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Background Inflammation in the lung is the body’s natural response to injury. It acts to remove harmful stimuli such as 
pathogens, irritants, and damaged cells and initiate the healing process. Acute and chronic pulmonary inflammation are 
seen in different respiratory diseases such as; acute respiratory distress syndrome, chronic obstructive pulmonary disease 
(COPD), asthma, and cystic fibrosis (CF).
Findings In this review, we found that inflammatory response in COPD is determined by the activation of epithelial cells 
and macrophages in the respiratory tract. Epithelial cells and macrophages discharge transforming growth factor-β (TGF-β), 
which trigger fibroblast proliferation and tissue remodeling. Asthma leads to airway hyper-responsiveness, obstruction, mucus 
hyper-production, and airway-wall remodeling. Cytokines, allergens, chemokines, and infectious agents are the main stimuli 
that activate signaling pathways in epithelial cells in asthma. Mutation of the CF transmembrane conductance regulator 
(CFTR) gene results in CF. Mutations in CFTR influence the lung epithelial innate immune function that leads to exagger-
ated and ineffective airway inflammation that fails to abolish pulmonary pathogens. We present mechanistic computational 
models (based on ordinary differential equations, partial differential equations and agent-based models) that have been applied 
in studying the complex physiological and pathological mechanisms of chronic inflammation in different airway diseases.
Conclusion The scope of the present review is to explore the inflammatory mechanism in airway diseases and highlight the 
influence of aging on airways’ inflammation mechanism. The main goal of this review is to encourage research collaborations 
between experimentalist and modelers to promote our understanding of the physiological and pathological mechanisms that 
control inflammation in different airway diseases.
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Introduction

Inflammation is the body’s natural defense mechanism to 
remove harmful stimuli such as pathogens, irritants and 
damaged cells and initiate the healing process. In general, 
inflammation is classified as acute or chronic inflammation 
[1]. Acute inflammation is a beneficial process that helps to 
immobilize the injured region and lets the rest of the immune 
system mobilize to heal injuries [2]. Chronic inflammation, 

on the other hand, turns into a problem rather than a solution 
to the injuries. Chronically inflamed tissues typically pro-
ceed to evoke immune cells from the bloodstream to amplify 
the inflammatory response. They can destroy healthy tissues 
in a misdirected attempt at initiating the healing process [3]. 
In general, inflammatory mechanisms employ a group of 
pattern recognition receptors (PRRs) to recognize molecular 
patterns expressed by the invading pathogens. These recep-
tors may either be on the membrane surface e.g., Toll-Like 
receptors (TLRs) and C-type Lectin Receptors (CLRs) or 
inside the cytoplasm, e.g., Nod-Like Receptors (NLRs) and 
RIG-I-Like Receptors (RLRs) [4]. Next, the resolution pro-
cess, which involves apoptosis and subsequent clearance of 
activated inflammatory cells, will initiate [5, 6]. Then, the 
process of tissue repair starts to retrieve damaged tissue [7].

Airway inflammation is usually caused by pathogens or 
by exposure to toxins, pollutants, irritants, and allergens 
[8]. TLRs recognize molecular patterns shared by patho-
gens and activate inflammatory cells like nuclear factor 
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kappa-light-chain-enhancer of activated B-cells (NF-κB) 
and produce growth factors, chemokines, pro-inflammatory 
cytokines interleukin 8 (IL-8) and tumor necrosis factor 
alpha (TNF-α) to start resolution process [9]. IL-8 evokes 
neutrophils and TNF-α rises expression of endothelial cell 
adhesion molecules from lung capillaries [10]. Moreover, 
many of the known inflammatory target proteins, such as 
matrix metalloproteinase-9 (MMP-9), intercellular adhesion 
molecule-1 (ICAM-1), vascular cell adhesion molecule-1 
(VCAM-1), cyclooxygenase-2 (COX-2), and cytosolic 
phospholipase A2 (cPLA2), are specifically associated with 
airways inflammation in response to various stimuli [11]. 
Figure 1 presents an overview of general inflammatory sign-
aling pathways and highlight the contribution of inflamma-
tory mediators in airways diseases. The lung is a vital organ 
for providing mandatory oxygen for all organs in the body, 
and excessive inflammation can be life threatening. A deli-
cate balance between inflammation and anti-inflammation is 
essential for lung homeostasis. Therefore, a comprehensive 
understanding of the inflammatory mechanisms is crucial in 
the treatment of patients with lung inflammation [12].

Different factors have been identified that affect the 
inflammatory response including tissue microenvironment, 
disease, energy, stress, neighborhood, and seasonal changes 
[13, 14]. In general, an interaction between neutrophils and 
epithelial cells provides the possibility for communication 
during inflammatory responses where the tissue microenvi-
ronment has explicit influence on signaling pathways and 

triggers immune cells to rush to the injured tissue [15]. 
Different inflammatory responses have been observed for 
various diseases [16–19] and the upregulation of the inflam-
matory response that occurs with advancing age is recog-
nized as a major factor that leads to inflammaging [20]. 
Despite several studies being conducted on inflammation 
mechanisms, the influence of the discussed parameters on 
the inflammation mechanism remains unclear. Since inflam-
mation is a complex and beneficial process in the human 
body, a better understanding of this process would help to 
develop novel strategies to diagnose disease susceptibility, 
target and control therapies, and conclusively develop new 
approaches to prevent and treat chronic diseases associated 
with aging [21].

Mathematical modeling is the art of representing a sys-
tem with mathematical formulations whose analysis give 
useful information about the real system. Computational 
modeling is the application of mathematics to develop 
computer models for simulating the behavior of complex 
systems. Mathematical models of biological systems are 
usually complex and are often difficult to solve analyti-
cally and require the application of computational models 
to obtain numerical approximation of the model solution. 
Mathematical and computational models are useful in test-
ing hypotheses, interpreting experiments, identifying chains 
of causation, performing sensitivity analyses and guiding 
new experiments [22]. Mathematical and computational 
models of biological systems may be categorized roughly 

Fig. 1  General inflammatory 
response in airways disease: 
Pathogens, toxins, pollutants, 
irritants and allergens activate 
airways epithelial cells as 
inflammatory stimuli. TLRs 
recognize patters shared by 
pathogens (Pattern recogni-
tion) and activate inflamma-
tory cells like NF-κB, growth 
factors, chemokines, IL-8 
and TNF-α. Activated cells 
phagocytose pathogens in the 
injured region (Resolution) and 
start wound healing to repair 
damaged epithelial cells (Tissue 
remodeling). TLRs: Toll-like-
receptors, NF-κB: nuclear factor 
kappa-light-chain-enhancer of 
activated B-cells, IL-8: proin-
flammatory cytokines interleu-
kin 8, TNF-α: tumor necrosis 
factor alpha
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into statistical or mechanistic models. Statistical model are 
data-driven models that utilize correlative methods to gain 
an understanding of a system and often lack mechanistic 
insights [23]. Example of statistics-based models are regres-
sion techniques, hierarchical clustering and principal com-
ponent analysis. Mechanistic models are based on causative 
interactions of the components of a system and can unravel 
system dynamics that cannot be understood by investigating 
the dynamics of individual components of the system [23]. 
This review focuses on mechanistic models.

Mathematical and computational models are excellent 
tools that have been utilized successfully in studying the 
mechanisms that control the development and functioning 
of biological tissues including epithelial morphogenesis [24, 
25] and lung morphogenesis [26–30].

Mathematical and computational models have been devel-
oped to study inflammation and these models have contrib-
uted to our understanding of the inflammatory process [23, 
46–54]. Models have been developed to study lung respira-
tion including gas exchange [55–57], ventilation [58–64], 
perfusion [65, 66] and tissue mechanics [67–71]. Most of 
these models have investigated the physiological functioning 
of normal healthy lungs and relatively few have focused on 
obstructive lung diseases [69]. Few models of obstructive 
lung diseases incorporate the effect of inflammation [73–75].

Reynolds et al. [76] developed a cellular automata model 
to simulate acute lung inflammation. Their model described 
the interaction of pulmonary epithelial cells and immune 
cells during an inflammatory response resulting from patho-
gen exposure. Their model results predicted three possible 
outcomes of an inflammatory response: a return to homeo-
stasis, persistent infection with damaged tissue and resolved 
infection but with continued inflammation and damaged tis-
sue, similar to clinical situations. Ibrahim et al. [77] simu-
lated inflammation in an alveolus. They investigated the 
effects of low, medium, and high stretch/strain on inflam-
mation dynamics. Their model incorporated the interactions 
of pro- and anti-inflammatory cytokines, immune cells, and 
epithelial cells occurring during a stretch-induced inflam-
mation. Their results showed that the threshold of innate 
healing of a tissue might depend on the strain experienced 
by the tissue. When strain is under the threshold, the tissue 
is still capable of adapting its structure to heal the dam-
aged part. However, there exists a strain threshold where 
healing capability breaks down. An et al. [78] implemented 
an agent-based model of acute pulmonary inflammation 
and simulated pulmonary contusion, pneumonia, and acute 
lung injury/acute respiratory distress syndrome. Simulation 
results of the model were qualitatively similar to clinical and 
radiographic observations [78]. Their results demonstrated 
the progression of alveolar edema resulting from a localized 
injury corresponding to blunt pulmonary trauma, the pro-
gression of pneumonia resulting from a localized inoculation 

of bacteria, and the progression of alveolar edema formation 
arising from the development of acute respiratory distress 
syndrome.

Currently, very few mathematical and computational 
models have been implemented to study chronic lung 
inflammation. Existing models of lung inflammation are 
not yet at a level where they can capture the rich dynam-
ics of the complex interaction between inflammation and 
airway diseases. We therefore highlight the needs for devel-
oping mathematical and computational models dedicated 
to understanding acute and chronic inflammation both in 
healthy and diseased states of lung functioning. The findings 
of the review are organized into three sections. First, lung 
inflammatory responses in different airway diseases such 
as chronic obstructive pulmonary disease (COPD), asthma 
and cystic fibrosis are presented. Second, low-grade chronic 
inflammation in the airways of aged lungs is discussed. 
Third, reviews of existing mathematical and computational 
models for airway diseases are presented and the advantages 
of employing mathematical and computational models in 
the study of lung inflammation in airway diseases are dis-
cussed. We would like to note that this review is not meant 
to be a comprehensive coverage of the experimental and 
computational aspects of inflammation processes in airway 
diseases but rather a broad overview for researchers seeking 
to understand the inflammation process in lung airway dis-
eases. The goal of this review is to foster research collabora-
tions between experimentalist and modelers in the study of 
lung inflammation. This has the prospect of furthering our 
understanding of the physiological and pathological mecha-
nisms that control inflammation in different airway diseases.

In�ammation mechanism in COPD

COPD is commonly viewed as a chronic disease in pulmo-
nary tissue. The disease is mainly initiated by inhaling ciga-
rette smoke into the pulmonary system and associated with 
a switch from a self-limiting inflammatory response to a 
chronic persistent inflammatory response [79]. Cigarette pol-
lutants can directly trigger PRRs such as TLRs and puriner-
gic receptors and dying-autophagic, apoptotic or necrotic-
cells can indirectly release damage-associated molecular 
patterns (DAMPs) to initiate pattern recognition. Chemot-
actic factors attract inflammatory cells to the injured region. 
CC-chemokine ligand 2 (CCL2) acts on CC-chemokine 
receptor 2 (CCR2) to attract monocytes, chemokine C-X-C 
motif ligand 1 (CXCL1). CXCL8 act on CCR2 to attract 
neutrophils and monocytes which differentiate into mac-
rophages in the lung for resolution process [80, 81]. CXCL9, 
CXCL10 and CXCL11 act on CXCR3 to attract T helper 1 
 (TH1) cells and type 1 cytotoxic T (TC1) cells [82]. Mac-
rophages, epithelial cells and attracted inflammatory cells 
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to the injured site release proteases, such as MMP9, which 
results in elastin degradation and emphysema [83] where 
the immune system switches to a  TH17 response to promote 
inflammation [79]. Epithelial cells and macrophages also 
discharge transforming growth factor-β (TGF-β), which 
triggers fibroblast proliferation for tissue remodeling [84]. 
Airway smooth muscle produces inflammatory cytokines, 
proteases, and growth factors, which may contribute to the 
remodeling process and induce phenotypic changes of the 
smooth muscle in COPD (Fig. 2). Also, small airway-wall 
remodeling is proposed as reason for airflow limitation in 
COPD, decline in lung function, and poor responses to avail-
able therapies [85]. Cigarette smoke, oxidative stress and the 
airway inflammatory microenvironment are acknowledged 
as main parameters that have a direct effect on alveolar mac-
rophages phenotype in COPD [86]. Several other mecha-
nisms such as airway-wall remodeling, impaired macrophage 
clearance, chronic colonization and infection of the lower 
airways, oxidative stress, tissue hypoxia, genetic suscepti-
bility, and epigenetic changes have been implicated in the 
persistence of the inflammatory response despite smoking 
cessation [87].

In�ammation mechanism in asthma

Asthma is one of the most serious pulmonary-system 
diseases and it affects more than 300 million individu-
als around the world. The presence of airway inflamma-
tion in asthma was detected in the nineteenth century. 
Asthma leads to airway hyper-responsiveness, obstruction, 
mucus hyper-production and airway-wall remodeling [88]. 
Cytokines, allergens, chemokines, and infectious agents 
are the main stimuli that activate signaling pathways in 
epithelial cells in asthma [89]. Airway epithelial cells acti-
vate epithelial TLRs to recognize patterns of inflammatory 
stimuli in allergic disease [90, 91]. Then resolution pro-
cess starts where antigen presenting cells (APCs) endo-
cytose inhaled allergens, present them to naïve T cells, 
and activate mast cells by crosslinking surface-bound IgE 
molecules to release several bronchoconstrictor media-
tors, including cysteinyl leukotrienes and prostaglandin  D2 
[92]. Myeloid dendritic cells process allergens and release 
CCL17 and CCL22, which act on CCR4 to attract  TH2 
cells.  TH2 cells release IL-4 and IL-13, IL-5 and IL-9 and 

Fig. 2  Inflammatory response in COPD: Cigarette pollutants trigger 
TLRs and apoptotic, necrotic and dead cells release DAMPs (Pat-
tern recognition). Activated inflammatory cells recruit neutrophils 
and monocyte to injured region (Resolution). Recruited inflamma-
tory cells to the injured site release elastase and MMP9, which results 
in mucus hypersecretion and elastin degradation and emphysema, 

respectively. Macrophages discharge TGF-β which triggers fibro-
blast proliferation (Tissue remodeling). Airway smooth muscle pro-
duces inflammatory cytokines, proteases, and growth factors, which 
may contribute to the remodeling process. TLRs: Toll-like-receptors, 
DAMPs: damage-associated molecular patterns, MMP9: matrix met-
alloproteinase-9 , TGF-β: transforming growth factor-β
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have a central role in the pathogenesis of allergic asthma 
[93]. Epithelial cells release CCL11, which recruits 
eosinophils via CCR3. Eosinophils secrete a wide array 
of cytotoxic and pro-inflammatory mediators [94]. Natural 
killer (NK) cells and type 2 innate lymphoid cells (ILC2s) 
express the pro-resolving receptors ALX/FPR2 for lipoxin 
A4 (LXA4) and Chemokine-like receptor 1 (CMKLR1) 
that increases airway eosinophilia and antigen (Ag)-spe-
cific CD4+ T-cell clearance [95]. LXA4 inhibits NK-cell 
cytotoxicity and increases eosinophil-induced apoptosis 
by NK cells, and inhibits interleukin (IL)-13 release by 
ILC2s. In addition, eosinophils may contribute to resolu-
tion of inflammation in asthma and produce pro-resolving 
lipid mediators (PD1) and RvE3. Where PD1 and IL-10 
secrete interleukin IL-10 and promote macrophage acti-
vation [96]. Patients with asthma may have a defect in 
regulatory T (TReg) cells, which may lead to further 
 TH2-cell proliferation [97]. TGF-β is introduced as a main 
regulator of remodeling in the airways of asthmatics [93]. 
Platelet-derived growth factor (PDGF) promotes fibro-
blasts and ASM proliferation in the asthmatic lung [98, 
99]. Injured epithelial cells releases stem-cell factor (SCF) 
which promote myofibroblasts differentiation and induce 
structural changes throughout airway-wall remodeling 
[100] (Fig. 3). Increase in angiogenesis, pro-angiogenic 
cytokine vascular endothelial growth factor (VEGF) and 
its receptors [101, 102] and dysregulation in production of 

extracellular matrix metalloproteinase (MMPs) [103] have 
been reported as proteinases responsible for the degrada-
tion of the extracellular matrix during tissue remodeling 
in asthmatic airways [104].

In�ammation mechanism in cystic �brosis

Apart from COPD and asthma, cystic fibrosis (CF) is an 
inherited chronic disease that affects the lungs of about 
70,000 children and adults worldwide (30,000 in the US). 
Mutation of the CF transmembrane conductance regula-
tor (CFTR) gene results in CF [105]. Mutations in CFTR 
influence the lung epithelial innate immune function that 
leads to exaggerated and ineffective airway inflammation 
that fails to abolish pulmonary pathogens [106]. CFTR 
deficiency is associated with altered fluid and electrolyte 
homeostasis of epithelial cells and leads to unusually thick 
and viscose mucus that clogs small airways, and contrib-
utes to the development of persistent lung inflammation 
and an increased risk of lung infections [107]. Pathogen-
associated molecular patterns (PAMPs) activate TLR-
MyD88 signaling to increase NF-κB signaling [108]. 
TLRs and bacterial colonization activate neutrophils, mac-
rophages and NF-κB-mediated inflammatory response to 
initiate the pathological process. Activated NF-κB result 
in production of inflammatory cytokines, such as IL-8 and 

Fig. 3  Inflammatory response 
in asthma: TLRs recognize 
patterns of allergens (Pattern 
recognition). Myeloid DC 
process allergens and release 
CCL17 and CCL22 to attract 
TH2 to injured region. IgE 
molecules sensitize mast cells 
to release cysteinyl leukotrienes 
and PGD2. Damaged epithelial 
cells release CCL11 to recruit 
eosinophils which attract more 
proinflammatory mediators to 
the damaged region. Eosino-
phils produce PD1 and PD1 
secrets IL10 which promotes 
macrophage activation (Resolu-
tion). Damaged epithelial 
cells releases SCF to activate 
myofibroblast to repair damaged 
epithelial cells. TLRs: Toll-like-
receptors, CCL: CC-chemokine 
ligand, TH2: T helper cells 
type 2, IgE: immunoglobulin E, 
PGD2: prostaglandin D2, SCF: 
stem-cell factor, PD1: pro-
resolving lipid mediators
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High mobility group box 1 (HMGB1) protein, and recruit-
ment of polymorphonuclear leukocyte (PMNs). HMGB1 
increases pro-inflammatory cytokine expression via its 
cellular receptors. Increase in pro-inflammatory cytokine 
expression promotes toll-like receptor TLR-2 and TLR-4 
production [109]. Intracellular TLR4 activation prevents 
interferon regulatory factor 3 (IRF3) translocation to the 
nucleus to activate type I IFN gene products, which are 
required for the activation of dendritic cells (DCs) and 
the clearance of some cystic fibrosis-related pathogens 
[110].  TH2 skews the inflammatory environment in cystic 
fibrosis. Abundant IL-8 stimulates airway epithelial and 
smooth muscle remodeling and induces greater contraction 
in CF airway smooth muscle than non-cystic fibrosis air-
way smooth muscle, which results in airway hyper-respon-
siveness [111]. Decreased function of peroxisome prolif-
erator-activated receptor-g (PPARg) associates with low 
levels of carbonic anhydrases that contribute to increased 
mucus viscosity and results in enhanced pro-inflammatory 
signaling and cytokine secretion in CF cells (Fig. 4). High 
numbers of neutrophils at the site of chronic infection and 
decreased neutrophil apoptosis, phagocytic capacity of 

macrophage and levels of pro-resolving mediators sug-
gest an impaired inflammatory resolution that promotes 
sustained infection [112, 113]. In addition, defective cilia 
function, increased mucus viscosity, hypoxia, free nutri-
ents, damage to lung architecture, defective or decreased 
antimicrobials,  TH2 and  TH17 responses and ineffective 
cellular mediators, changes in virulence and direct down-
regulation of antimicrobial pathways contribute to infec-
tion and pulmonary decline in cystic fibrosis [114]. Airway 
remodeling in CF is presented as secondary to infection 
and inflammation [115]. MMPs are involved in tissue 
breakdown and repair and MMP-8 and MMP-9, which are 
mainly derived from neutrophils in the lower respiratory 
tract, are the most important group of endopeptidases in 
CF remodeling [116–118]. In addition, TGFα is thought 
to play a role in the regulation of airways remodeling with 
CF [119] and TH2 cytokines (especially IL-13) has been 
found during cycles of epithelial injury and repair of CF 
airways [120].

The contribution of harmful stimuli and inflammatory 
mediators in pattern recognition, resolution and remod-
eling process are classified for discussed disease condition 
in Table 1.

Fig. 4  Inflammatory response 
in CF: TLRs recognize PAMPs 
(pattern recognition). TLRs and 
bacterial colonization activate 
inflammatory mediators like; 
neutrophils, macrophages and 
NF-κB. NF-κB produce IL8 and 
HMGB1 and recruit monocyte. 
Type I IFN activates DCs to 
clear cystic fibrosis-related 
pathogens and TH2 skew CF 
(Resolution). IL8 stimulate 
damaged epithelial cells (Tissue 
remodeling). PAMPs: Pathogen-
associated molecular patterns, 
TLRs: Toll-like-receptors, 
NF-κB: nuclear factor kappa-
light-chain-enhancer of acti-
vated B-cells, IL-8: proinflam-
matory cytokines interleukin 8, 
HMGB1: High mobility group 
box 1, IFN: Interferon, DCs: 
dendritic cells
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In�ammaging mechanism in airways

All vital organs lose their function with age. Human lung 
matures up to age 20–25 years and will start to lose func-
tionality after about 35 years. Breathing existent pollut-
ants in the environment or exogenous oxidants in young or 
healthy individuals causes cellular damage in lung tissue 
[121]. If the damage is too extreme, cells would sustain 
senescence to prevent oncogenic changes. Senescence sign-
aling activates stem cells to replace damaged cells [122]. 
An increase in senescent cells and corresponding senes-
cence-associated secretory phenotype can induce further 
inflammation, alveolar destruction, endothelial dysfunction 
[123]. In addition, excessive ROS will increase damage to 
cells by a defective repair mechanism in the elderly. Aging 
and ROS induce loss of quiescence and stem-cell senes-
cence, which result in loss of stem cells’ renewal [122]. In 
classic aging pathways, growth factor signaling activates 
PI3K, phospho-AKT and mTOR, which accelerate aging 
[124–126]. Inhibition of mTOR signaling extends life span 
[127]. Antiaging molecules such as phosphatase and tensin 
homolog (PTEN) inhibits PI3K and AMPK prevent hyper-
activation of the mTOR signaling pathway. Sirtuins (SIRT1 
and SIRT6) upregulate FOXO3A and promotes autophagy 
[124, 128, 129]. Defective mechanism of positive regulators 
(SIRT1, SIRT6, PTEN, and AMPK) will induce cytokine, 
chemokine, and ribosomal synthesis and secrete growth fac-
tors favoring cell proliferation and growth (Fig. 5). COPD 
is identified with an elevated ROS level and ROS are able to 
change biological molecules, signaling pathways and anti-
oxidant molecule function. A decrease in the level of PTEN 
and SIRT1 in COPD would lead to activation of the mTOR-
aging pathway via PI3K activation by ROS. This results in 
reduced antioxidant defense by FOXO3A inhibition and a 

loss of autophagy. Loss of autophagy can prevent the clear-
ance of defective mitochondria and further increase ROS 
production [130]. Defective autophagy decreases immune 
response to bacteria and cellular homoeostasis in COPD. In 
addition, an excessive level of ROS promotes NF-κB/AP-1 
activation and chronic inflammation [131, 132].

Experimental observation of in�ammation 
in airway diseases

Asthma and COPD occur due to chronic inflammation of 
the airways. However, the mechanism of action is different. 
In asthma, mast cells, eosinophils and CD4 T lymphocytes 
represent the predominant cell types in the inflammatory 
process. In COPD, neutrophils, macrophages and CD8 T 
lymphocytes are the predominant cell types in the inflam-
matory process [133–135]. In CF, neutrophils are the pre-
dominant cell types in the inflammatory process and they 
release oxidants, proteases, and elastase that causes respira-
tory exacerbations [136].

Patients with COPD exhibit reduced airway caliber 
because of cell damage induced by external toxic agents 
such as cigarette smoke [134, 137, 138]. There is a posi-
tive correlation between inflammation intensity and 
COPD severity. At the final stages of the disease, the 
inflammatory process becomes very intense. The inten-
sity of inflammation may be combated through the appli-
cation of anti-inflammatory therapies [134, 139]. Anti-
inflammatory therapies have the potential of combating 
CF and asthma, but care must be taken to avoid suppress-
ing critical elements of the inflammatory response, which 
in turn may worsen the disease [136, 139]. Inflammatory 
responses are numerous and include transport of plasma 

Table 1  Contribution of harmful stimuli and inflammatory mediators in pattern recognition, resolution and remodeling process in airway disease

Airway disease Harmful stimuli Participant mediators

Pattern recognition Resolution Remodeling

COPD Cigarette, pollutants, DAMPS TLRs, Purinergic receptors CCL2, CCR2, CXCL1, CXCL8, 
CCR2, CXCL9, CXCL10, 
CXCL11, CXCR3,  TH1, TC1, 
monocytes, neutrophils

Macrophages, TGF-β

Asthma Cytokines, allergens, 
chemokines, infection 
agents

APCs, naïve T cells IgE, cysteinyl, leukotrienes, 
prostaglandin  D2, SCF, myofi-
broblasts, CCL17, CCL22, 
CCR4,  TH2, IL-3, IL-4, IL-5, 
IL-9, IL-10, IL-13, CCL11, 
eosinophils, CCR3, NK, ILC2, 
ALX/FPR2, LXA4, CMKLR1, 
RvE1, PD1, RvE3

TGF-β, PDGF, VEGF, MMPs

CF Bacterial colonization TLR-MyD88, PMNs NF-κB, IL-8, HMGB1, PMNs, 
TLR-2, TLR-4, IRF3, type I 
IFN,  TH2, PPARg

IL-13, TGFα, MMP-8, MMP-9



66 P. Aghasafari et al.

1 3

from the blood into the injured tissues, biochemical sign-
aling cascades, and the mobilization of cytokines, such 
as interleukins [140]. The complexity of the inflamma-
tion process suggests that strategies for developing effec-
tive and efficient therapeutic interventions for combating 
airway diseases would greatly benefit from predictions 
obtained from mathematical and computational modeling. 
For example, correlation of imaging measurements with 
disease severity would be useful in understanding the 
pathophysiology behind different airway diseases and 
guide the development of therapeutic interventions. In 
addition, computational models of lung tissue may aid in 
the study of lung tissue mechanics during an inflamma-
tory process.

Aging is a complex process that occurs in different 
cell types and tissues and is controlled by environmental, 
genetic, stochastic, epigenetic events and their long-term 
interactions [141]. Inflammaging is associated with most 
of the age-related diseases but its precise etiology and 
potential causal role remain largely unknown [141]. An 
understanding of the mechanism of lung inflammaging 
is therefore important in determining whether treatments 
that modulate inflammaging may be beneficial in combat-
ing age-related airway diseases.

Mathematical modeling of lung 
in�ammation

Mathematical models represent the essential characteris-
tics of a system as a set of mathematical equations. They 
are useful in testing different hypotheses about the work-
ing of a system and their utility is established by matching 
their outputs with experimental observations. The study of 
inflammation is somewhat difficult because of the myriad 
inflammatory mediators involved and their effects on target 
tissues. The coordinated functions of these mediators and 
their multiple modes of regulation remain largely unknown 
[142]. Mathematical models are vital tools that would help 
in deciphering the dynamic behavior of these networks. 
Analysis of a model often provides insights into the under-
lying mechanisms for the regulation of the system, and this 
may drive formulation of new hypotheses that would in 
turn lead to new rounds of experiments [143].

Mechanistic models of inflammation may be classified 
as discrete-time or continuous-time models. Discrete-time 
models describe the changes in the system at certain time 
points with no information of its behavior at intervals 
between these time points. Discrete-time models such as 

Fig. 5  Inflammaging mecha-
nism in airways: ROS increase 
damage in airways epithelial 
cells. Growth factor signaling 
activate PI3K, phospho-AKT 
and mTOR signaling which 
accelerate aging in airways. 
PTEN and AMPK inhibit 
discussed factors that can lead 
to increase in life span. SIRT1 
upregulate FOXO3A that func-
tions as a trigger for apoptosis 
of damaged cells. SIRT1 also 
promotes autophagy. Effect-
ing mechanism of SIRT1 will 
induce cytokine, chemokine and 
ribosomal synthesis and secrete 
growth factors favoring cell 
proliferation and growth. ROS: 
Reactive oxygen species, PI3K: 
Phosphoinositide 3-kinase, 
mTOR: mechanistic target of 
rapamycin, PTEN: phosphatase 
and tensin homolog , FOXO3: 
Forkhead box O3, SIRT1: 
Sirtuin 1
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agent-based models (ABMs) represent an inflammatory 
mediator as an agent (i.e., discrete entity with its own goal 
and behavior) that has the ability to adapt to its microen-
vironment and modify its behavior [49, 144]. Agent simu-
lations are governed by local interactions among agents 
and can incorporate the stochasticity of the inflammatory 
process. Continuous-time models represent the system as 
continuous over time and usually manifest as differential 
equations [145]. Most continuum models of inflammation 
use ordinary differential equations (ODEs) to describe the 
dynamics of an inflammation response. Some models use 
partial differential equations (PDEs) in place of ODEs or 
a combination of both [54, 146]. Given the time frame 
(> 1 day) at which inflammation occurs, the spatial vari-
ations in distribution of inflammatory mediators may be 
assumed to be negligible compared to the time variations. 
Thus, ODEs may be better suited for modeling the inflam-
mation process over several days. However, to study the 
spatial distribution of inflammatory mediators and their 
effect on the progress of an inflammation process, PDE 
models would be a better option. ODEs and PDEs that 
model the complex dynamics of an inflammatory response 
are mostly nonlinear, and their exact or analytical solu-
tions are difficult and sometimes impossible to obtain. The 
application of techniques for solving differential equations 
based on numerical approximations is required for finding 
approximate solutions for nonlinear differential equations. 
Numerical algorithms for the numerical approximation of 
nonlinear differential equations produce computational 
models that are easily simulated on computers to obtain 
approximate solutions.

Mathematical and computational models have been devel-
oped to study the physiological functioning of the lungs and 
relatively few have focused on obstructive lung diseases [69, 
147]. Most of the models of obstructive lung diseases do not 
incorporate the effect of inflammation [72–75].

Computational models of inflammation in asthma

Chernyavsky et al. [148] used a theoretical model to iden-
tify the role of inflammation resolution speed in airway 
smooth muscle mass accumulation in asthma. They pre-
sent a mathematical model that describes qualitatively the 
growth dynamics of airway smooth muscle cells over short 
and long terms in the normal and inflammatory environ-
ments often observed in asthma. Their model predicts that 
long-term airway smooth muscle growth is influenced by 
the inflammation resolution speed, the inflammation mag-
nitude, and the frequency of inflammatory episodes. Their 
model highlights the importance of the resolution speed of 
inflammation in the long-term management of asthma. A 
limitation of their model is that it does not account for the 
mechanical interaction of the cells between each other and 

with the extracellular matrix that could affect the growth 
and apoptosis rates as well as the total capacity of an airway 
wall. In addition, the model neglects the spatially heteroge-
neous and anisotropic growth observed in micrographs and 
cell hypertrophy [148, 149].

A study by Lee et al. [147] used a system of ODEs to 
investigate macrophage response to respiratory viral infec-
tion in normal and asthmatic conditions. Their model 
describes two types of macrophages that play complemen-
tary roles in fighting viral infections: classical-activated 
macrophages and alternative-activated macrophages. Classi-
cal-activated macrophages destroy infected cells and tissues 
to remove viruses, while alternative-activated macrophages 
repair damaged tissues. They describe populations of viruses 
and airway epithelial cells, concentrations of cytokines (such 
as IFN- β and IL-4) and enzymes (such as iNOS and argi-
nase-1) secreted by the cells. After an infection, the airway 
epithelial cells are directly infected by the virus and the 
type I interferon they produce. Airway epithelial cells are 
defined to be in two states, dormant and activated. Dormant 
epithelial cells transition to the activated state upon expo-
sure to virus. After epithelial cells have been infected and 
begun to respond, alveolar macrophages take control of the 
defense system. The balance between classically activated 
macrophages and alternatively activated macrophages is 
controlled by the cytokines IFNb and IL4. They investigate 
how viral infections alter the balance of the alveolar mac-
rophage system and potentially trigger asthma exacerba-
tions. In particular, they investigate how respiratory viral 
infection changes the balance between classical-activated 
macrophages and alternative-activated macrophages and 
how this response differs in hosts with asthma-like condi-
tions, and how those differences can lead to accentuated 
symptoms.

Their simulation results show that a higher viral load or 
longer duration of infection provokes a stronger immune 
response from the macrophage system. Their result also 
showed that the differences in response to respiratory viral 
infection in normal and asthmatic subjects skews the sys-
tem toward a response that generates more severe symptoms 
in asthmatic patients. Thus, respiratory viral infection can 
aggravate symptoms in asthmatic patients [147].

Kim et al. [75] presented a mathematical model consist-
ing of a system of PDEs to study the regulation of type I 
(Th1) versus type II (Th2) helper T cells in asthma develop-
ment. Airway exposure levels of lipopolysaccharide (LPS) 
determined type I versus type II helper T cell-induced 
experimental asthma. While high LPS levels induce Th1-
dominant responses, low LPS levels derive Th2 cell-induced 
asthma. Their model describes the behaviors of T cells (Th0, 
Th1, Th2 and macrophages) and regulatory molecules (IFN-
γ, IL-4, IL-12, TNF-α) in response to high, intermediate, 
and low levels of LPS. The simulation results showed how 
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variations in the levels of injected LPS affect the devel-
opment of Th1 or Th2 cell responses through differential 
cytokine induction.

Computational models of inflammation in COPD

A few mathematical models have also been developed to 
study COPD. An example is the model presented by Cheng 
et al. [72] investigating the effect of post coinfection with 
influenza A virus and Streptococcus pneumoniae. The model 
investigated coinfection interactions between influenza and 
Streptococcus pneumoniae through identifying variations in 
cytokine level, reflecting severity in inflammatory response. 
Their modeling framework is based on the mathematical 
within-host dynamics of coinfection with influenza A virus 
and Streptococcus pneumoniae developed in Smith et al. 
[153, 154]. Results from their study showed that Strepto-
coccus pneumoniae may be a risk factor for COPD exacerba-
tions. It further showed that the day of secondary Strepto-

coccus pneumoniae infection had much more impact on the 
severity of inflammatory responses in pneumonia compared 
to the effects caused by initial virus titers and bacteria loads.

Cox [73] developed a system of ODEs to investigates 
how COPD can be caused by sustained exposure to ciga-
rette smoke (CS) (or other pro-inflammatory agents). The 
ODEs represent possible quantitative causal relations among 
key variables, such as alveolar macrophages and neutrophil 
levels in the lung, levels of tissue-deteriorating enzymes, and 
rates of apoptosis, repair, and net destruction of the alveolar 
wall [73]. Their model explains irreversible degeneration 
of lung tissue as resulting from a cascade of positive feed-
back loops: a macrophage inflammation loop, a neutrophil 
inflammation loop, and an alveolar epithelial-cell apoptosis 
loop; and illustrates how to simplify and make more under-
standable, the main aspects of the very complex dynamics 
of COPD initiation and progression, as well as how to pre-
dict the effects on risk of interventions that affect specific 
biological responses.

An advantage of their model is the possibility of quan-
tifying how interventions that change the times to activate 
different major feedback loops will affect the time course of 
the disease [73].

Computational models of inflammation in cystic 
fibrosis

Liquid hyperabsorption, airway surface dehydration, and 
impaired mucociliary clearance is prevalent in CF lung dis-
ease [155]. Markovetz et al. [155] implemented a system of 
ordinary differential equations based on functional imaging 
data to investigate the mucociliary clearance and absorp-
tion of aerosolized radiolabeled particle and small molecules 
probes from human subjects with and without CF. Their 

model captures the mucociliary clearance and liquid dynam-
ics of the hyperabsorptive state in CF airways and the miti-
gation of that state by hypertonic saline treatment. Results 
from their study suggest that patients with CF have regions 
of airway with diminished mucociliary clearance function 
that can be recruited with hypertonic saline treatment.

Airway remodeling is a common factor in CF lung 
disease. Brown et al. [156] used an ABM to examine the 
response of an abstracted population of inflammatory cells 
and cells involved in remodeling to particulate exposure in 
the lung. The model focuses on relevant interactions among 
macrophages, fibroblasts, a pro-inflammatory cytokine 
(TNF-α), an anti-inflammatory cytokine (TGF-β1), collagen 
deposition, and tissue damage. Numerical simulations of the 
model gives three distinct states that equate with (1) self-
resolving inflammation and a return to baseline, (2) a pro-
inflammatory process of localized tissue damage and fibro-
sis, and (3) elevated pro- and anti-inflammatory cytokines, 
persistent tissue damage, and fibrosis outcomes. These states 
depend on the degree and duration of exposure and are con-
sistent with experimental results from histology sections of 
lung tissue from mice exposed to particulate matter [156]. 
An advantage of their model is the ability to capture some of 
the important features of inflammation following exposure 
of the lung to particulate matter.

In summary, mathematical models of inflammation have 
contributed to our knowledge of the mechanism of action in 
lung diseases. There is need to develop a unified approach 
for modeling lung diseases that accounts for the different 
phenomena occurring at different spatial levels. Models that 
link the interactions at the molecular, cellular and tissue-
level would provide a systems perspective to the pathology 
of lung diseases.

Multiscale modeling of lung in�ammation 
and the aging process

Lung inflammation is a complex process and its onset and 
progress depends on the coordinated interactions involving 
different proteins, networks, tissues and other organs (e.g., 
in sepsis). Due to the large number of mediators involved in 
the inflammation process, it is often difficult to decipher the 
individual and collective control of mediators across the dif-
ferent spatial scales. The role of proteins, networks, tissues 
and other organs on local and systemic inflammation can 
be elicited using mathematical and computational models.

Multiscale mechanistic models link cellular and molecu-
lar processes to tissue-level behavior during injury. Such 
models have the capability to provide invaluable insight into 
the system-level regulation of inflammation. Computational 
mechanistic models are well-suited for such problems and 
are useful in understanding system-level operations. They 
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can be used to test different hypotheses formulated to inves-
tigate the changes at the molecular and cellular-level that 
lead to the onset and progress of inflammation. Excellent 
multiscale models of asthmatic airway hyper-responsiveness 
and airway constriction have been developed by Donovan 
[157], Politi et al. [158], Venegas et al. [159] and Amin 
et al. [160]. There is need to extend these complex models 
to incorporate the dynamics of the inflammation process.

A typical multiscale mechanistic model may involve a 
combination of some or all of the following: a biomechani-
cal model describing tissue-biomechanical response from 
trauma or infection; ordinary differential equations, partial 
differential equations and/or a reaction–diffusion system 
that describe the diffusion and kinetics of molecular media-
tors and migration of immune cells during the inflammation 
process [161–164]. Applications of digital image analysis 
in computational simulations may be utilized in studying 
how changes in tissue properties affect the expression and 
transport of inflammatory mediators across different spatial 
scales. Hybrid multiscale models couple continuum models 
and discrete models within different spatial scales [59, 77, 
161–168]. Continuum models describing tissue-level behav-
ior, may be coupled to agent-based models to describe the 
migration of immune cells (such as macrophages, T-cells 
and B-cells) to the site of injury [59, 77, 163, 164]. Agent-
based models can incorporate stochasticity that exists in 
cellular-level processes and is inherent in biological systems 
[76, 162].

Experimental biologists usually adopt a reductionist 
approach, which may fail to describe system-level behav-
ior. Mathematical and computational models though vital, 
may not give useful information when applied in isolation 
to biological/experimental findings. However, mathematical 
and computational models are invaluable when used with 
experimental approaches and have the potential of helping 
further knowledge on the complex inflammation process.

Aging represents a gradual deterioration of organization 
at the molecular, cellular, tissue, organ and system level of 
the body. Changes at the molecular and cellular-level would 
affect the working of the body at the tissue, organ and sys-
tem-level and may impair the inflammation process leading 
to chronic inflammation or sepsis. The myriad inflamma-
tory mediators involved in the inflammation process make 
it difficult to experimentally study age-related anomalies. 
Numerous studies have shown that low-grade inflammation 
is a common decimal in aging. Inflammaging is marked by 
a general increase in the production of pro-inflammatory 
cytokines and inflammatory markers [169]. The mechanism 
by which the low-grade inflammation is activated remains 
unknown. Computational modeling is a powerful tool that 
could help unravel the complexity of chronic inflammation 
including age-related inflammation. Using mathematical 
models that accurately represent the lung, we can study the 

interactions across various biological scales and make pre-
dictions for future outcomes of existing interactions based 
on currently available experimental data, which might oth-
erwise not be possible.

Multiscale mechanistic models that couple cellular 
and molecular processes to tissue-level behavior could be 
implemented to test different hypotheses that explain how 
changes at the molecular and cellular-level may influence 
the onset and progress of chronic inflammation in aging sub-
jects. Correlation between tissue properties, magnitude and 
duration of stress a tissue is exposed to and the molecular 
response during aging is necessary to understand inflam-
maging. Development and analysis of such models would 
provide insights into the process of aging and help physi-
cians implement therapeutic strategies to address the aging 
process and treat diseases. Computational models have been 
developed to study the aging process [170–173]. Mc Auley 
and Mooney [171] used a computational model to study lipid 
metabolism and aging. Weinberg et al. [170] developed a 
computational model to study aging and calcification in an 
aortic heart valve. More information on models that have 
been developed within the last 50–60 years to study cellular 
aging can be found in the review by Witten [174]. More 
research is needed to understand the aging process at the cel-
lular, organ and system-level and computational modeling is 
a valuable tool that could be used to further our understand-
ing of aging and age-related diseases.

Summary and future directions

This paper reviews key mechanisms of inflammation in 
airway diseases. It discusses the role of mathematical and 
computational modeling in furthering our understanding of 
the complex inflammation mechanism in airway diseases. 
Results from experimental studies have greatly improved 
our knowledge of the cellular and molecular events that are 
involved in the acute inflammatory response to infection 
and tissue injury in many organs [175–179]. Experimental 
studies usually use reductionist approach, so they may fail 
to describe system-level behavior accurately. Mathematical 
and computational models can be employed to study the 
interactions across various biological scales and make pre-
dictions for future outcomes of existing interactions based 
on currently available experimental data.

We recommend that multiscale models should be imple-
mented to test hypotheses that explain how changes at the 
molecular and cellular-levels may influence the onset and 
progress of chronic inflammation. Multiscale models should 
also be used to investigate how chronic inflammation could 
be caused by prolonged exposure to different kinds/levels 
of trauma, increased activation and diffusion of chemotactic 
attractants or high levels of inflammatory cytokines at a site 
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of injury. Multiscale models could be employed to under-
stand the tissue microenvironment effects on inflammation 
mechanism in young and aged lungs.

Computational models have been used to investigate the 
influence of inflammatory mediators [73, 147] and variables 
such as resolution speed, degree and location of stimuli, 
post coinfections on remodeling [72, 148, 150, 151, 156], 
severity [152] and development [73, 75] of airways’ disease 
and aging process [170–174]. Despite all conducted com-
putational and experimental studies on lung inflammation 
mechanism, there is lack of details on molecular mecha-
nisms and pathways that contribute to activation of low-
grade inflammation and onset of chronic inflammation in 
lung. There is need for models that link the interactions at 
the molecular, cellular and tissue-levels to provide a systems 
perspective to the pathology of inflammatory mechanism in 
lung diseases. More research is needed to understand the 
mechanisms that produce acute or systemic chronic inflam-
mation which occurs in many diseases such as autoimmune 
diseases, obesity, cardiovascular diseases, type 2 diabetes, 
among many others [142, 180–182].
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