Cr6 steel
using different AE sensor signal parameters. Chethan et al. [49] focused on optimization
of machining parameters and TW in turning of Nimonic-75. With the help of machine
vision, AE sensor signal parameters successfully measured the wear area. Chiou and
Liang [50] carried out an analysis on AE signals to detect chatter vibration with TW
effect in turning of 6061-T6 aluminum workpiece material. It was demonstrated that AE
root mean square signals effectively distinguish fresh and worn tools, confirming chatter
vibrations. Wang et al. [53] used AE sensor for TW evaluation and categorized burst and
continuous signals by their triggering mechanisms in turning of Inconel 182 material.
According to results, tool FW can be detected via burst signal which occurred from fracture
and plastic deformation.

sensitive and effective in detection of wear mechanisms. Kuntoğlu and Sağlam 

 

–

Figure 5. An example of acoustic emission based indirect tool condition monitoring system [107].

References [4,5,43,47–53] indicated that AE sensor signals have great importance on
detecting tool FW and possible tool breakage with the help of various signal features
identified theoretically. Being a non-destructive method and easily implemented structure
for monitoring area, having various signal features for characterization of different phe-
nomena, namely, plastic deformation, TW, chip production and tool breakage, AE sensors
are heavily preferred in TCMS during turning operation.

Advantages and disadvantages: The characterization of AE signals provides infor-
mation about machining mechanism and ensuing events at the cutting area throughout
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metal removing. Minor and major changes during the cutting operation can be precisely
sensed via AE sensor when it is positioned in the right way. This brings a clear advantage
to distinguish the events as normal ones maintain the cutting and abnormal ones endanger
the health of cutting. According to utilization, the sensing scale of AE sensor should be
clarified. In a very large scale, some data losses lead to late detection or missing which
can end up with tool failure or substantial damages. Especially for the newly developed
materials in industry, unknown plastic deformation mechanism and possible tool breakage
scenarios push the researchers to use the AE sensor. It is needed to observe the fluctuating
changes occurring in the material to better understand the behavior of cutting tool and
workpiece during cutting operation. AE sensors have been preferred in the last 20 years
covering the FW detection with the rate of 16.3%. Considering the increasing effect of the
richness of the information on detection of tool wear and tool breakage, it is reasonable to
select this sensor in wide scale. It was observed on the previous study from author [5] that
AE sensor had its most effective signal feature among the other sensor signals in detecting
FW with the high success rate of 74%. AE sensor provides clearly a positive contribution to
the perspective of Industry 4.0 with its capability for new generation materials if the high
costs can be compensated.

3.3. Vibration

In order to obtain the desired results from the machining process, to keep the process
variables under control and to avoid undesirable results, the necessary conditions must
be provided to continue the process in a stable manner [31]. In this regard, vibrations
occur because of the lack of rigidity in the machine, errors in the workpiece and cutting
tool connecting procedure or depending on the altering cutting conditions during the
machining process [36]. Vibration is an undesirable condition that adversely affects the
machining process. In addition, a vibration occurs in the system continuously as the CF
occurring during machining depends on many factors such as distance between cutting
edges, position angle, workpiece geometry, spindle deflection, depth of cut, chip width,
feed rate, cutting speed and especially the TW [5]. Considering the literature survey, it
has been observed that many diverse techniques are used to monitor TW. These methods
are expressed under two main headings, directly and indirectly. The first technique is to
measure TW directly on the tool by finishing the material removal process. In the second
technique, different parameters associated with TW such as motor current, force and
moment, vibration, acoustic and SR values are measured with appropriate test instruments.
These measurements are evaluated using various analysis and estimation methods, and
the amount of wear in different time intervals can be calculated [109]. Estimation methods
are based on modern and topical approaches such as fuzzy logic, artificial neural networks,
genetic algorithms, as well as statistical methods [6]. Although several studies on process
modeling with the help of artificial intelligence have been conducted by various researchers,
a practical method has not yet been developed to monitor TW in the industry. A variety of
researches are still carrying on monitoring tool condition, controlling machining processes
and ensuring their optimization and prediction. In Figure 6, vibration based TCMS is
shown in addition to current and surface roughness measurement.

In machining, vibration is considered one of the variables that best reflect the TCM
process. Factors such as ease of application and no need to make any arrangements to
the machine tool or workpiece fixture are among the most important advantages that
distinguish vibration measurement from the aforementioned parameters. Therefore, vi-
bration monitoring procedures are widely used to diagnose and predict part accuracy,
surface texture, and especially tool condition. Vibrations occurring during machining are
classified into two classes as vibrations dependent on the cutting process and vibrations
independent of the cutting process [110]. The type of vibration that occurs as a result
of TW during machining is called vibrations that are dependent on the cutting process.
Therefore, monitoring TW requires recording and monitoring vibrations that depend on the
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cutting process [4]. TW increases during cutting and these increases lead to an increment
in vibration amplitude [5].

Aghdam et al. [54] examined that the relationship between the vibration characteristics of
the tool and holder assembly and the major flank wear of the tool in a turning operation. They
measured the tool acceleration signals generated during cutting and then determined wear-
sensitive properties according to the dynamics of the tool/holder system, which manifested
itself at natural frequencies. They determined the recorded signals using the autoregressive
moving average model. According to the analysis of the experimental results, they found that
in the speedup phase of wear, a vibration mode changed from the second bending mode in
the main cutting direction to the first bending mode in the feed direction and simultaneously
the autoregressive moving average distance reached a minimum value. They also stated that
the analysis they conducted provided a reliable algorithm for TW prediction, as it directly
originated from the tool holder and system natural frequencies and interpreted the physical
behavior of the system in connection with TW.

Dimla [111] conducted a study on evaluating the TW monitoring procedure in a
metal turning process utilizing vibration characteristics. Considering analysis results, they
reported that the properties of the vibration signals were a useful feature for monitoring
cutting TW and determining the wear quality. Sick [33] examined diverse vibration moni-
toring methods which are used to estimate flank wear and suggested that regularization
process parameters at the digital preprocessing stage could improve the correctness of the
results. Scheffer et al. [43] presented a system based on TCMS for FW in hard turning using
three component accelerometer. Vibration energy indicated increasing curve in respect of
TW. Kene and Choudhury [40] utilized vibration signals to predict FW in hard turning of
EN24 steel. On the previous studies from Aslan [36] that vibration can be supportive to CF
signals in monitoring of FW during turning of AISI 5140, Kuntoğlu and Sağlam [5] stated
that vibration was not very effective on detecting FW compared to AE and temperature
signals in turning of AISI 5140 steel. Alonso and Salgado [55] analyzed vibration signals for
detection of TW in turning of C45 steel and reported that the proposed method was very
effective in TCM. Ghani and Choudhury [57] presented a study during turning of cast iron,
and they stated that at low depth of cut values, with the increase of FW, vibration remained
constant. Chiou and Liang [50] analyzed AE signals for chatter vibration to detect TW in
turning of 6061-T6 aluminum, and it was found that this approach was very sensitive in
monitoring of TW. Kataoka and Shamoto [58] revealed that flank face interfered with the
workpiece material with increasing of vibration, which leads to increasing of abrasive wear
in turning of AISI 1045 steel. Prasad and Babu [59] tried to correlate vibration and TW in
turning of AISI 4140 steel, and the authors indicated that there was a close relationship
between TW and vibration.

Kuntoğlu and 
Sağlam 

 

Figure 6. An example for vibration, current and surface roughness based indirect tool condition
monitoring system [112].
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In the references [5,33,36,40,43,50,54,55,57–59,111], it was stated that there was a cor-
relation between FW and vibration signals; however, the reflection capability of vibration
signals might not be the solution on its own in the TCMS.

Advantages and disadvantages: One of the distinctive advantages of this sensor is
to provide information about one of the main problems in machining. Vibration ruptures
the nature of machining by changing the pre-determined cutting tool-workpiece contact
conditions which further damages the tool structure and have devastating influence on
workpiece. Thus, integration of an accelerometer helps to standardize the machining
condition as stable during continuous vibration and unstable when excessive vibration
occurs. Industrially applicable accelerometers can be easily mounted on various points
of the machine tool for measuring the stiffness, in addition. Especially for finish turning
operations and internal turning, vibration becomes a very challenging issue. With the
increasing demand from customers, high accuracy products will be the most important
thing for a company in terms of the reputation in market. The given applications based on
accelerometer and vibration measurement are about 19.6% among all indirect monitoring
systems including the studies in the perspective of this paper. A considerably high amount
of usage about this sensor is found which exposes the validity and reliability of the effect
of vibration on FW. Considering its high value contributions to a manufacturing chain, the
investment cost of this sensor can be ignored in the objection of Industry 4.0.

3.4. Temperature

In all metal cutting processes, the main aim is to overcome the shear strength of
workpiece material with the cutting tools. This overcoming process generates a large
amount of heat in the workpiece. Plastic deformation of the workpiece is facilitated by
the increase in temperature in the workpiece, since high temperatures decrease the yield
strength of workpiece, and this decrease causes an increase in the capability of plastic
deformation of workpiece. Metal removal process occurs in the tool-workpiece area as a
result of plastic deformation.

In machining processes, most of the energy transferred to the machine tool is converted
into heat energy. The resulting temperatures are dissipated between the tool and the workpiece
and the chips. While the cutting tool and workpiece are in contact, chips are removed from the
workpiece by means of pressure and temperature. Whilst presence of temperature increases
the plastic deformation ability of workpiece, at the same time, it makes monitoring of tool
condition difficult. Figure 7 indicates temperature based TCMS as an example.

speed was the most effective parameters on temperature increase. Kuntoğlu et al. 

 

–

Figure 7. An example for temperature based indirect tool condition monitoring system.
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El Hakim et al. [39] indicated that in hard turning of high alloy steel with secondary
hardening operation, temperature and flank TW demonstrated an increasing trend. Increas-
ing cutting speed triggers the cutting temperature, and it leads to increase in TW. Increasing
cutting speed and feed rate parameters were two of the most effective parameters which
control the increase in temperature. Yıldırım et al. [66] reported that increasing feed rate
(0.1, 0.125, 0.15 mm/rev) reduced to tool life by 32.73%, 29.89% and 38.01%. This tool
life decrease is a result of high temperature between tool and workpiece. When the dry
machining and nano-minimum quantity lubrication system were compared, it could be
seen that the tool life could be increased by 105%. If the nano minimum quantity lubri-
cation system was applied at the ratio of 1 vol%, the temperature could be decreased by
approximately 30%. Another study was reported that high temperature levels increased the
adhesive and diffusive TW, and they should be controlled by a lubrication strategy based
on the machining process [65]. Sasahara et al. [64] presented a study including the effect of
the temperature on the tool life. The workpiece material was SUS304 stainless steel, and
two different machining conditions, which were dry and minimum quantity lubrication,
were investigated. When the cutting speeds were selected as 100, 300, 500 m/min, the
temperatures were measured as 550, 850, 1000 ◦C respectively in the dry machining condi-
tion. However, the temperature values decreased after the minimum quantity lubrication
process at the ratio of 10%, 5%, 8% reduction of temperature depending on the lubrication
system extending the tool life. Das and Chapagain [61] presented a study that investigated
cutting parameters on temperature in turning of aluminum matrix composites. While
the feed rates were 0.05, 0.1, 0.16 and 0.2, temperatures increasing from 36.60 to 71.67 ◦C
depend on the feed rate increase. When it came to cutting speed (40, 106, 169, 206), the
temperature increased from 36.60 to 83.50 ◦C. While depth of cut was also an effective
parameter on the temperature increase, it was determined that the most effective parameter
was cutting speed. Effects of the cutting speed on the temperature in in dry hard turning of
Inconel 718 were studied by Zhao and Liu [68]. It was reported that temperature shows an
increasing trend with the increase of cutting speed. The temperature values can decline up
to 30 ◦C by means of coating of cutting tools. Özbek and Saruhan [63] presented a study
related to effects of cutting zone temperature on TW. It was reported that both cutting
tool coating and cutting speed have a great impact on cutting zone temperature, and this
temperature can be reduced by minimum quantity lubrication system, approximately
100 ◦C. One of the possible explanations of low temperature owing to minimum quantity
lubrication system was that minimum quantity lubrication system moved away the chips
from the surface with high pressure. Moreover, it was indicated that this phenomenon can
be observed via thermal images.

There were some studies in comparison with the studies which reported the cutting
speed was the most effective parameters on temperature increase. Kuntoğlu et al. [31]
reported a study that depth of cut is the most effective parameter on the increase of cutting
zone temperature. The reason was that high depth of cut values leads to large amount
of metal chip removal, and the cutting tool undergoes a more restrictive force. Due to
the chip removal and the restrictive forces, the workpiece was under the shear effect. In
another study which supported these evaluations belonging to [48], the effect of depth of
cut on temperature and TW was investigated, and they reported that depth of cut was the
dominant cutting parameter rather than cutting speed and feed rate. There were other
studies [62,67] which indicated the most important parameters were depth of cut on the
temperature increase and TW progression.

In [31,39,48,61–68], it was reported that a correlation between cutting temperature and
TW was found, mostly triggered by cutting conditions and cutting speed. Temperature
based measurement provided significant contribution for detecting TW progress and tool
life in the field of TCMS. These articles had in common that the information about cutting
temperature could be very important for accurate detection of tool condition.

Advantages and disadvantages: Temperature measurement can be achieved with
inexpensive sensors; it is one of the principal advantages. Since the most part of the
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heat dissipated to removed chips during machining, and the main aim is to measure the
temperature on cutting tool, collecting signals from cutting area becomes almost impossible
while machining continues. It is possible to measure the temperature of chips and then
learn the approximate value of cutting tool and workpiece using transition equations.
This may lead to an error to obtain the exact value which becomes a disadvantage when
working high range of temperatures. On the previous study published by author [5], it
was stated that tool temperature sensor signals are quite effective on detecting tool FW
(74%). On the other hand, the papers examined in the scope of this study tend to use
temperature measurement for monitoring of FW, which is close to usually preferred cutting
force measurement proportionately (18%).

3.5. Motor Current

In situ control of turning process is a difficult task due to the stochastic nature of
TW. This leads to great challenge in terms of achieving optimum conditions [41]. Time-
dependent wear of cutting tool changes the predetermined cutting conditions and affects
process variables considerably [113]. Motor power and motor current are the main sources
for metal cutting and are associated with the changes at the cutting area especially for
the TW. In theory, it is expected that with the increase of cutting TW, CFs demonstrate
enhancing behavior, and this directly affects the cutting power and current [29]. However,
the utilization of current sensor in TCMS is very little compared to the aforementioned
sensors, i.e., force, AE, vibration and temperature. In the author’s previous study, current
sensor was found as the third effective signal on FW among the seven sensor signals [5].
Nevertheless, it was observed that the sensor signal was ineffective to sense the approaching
tool breakage. In Figures 6 and 8, current based TCMS are shown.

–
’ reports

Figure 8. An example for sound based indirect tool condition monitoring system [73].

A current based TCMS is hard to find in open literature for turning, especially its
correlation with TW [24]. Some attempts about current measurement during milling and
drilling were undertaken, yet none of them related to TW [114–116]. Szecsi [74] used DC
motor based TCMS to evaluate TW, and according to the author, armature current of the
main motor can be informative to determine the condition of tool during CNC turning.
Kuntoğlu and Sağlam [5] established a TCMS for FW and tool breakage monitoring, and
current sensor was found to be successful after AE and temperature sensors on monitoring
of FW in turning of AISI 5140. Kuntoğlu et al. [6] optimized the cutting conditions using
sensor couples for FW among the five different sensors. Current sensor was successful
but, however, not the best option. Salgado and Alonso [73] presented an approach based
on using current signals for online TW monitoring during turning of AISI 1040. They
estimated axial CF using current signals for further evaluation of FW within high success
rate. Yip and To [75] integrated eddy current damping to reduce vibration for turning of
titanium alloy with the purpose of enhancement of tool life.
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Even the current sensor indicated promising results for multiple optimization, TCM
and FW and tool breakage monitoring in the past studies [5,6,73–75]; there is a long way to
go in better understanding the structure of this sensor during turning operation.

Advantages and disadvantages: Principal requirement for a sensor is being close to
the cutting area because of the increased sensitivity. The main disadvantage of the current
measurement is its connection to cutting area is that it is performed with current transfer
cable, which transmits energy to machine tool. Different from the other sensors in indirect
TCMS, current sensor is situated at a distance, and this leads to loss of precision. Due to
the mentioned drawbacks of this sensor, it has been preferred rarely (8.1%) in the past for
progressive FW detection in turning. In addition, current measurement is important as one
of the first sensors used in TCMS in the 1980s. This makes this sensor the earliest one in the
indirect TCMS methods, which is highly possible, were used by many of the researchers.
Eventually, it is concluded that current measurement can assist and support more accurate
sensor signals, namely, force or AE in detection of tool breakage.

3.6. Sound

It is basically generated sound that exists in all machining operations as a result of
high speeds for cutting of hard materials. In milling, intermittent cutting produces also
discontinuous sound due to consecutive entry and exit of cutting tool into workpiece
material. However, in turning, continuous contact between tool and workpiece produces
different shaped chips, depending on cutting conditions and material properties. Besides,
a new cutting tool is effective on metal removing compared to a worn cutting tool. This
makes difficult to cut, and scraping starts instead of cutting as a result of the changing
cutting tool geometry. An impaired cutting mechanism affects the resultant sound, and
this can be an information source for the condition of TW [24]. Sound measurement is
fundamentally done with microphone; however, sound signals have some drawbacks. The
separation of frequency range of sounds originated from chip formation, TW and breakage,
machine tool, and vibration should be performed accurately to detect the desired quality
characteristic. For this reason, this sensor is preferred over the two other sensors.

Sound sensor was preferred in [73] for reliable and faster decision making in addition
to acceptable cost-performance ratio. Favorable estimation error for TW was obtained
according to results. Lu and Kannatey-Asibu [71] performed sound sensor based exper-
imental work to monitor FW, and they reported that it can be useful and execute the
ability of operator. Mannan et al. [72] applied sound sensor for analysis of TW during
turning of AISI 4340 steel. According to authors, the proposed method can successfully
distinguish sharp tool from dull tool. On another study from Abu-Zahra ve Gang [69],
it was demonstrated that because of the acoustic behavior of ultrasonic waves, TW can
be monitored successfully by this method. Kopac ve Sali [70] carried out experimental
research to predict TW using online TCMS during turning of Ck15 and obtained results
showed that increasing TW was correlated with the increase in amplitude of sound.

Considering References [69–73], it can be concluded that sound signals seem very
effective on detection of FW according to the authors’ reports. Low cost and easy to
implement structure of this sensor enable to use it in TCMS in turning operations for
different types of materials.

Advantages and disadvantages: A microphone resembles an operator ear somehow,
which was utilized from the beginning of the machining for health monitoring. Considering
sustained success sound-based monitoring provides quite important benefits. However,
compared with AE sensor, reaction time is very long, which makes the microphone less
reliable. Because of the more profound and complex structure of machining the moment
of an event such as breakage can be detected later. This makes the method not a first
choice but a supportive one for confirmation of the other sensorial data. In the past, a few
researchers integrated the sound sensor into a turning operation with the purpose of FW
monitoring according to findings (8.1%). The peculiar type of the microphone in machining
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leads to neglect of this sensor; however, the similarity between AE can provide sensitive
detection of tool breakage.

3.7. Tool Flank Wear

TW generally occurs in the two main areas of the cutting tool (chip surface and side
surface of the cutting tool). Therefore, TW is generally divided into crater wear and FW
(Figure 9) [99]. The evaluation of tool wear is applied according to standard ISO 3685 [117].

 

–

–

Figure 9. Types of crater wear and flank wear to standard ISO 3685:1993 [99,117].

FW is the type of wear caused by the friction that occurs between the insert clearance
angle of the cutting tool and the new surface of the part corresponding to this angle. The
width of the FW is indicated by VB. Mechanical, chemical, diffusive seem to be the major
load factors affecting the FW [118,119].

FW develops on the flank face of the cutting tool as a result of several parameters. Too
high cutting speed, plastic deformation resultant of too high cutting temperatures and edge
chipping caused by excessive load on the cutting tool are the main factors on FW [119].

In the studies made on AISI 4340 [120,121], AISI 4140 [122] and AISI D6 [123] steels,
it has been revealed that the most common wear type is FW and crater wear. It is also
stated that the most common wear mechanism for these wear types is abrasive wear. In
the study using AISI H11 [124], AISI D3 [125], AISI 4340 [121] and AISI D6 [123] steels,
the most effective cutting parameters for wear were cutting time, cutting speed, feed, and
depth of cut. In addition to these parameters, the relationship between tool nose radius,
insert edge chamfer, cutting temperature, coating layer and lubrication with TW was also
investigated [126–130].

In turning, it is important that the tool continues cutting operation with high perfor-
mance for optimum tool life [131]. Although there has been a recent trend of transition to
hard material turning processes in terms of surface quality, one of the main problems in
both turning these materials and turning normal materials has been rapid TW. The use
of cutting tool inserts such as cubic boron nitride, polycrystalline diamond and ceramic
was intended to prevent rapid TW; however, high tool costs were observed. Recently,
however, the most suitable cutting conditions have been developed to ensure minimum
TW and minimum production cost [132–135]. In addition, modeling and optimization tech-
niques such as artificial neural network, fuzzy logic, multiple regression, response surface
methodology, variance analysis, and Taguchi method were used in the development of
these conditions [36].

Kuntoğlu and Sağlam [5] performed turning process on AISI 5140 steel and they
integrated five different sensors on the lathe to examine the effects of CFs, vibration, AE,
temperature and current measurements on FW. According to the results, temperature and
AE signals are 74% effective on FW. Çetindağ et al. [136] investigated the effect of AISI
52100 steel on FW by performing turning process with conventional and wiper cubic boron
nitride inserts. According to results, they observed that the wiper cubic boron nitride
insert significantly reduced TW. Dudzik et al. [137], during the turning process on 304L
stainless steel, observed by comparing the AE signals and CFs to predict TW, that both
main variables are important in predicting TW. Twardowski et al. observed the TW of
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100Cr6 steel with the turning process in their study. In the study, in which shear forces and
mechanical vibrations were observed, FW was estimated with artificial neural network.
According to the authors [138], the physical measurements of the estimation with artificial
neural network are appropriate. Aouici et al. [139] compared the FW for the wiper ceramic
insert with the traditional ceramic insert in dry hard turning of AISI 4140 steel. Analysis of
variance was carried out in this study, and cutting speed, feed rate and depth of cut were
also used as variables. According to the experimental results, it was shown that the wiper
ceramic insert performs better than traditional ceramic insert in terms of FW.

Advantages and disadvantages: Since the tool wear inevitably develops on the cut-
ting insert, it should be kept under control to understand the underlying mechanism for
avoiding excessive levels. In this direction, one of the main advantages of it is that online
monitoring of tool wear is feasible with indirect sensors without stopping the operation.
Due to FW increases on the main cutting edge and proper for quantifying with standards,
its detection offers vital information about the remaining useful life of the cutting tool.
However, the sophistication because of the numerous cutting parameters and variables
aggravates accurate estimation of tool wear on occasion. In order to validate the wear
progression rate, this is necessary, which leads to high investment cost for reliable and
sustainable manufacturing.

3.8. Surface Roughness

In engineering applications, the desired surface shapes in part are expressed as the
nominal surface. The surface texture consists in repeated deviations from the nominal
surface of the part, and these deviations are the following:

1. Waviness (Irregularities with measurement ranges greater than surface roughness
sampling distance);

2. Defects (scratches, cracks, stress concentration and alignment errors);
3. SR (average of vertical deviations of a certain distance of a surface that has undergone

a certain treatment).

These are expressed by their properties. The average of vertical deviations at a
certain distance of a surface that has undergone a certain treatment is called SR. Today,
the method of average SR is frequently used as a method of determining SR. This method
uses an arithmetic mean based on the absolute value of deviations, and this method can be
expressed by Formula (1) [119].

Ra =

Lm∫

0

|y|

Lm
dx (1)

In this formula, it is defined as Ra = average arithmetic SR, Lm = distance measured,
y = deviation from nominal surface. Although there are many methods to measure SR
values, needle point devices, and devices using optical methods (laser, light diffusion, etc.)
are among the most used methods. Besides, recently, there were techniques in which 3D
graphics of the surface were created to detect SR [140].

Considering the technological developments in recent years, it can be seen that excel-
lence was aimed in terms of product quality. In Figure 6, a surface-roughness-based TCMS
is shown. The quality expectation is very high, especially in areas such as automotive
and aircraft industry, SR is the only criteria that provide this excellence [141]. SR is an
important output, especially for parts manufactured in the machining process. The purpose
of machining is not only to shape the part but also to realize the correct process in terms of
surface quality [142,143]. SR is a very important process variable in turning as being an
ultimate aim. Cutting tool radius, feed and cutting speed can be shown among the factors
that significantly affect the SR in turning. Aside from the material of the workpiece, vibra-
tion on the machine tool also affects the SR, and these factors were statistically significant
on the SR [140].

The parameters affecting the SR can be evaluated in two main groups as dependent
and independent variables. While parameters such as AE, vibration, temperature, CFs and
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TW are dependent variables; feed rate, depth of cut, part material and insert are shown
as the parameters that affect the SR independently [144–147]. With these parameters, the
aims of studies on SR have been to minimize SR [148].

In recent years, SR estimation and optimization of these values have become very
important for the industry. In steels, AISI 4140 [122], ADI (grade 3) [149], AISI 1014 [150],
AISI 1060 [62], AISI 1040 [151], AISI 316Ti [152] and AISI 52100 [153], optimum SR values
were estimated by determining the interaction of optimization methods and independent
variables for SR using Taguchi method, response surface method, variance analysis and
regression models. Moreover, with these values, information about SR values can be
obtained by using the ant colony algorithms, fuzzy logic and artificial neural network.
By creating an artificial neural model after turning, this network is trained, and after the
network training, intermediate values can be estimated with this model and gain from time
and cost criteria [14,144].

Kuntoglu et al. [31] performed a turning process on AISI 5140 steel and estimated the
SR with the response surface methodology. For this estimation, response surface method-
based quadratic regression models were obtained, and they determined the optimum
cutting conditions by different cutting speeds, feed rate, cutting edge angles, and axial-
radial-tangential vibration inputs. In the study, they obtained high accuracy surface
prediction values using these models. Besides, according to the results of the study, they
determined that the input that affects the SR the most are the feed rate and then the axial
vibration. Zhou et al. [154] created an algorithm based on the genetic-gradient boosting
regression tree for the optimization of cutting parameters and SR estimation by turning
AISI 304 stainless steel. They compared this model created with an optimized artificial
neural network and support vector regression method. The developed algorithm based
on genetic-gradient boosting regression tree is a better method than other prediction
models used in the study with a root mean square error index of 0.087. Tokarev et al. [155]
performed a turning process of 40X steel with an insert with a pile layer built up edge
and analyzed the effect of built up edge on the SR as a result of turning by simulating
a mathematical model. As a result of the examination, they emphasized that the data
obtained from this model both experimentally and theoretically were satisfactory. They
also stated that the adhesive properties of the piece material have a significant effect on
SR. Vasanth et al. [156] developed regression models and artificial neural network based
on CF, cutting temperature, TW, and tool vibration to estimate the SR value after turning
using hardened SS 410 steel. They stated that artificial neural network gives more accurate
results compared to the depression model, and they get more accurate results with more
input for the neural network.

3.9. Image Processing

Image processing is a pattern recognition process that works with a strategy based
on measurement of image textures in a variety of application areas such as statistical
data analysis, machine learning and signal processing [78]. These systems simply need a
camera to divide the image into segments for an intense analysis since there are repetitive
patterns on an image [157]. The primary challenge for pattern recognition method is to
segment a whole image and determine boundaries. After that, it is required to describe the
characteristics of each region for further analysis and decision making. In the measurement
of TW and FW in the concept of this paper, the worn region on a cutting tool needs to be
distinguished from the unworn region. Once textures are identified as worn or unworn in
a moment during the machining, the state of the wear level of cutting tool according to
cutting time is described. In Figure 10, an image processing approach is shown.

Mannan et al. [72] used image processing technique for analysis of TW during turning
of AISI 4340 steel under the cutting conditions where the tool reached catastrophic failure,
and they stated that this approach was successful in identifying sharp, semi dull and
dull cutting tools. Kerr et al. [78] used EN24T material to recognize the extent of FW via
image processing technology. It was stated by the authors that, although this method had
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potential in evaluation of image for tool condition, there were still need some problems
to overcome. Mikolajczyk et al. [79] adopted image processing and neural networks in
turning of C45 steel for predicting tool life. This approach provided high error results
for the excessive TW values; the accuracy of prediction was satisfying and proper for
the industrial applications. Barreiro et al. [76] used digital image processing method to
determine the tool life and obtain useful lifetime of a cutting tool. Their discovery provided
reduced tool costs using a new wear criterion. Castejon et al. [77] proposed an online wear
monitoring system with geometric descriptors from linear images. Their results indicated
that the approach might classify wear as low, medium, high. Pfeifer and Wiegers [80]
utilized machine vision system with adaptive illumination to optimize images for different
usage and different types of cutting tools. Mikolajczyk et al. [81] utilized neural network
approach using image analysis for tool wear and found the tool wear results within a very
low error rate.

 

Figure 10. An example for image processing based tool condition monitor

–

Figure 10. An example for image processing based tool condition monitoring system [77].

According to papers [72,76–81], it was advised that image processing based on ma-
chine vision, pattern recognition and image analysis methods, because of its usefulness in
determining tool life, TW condition and possible tool breakage, might be very effective for
cost optimization and productivity.

Advantages and disadvantages: Different from the mentioned sensor systems, image
processing is applied after machining operation is completed. This situation brings a disad-
vantage since the prevention of tool breakage and excessive tool wear becomes difficult
and almost impossible. However, when the machining stopped for different reasons, such
as measuring of surface roughness, it is possible to employ pattern-recognition-based
applications. This approach provides additional information about tool and can be bene-
ficial for confirmation of the collected sensor data. It is noteworthy that well-structured
software can predict the situation of the tool within high success rates, which improves the
quality of machining by far. According to published papers in the field of monitoring of
turning operation for FW, it was found that 9.8% of the studies preferred image processing
techniques for that purpose. This can be explained by the incapability of these systems to
intervene in the machining processes.

4. Data Acquisition and Signal Processing

After the experiments under specified cutting conditions, gathered data needs to be
evaluated with proper methods, which give accurate information to operator or machine
learning algorithm for final decision. In the signal processing phase, the researcher needs
information about the analysis method ideally reflecting the signal features. Very popu-
lar signal processing methods to evaluate tool condition are outlined in this topic [158].
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Seemingly, statistical moments, amplitude analysis, wavelet analysis, Fourier analysis,
time series modeling, automatic feature extraction and representation learning are the
best options in open literature for data acquisition and signal processing phase. It is desir-
able, during data acquisition and signal processing procedure, to extract proper features
which correlate two variables without affecting noise factors. For deriving various features,
different type of domains, namely, time [159], frequency [160], time-frequency [43] and
statistical [161] ones, were selected in the literature. It was found that force signal depen-
dent features were extracted in time domain. In this manner, sound, AE and vibration
signals were extracted in frequency domain. Wavelet analysis is generally preferred to
extract features for time-frequency domain since its capability to provide signals time and
frequency simultaneously which enables changes signals from one series to two dimen-
sional function [162,163]. Fourier analysis is generally preferred to extract signals using
fast Fourier transform signals which have a principle for extracting frequency components
of the handled data [161]. Statistical moments extract features in statistical domain using
coefficients belonging to time series modeling, namely, auto regression, moving average,
etc. [22]. The general approach is to calculate the distribution using variance, skew, kurtosis.
Automatic feature extraction offers to determine several kinds of characteristics reflecting
the system in the best way in terms of the investigated parameters using a variety of
artificial intelligence methods [164]. Representation learning or feature learning provides
capability to select specified features for the monitored process variable [165]. The previous
couple of signal processing methods are accepted emerging technologies as the use of
deep learning methods. The whole procedure of TCMS in monitoring of tool condition is
summarized in Figure 11. It explains respectively the operation type, sensors and sensor
signals, signal processing methods, data classifiers and decision-making phases.

 

Figure 11. The whole procedure of monitoring of tool condition via TCMS.

5. Decision Making Methods

Gathered data from sensors through data acquisition systems was handled for final
decision about the quality characteristic [113]. This process requires a second expertness
in terms of the researcher who should know mechanical process and modeling well. This
comes from the TCMS being a multi-disciplinary research area containing mechanical
systems, sensors and computer software. In brief, processed signals should be categorized
via classifiers, and this phase is generally performed with artificial intelligence approaches.
The popular classifiers preferred in literature for decision making are listed in Figure 5.
Since there were limited studies about the relationship between sensorial data and FW in
the open literature, the general point of view in this topic is to summarize the state of the
art of each decision-making method on available example/s. The most popular decision-
making methods in this area are artificial neural network, fuzzy logic, hidden Markov
model, support vector machine and adaptive network based fuzzy inference system.
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5.1. Artificial Neural Network

One of the most popular decision-making methods is artificial neural network model
inspired by the working mechanism of the human brain. The model contains three or more
layers, each one set with number of neurons. The first and last layers indicate the input/s
and output/s, respectively, and the neurons in these layers should be connected to each
neuron in the hidden layers. One crucial point during modeling of neural network is the
necessity to have experience in and knowledge about determining the number of hidden
layers and neurons. However, depending on the inputs and outputs, the relationship between
parameters, number of hidden layers and their neurons needs to be revised and constructed.
The connection between each neuron in entire layers is provided with weights which require
training for the best solution. After the training procedure, it is expected to obtain the value
of the response parameter from the output layer. There are several factors affecting the
performance of the neural network structure such as training time, transfer function, weights,
learning function [166]. In addition, a number of deep learning methods such as convolutional
networks and recurrent neural networks [164,165], accepted as the top performing models,
have been applied recently. Recent advice in the field of health manufacturing indicates the
importance of these state-of-art techniques especially in fault diagnosis [167]. The integration
of deep learning methods also brings a new perspective to predict the health of the machine.
Convolutional neural networks work based on the idea of the selection of best local features
with a feature extraction method in order to extract useful raw signals. Being a class of the
neural networks, recurrent neural networks compose the connections between neurons of the
input parameters to demonstrate the dynamic behavior of the network. Thus, it is possible to
generate a map and compose a memory by keeping the momentary situation of the neural
network using a back propagation algorithm [165,168]. The structure of the artificial neural
network model is demonstrated in Figure 12.

–
fully carried out and highly recommended. D’Addona et al. 

 

Figure 12. The structure of artificial neural network model.

In the particular example of this paper, FW prediction via artificial neural network in
turning operations using different types of materials has been an attractive issue in the past.
In references [35,82–86], artificial-neural-network-based TW prediction was successfully
carried out and highly recommended. D’Addona et al. [83] performed a cognitive modeling
of TW for Inconel 718 to obtain better tool life. They used neural network model for
estimation of TW progression and results obtained with low prediction errors. Pal et al. [86]
proposed a TW monitoring system for optimum cutting conditions in turning of EN19
steel using a neural network approach. As a flexible and simple approach, neural network
provided a robust prediction option in practice. Ojha and Dixit [85] presented a neural
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network approach for continuous monitoring of tool life in the shop floor during turning
of steel. Since a large number of data are available, tool life can be estimated using this
example. In articles [34,81,83] neural-network-based TW prediction was also carried out
for H-13 steel, AISI 1045 and SAE 6150 steel successfully.

5.2. Fuzzy Logic

Fuzzy logic uses membership functions to link the input and output parameters via
predetermined rule list. It is actually a reasoning-based methodology provides to estimate
the desired parameter from 0 to 1 possibility. Human observation and the way of thinking
is the example for development of the fuzzy logic approach. Fuzzification, rule editor
and defuzzification processes are respectively applied to input data values. At first, the
range of membership functions are defined with the training of input values; then, using
rules, inputs and outputs are linked to each other, and lastly, fuzzy terms are converted to
numerical values again with defuzzification. There are two basic fuzzy types, as Mamdani
and Sugeno, in the modeling interface of fuzzy logic. In the prediction phase, methods
should be identified, namely, and, or, implication, aggregation and defuzzification. The
membership functions of inputs and outputs, type of fuzzy and decision methods are
demonstrated in Figure 13. In [5], in addition to cutting parameters, AE and tool tip
temperature were implemented to fuzzy inference model for predicting FW. According
to the results, fuzzy inference system was successful in estimating the FW within a high
success rate. Kuo [84] proposed a fuzzy logic based prediction of FW using CFs, vibration
and AE data. It was reported that fuzzy approach was very promising.

 

Figure 13. The structure of fuzzy logic model [5].

5.3. Hidden Markov Model

Hidden Markov model is based on an observation strategy for the modeled system,
which proposes to learn it via Markov process. Being another process, behavior is assumed
as dependent and should be handled separately. Markov process is evaluated as a hidden
or unobservable condition using the actual data in the system, which further ensures the
validity of the result [162]. The usage of dependent factors for the recognition of observable
events becomes useful for the ones improper to directly observe. Hidden Markov model
enables to implement several software programs for modeling, which can be evaluated in
a variety of processes, especially in machining. The structure of hidden Markov model is
shown in Figure 14. Scheffer et al. [60] implemented neural networks and hidden Markov
models as a comparative study in monitoring of TW. In turning of aluminum alloy, a
comprehensive comparison was performed, and neural network was found as capable
of performing continuous estimations; however, if the problem to solve is defined well,
hidden Markov properly estimates TW. There were a handful of studies about hidden
Markov model in machining operations, and a few of them are about TW prediction
during turning.
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.

Figure 14. The structure of hidden Markov model.

5.4. Support Vector Machine

Support vector machine is a supervised classification method in machine learning
applications starting with the separable data at first, then modifying it to solve the problems
having non-separable data [88]. As it is demonstrated schematically in Figure 15, data
points are placed on a plane separated by a hyperplane, which are called support vectors.
The position and direction of the hyperplane is determined by the support vectors which
are closer to hyperplane. Some data points can be deleted from the plane, which aims to
maximize margin and shape the hyperplane. The main purpose is to build the support
vector machine by giving a form to this plane [169]. Despite traditional training methods,
the support vector machine uses structural risk minimization instead of empirical risk
minimization [87]. A principal advantage of this method is the capability to handle large
data, since the magnitude of data have no important effect on the performance of the
machine [170]. Widodo and Bo-Suk [87] proposed a support vector machine based TCMS
in addition to fault diagnosis in a review. Sun et al. [88] presented a support vector machine
approach to multi-classification of TW as sharp, usable and worn types via AE sensor. They
used ASSAB705 and ASSAB760 steels for turning operation. Results indicated that this
method can effectively reduce manufacturing loss with estimating tool life. A study from
Brezak et al. [89], feed CF, AE and feed current signals were utilized to estimate TW. By
this multi-sensor approach, the error was reduced by classifying the TW to clearly identify
the tool condition. Kong et al. [90] used also support vector machine in prediction of TW in
turning of steel. A dynamometer was utilized to model the machine and comparison was
performed with other methods and support vector machine. Li et al. [91] performed force
based TCM in turning for modeling FW. Experimental results showed that the prediction
accuracy can be very high in predicting FW and possible tool failure.

 

Figure 15. The structure of support vector machine.
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5.5. Adaptive Network Based Fuzzy Inference System

Adaptive network based fuzzy inference system is a combined neural network and
fuzzy system which is based on extraction of fuzzy rules for every layer of neural network
model. The structure of the adaptive network based fuzzy inference system is indicated in
Figure 16. Gajate et al. [92], Lo [93], Xu et al. [94], Sharma et al. [95], Azmi [96], Liu et al. [97]
and Rizal et al. [98] applied adaptive network based fuzzy inference system to turning
operation for the purpose of TW monitoring and prediction with minimum error. A general
consensus was observed in the studies in open literature: Adaptive network based fuzzy
inference system could be effectively implemented in TCMS.

 





Figure 16. The structure of adaptive network based fuzzy inference system.

6. Discussion

Turning is a widespread machining operation that can efficiently remove chips from
a rotating and cylindrical workpiece. Cutting tools are the main components of an entire
production chain dealing with the workpiece which is considered as the ultimate aim of
manufacturing. Turning tools are employed to change with new ones before reaching wear
limit for healthier and low-cost operation. Tool breakage is a devastating event causing
diverse damages such as machine downtime, workpiece deterioration and increased total
costs. Unexpected tool breakage and usage of a cutting tool in lifetime requires TCMS that
can diagnose the tool condition with sensor systems or pattern recognition approaches.
Indirect TCMS are more suitable for industrial applications because of their applicability
and sustainability and for being economical. Besides, the papers which have motivation
to correlate the sensor signals with tool FW using indirect TCMS are included in this
review. A general outline was performed on indirect TCMS for turning operations in
this study for the last two decades. Advanced monitoring systems and their integration
to manufacturing systems serve as a supportive component for production of complex
parts. These systems enable detection of errors in cutting tools and workpieces for higher
accuracy. Moreover, it is possible to set communications between sensors and machine
tools to make decision for the health of the machining. Software based solutions can be
obtained in this manner, which is a better approach for the management and supply chain
in a production platform. In the future, it would be also possible to integrate different
combination of advanced cutting tools and new generation materials. The experience on
machining to date is a guide for this purpose, but there is a requirement for advanced
artificial intelligence systems and their successful integration to manufacturing processes.
The selection of appropriate signal processing and evaluation methods after choice and
accomplished integration of sensor systems is noteworthy. There is need for complete and
multi-disciplinary information on robust and high accuracy monitoring systems. TCMS
based systems became reliable auxiliary especially in turning operations enhancing the
quality of the workpiece, tool life and productivity. Besides, further applications on
monitoring of cutting tool can be improved to adaptive control systems for online decision
making. The following implications can be derived according to authors:
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• Necessity: Basically, online monitoring of tool condition seems highly necessary to
prevent unexpected developments, better component quality and optimized cutting
conditions. A certain investment on TCMS provides more efficient and low-cost
manufacturing in industry.

• Purpose: Generally, any improvement in the field of optimization can be one of the
purposes of TCMS such as surface quality, dimensional accuracy, tool life, consumed
power and energy, manufacturing time, manufacturing costs, idle time and waste
material. Moreover, optimum cutting conditions can be obtained via TCMS, which
will fulfill the aforementioned purposes within a particular quality.

• Primary advantages: Online monitoring of tool condition provides avenues to inter-
fere the operation instantly with qualified equipment. Artificial-intelligence-based
monitoring acts as a decision making mechanism rather than operator and makes
deductions with high reliability.

• Additional advantages: Beyond monitoring machining conditions, these systems
provide significant data source and optimized parameters for further usage. Besides,
healthier turning conditions for operators can be obtained by preventing accidents. If
TCMS is supported with supplementary device such as withdrawal mechanism; the
intervention can be performed without operator control.

• Coverage and context: Especially in machining operations, for turning, drilling,
milling, etc., TCMS proved that more accurate and sensitive manufacturing can be
obtained. However, proper sensor systems can be integrated to any manufacturing
technology and successfully applied.

• Drawback and deficiency: There is a need for investment cost to meet sensor systems,
data acquisition equipment and software for data processing and recording. Multiple
sensors can detect the system errors more accurately and predict tool condition with
more sensitivity. It is an important issue to determine the number of sensors because
of bringing additional financial worries.

• Recommendation: A universal approach should be developed instead of a certain
pair of tool and workpiece investigation for each study. That is why the relationship
between process parameters and TW should be analyzed and stated in detail. Descrip-
tion of sensor fusion must be clarified and generalized for robust, inexpensive and
intelligent monitoring systems.

• Previous research work: In the far past of turning operations, a series of cutting tool
materials have been applied to newly developed workpiece materials to achieve better
machinability. With each of work material produced, it was intended to solve the
several industrial and social problems, however innovations introduced new issues. In
order to overcome these problems of each period, technological approaches presented
from manufacturers and researchers such as new tool geometry, developed machine
tools, different cooling technologies, the latest tool materials etc. As mentioned before,
each of these initiatives accompanied mysteries and questions. TCMS evolved in time
for different types of problems, unexpected failures, industrial accidents, to control the
new technology and came to modern day. Even though it seems with the name “tool
condition monitoring”, the system monitors the machine tool and workpiece. The
basic structure of this system is available to integrate modern hardware and software
components. Therefore, their existence provided a reliable manufacturing in the past
and of course, will be the most important assistance in the future.

7. Critical Analysis and Trends

Mentioned topics for sensors and signal processing methods are handled and evalu-
ated one by one in this paper. It should be noted that there is necessity to compose these
hardware and software sources to follow future trends. Not only for a sensor and an
artificial intelligence method but also using more than one sensor to obtain sensor fusion
integrating hybrid decision making methods for a robust process. For that purpose, Indus-
try 4.0 leads in industry with increasing expectations because of its extensive content which
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covers the intelligent manufacturing, smart manufacturing, sustainable manufacturing
and digital manufacturing. Gathering these methods is just the beginning of the period.
With newly discovered materials and developed models, previously proposed methods
need updating especially for avoiding excessive costs, idle time, material losses and hard
to recover mistakes. To date, all proposed methods addressed the technology in some way
however with increasing interaction between humans and machines should direct it to
develop faster and efficient. In the perspective of machining technologies, TCMS exist in a
significant position providing reliable information about complex machining operations.

The prominent sensors have been considered as dynamometer, AE, temperature and
accelerometer with their success in detection and preferability in the field of TCMS in
turning. Almost all of these sensors are expensive and increase initial investment costs.
However, advances and complications in machining technologies make these sensors
essential, applicable, tenable and sustainable for online monitoring. Clearly, their quick
response time and easy to implement structure is attractive to solve the sophistication
while turning. For improved diagnosis and prognostics, the accurate implementation of
decision-making methods for different types of sensors is notable. This situation generates
a problem that there is need researchers represent different disciplines for more profound
analysis during preprocess and post process. An important issue is fast convergence of
the parameters for optimal values which can be possible using emerging data analysis
methods. The integration of different types of data for an ultimate decision about the
operation should be performed. Another challenging issue is collecting data together
and analysis them which require comprehensive information that entail the utilization
of data communication for health monitoring. In order to practice the prognostic health
management with intelligent systems, the emerging technologies in the field namely
edge computing, machine learning integrated embedded devices should be used. These
systems monitor the operation with advanced software components for sustainability of
the production while managing cost and safety. High technology supported manufacturing
systems ensures the diagnosis of major errors affecting the dimensions of the workpiece
and reducing remaining useful lifetime of the cutting tool. Generally, condition-based
maintenance systems preserve the available situation which is predetermined by operator
accepted that as the optimal condition. Eventually, for the purpose of the Industry 4.0,
a holistic approach is required to avoid a variety of defects and breakdowns during the
turning operation.

Artificial neural networks and ANFIS applications have been utilized satisfactorily in
turning operations for FW as it can be clearly seen. These methods were first among the
others which demonstrated the success of neural-networks-based prediction and moni-
toring. With this survey, it is intended to show the primary applications on sensors and
decision-making technologies, their advantages and drawbacks. It is suggested that a
specific TCMS equipped with correct sensors, signal processing method and classification
is the most developed one for a specific work material. That drives the researchers to
investigate each sensor feature and signal processing method in detail.

8. Conclusions

Despite there being important initiatives to evaluate TW, CFs, vibration, AE and SR,
analysis, modeling and optimization were performed individually in some studies. On
the other hand, a number of papers published in the field endeavored to estimate process
parameters accurately. To date, important work has been carried out to correlate TW and
sensorial data in turning. Thus, a critical review should be performed for TCMS to explain
the relationship between sensorial data and quality characteristics, for example, TW. The
following conclusions were drawn from this exhaustive literature review:

• The cross interaction between cutting parameters, in addition to the effect of TW
mechanisms and TW types, makes cutting operation complex. Considering turning,
single cutter is exposed to high mechanical, chemical and thermal loads which lead
to different wear developments. FW is accepted as the main tool life criteria since it
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shows progress on the flank face and weakens the main cutting edge. Therefore, it
is required to analyze in detail the FW especially with sensor systems to investigate
their correlation. In this way, online tracking and detection of the condition of wear
can be determined and further prevention of failure can be possible.

• The estimation of FW is a difficult task due to the time variant and non-linear structure
of machining processes. This challenge pushes the researchers to observe the momen-
tary alterations and protect the cutting tool from harsh conditions. Having a long
history, TCMS served as an information source with developing systems. A subsection
of TCMS is indirect systems, which are easy to implement and which provide effective
solutions, when the previous papers are considered.

• As each innovation brings some inconveniences, the drawbacks are due to lack of
knowledge, supplementary payment and possibility of inefficiency. Indirect TCMS
presents valuable contributions such as capability of using cutting tools in their
remaining useful life. This process can be managed by optimizing the other operation
variables. Eventually, this technology offers a facility that brings multiple optimization
of cutting variables along with the ultimate aim of the process parameters.

• The summarized methods belonging to signal processing and sensor systems prove the
significance of different applications in order to solve various machinability problems
related with TW. Considering the literature, a problem may be solved with a variety
of techniques and with one way in some situations. That drives the researchers to find
the correlations between variables and FW.

• As outlined, each sensor has some advantages and disadvantages; however, most of
them develop the monitoring system enduring the tough conditions of machining for
a long time. Thus, proper selection, integration and usage of a sensor or a group of
sensors make the high costs of this investment tolerable. Manufacturing technologies
extend their facilities with labor, economy, and engineering information in order to
reach the goal of Industry 4.0. This committed literature review shows the importance
of indirect TCMS for reaching the objective of Industry 4.0.

This paper focused on summarizing the relationship between indirect TCMS sensors
and FW. Published papers in the last two decades in this area were outlined, data acquisi-
tion, signal processing and decision making methods were also investigated. The research
can be carried out for milling and drilling operations and other types of TW.
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Nomenclature

TCMS Tool Condition Monitoring System
TCM Tool Condition Monitoring
SR Surface Roughness
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TW Tool Wear
FW Flank Wear
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34. Sağlam, H. Tool Condition Monitoring, Based on Multi-Component Force Measurements Using Artificial Neural Network in Milling;
Institute of Science, Selçuk University: Konya, Turkey, 2000.

35. Özel, T.; Nadgir, A. Prediction of flank wear by using back propagation neural network modeling when cutting hardened H-13
steel with chamfered and honed CBN tools. Int. J. Mach. Tools Manuf. 2002, 42, 287–297. [CrossRef]

36. Aslan, A. Optimization and Analysis of Process Parameters for Flank Wear, Cutting Forces and Vibration in Turning of AISI 5140:
A Comprehensive Study. Measurement 2020, 163, 107959. [CrossRef]

37. Brinksmeier, E.; Preuss, W.; Riemer, O.; Rentsch, R. Cutting forces, tool wear and surface finish in high speed diamond machining.
Precis. Eng. 2017, 49, 293–304. [CrossRef]

38. Davim, J.P.; Baptista, A.M. Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced
aluminium. J. Mater. Process. Technol. 2000, 103, 417–423. [CrossRef]

39. El Hakim, M.; Shalaby, M.; Veldhuis, S.; Dosbaeva, G. Effect of secondary hardening on cutting forces, cutting temperature, and
tool wear in hard turning of high alloy tool steels. Measurement 2015, 65, 233–238. [CrossRef]

40. Kene, A.P.; Choudhury, S.K. Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in
hard machining. Measurement 2019, 145, 118–129. [CrossRef]

41. Oraby, S.; Hayhurst, D. Tool life determination based on the measurement of wear and tool force ratio variation. Int. J. Mach.

Tools Manuf. 2004, 44, 1261–1269. [CrossRef]
42. Remadna, M.; Rigal, J.F. Evolution during time of tool wear and cutting forces in the case of hard turning with CBN inserts.

J. Mater. Process. Technol. 2006, 178, 67–75. [CrossRef]
43. Scheffer, C.; Kratz, H.; Heyns, P.; Klocke, F. Development of a tool wear-monitoring system for hard turning. Int. J. Mach.

Tools Manuf. 2003, 43, 973–985. [CrossRef]
44. Sikdar, S.K.; Chen, M. Relationship between tool flank wear area and component forces in single point turning. J. Mater.

Process. Technol. 2002, 128, 210–215. [CrossRef]
45. Suárez, A.; Veiga, F.; de Lacalle, L.L.; Polvorosa, R.; Wretland, A. An investigation of cutting forces and tool wear in turning of

Haynes 282. J. Manuf. Process. 2019, 37, 529–540. [CrossRef]
46. Wu, J.; Zhan, G.; He, L.; Zou, Z.; Zhou, T.; Du, F. Tribological Performance of Micro-Groove Tools of Improving Tool Wear

Resistance in Turning AISI 304 Process. Materials 2020, 13, 1236. [CrossRef]
47. Bhuiyan, M.; Choudhury, I.; Nukman, Y. An innovative approach to monitor the chip formation effect on tool state using acoustic

emission in turning. Int. J. Mach. Tools Manuf. 2012, 58, 19–28. [CrossRef]
48. Bhuiyan, M.; Choudhury, I.A.; Dahari, M.; Nukman, Y.; Dawal, S. Application of acoustic emission sensor to investigate the

frequency of tool wear and plastic deformation in tool condition monitoring. Measurement 2016, 92, 208–217. [CrossRef]
49. Chethan, Y.; Ravindra, H.; Krishnegowda, Y. Optimization of machining parameters in turning Nimonic-75 using machine vision

and acoustic emission signals by Taguchi technique. Measurement 2019, 144, 144–154. [CrossRef]
50. Chiou, R.Y.; Liang, S.Y. Analysis of acoustic emission in chatter vibration with tool wear effect in turning. Int. J. Mach. Tools Manuf.

2000, 40, 927–941. [CrossRef]
51. Maia, L.H.A.; Abrao, A.M.; Vasconcelos, W.L.; Sales, W.F.; Machado, A.R. A new approach for detection of wear mechanisms and

determination of tool life in turning using acoustic emission. Tribol. Int. 2015, 92, 519–532. [CrossRef]
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66. Yıldırım, Ç.V.; Sarıkaya, M.; Kıvak, T.; Şirin, Ş. The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear
patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribol. Int. 2019, 134, 443–456. [CrossRef]

67. Yu, Q.; Li, S.; Zhang, X.; Shao, M. Experimental study on correlation between turning temperature rise and turning vibration in
dry turning on aluminum alloy. Int. J. Adv. Manuf. Technol. 2019, 103, 453–469. [CrossRef]

68. Zhao, J.; Liu, Z. Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated
carbide tools in initial tool wear stage. J. Manuf. Process. 2020, 56, 1155–1165. [CrossRef]

69. Abu-Zahra, N.H.; Yu, G. Analytical model for tool wear monitoring in turning operations using ultrasound waves. Int. J. Mach.

Tools Manuf. 2000, 40, 1619–1635. [CrossRef]
70. Kopač, J.; Šali, S. Tool wear monitoring during the turning process. J. Mater. Process. Technol. 2001, 113, 312–316. [CrossRef]
71. Lu, M.-C.; Kannatey-Asibu, E., Jr. Analysis of sound signal generation due to flank wear in turning. J. Manuf. Sci. Eng. 2002, 124,

799–808. [CrossRef]
72. Mannan, M.; Kassim, A.A.; Jing, M. Application of image and sound analysis techniques to monitor the condition of cutting tools.

Pattern Recognit. Lett. 2000, 21, 969–979. [CrossRef]
73. Salgado, D.; Alonso, F. An approach based on current and sound signals for in-process tool wear monitoring. Int. J. Mach.

Tools Manuf. 2007, 47, 2140–2152. [CrossRef]
74. Szecsi, T. A DC motor based cutting tool condition monitoring system. J. Mater. Process. Technol. 1999, 92, 350–354. [CrossRef]
75. Yip, W.; To, S. Tool life enhancement in dry diamond turning of titanium alloys using an eddy current damping and a magnetic

field for sustainable manufacturing. J. Clean. Prod. 2017, 168, 929–939. [CrossRef]
76. Barreiro, J.; Castejón, M.; Alegre, E.; Hernández, L. Use of descriptors based on moments from digital images for tool wear

monitoring. Int. J. Mach. Tools Manuf. 2008, 48, 1005–1013. [CrossRef]
77. Castejón, M.; Alegre, E.; Barreiro, J.; Hernández, L. On-line tool wear monitoring using geometric descriptors from digital images.

Int. J. Mach. Tools Manuf. 2007, 47, 1847–1853. [CrossRef]
78. Kerr, D.; Pengilley, J.; Garwood, R. Assessment and visualisation of machine tool wear using computer vision. Int. J. Adv.

Manuf. Technol. 2005, 28, 781–791. [CrossRef]
79. Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Pimenov, D.Y. Predicting tool life in turning operations using neural networks and

image processing. Mech. Syst. Signal Process. 2018, 104, 503–513. [CrossRef]
80. Pfeifer, T.; Wiegers, L. Reliable tool wear monitoring by optimized image and illumination control in machine vision. Measurement

2000, 28, 209–218. [CrossRef]
81. Mikołajczyk, T.; Nowicki, K.; Kłodowski, A.; Pimenov, D.Y. Neural network approach for automatic image analysis of cutting

edge wear. Mech. Syst. Signal Process. 2017, 88, 100–110. [CrossRef]
82. Attanasio, A.; Ceretti, E.; Giardini, C. Analytical Models for Tool Wear Prediction during AISI 1045 Turning Operations.

Procedia CIRP 2013, 8, 218–223. [CrossRef]
83. D’Addona, D.M.; Segreto, T.; Simeone, A.; Teti, R. ANN tool wear modelling in the machining of nickel superalloy industrial

products. CIRP J. Manuf. Sci. Technol. 2011, 4, 33–37. [CrossRef]
84. Kuo, R.J. Multi-sensor integration for on-line tool wear estimation through artificial neural networks and fuzzy neural network.

Eng. Appl. Artif. Intell. 2000, 13, 249–261. [CrossRef]
85. Ojha, D.; Dixit, U.S. An economic and reliable tool life estimation procedure for turning. Int. J. Adv. Manuf. Technol. 2005, 26,

726–732. [CrossRef]
86. Pal, S.; Heyns, P.S.; Freyer, B.H.; Theron, N.J.; Pal, S.K. Tool wear monitoring and selection of optimum cutting conditions with

progressive tool wear effect and input uncertainties. J. Intell. Manuf. 2011, 22, 491–504. [CrossRef]
87. Widodo, A.; Yang, B.-S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process.

2007, 21, 2560–2574. [CrossRef]
88. Sun, J.; Rahman, M.; Wong, Y.; Hong, G. Multiclassification of tool wear with support vector machine by manufacturing loss

consideration. Int. J. Mach. Tools Manuf. 2004, 44, 1179–1187. [CrossRef]

http://dx.doi.org/10.1016/j.jestch.2016.06.011
http://dx.doi.org/10.1007/s00521-005-0469-9
http://dx.doi.org/10.1016/j.matpr.2018.06.195
http://dx.doi.org/10.1016/j.measurement.2018.02.016
http://dx.doi.org/10.1016/j.jmrt.2020.01.010
http://dx.doi.org/10.1016/j.precisioneng.2016.11.016
http://dx.doi.org/10.1016/j.triboint.2016.08.036
http://dx.doi.org/10.1016/j.triboint.2019.02.027
http://dx.doi.org/10.1007/s00170-019-03506-7
http://dx.doi.org/10.1016/j.jmapro.2020.06.010
http://dx.doi.org/10.1016/S0890-6955(00)00030-4
http://dx.doi.org/10.1016/S0924-0136(01)00621-5
http://dx.doi.org/10.1115/1.1511177
http://dx.doi.org/10.1016/S0167-8655(00)00050-7
http://dx.doi.org/10.1016/j.ijmachtools.2007.04.013
http://dx.doi.org/10.1016/S0924-0136(99)00182-X
http://dx.doi.org/10.1016/j.jclepro.2017.09.100
http://dx.doi.org/10.1016/j.ijmachtools.2008.01.005
http://dx.doi.org/10.1016/j.ijmachtools.2007.04.001
http://dx.doi.org/10.1007/s00170-004-2420-0
http://dx.doi.org/10.1016/j.ymssp.2017.11.022
http://dx.doi.org/10.1016/S0263-2241(00)00014-2
http://dx.doi.org/10.1016/j.ymssp.2016.11.026
http://dx.doi.org/10.1016/j.procir.2013.06.092
http://dx.doi.org/10.1016/j.cirpj.2011.07.003
http://dx.doi.org/10.1016/S0952-1976(00)00008-7
http://dx.doi.org/10.1007/s00170-003-2049-4
http://dx.doi.org/10.1007/s10845-009-0310-x
http://dx.doi.org/10.1016/j.ymssp.2006.12.007
http://dx.doi.org/10.1016/j.ijmachtools.2004.04.003


Sensors 2021, 21, 108 30 of 32

89. Brezak, D.; Majetic, D.; Udiljak, T.; Kasac, J. Tool wear estimation using an analytic fuzzy classifier and support vector machines.
J. Intell. Manuf. 2012, 23, 797–809. [CrossRef]

90. Kong, D.; Chen, Y.; Kong, D.; Duan, C.; Lu, L.; Chen, D. Relevance vector machine for tool wear prediction. Mech. Syst. Signal

Process. 2019, 127, 573–594. [CrossRef]
91. Li, N.; Chen, Y.; Kong, D.; Tan, S. Force-based tool condition monitoring for turning process using v-support vector regression.

Int. J. Adv. Manuf. Technol. 2017, 91, 351–361. [CrossRef]
92. Gajate, A.; Haber, R.; Del Toro, R.; Vega, P.; Bustillo, A. Tool wear monitoring using neuro-fuzzy techniques: A comparative study

in a turning process. J. Intell. Manuf. 2010, 23, 869–882. [CrossRef]
93. Lo, S.-P. The Application of an ANFIS and Grey System Method in Turning Tool-Failure Detection. Int. J. Adv. Manuf. Technol.

2002, 19, 564–572. [CrossRef]
94. Xu, L.; Huang, C.; Li, C.; Wang, J.; Liu, H.; Wang, X. Estimation of tool wear and optimization of cutting parameters based on

novel ANFIS-PSO method toward intelligent machining. J. Intell. Manuf. 2020, 1–14. [CrossRef]
95. Sharma, V.S.; Sharma, S.K.; Sharma, A.K. Cutting tool wear estimation for turning. J. Intell. Manuf. 2007, 19, 99–108. [CrossRef]
96. Azmi, A. Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of

GFRP composites. Adv. Eng. Softw. 2015, 82, 53–64. [CrossRef]
97. Liu, T.-I.; Song, S.-D.; Liu, G.; Wu, Z. Online monitoring and measurements of tool wear for precision turning of stainless steel

parts. Int. J. Adv. Manuf. Technol. 2013, 65, 1397–1407. [CrossRef]
98. Rizal, M.; Ghani, J.A.; Nuawi, M.Z.; Haron, C.H.C. Online tool wear prediction system in the turning process using an adaptive

neuro-fuzzy inference system. Appl. Soft Comput. 2013, 13, 1960–1968. [CrossRef]
99. Snr, D.E.D. Sensor signals for tool-wear monitoring in metal cutting operations—A review of methods. Int. J. Mach. Tools Manuf.

2000, 40, 1073–1098.
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136. Çetindağ, H.A.; Çiçek, A.; Uçak, N.; Çiçek, A.; Çiçek, A.; Çiçek, A. The effects of CryoMQL conditions on tool wear and surface

integrity in hard turning of AISI 52100 bearing steel. J. Manuf. Process. 2020, 56, 463–473. [CrossRef]
137. Dudzik, K.; Labuda, W. The Possibility of Applying Acoustic Emission and Dynamometric Methods for Monitoring the Turning

Process. Materials 2020, 13, 2926. [CrossRef]
138. Twardowski, P.; Wiciak-Pikuła, M. Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel.

Materials 2019, 12, 3091. [CrossRef] [PubMed]
139. Aouici, H.; Elbah, M.; Yallese, M.A.; Fnides, B.; Meddour, I.; Benlahmidi, S. Performance comparison of wiper and conventional

ceramic inserts in hard turning of AISI 4140 steel: Analysis of machining forces and flank wear. Int. J. Adv. Manuf. Technol. 2016,
87, 2221–2244. [CrossRef]

140. Hsu, T.-K.; Zeren, E. Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and
forces in finish turning of hardened AISI H13 steel. Int. J. Adv. Manuf. Technol. 2005, 25, 262–269. [CrossRef]

141. Valera, H.Y.; Bhavsar, S.N. Experimental Investigation of Surface Roughness and Power Consumption in Turning Operation of
EN 31 Alloy Steel. Procedia Technol. 2014, 14, 528–534. [CrossRef]

142. Hecker, R.L.; Liang, S. Predictive modeling of surface roughness in grinding. Int. J. Mach. Tools Manuf. 2003, 43, 755–761. [CrossRef]
143. Sangwan, K.S.; Saxena, S.; Kant, G. Optimization of Machining Parameters to Minimize Surface Roughness using Integrated

ANN-GA Approach. Procedia CIRP 2015, 29, 305–310. [CrossRef]
144. Akkus, H. Investigation of surface roughness values resulting from turning AISI 1040 steel with RSM and ANN. BSEU J. Sci.

2020, 7, 186–197.
145. Erçetin, A.; Usca, U.A. An experimental investigation of effect of turning AISI 1040 steel at low cutting speed on tool wear and

surface roughness. Turk. J. Nat. Sci. 2016, 5, 29–36.
146. Labidi, A.; Tebassi, H.; Belhadi, S.; Khettabi, R.; Yallese, M.A. Cutting Conditions Modeling and Optimization in Hard Turning

Using RSM, ANN and Desirability Function. J. Fail. Anal. Prev. 2018, 18, 1017–1033. [CrossRef]
147. Panda, A.; Sahoo, A.K.; Rout, A.K.; Kumar, R.; Das, R.K. Investigation of Flank Wear in Hard Turning of AISI 52100 Grade Steel

Using Multilayer Coated Carbide and Mixed Ceramic Inserts. Procedia Manuf. 2018, 20, 365–371. [CrossRef]

http://dx.doi.org/10.1016/j.matpr.2015.07.218
http://dx.doi.org/10.1016/j.measurement.2012.09.023
http://dx.doi.org/10.1007/s12206-015-0931-2
http://dx.doi.org/10.1177/0954406212466792
http://dx.doi.org/10.1007/s12206-011-0807-z
http://dx.doi.org/10.1016/j.surfcoat.2016.11.080
http://dx.doi.org/10.1016/j.jmapro.2015.06.010
http://dx.doi.org/10.1016/j.wear.2015.08.021
http://dx.doi.org/10.1016/j.ijrmhm.2014.11.001
http://dx.doi.org/10.1016/j.jclepro.2013.12.052
http://dx.doi.org/10.1007/s10845-017-1381-8
http://dx.doi.org/10.1177/0954405414558731
http://dx.doi.org/10.1016/j.jmatprotec.2014.01.016
http://dx.doi.org/10.1016/j.jmapro.2020.05.015
http://dx.doi.org/10.3390/ma13132926
http://dx.doi.org/10.3390/ma12193091
http://www.ncbi.nlm.nih.gov/pubmed/31546732
http://dx.doi.org/10.1007/s00170-016-8567-7
http://dx.doi.org/10.1007/s00170-003-1878-5
http://dx.doi.org/10.1016/j.protcy.2014.08.067
http://dx.doi.org/10.1016/S0890-6955(03)00055-5
http://dx.doi.org/10.1016/j.procir.2015.02.002
http://dx.doi.org/10.1007/s11668-018-0501-x
http://dx.doi.org/10.1016/j.promfg.2018.02.053


Sensors 2021, 21, 108 32 of 32
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