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Abstract

Multlphase flows have become the subject of conmderable attention because of their
importance in many industrial applications, such as fluidized beds, pneumatic trans-
port of solids, coal combustion, etc. Fundamental researcl. into the nature of pneumatic
transport has made significant progress in identifying key parameters controlling the
characteristics of these processes. ‘During the last few decades, many studies concerning
the flow of fluid-solid mixtures have been published. Most of these studies rely almost
entirely on empirical correlations, which generally compare poorly to experimental ob-
servations in all but the specific situations for which they are developed. While these
approaches may be quite useful in predicting the global character of the flow system,
they do not acount for local variations of solid concentration, velocity; and pressure or
for velocity differences between the phases. :

The two foremost approaches used in modeling multlcomponent systems are aver-
aging and mixture theory. In the first method, point-wise equations of motion are mod-
ified to account for the presence of the other components and the interaction between
components. These equations are then averaged over time or some suitable volume,
which is large compared with some characteristic dimension but small compared to the
dimensions of the whole system. The second approach used in the mathematical mod-
eling of multicomponent systems is mixture theory, which is a means for studying the
interaction between several constituents by generalizing the equations and principles
of the mechanics of a single continuum. In both approaches, constitutive relations are -
required to represent the interactive forces and the stress tensors for each constituent.

In this work, we review the existing constitutive relations for the interactive forces.
The emphasis of this study is on a mixture composed of spherical particles of uniform
size and a linearly viscous fluid. Section 1 introduces our approach and the importance
of this study. In Section 2, the dynamics of a single particle as studied in classical
hydrodynamics and fluid dynamics is presented. This has been a subject of study for
more than 200 years. In Section 3, we review the literature for the constitutive relations
as given in multiphase studies, i.e., generalization of single particle and as given in
literature concerning the continuum theories of mixtures or multicomponent systems.
In Section 4, a comparison between these representations and the earlier approach,
i.e., forces acting on a single particle will be made. The importance of flow regimes,
particle concentration, particle size and shape, rotation of the particle, effect of solid
walls, etc. are discussed. In Appendix A, a brief review of the “principle of material
frame indifference” as used in modern continuum mechanics is provided. Examples of
frame-indifferent and frame-dependent forms of the relative acceleration (related to the
virtual mass force) are also given. In Appendix B, an “order-of-magnitude” analysis
and comparison for various interactive forces are provided.
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LIST OF SYMBOLS

sphere radius

relative acceleration

acceleration number

drag coeflicient

Basset coefficient.

virtual mass coefficient

rate of deformation tensor of the fluid
buoyancy force, bold face denotes vector
single particle buoyancy force, bold face denotes vector
diffusion force, bold face denotes vector
drag force, bold face denotes vector

‘single particle drag force, bold face denotes vector

Faxen force, bold face denotes vector

Basset force, bold face denotes vector

total interaction force, bold face denotes vector
pressure force, bold face denotes vector

total force on a particle, bold face denotes vector
virtual mass force on a particle, bold face denotes vector
acceleration of gravity |
V=1

indentity tensor ‘

first principle invariant of D

second principle invariant of D

third principle invariant of D

“velocity gradient in simple shear

magnitude of the curl of the fluid velocity field
curl of the fluid velocity field \ |

mass of fluid displaced by solid particle

mass of solid particle

added (or virtual) mass of solid particle

fluid pressure

an orthoganal second order tensor

Reynolds number

time

dummy variable of integration

fluid stress tensor '

solid (distributed) phase velocity, boldface denotes vector
local acceleration of a particle

fluid (continuous) phase velocity, boldface denotes vector
reference velocity

relative velocity between phases, boldface denotes vector




Va volume of fluid above the particle
'V, volume of particle

W spin tensor

x current configuration

x* current configuration, new frame

X reference configuration

Y position of sphere center

€ void fraction

g temperature ‘ ‘ \ ‘
A parameter in relative acceleration expression, function of volume fraction
A weighting function for virtual mass force
Y fluid viscosity '
g solid viscosity

v volume fraction of the solid phase

vy kinematic viscosity of the fluid

0y 3.14159

p mixture density

Pt fluid (or continuous) phase density

Pa solid (or distributed) phase density

T dummy variable of integration

4 free energy density

w frequency

Q angular velocity of a sphere



CONTENTS

Contents
1 Introduction

2 Single Particle Dynamics
2.1 Introduction and Background

22 Drag . . oo e e L
08 Lifh o o o s
' 2.3.1 Introduction . . . . .. ... e I
2.3.2 ‘Slip-Shear” Lift . . . .. ... R
© 9.33 Magnus Force . . . . ... ... T Y
9.4 Virtual Mass . . . .. ... ... DR o DRI I
25 Basset FOICE . . o v v v v v i o e
26 FaxenForce . ... ... ... ... P A I AR 4
2.7Buoyancy.............-....b ................
9.8 Pressure Gradient . . . . . . ..o P R ‘
2.9 Temperature Gradient . . . ... .. ..o I

3 Multicomponent Flows
3.1 Introduction and Background

3.2 Continuum Theories and Representation of fy . . . .. ... ... .
3.3 Generalization of Single Particle Results . . . . . . e
331 DIBE - o o o e T .
3392 Lift . . . . e e e e e
333 Virtual Mass . . . . . .00 |
3.3.4 DBasset FOTCE « v v v v v et e e e e e e e e e
3.3.5  BUOYANCY . « o o ¢ o v v v v v e .
8386 Diffusion . . . . . oo e

4 Conclusion

A Frame-Indifference

A.l Introduction . . .. .. .« oo R
A2 Changeof Frame . .. .. . .. oo
A3 Examplés .......... R

B Lift Forces

B.1 Comparison of ‘Slip-Shear’ and ‘Spin’ Lift

----------------

B2 ‘HO and Lea.l’ Llft ....................... e e e e e e

11

@O o0 g 3 S O or 0N

P
H‘HI—-‘O

12

12
15
27
27

- 30

31
33
33

33

34

38
38
39
40



1 Ilntrodu'ction

Multiphase flows have become the subject of considerable attention because of their
increasing importance in many industries. The large number of articles published con- -
" cerning Multiphase flows typically employ one of two continuum theories developed to
describe such situations; Mixture Theory ( or theory of interacting continua ) or Aver-
aging [Ishii, 1975] . Both approaches are based on the underlying assumption that each
phase may be mathematically described as a continuum. Mixture theory was first for-
mulated by Truesdell [1957). It provides a means for studying motions of bodies made
up of several constituents by generalizing the equations and principles of the mechanics
of a single continuum. The fundamental assumption in this theory is that at any instant
of time, every point in space is occupied by one particle from each constituent. The
historical development and the details of this theory are given in the review articles by
- Bowen [1976], Atkin and Craine [1976], Bedford and Drumheller [1983] , and the recent
edition of Rational Thermodynamics [Truesdell, 1984). In contrast, Averaging directly
modifies the classical transport equations to account for discontinuities or ‘jump’ con-
ditions at moving boundaries between the phases [Drew and Segel, 1971a; Ishii, 1975).
The modified balance equations must then be averaged in either space or time (hence
the name Averaging) to arrive at an acceptable local form. In this approach (cf. An-
derson and Jackson [1967) and Drew and Segel [1971a]) point-wise equations of motion,
valid for a single fluid or a single particle, are modified to account for the presence of
the other components and the interactions between components. These equations are
then averaged over time or some suitable volume that is large compared with a char-
acteristic dimension (for example, particle spacing or the diameter of solid particles)
but small compared to the dimensions of the whole system. From the mathematical
manipulation of the averaged quantities, a number of terms (some of unknown physical
origin) arise. These terms are usually interpreted as some form of interaction between
the constituents. Constitutive relations to represent these interactive fo.rce‘s‘, as well
‘as for the stress tensors for each constituent, are then required. The primary con-
ceptual difference between the two approaches is the location of the averaging step in
the development of the balance equations. Mixture theory implicitly assumes a locally
averaged field before any equations are written; Averaging makes it an explicit step in
the development of the conservation equations. With few exceptions, both approaches
arrive at the same set of equations [Decker, 1988].

Once conservation equations have been established, constitutive relations must be
specified to complete the description of the system. Modeling a mixture requires con-
stitutive relations for stress of each component of the mixture and expressions for
momentum exchange between the components. Note that this list is for a purely me-
chanical system (i.e., no temperature differences or chemical reactions are accounted
for). In general relations would have to be included for thermal conductivity, chemical
reaction rates, etc. (see Bowen [1976]). Selection of appropriate constitutive relations
for the stresses in the components of a mixture may be a difficult task, but for our cur-
rent purpose we assume this has been accomplished. This report considers the selection
of constitutive equations describing the momentum exchange, or interaction, between
the components of thiz mixture. Though the continuum theories discussed above do, in
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general, allow one to model a mixture of many components in any flow regime, we will
consider only two component mixtures in laminar flow here.

The two-phase flows of concern here typically consist of a large number of solid
particles or gas bubbles suspended in a fluid medium (such as air or water). Most
of the momentum exchange relations that have been proposed for these types of two-
phase flows are based on generalizations of the force balance on a single particle moving
through a fluid. The overall plan of this report reflects that approach.. First, a discussion
and overview of the dynamics of a single particle in a fluid is presented. Then, each of
the forces acting on the particle 1s discussed individually. Finally, continuum theories
for representing interaction forces (i.e., momentum exchange mechanisms) are discussed
and the expressions for forces on smgle particles are generalized to mixtures including
many particles.

2 Single Particle Dynamics

2.1 Introduction and Background

Tchen! [1947] synthesizes the work of Basset, Boussinesq, Stokes, and Oseen on the
motion of a sphere rettling under the force of gravity in a fluid at rest. The resulting
force balance, sometimes knOWn as the Basset-Boussinesq-Oseen (BBO) equation, is
given by -

dra® 27ra3 P ”
3Pl = ——g—psi—bmpsa |
a toa(ty) 4ma® N\
—6 / gty — , = ]
r#ﬂl Dy ”» \,’t =4 1 3 g(p pf)1 ( )

where u is the velocity of the particle, p; and p, are density of the fluid and particle,
respectively, a is the particle radius, g is the acceleration of gravity, p; and vy are
viscosity and kinematic viscosity of the fluid, respectively. The terms on the right
hand side of equation 1 reflect the presence of virtual mass, Stokes drag, Basset history
- effects, and buoyancy. Tchen [1947] modified equation 1 to describe unsteady Stokes
motion of a solid spherical particle in a fluid with a uniform flow field. His modifications
include replacing the particle velocity by its relative velocity, and the addition of a term
accounting for pressure gradients in the fluid. The resulting expression is:

2mal

3 ps(t — ) — 6rpgalu - v)
u(ty) — v(t) 4mad

-—67rp,¢a\/ﬁl_/ N dty — 3 9(ps ~ p1), (2)

dra® | 4md® .
5= g

where v is the velocity of the fluid in the neighborhood of the particle but far enough
away to be unaffected by it. Note that equation 2 is one scalar component of a more
“general vector equation. Corrsin and Lumley [1956], noting that equation 2 applies only

ITchen’s theory is studied extensively by Gouesbet et al. [1982,1984).

e T T T
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in the absence of fluid velocity gradients, propose a more general equation, which takes
velocity gradients into account in its expression for the pressure gradient, Considering .
a small rigid sphere of radius ¢ and mass m, instantaneously centered at Y(¢) and

moving with velocity v(t), they propose the following equation for the force on the
gphere: :

du; Dy,  , )‘ 1. d
= _— = i ~ =my— {ui(t) — vi[Y(¢),
My = Ty < D vyViv Yo 5™ {ui(t) — v (Y(t),1]}

o todrd (ui(r) - v T
~6rpso {ui(t)~v.’[Y(t),t]+a/:w i—f‘i'r (, 7£u,) t-—.[:-{(’r) ])}

+(m, —my)gi

(3)

The undisturbed flow field is v(x,t) where the subscript ¢ denotes vector component,
my is the mass of fluid displaced by the sphere, and dynamic and kinematic viscosity
are py and vy, respectively, There are two distinct time derivatives in equation 3. The
derivative a‘-’; denotes the time derivative following the moving sphere, so that:

LY ()1 = (%+u 8”")

dt 5t ' B, 4)

x=Y(t)

The derivative 7% is used to denote the time derivative following a fluid element, and:

P_y_f‘ _ (B, 0w
Dtiyw \ 8t 7Oz
is the fluid acceleration as observed at the instantaneous center of the sphere.

The source of disagreement over the form of the single particle force balance concerns
the pressure gradient term. Tchen (1947 originally proposed the addition of a term

accounting for the pressure gradient based on an intuitive argument. He proposed the
scalar equation: ‘

- (5)

x=Y(t)

Ov v
fo=ver(5vg) ©)

Corrsin and Lumley [1956] argued that, for a nonuniform flow field, the full Navier-
Stokes equations should be used to determine the pressure gradient (See Section 2.8).
They give, in vector form:

ov

f,=Vp; ((’% + (grad v)v — uV’v) , (7

Buevich [1966] criticizes both previous studies [Tchen, 1947; Corrsin and Lumley, 1956]
in pointing out that adding a term to the BBO equation is not necessary. He uses a
change of reference frame to derive a new equation of motion from the original BBO
equation and shows that the term: ‘

ot

6= Voo (2 + (gravin) (©)
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arises without “the artificial introduction of additiorial terms.” Soo [1975,1976] argues
that the pressure gradient force is exactly balanced by fluid inertia forces and should
not appear in the force balance in any form. Maxey and Riley {1983], based on an
analysis similar to that of Buevich, incorporate a “pressure” term of the form:

ov | ‘
f, = Vpy (—575_ + (grad v)v) (9)

X:Y(t)’

Note that equation 8 incorporates a time derivative following the moving sphere,
whereas equation 9 uses a time derivative following a fluid element. Maxey and Riley
[1983] argue that equation 9 is the more physically realistic expression in that the effect
of stresses caused by pressure and viscosity is to produce the same net force that would
act on a fluid sphere of the same size. They propose the fo]lowmg equation for the force
on & sphere in a nonuniform flow:

e T 115 ! Dt Y(t)
1 d ‘ 1 5o :
—3mig {u,(t) - v.[Y(t),t] - 10a V4 Y(e)}

ym} | (10)

(r)})
\/ﬂ'w t — T)

Note that the inclusion of velocity gradients in their analysis results in modifications
to the virtual mass, Stokes drag, and Basset history terms. These velocity gradients
correspond to the physical effect known as Faxen forces and will be discussed later.

__ Table 1. Force Due to Pressure Gradient |
- — = =X e
Author Pressure Term

Tchen, 1947 ‘ | Vpy (%% + 'U'g':‘);)
Corrsin and Lumley, 1956 | Vp, (%‘t—' + (grad v)v — uV’v)
Buevich, 1966 Vps (-a-'f + (grad v)u)

Soo, 1975,1976 0

Maxey and Riley, 1983 | Vp, (% + (grad V)V)‘x_y(t)
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Though equation 1U is complete for a single particle in Stokes flow, there are, in
general, other forces that must be considered (even for a purely mechanical system)
In flows with high relative velocity between phases, or large velocity gradients in the
fluid phase lift may become an 1mportant effect [McLaughlin, 1989]. Also, spin of the
,partxcle is not taken into account in the above equations. Each of the effects mcluded
in equatlon 10, plus these two that are not, will now be discussed individually.? @

2.2 Drag

At low Reynolds number (i.e., low relative velocity) the inertial terms in the Naviet-
- Stokes equations may be neglected ‘The resultxng drag force on a sphere is given by
[Stokes, 1851) :

fp = Gwan, . (11)
where gy is the viscosity of the fluid and all other variables are defined as above.
Equation 11 is known as Stokes’ law for the resistance of a moving sphere.

Forces exerted on bodies moving through a fluid are generally expressed in terms
“of a dimensionless drag coefficient, Cp, defined through the relation:

Op=si2— - (12)

Toinat

With this definition, Stokes’ law (equation 11) yields:

24 | ‘
Cp = -é"e' (13)
Where: _ 9
Hy

is the Reynolds number based on the sphere diameter. This drag coeflicient is generally
an acceptable approximation up to Re = 0.2 [Khan and Richardson, 1987] . Oseen
modified Stokes’ solution by including the inertial terms of the Navier-Stokes squations
for the flow field far from the body [Schlichting, 1979] . The Oseen improvement is
given by:
2 ( 3R | 15

Cp = == (1+ 5 Re) (15)
and is applicable for values of Reynolds number up to about 2. If Re > 2, the usual
approach is to determine Cp experimentally as a function of particle Reynolds number
and present it as a table, graph, or correlation. Morsi and Alexander [1972] present a
theoretical investigation of the flow of a spherical particle (i) in a one-dimensional flow,
(11) in a uniform two-dimensional fluid flow about a circular cylinder, and (iii) about a

2Robingon (1956] also studies the motion of small particles in a potential field of flow. Rizk and
Elghobashi [1985] study the motion of a spherical particle in a turbulent flow near a wall,

3The behavior of bubbles, drops and particles in various flow fields is discussed in the book by Clift
et al, [1978).
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lifting aerofoil section, The expenmental drag curve is dlvxded into a number of reg1ons

- and is approximated in each region by a curve of the form:

ks k, ‘
| ‘0":-'&5—-}-'}?;-{-163 | ‘(16)
where the values of ki, k,, and k; are given for different ranges of the Reynoids number
in the Appendix of Morsi and Alexander [1972]. Khan and Richardson [1987] present
an extensive review and critique of available expenmental data and correlations for

drag on-a single sphere.

2-3 Ilift
2.3.1 Introduction

It is observed [Segre and Silberberg, 1961; Segre and Silberberg, 1962a,b] that spheres
in laminar Foiseuille flow through a pipe (at low Re) accumulate in an annulus some |
distance from the tube axis. Following the initial observations, a number of investigators
verify this ‘tubular pinch’ effect and attempt to explain the lateral (or lift) frrce acting
on the spheres [Denson et al., 1966; Eichorn and Small, 1964, Jefirey and Pearson, 1965;
Oliver, 1962; Repetti and Leonard, 1964]. Though some authors attempt to explain
the radial migrations in terms of particle spin (i.e., Magnus forces), spheres prevented
from spinning* also reached equilibrium positions between wall and centerline [Denson
et al., 1966; Lawyer and Lu, 1971; Oliver, 1962; Repetti and Leonard, 1964]. Lawyer
and Lu® [1971] and Brenner [1966] give detailed reviews and comparisons of these
experimental results. Denson et al. [1966) and Aoki et al. [1979] both fail to observe
annulus formation at particle Reynolds numbers higher than those used by the previous
investigators. They do, however, agree with previous results in that particles lagging
the flow migrate to the tube axis and particles preceding the flow migrate towards the
tube wall. ‘

~ Bretherton [1962] shows that, based on creeping flow equations, there is no lateral
force on a single rigid spherical particle in a unidirectional flow. Saffman {1965, 1968]
deduces that, since experimental results contradict this conclusion, inertial effects must
be involved. Saffman sbtains a result for ‘slip-shear’ lift on a particle at low Reynolds
number analogous to a result derived earlier for ‘spin’ lift by Rubinow and Keller [1961].
Both results are discussed in the following sections. Saffman includes particle spin in
his analysis and shows [Saffman, 1965] that, under circumstances where his results and
Rubinow and Keller’s results strictly apply, the ‘shear’ lift dominates the ‘spin’ lift (see

- also Boothroyd [1967] ). Aoki et al. [1979] claims that for larger particle Reynolds

numbers (i.e. Re, > 1) the Magnus effect explains the observed particle migrations.
Here, the particle Reynolds number, Re,, is defined as:

Rep = 9—2:?—!— (17)
Kf

4One author [Oliver, 1962] drills a small hole in the side of each sphere so that the offset center of
gravity counteracts rotation.
. ®Lawyer and Lu [1971] , after reviewing previous particle migration results, calculate particle tra-
jectories using an incorrect expression for Saffman’s [Saffman, 1965] ‘slip-shear’ lift.
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Ho and Leal [1974] calculate another form of Lift force on a single particle 1 a |
channel. This force is apparently a result of wall effects and is discussed in Appendix

B. Auton [1987] studies the lift force on a sphere due to a weak shear flow of an inviscid
fluid.

2.3.2 * ‘Slip-Shear’ Lift

Saffman [1965, 1968] uses an expansion valid for small values of the reciprocal viscosity

to calculate the lift force on a small sphere in a slow unbounded simple shear flow. His

result is given by: ' o ,
. 1 .

fr = 6.46p5p%a’k? (u - v) o(18)

where k is the velocity gradient in simple shear, p; the density of the fluid, a is the
radius of the sphere, u is the particle velocity and v is the fluid velocity. Even though

Saffman has retained the inertial terms. of the Navier-Stokes equations in his analysis,

the flow is not inertially dominated. Decker [1988] points out that Saffman’s analysis of
lift force includes the following impli(iit assumptions: the flow is uniform and parallel,
the slip velocity is paralle]l to the plane of fluid shear, the shear or velocity gradients
of the fluid are linear and the particle spin vector lies in the plane of fluid shear, but
is normal to the slip vector. The lift force Saffman derives is normal to the slip vector
and the spin vector of the particle. If the particle lags the fluid, the lift will move the
particle towards the faster adjacent fluid and vice versa if the particle leads the fluid.

2.3.3 Magnus Force

Consider a spinning body traveling through a fluid such that its axis of rotation does
not coincide with its direction of translation (i.e., its path or trajectory). The body
will experience a lift force in a direction perpendicular to the plane defined by its axis

~of rotation and its trajectory. The magnitude of this force, known as the Magnus force,

depends upon spin rate, velocity, and shape of the body. The so-called ‘Magnus effect,’
in which the force just described causes a deflection perpendicular to the flight path,
was first investigated in relation to deflection of projectiles (such as tennis balls or
baseballs). Although named after Magnus, who studied the lift caused by rotation of
a cylinder, the effect of spin on the flight of tennis balls was first noted by Newton in
the 1600s, . An historical review is given by Barkla and Auchterlonie [1971] .

A relatively large amount of work has been done concerning the Magnus force act-
ing on spinning objects of large size [Swanson, 1961] . The theoretical analyses for
these situations, however, are based on inviscid flow and are therefore inappropriate
for predicting lift on small particles at low Reynolds numbers where viscous effects are
expected to dominate, Generally, lift coefficients are measured empirically; though ex-
perimental work has also been primarily concerned with large objects at high Reynolds
numbers. Tsuji et al. [1985] performs experiments on small spheres (5 mm dia.) at
Reynolds numbers as low as 550. These are apparently the smallest particles and lowest
Reynolds numbers for which experimental data exists.

Rubinow and Keller [1961] obtain an analytic expression for the lift force on a
small spinning sphere. They used an expansion valid for small values of the particle
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Reynolds number to calculate the transverse force on the sphere. For a sphere of radius
a, spinning with angular velocity ©, and moving through an unbounded stationary

fluid with velocity u, they obtain a hft force of:

fi, = mpsa®Q x u (19)

where py is the density of the fluid. Unfortunately, this is a rather restricted result
and attempts to extend the expansxon technique to situations where there are velocity
gradients in the fluid (such as in Poiseuille flow) have failed. Jeffrey and Pearson
[1965] attempt a semi-empirical comparison of their experimental results for particles
in Poiseiulle flow with Rubinow and Keller’s equation. Though the results of the
comparison are not convincing, the r- dependence of the calculated and measured radial '

~ velocities corresponds reasonably well.

Clearly, the Magnus effect can be quite 1mportant when the body 1s spun by an
external force. It is not clear, however, what spin, if any, a particle in an arbitrary
flow might have. Unless it has just struck a bounding wall or some other obstacle, one
might expect the particle to have a spin equal to the vorticity of the fluid velocity field,
or even no spin‘at all. For a sphere in' a Poiseuille flow, Jeffrey and Pearson [1965)]
observe experimentally that:

= %—curl v (20)

to within 7% for neutrally buoyant spheres, and to within their experimental error for
spheres with a higher density. ‘

2.4 Virtual Mass

When a particle is accelerating with respect to a fluid, an added mass force, which
is not present under steady conditions, must be included in the force balance on the
particle, A good qualitative explanation is given by Birkhoff [1960] :

. let a light paddle be dipped into still water and then suddenly given
a rapid acceleration broadside. It is a matter of common experience that
the apparent inertia (i.e., resistance to acceleration) of the paddle is greatly
increased by the water around it. This increased inertia is what is called
the “virtual mass” of the paddle, the difference between the real mass and
the virtual mass being called the “induced mass” or “added mass.”

The virtual mass is a means of quantifying the force required to displace the fluid
surrounding the accelerating body. One can write Newton’s Second Law for a solid
spherical body of diameter D and density p,, accelerating (at a) through a liquid of
density pys, as [Lahey, 1982] :

4x 1 :
f, = (m, + mym)awm = ":3"13(/’0 + TZ'Pf)avm (21)

The added mass, mym, accounts for having to accelerate the surrounding liquid. mym,
is equal to one-half the mass of the displaced liquid for a perfect sphere. The virtual
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mass coeﬁicien.t, Cym 15 defined through:
fvm = Cvmpfavm ‘ (22)

where Cym = 1 /2 for a single perfect sphere accelerating through a fluid medium and

" a,m is an expression for the particle acceleration. Clearly, from equation 21, virtual

mass has greater relative importance in the force balancc when the particle has a lower
density in comparison to the fluid.®

2.5 Basset Force

A particle accelerating through a fluid medium will experience virtual mass and Basset
forces. One may think of virtual mass forces as resulting from the potential flow field
created by the accelerating particle. Likewise, the Basset force may be considered a
result of the viscous flow field created by the particles motion. Viscous phencmena,
such as boundary layer growth, are described by diffusion equations and thus the flow
field at time t is a function of the entire history of the particle motion. For laminar

‘flow around a sphere, Basset [1888] obtained the result:

: t
fn = —6psa? vy [ (t—1)7} w— v)dt! (23)

where py is the fluid density, d is the particle diameter, u and v are the velocity vectors,
t is time, t' 15 the duramy variable of integration, and v; is the kinematic viscosity.
This expression constitutes an instantaneous flow resistance and may be considered a
correction to the viscous drag accounting for transient conditions; it is often referred to
as the Basset integral. It has certain limitations in that it was derived for the situation
of a particle experiencing high acceleration at low velocity.

Ahmadi and Goldschmidt [1971] showed that the Basset integral does not have a
strong effect on particle motion at sufficiently long times (large t). It may, howevcr,
contribute significantly at short times and several studies of a sphere moving in a fluid
have incorporated Basset forces. Odar and Hamilton [1964] attempt to extend Basset’s
result to higher velocities. They rewrite equation 23 in a more general form:

= —~Cpupsa®, /Ty, / t —t') ’{;;(u - v)dt/ (24)

where all the previous variables have the same definitions, a is the particle radius,
and Cy is a numerical coefficient to be determined. They also define the acceleration

U2

Ac = (25)

2aut

where u, a, and u, are velocity, radius, and local acceleration of the sphere, respectively.
By performing experiments with a sphere oscillating in a fluid the authors obtain em-
pirical values of Cy for 0 < Ac < 2. Odar [1966] later finds that the values of Cy

EKowe et al. [1988] analyzes the motion of a single bubble or particle in an acelerating fluid flow
where the effect of virtual rmass becomes important.
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measured for the oscillating sphere discussed above also predict free fall of a sphere
quite well. He then expresses the data from Odar and Hamilton’s previous paper by
the following correlation:

3.12 _ (26)
(Ac+1)3
‘Note that as v — 0 or @ = 00, Ac — 0 and Cg — 6 which is the value Basset obtained.

Hjelmfelt el al. [1967] derives and solves the equation of motion describing a sphere
oscillating in a fluid. Obtaining displacement as a function of time, they show that
the Basset history integral contributes significantly to the calculated displacement of
the sphere, and in some situations may be more important than virtual mass or drag.
Hjelmfelt and Mockros [1967] perform a similar study for spheres falling in a viscous
fluid. Again, Basset’s history integral is shown to be quite important. In the above
study, the displacement-time relations for the falling spheres are verified by experiment.
See also Ahmadi and Goldschmidt [1971]. |

It is apparent from equation 24 that fg becomes large when the local acceleration
is high. This fact is demonstrated experimentally by Hughes and Gilliland {1952] who
observe a drag force many times that due to steady state drag. It is not as apparent
from equation 24 (which represents a single term in the equation of motion of the
sphere) that fy is more important for greater values of ps/p,. For small values of this
density ratio, the Basset term may generally be neglected [Soo, 1967] 7.

Tatem [1988] has recently shown that the Basset integral may be expressed as a
semi-derivative®, Though Tatem is simply presenting a different way to write the same
quantity, it may simplify numerical calculations to replace the Basset integral with his
expression.

Cg =288+

2.6 Faxen Force

Stokes’ expression for drag is derived for a single sphere translating at low Reynolds
number in a stationary fluid. The drag force on a sphere translating through a fluid
that is moving and has velocity gradients will generally have a different value. For
steady Stokes flow, the correction for this condition is given by the Faxen relations
[Happel and Brenner, 1973] , so that the drag force on a sphere is:

fr = 6maps(v — u) + pyma®Viv (27)

where a is the sphere radius, ps is the viscosity of the fluid, u is the velocity of the
sphere, and v is the velocity of the fluid. Including this effect in the force balance on
a sphere results in modifications (due to the curvature of the velocity profile) to the
virtual mass term and the Basset history term in addition to the Stokes drag [Maxey
and Riley, 1983] .

"In some applications small particles and droplets may encounter normal shocks, Forney et al.
[1987) studies the effect of the Basset history integral behind a normal shck wave, The effect of Basset
forces on asymptotic particle turbulent diffusivity is studied by Shi [1987] ‘

8By semi-derivative Tatem means a fractional derivative “according to the Riemann-Liouville inte-
gral definition.”
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2.7 Buoyancy

When body forces are present, a particle immersed in a fluid medium of different density
than the particle will experience a buoyancy force. Evaluating the magnitude of this
force is a simple matter that is discussed in any elementary book on fluid dynamics (for
example White [1986]). Consider a sphere immersed in a fluid medium with the entire
system in a gravity field. Balancing forces on the sphere gives:

1B =p:Veg + Vapsrg — (Vi + Vi)psg (28)
where fg is the net buoyancy force, p, s the density of the sphere, p) is density of the
fluid, V, is the volume of the sphere, V4 is the volume of the fluid above the sphere,
‘and g is the acceleration of gravity. This equation can be simplified to:

f5 = Viglps = ps) = g(m, — my) | (29)

where m, and ni, are the mass of the sphere and the mass of an equal volume of fluid,
respectively.

2.8 »P‘re‘ssux"e Gradient |

An object of finite size immersed in a viscous fluid with a pressure gradient will expe-
rience a force due to that pressure gradient. This force arises from the fact that the
pressure on the ‘upstream’ side of the object will be greater than that on the ‘down-
stream’ side. A force balance on a sphere in a fluid with a pressure gradient yields the
relation: '

‘ f, = -V,Vpy (30)
The Navier-Stokes equation (without body forces) may be written: ‘
1 Dv 5 ‘
- prpf = Dt - VjV Vv (31)
so that equation 30 may be rewritten as: .
Dv - ’
£, = Vp, (T)? - u,wv> (32)
or, defining: ‘
: my = V,p; e (33)
as: | D ‘
v
f, =my (-52— - us?‘v> ‘ (34)

2.9 Temperature Gradient

 When a small particle or a liquid drop is suspended or inserted in a gas or a liquid which
1s not in thermal equilibrium, i.e., a temperature gradient exists, then the particle moves
in the direction of decreasing temperature (if there are no other outside forces acting
on the particle). “his phenomenon is studied by Phillips [1975], Talbot et al. [1980],
Rosner [1988), Barton and Subramanian [1989], and Kempers [1989] among others.
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'

3 Multicomponent Flows

3.1 Introduction and Background

In proposing the constitutive relation for the diffusive body force (i.e., interaction force)
in a multiparticle system, many investigators [Anderson and Jackson, 1967; Drew and
Segel, 1971a; Homsy et al., 1980) generalize the problem of a single spherical particle
 undergoing slow rectilinear motion in an infinite fluid by introducing & void fraction
“dependence for certain coefficients. The interactive force is, in general, a function of
the fluid pressure gradient; the density gradients (the buoyancy forces); the relative
velocity (the drag force on the particles); the relative acceleration (the virtual mass of
the particles); the magnitude of the rate of deformation tensor of the fluid ( the lift
{orce on the particles ); the spinning motiou, as well as the translation of particles (the
Faxen’s force); the particles’ tendency to move toward the region of higher velocity (the
Magnus effect ); the history of the particle motion (the Basset force ); etc.

Conformance with the accepted principles of constitutive equations as given by
‘Truesdell and Noll [1965] , such as invariance to coordinate transformations, frame
indifference, homogeneity, and isotropy, is essential in forming constitutive models for
two-phase continua (see Appendix A). |

In this section of the report, we will present an historical overview of the develop-
ment of expressions for the interaction forces in multicomponent flows. The following
sections will concentrate on continuum theories for the representation of the interaction
force and generalization of the single particle results already discussed to the case of
many particles. ‘

In generalizing the forces acting on a single particle to a mixture of solid particles
and fluids, many investigators start with the work of Landau and Lifshitz [1959) .
They show that the velocity of a single sphere, being an arbitrary function u(t), can be
represented as a Fourier integral:

u(t) = f°° e~V ), (35)
or
— 1 *® iwt
Uy = o /_m u(r)e'dr, (36)

Since, assuming creeping flow, the equations are linear, the total drag may be written
as the integral of the drag forces for velocities that are the separate Fourier components
uye ™!, These forces are given in Landau and Lifshitz [1959] as:

|6 2t 3/ 2vy
Tpsatu,e {-iizj— - ’_(-32 + —-\—/;—ll(l - z)\/u—u-} . (37)

du ) . ~
(“J;) = _iwn, (38)
w
we can write the above as: ‘

,n_pfaae—iwt{Guf 2, 3\/2;;() (1+7‘)} (39)

Noticing that:

— -ty — 7 (w)w +

u w
a? 3 a Jw
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Integrating over w, the first and second terms give w(t) and u(t), respectively. The
somewhat more complicated integration of the third term is shown in Landau and
Lifschitz [1959] . It is shown that:,

2Re {(1 +1) /:0 %e"‘""dw} . %./;:o :/%(—zl;d'r. (40)

~Thus, we can finally write the expression for the drag as:

fp = 2mspsa® ‘_1_@_*___‘_.31/;1;_*‘&" du_dr
b= eTipy 3 dt a? ar Jew dr i/t =1’
or!

du ‘ 4 ‘ t du dr
== , al ST el g 9
it bmpgau + Bpjaypstiym ‘/;oo drvi-r (42)

2
o= ”3""Pfa3

'In general, equation 42 can be rewritten as:

* du t du dr ‘
fpmalu+az§;+aa _vw-(-iT gy (43)
where:
ap = 67['[1}‘(1,‘
2
os = Znpyal) (44)

3

ag = 6pga’\/pyhsT.

I, in addition to the particle velocity u, the fluid is also moving with velocity v, then
to generalize equation 43 we need only replace u by the relative velocity (u — v).

Anderson and Jackson [1067] appear to be the first who motivate the use of an
interaction force of type 43. Their reasoning for using equation 43 is that the interaction
force shoula depend “not only on the instantaneous motion of the particle, but also on
the instantaneous fluid velocity field in which it moves and which in turn depends on
the complete history of the particle’s motion.” They, however, neglect the effects of the
last term in equation 43, which is usually referred to as the “Basset force”.

When equation 43 is generalized to the case of an assembly of particles, it seems
natural to assume that the coefficients oy, oy, and aj become functions of the void
fraction €. This is indeed suggested by Anderson and Jackson {1967] , who further
comment:

It seems less reasonable, however, to include a term analogous to the Basset
force, since the presence of a large assembly of particles dispersed through-
out the fluid is likely to erase any historical effect of the motion of a given
particle on the fluid flow in its own neighborhood. ‘
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vAndlerson and Jackson [Anderson and Jackson, 1967} and Jackson [Jackson, 1970; Jack-
son, 1971; Jackson, 1985] , in a series of papers, use different versions of 43 in their
analysis, e.g.!

fr = Eﬂ(‘f)(‘“ = v)+(1- E)O(E)Prgg(u = V) + (1 - e)divTy, (45)

where u and v are the velocities of the solid and fluid constituents respectively, e(x,) is
the voidage fraction of volume occupied by the fluid phase, A(¢) is the drag coefficient,
and C(g).is the virtual mass coefficient. According to these authors, last term in this

equation accounts for the presence of the buoyancy force. Another form used by Jackson
[Jackson, 1985)] is: -

- &

) Ce)osgs(n ~v). (46)

The coefficient of drag, B(¢), is studied extensively and will be discussed later in
" this report. Anderson and Jackson, for lack of any experimental data or physical
cbservation, use a value of one-half for C(e) in their analyses. This is the value for
the virtual mass coefficient when a single sphere is moving through an infinite fluid.
An important shortcoming in the works of Anderson arid Jackson [1967, 1968] and of
Jackson [1971] is the use of frame-dependent forms for the relative acceleration. This
1s a common misunderstanding among workers in the area of two-phase flow [Murray,
1965; Soo, 1967; Wallis, 1969) and is discussed later in this report and in the appendix.

Drew and Segel [1971a] consider a structure for the interactive force similar to
equation 45, but do not include the divT; in their equation. Instead, they consider
the effect of surface tension and also include a term that represents the force on the
particles due to the pressure of the fluid phase. They show that this term is related
to the gradient of the volume fraction of the solid particles and contains the buoyancy
forces, The form specifically proposed by them for the interactive force 1s:

=B, |u=-v ) (u-v)+ (1

fy = —psgrad o™ + S(u - v)
8\1 8V
+M { [_d—[ + grad u(u — v)] - [-—5{ + grad v(v — u)} } ) (47)

where;

fy+f, = T'grad A (48)

where T is the average surface tension tensor, A depends on the local geometry, a” is
related to the void fraction, S is called the drag coefficient tensor, and M 1s the virtual
mass tensor. ‘

The appearance of the first term (—psgrad a*) in equation 47 is of fundamental
importance in multicomponent flows. Drew and Segel [1971a] arrive at this conclusion
by assuming that the interactive force has a component due to the fluid pressure (with
further assistance {rom their averaging technique). Nevertheless, the inclusion of density
gradients in nostulating constitutive equations for the interactive force is a milestone
in the theory of mixtures (due to Miiller [1968]).

9The reason for including the gradient of the densities in the diffusive body force is that, in a
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3.2 Continuum Theories and Representation of f;

When describing, from a continuum point of view, the behavior of materials such as

- rubber, water, metals, or polymers, one can regard each of these as a single continuum.

However, in many instances, we encounter ideal gas mixtures, fluid mixtures, bubbly
liquids, alloys, suspensions, fluidized particles, porous media and pneumatic systems
that cannof be regarded as a single constituent continuum, It is more appropriate to
assume that the material consists of more than one constitiuent, A general theory of
interacting continua, i.e., mixture theory, based on modern continuum mechanics can
be applied to the above-mentioned problems. Truesdell [1957] is the first to set up
the mathematical theory of mixtures in which phenomena of diffusion, dissociation,
combination, and chemical reaction in the broadest sense can be represented Later,
Truesdell {1962) studies the mathematical theory of the diffusion of mass in a mixture
using four different approaches, namely: (i} the kinematical, leading to Fick’s equation
of diffusion, (i) the hydrodynamical (Maxwell-Stefan equations of motion for the con-
stituents in a mixture of fluids), (iii) the kinetic (Maxwell-Chapman-Enskog formulas
in a mixture of dilute monatomic gases), and (iv) the thermodynamic approach, which
is suitable for the diffusive flux in more general fluid mixtures.

Adkins [1963a,b] develops a theory of non-linear diffusion based on ideas of Truesdell
and Toupin [1960), i.e., mixture theory. To account for diffusion phenomena, Adkins
[1963a,b] assumes that the body force acting on a given component (per unit mass of
that component) can he subdivided into an extraneous body force that is identical in
character for single component systems, and a diffusive force. Adkins [1963a] assumes
that this diffusive force depends upon the densities of the constituents at the point
under consideration and upon their relative velocities, In a follow-up paper, Adkins

- [1963b] presents a generalization that makes the diffusive forces dependent, in addition,-

upon velocity gradients and their time derivatives (related to virtual mass effects),
and also upca density gradients. In both cases, the form of the force is restricted to
satisfy the necessary requirements for invariance under rigid body motions (principle
of material frame-indifference). Adkins [1963a,b] studies a few problems such as steady

fluid-solid system, the particles need not be uniformly distributed. Miiller [1968] gives an interesting
thermodynamical argument for the inclusion of the density gradients. He showed that the omission of
the density gradients would lead to models that are too restrictive. He called such mixtures “simple”
and he found that for a simple mixture of two fluids:

p¥1 = py¥1(6, p1) + p2¥a(6, p2)

where ¥; and ¥, are the free energy densities for the two constituents and py and pp are the densities
of the two constituents measured per unit volumne of the mixture.

The result that ¥, is independent of p; and¥; 'is independent of p; are known from classical
thermochemistry to be too special. Miiller [1968] showed that a mixture of ideal gases is a simple
mixture, However, in general, such a conditinn on the free energy is too restrictive and does not include
most fluid mixtures, Therefore, to avoid such a restrictive theory, inclusion of density gradients in
the constitutive equations appears necessary, Also, in hydrodynamics a body submerged in a fluid
experiences a force proportional to the density difference between the body and the fluid, Similarly,
Miiller (1968] reasons that, if one visualizes the mixture as a multitude of molecules in which the
molecules in the o phase are distributed uniforraly but the molecules of the other phase are not, then -
there is a resultant force upon the a-malecules due to intermolecular interaction.
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diffusion through fluid in laminar flow, flow of mixture between rotating cylinders,
propagation of plane waves through a mixture, etc., using this theory. Through a series
of assumptions and a very interesting analysis, Adkins [1063b] shows that the classical
diffusion equations based on Fick’s law can be obtained using his non-linear theory.

In their theory of non- hnear dlffusmn, (Green and Adkins [1964] regard the diffusive
force ¥ (which is equal to ;l—-:;a- in our notation) as “a retarding force exerted on each
fluid due to the other and it is natural to suppose that it at least depends on all the
quantities that appear in the constitutive equations for the partial stresses....” They
" therefore assume that: :

V= ‘I’(1D12 D"I"“ A, u - V’Jplap2) (49)

~ where !D and 2D are the strain rate tensors for two phases, and I' and A are the skew-
symmetric parts of the velocity gradients of the two phases. The form of the guantities

..+ appearing as the arguments in equation 49 guarantee that the diffusive body force

is invariant under superposed rigid body velocities, and under superposed rigid-body
angular velocities of the whole mixture, For a mixture of two ideal fluids, equation 49
is asgumed to reduce to:

W s ‘I'(P-"A,u =V, p1,p2) (50)
which if ¥ is assumed a linear function of the arguments takes the form:
(u - v) (u—v) | .
O= " Y 51
pd o pd; (51)

where dy and d, are functions of p; and py. If the principle of material frame-indifference
is to be applied for all orthogonal transformations, then the second term in equation
51 must be omitted.

Green and Naghdi [1965] propose a dynamical theory of interacting continua and,
as an example, study the mixture of two Newtonian compressible viscous fluids, They
assume that if the diffusive force is a linear function of the velocity and the velocity
gradients of each fluid, it can be represented by:

fi = ai + Bi(ui — vi) + Baeie(Tie — Aji), (62).

where a;, By, and By are functions of p;, p;, and temperature T, and:

1
T = '2‘[%',/» — Uk, (53)
; 1 ‘
Ajp = 2 [Vi ke — Vi) - (54)

where u; and v; are the velocities of the two fluids. Based on the standard thermody-
namical arguments used in continuum mechanics (cf Coleman and Noll [1963] ), Green
and Naghdi [1965] show that B; > 0, B, > 0, and:

0489, 04089
“= 0, Oa; P2 v, O,

(65)

o n . ' et S T LY [

" [
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where ¥; = o, 95 = 1, and A the Helmholtz free energy fanction for the mucture
Mills [1966] studies the mixture of Newtonian fluids and derives the incompressibility
condition (or volume additivity ), which is an additional constraint relating the densities
of the two fluids in the reference configuration to that of the present configuration. ’I‘lns
- constraint is shown to be: ‘ |
LU . (56)
P10 P2 ‘
where pip and pyy are the densities of each fluid per unit volume of that fluid and py
andpy are.the densities of each fluid per unit volume of the mixture, Mills [1966] also
assumes that the diffusive force is given by:

fi = ai + Bi(u; — v;) + Baeyu(Tio — Agw), - (57)

and he shows that for an incompressible mixture of {wo Newtonian fluids, 1t takes the

form:
o |20 0A( Op  Om
' p1o O 8p Prog; ~ P b,
+ By(ug = v) + Baeigu(Tie — Ajn), (58)

where p is an arbitrary scalar, 4 is the Helmholtz energy function for the mixture, and
Bj and B, are assumed to be functions of p and T .

Crochet and Naghdi [1966] study the flow of fluid through an elastic solid, using
mixture theory. They propose the following form for the diffusive force:

f=1f+f | - (59)

where {, is the equilibrium value of f (when the velocity gradients and the relative
velocity all vanish). If the solid is an elastic material, Crochet and Naghdi [1966] show
that:

fo = p1 .Q_A..gra,d P2 — P2 tr [Ag)grad F(l)] (60)
8[)2

~where A is again the Helmholtz free energy function, and F{1) is the displacement
- gradient for the solid phase, i.e.:

FM) = grad x(X, t) (61)
“and in the above expression:

6A
0k

tr [AF grad F( } I OF (62)

Green and Naghdi [1967] develop a theory of iixtures where the energy equation
and the entropy production inequality are postulated for each constituent. For a mix-
ture of two ideal fluids they obtain:

pr| OAr  0Ay| 09 paf OAy  OAx| 0%
fi= {"1 B9, P2 8192] Be; M55, P59, | Ba,
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4 (Dy = D)o o) o (63)

where ¥, = ;17, 191 = ;,L and:
A1 = Ai(91,92, 01, 62) (64)
A2 = Az('ﬂl:ﬂ'l’olaa?) (Gb)

Miiller [1968) develops a thermodynamic theory for mixtures of fluids, using mixture

theory and invoking principles of frame-indifference, equipresence, etc. He assumes that .

the mtemctxve force is a function of;

Opa  , OV} a6 _ | |
f ft (Pu)ajav178 3035‘%3) a=1,2 (66)

where 0 is the tempe-ature of the mixture. Applying the principle of material frame

indifference, he shows that equation 66, for a binary mixture, should take the form:

fi=Fi (Pm gﬂ: Vu D:ngzl.wz?g, '058'9') | (67)
where: .
Vit = v} —of (68)
| 1[8v®  Ov® |
a (284 24 » _
Dy : <5mj + 5:13,') a=1,2 (69)
Ov] Bv O Ov? |
12 - —
i (8:1:, 8«7,) (Bw, Bm;) (70)

Miiller [1968] then shows that a further consequence of the principle of material frame-
indifference is that the constitutive function f; must be an isotropic vector function
relative to the orthogonal group. Using representation theorems ( c.f. Truesdell and
Noll (1965] ), and assuming that f; is lmcar in the variables, Miiller [1968] proposes the
following relation for f;:

o8 2 0 :
= fig—+ prﬂ‘é%Jrszew (71)
: =1 t

where the coefficients f; , f,s , and f; can depend on pg and 6,

In a later paper, Green and Naghdi [1968] generalize their earlier work so as to
include the temperature gradient and the density gradients in their formulation. Thus,
they show that:

08 |
fk = Qp + a-é-;}—- + D(uk - vh) (72)

OF Bpg BF' 6P1 _gji .
= P By Bor B G Ban (73)
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where ¢ = ¢(p1,p3,0) and F is the Helmholtz free energy at equilibrium, ie, A =

F(PhP'b’a‘g)' ‘ .
Craine [1971] studies the steady oscillation of an infinite plate in a binary mixture

of incompressible Newtonian fluids, The form that he uses for the interactive force is:

ﬁ_é_i_
Oz

where p = p; + pp and «a, B, and 7y are functions of p and f. From thermodynamic
restrictions due to the Clausius-Duhem inequality Craine [1971] shows that:

B ==\ (75)

- fi= a(’u,(l) ) + ﬁ@w, (74)

~ where A is a Lagrange multiplier associated with the constraint of incompressibility of
the mixture, i.e.: - \

(p20 — p)t "D + (p — pro)tr*D — (grad p) o (ul) —u) = 0 (76)
‘where: | | o1 ;
= - ‘ 7
P1ro ~ o ( )
I
P = (1 ~ 7) (78)

are the reference densities of the two constituents, when separated. It should be noted
that equations 77 and 78 imply that:

L N | (79)
P10 P20
Drew [1976] studies the effect of lift and Brownian motion. He writes the interphase
force, f;, as:

f; =1 +1 | (80)

where f,, is the pressure force on the particles and f represents the effect of other forces
such as drag lift, etc., on the particles. Following Drew and Segel (1971a} , f; has the
form: L

f, = pygrad v (81)

where py is the fluid pressure and v is the volume fraction of the solid phase.

In addition to using the “principle of phase separation”!® [Drew and Segel, 1971a]
(“a bulk-phase variable should depend only on variables {from that same phase”), Drew
[1976] also introduces two principles:

10This so-called principle that is often attributed to Drew and Segel [1971a) is actually first put
forward as an assumption by Adkins [1963a):

It is assumed that within the mixture, the properties of any given component are de-
fined by means of constitutive equations relating the partial stress tensor, the density
(or concentration) and the kinematic quantities, such as velocity gradients, acceleration
gradients and their successive time derivatives, for that component,

Furthermore, Adkine {1963a] points out that:
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1. The principle of local dependence on dispersed phase variables states that nonlocal
effects (specifically gradients) of dispersed phase variables should be omitted from
constitutive relations.

2. The principle of correct low concentration limits states that when the dispersed -
phase is sufficiently dilute, the mixture behaves as if it were made up of the
continuous phase alone. !

Based on these three “principles,” which perhaps should be called “assumptions,”
Drew proposes a general isotropic linear dependence of f; on u~v, Dy, and grad (div v)

f; = aS(u — v) + aBAv + Cgrad (divv) + LD(u — v) (82)

where u is the velocity of the solid (dispersed) phase; v is the velocity of the fluid
(continuous) phase; Dy is the rate of deformation tensor for the fluid; A is the Laplacian
operator; and the quantities S, L, B, and C are scalar functions of the invariants, which
can be constructed from u— v, Dy, and Av. It should be noted that these “principles,”
especially the “principle of local dependence,” put severe restrictions on the structure
of the dispersed (solid) stress tensor. This subject matter is discussed in Massoudi and
Boyle [1987] . '

The first term in equation 82 is the drag term, the second and third terms are called
viscous forces (which do not involve the partlcle motion), and the fourth term is the
lift force. The drag force, in general, has the form

fp = vS(v, ps,paypy |0 = v |, Ip, Iip, I1Ip)(u - v) (83)

where Ip, IIp, and II]p are the principle invariants of Dy, and the lLift force has the
form:

fL = L(V)F'fapnp.ﬁ l u-v IaIDaIID:IIID)Dj(u - V) (84)
Using the principle of low concentration limit, Drew [1976] shows that as v — O:
- |
S — a7 —=(1 4 6.55v), (85)
C -0, (86)

It would be possible, for example, to postulate that the partial stress tensor for a given
fluid should be dependent not only upon the kinematical quantities defined for the fluid
itself, but also upon the concentration, velocity gradients, acceleration gradients, and
time derivatives of these quantities defined, at the point under consideration, for the
other fluids in the mixture. This would give an explicit coupling of mechanical properties.

Later, Green and Adkins [1964] use this generalization and formulate a general theory of non-linear
diffusion where they study a mixture of two non-Newtonian fluids, and the problem of the diffusion of
a non-Newtonian fluid through a Cauchy elastic solid.

HInterestingly, a similar idea is put forward earlier by Green and Adkins [Green and Adkins, 1964].
In their formulation for a mixture of non-Newtonian fluids, they state: “Also, in the absence of one
fluid the constitutive equation for the other must reduce to the usual one for that fluid alone.”

|
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B — %I»‘f» ‘ (87)
—3(6.46)v -1
L— 'T(wa) Df _ (88)

where v i1s the volume fraction of solid. The effect of Brownian motion on the particles
1s included in the force —K,grad v. : : :

In a later paper, Drew et al. [1979] considers the phase separation mechanism and
its relationship with the effect of virtual mass during the acceleration of a two-phase
mixture, Animportant contribution of this work, though largely performed previously
by El-Kaissy [1975], is the derivation of objective virtual mass accelerations. Drew et
al. claim thai the most general objective acceleration a,m, for two-phase flow has the
structure: :

‘u , | 3v
Bym © %f_ — (grad u)(u - v)} - [%T — (grad v)(v — u)
+ (1~ A)[grad (v — u)] (u - v), (89)

where

% = 56; + [grad (+)] v (90)
and

D! 0

D = 5 T lered (v ' (91)

where ) is a parameter, superscripts s and f refer to the solid and fluid phases, respec-
tively, and as before u is the velocity of the solid phase and v the fluid phase. Equation
89 can be written in several forms. Two examples are given by Drew et al. [1979] :

hy .
am = S5 = 2 (1 3) [grad (v - w)] (u - V), (92)
or .
Ay = 2—-(%:}-2 + (A~ 2)gradu + (1 — A)grad v} (u — v), (93)

Wallis [1969] , Hinze [1975] , and Soo [1967] use 248=Y) a¢ the virtual mass acceleration

‘ Dt
term in their investigations. Equation 93 clearly indicates that this terni, alone, is not

frame-indifferent (see Appendix A) and is, thus, not a valid choice for a,,.

Shi, Rajagopal, and Wineman [1981) use mixture theory to study the diffusion of an
1deal ﬂmd through a non-linear elastic media. rlhey assumed that all the constitutive
functions depend upon:

A =A(F,p;, VF, grad p;, T, grad T, u, v,L, M) | (94)

[N T S L R R T R B A R R R Y BRI T LA T ARY BRI (I T A N VT
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where F is the deformation gradient of the solid continua, py the density of fluid mea-
sured per unit volume of the mixture; T' the teraperature of mixture, u and v are the
velocities of solid and fluid, respectively, and L and M are velocity gradients of the
~fluid and solid phases, respectively. Following Crochet and Naghdi [1966] , Shi et al.
[1981] also assume that the diffusive force can be written as the sum of a static part
and a dynamic part, i.e.:

f=f+f ‘ (95)

Based on the balance of energy and the application of the Clausius-Duhem inequality,
they show that: ‘

f = —pypred i py 2 o (96)

By OF; P Ops Oy pro Ok

where A = A(Fi;,p,T), and p is an indeterminate scalar arising from the use of the
constraint of incompressibility of the mixture, 1.e.:

L (97)
Pio P2o ‘ ‘
Shi et al. [1981) assume the following form for the dynamic part of the interactive

force: . ‘
e = co(ue — i) (98)

where ¢, is a function of p1, p, and T, and the entropy inequality indicates that ¢, } 0.

Therefore, the general form for 'h¢ interactive force, used by Shi et al. [1981] is given

as.
. 15, - -
f, = -—‘él—+f,: + f (99)
T
where: . ‘
¢ = p1(A1 — A) (100)

and A, is the Helmholtz free energy of the solid continua.

Shi et al. [1981] assume that the solid phase was initially isotropic, hence, the de-
pendence on F}; is replaced by Ci; = Fi; Fi,; and the free energy function A is expressed
as:

A = A(Il,Iz,]a,pz,T) (101)
where:
Iy = Cy (102)
1 2
I, = ‘2‘(]1 - CiCis) (103)
Ia = det ‘ C,‘j ‘ (104)

The above relations, the fact that p;det F = py and the constraint of incompress-
ibility, given by equation 97, imply:

(&
FAELI LA (105)

P20
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the expression for equation 106 is given as:

8¢ _p O 04 bpy

o0 0 O040m mpg,
Ozp  poOoe - Op2 02k p1o pac
- 1{06A4 _ OA 6A 8Cy 4
= p [(571 + 1 012) b - 57 o.,} - (106)

Now, to evaluate fi, an expression for the free energy function is needed. The
approach given by Shi, Rajagopal, and Wineman [1081] is a very general approach and
in principle can be applied to any multicomponent system, including fluid-solid flows,
In their study, they are interested in the diffusion of a fluid through rubber, where its
free energy function for use in swelling is given by Treloar [1975] as:

A=K(-3- %m I) (107)

1 RT

K==

2 M,

where R is the gas constant, T is absolute temperature and M. is the molecular weight
between cross-links. Therefore, using equation 105 in equation 107 and applying the

results to equation 106, Shi et al. shows that:

(108)

Kf’.!.‘lgp_?. 01

841 _ p_8p
T Om puodar K g+ Calw — 109
Je Oz pro Oz 020 Oz, P2 Boy + g(uk V) ( )

Nunziato [1983] develops a theory for fluid-particle flows based on mixture theory.
He defines the extra momentum transfer n, as:

ng =f, — TV, (110)

where ¢, 1s the volume fraction of the a-th constituent, and 7 is a Lagrange multipler
associated with the incompressibility of the mixture. Nunziato [1983] also defines the
extra stress tensor 1, as:

Ta = Og + QSaPaI (111)

where p, is a Lagrange multiplier, Because of these definitions, in the linear momentum
equation for constituent a, Nunziato obtains the following:

(7 = Pa)Va (112)

which he calls the “diffusive force”, which “can account for the contact pressure at high
concentrations (cf. Anderson and Jackson [1967]) and the diffusive pressure associated
with the Brownian motion of small particles at dilute concentrations (cf. Drew [1976]).”
He proposes the following constitutive relations:

ny, = —¢,F(uy —-u,)= —n} (113)
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where F is defined as the “drag tensor,” which is a linear isotropic function of Dy
F=a;I+2ang ‘ ‘ (114)

where oy and o muy be scalar valued functions of ¢, and the invariants of Dy, Nunziato
indicates that the drag forces are characterized by the dmgonal of F, while (F — ding F)
indicates the lift forces. As ¢, — 0, a; and a, must reduce to then‘ appropriate low
concentration limits (¢f, Batchelor [1972] and Saffman [1965), respectively), which are:

ay — g-‘i;u +5.55¢,) | (115)

L, 33.28) (pmy )

*7 4ma \|Dy]
where a is the particle radius. Furthermore, he suggests the following relations for the
pressures:

(116)

m—ps =y +ws(uy—u)e (g —u,) (117)
T =P = ~ B, + faq?h (118)
where:
0A,
By = P 5%, (119)

where 4, is the free energy of the solid particles, {; and E, were called bulk viscosities,
and 7 can be thought of as interface pressure, and :

ba = —¢adivu, ' (120)

Passman et al. [1983] develops a theory of multiphase mixtures and proposes the
following constitutive relationship for =

T = Pa = Ba + ¢adadivu, + div (A.grad 4,), a =1,2 (121)

where 3, is the configuration pressure. Writing this equation for both constituents and
eliminating =, they show that,

Pr—p2= ﬂl - ,82 + div [(Al + Az)gr&d ¢1] + ¢1)\1div u; + (1 - ¢1)/\2div Us (122)

where (;, A,, and A, are functions of the volume fraction ¢,. They assume 83 = 0
(fluid), and give the following explanation: “Physically, the expression 122 asserts
that the differences in the pressures of the solid and the fluid result from three effects:
intergranular contact forces that are represented by 8, local variations in the stress field
due to a non-homogeneous particle distribution that are represented by the moduli A;,
Ay, and bulk viscous forces due to intergranular friction and the fluid viscosity which
are represented by the viscosities A;, A;.” Based on the work of Stuhmiller [1977] , they
suggest: ‘

T = Pa — Ba + )\ad’adiv U, -+ Wa(ua - llb) ° (ua _ ub) (a ?4 b) (123)
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which by eliminating = between the two phases becomes:
—pg = [y — By + (b]/\1div u; — (1 — (}51)/\7(1]\’ Uy +,(w1 - wz)(lh - uZ) i (111 - \le) (124) ‘

In their study ofpartlcle segregation in Poiseuille flow, Nunziato and McTigue [1984]
assumed that:

ff = —~@,F(uy — u ) + ¢,ndivDy — pygrade, | (125)

where F is given by equation 114. They also state that the second term on the right-
hand side of equation 125 represents the Faxen forces arising in shear flows where in
the low concentration limit: g

= Tk | (126)

In contrast to previous studies based on mixture theory, where the force on one phase
was equal and opposite to the force on the other phase ( summation laws in mixture
theory ), Nunziato and McTigue [1984) propose:

Y fa =divS (127)
where S is called the interaction stress ( cf. Williams (1978] ). Therefore:
f, = divS — f; (128)

where f, is the momentum transfer for the solid part:cles Based on the work of Lin et
al. {1970] , Nunziato and McTigue assume:

S = zd)ﬂﬂaDn | _ (129)
where in the case of particles moving with the fluid, the mixture stress T defined as:
T=3 (Toa—pata ®ug) +pu®u + 8 ' (130)

- results in the correct effective viscosity to within O(¢?) if

_
Be = Hs (131)

This is based on Einstein’s analysis. Note that u in equation 130 is the velocity of the
mixture defined by:

pu = p1u, + pauy (132)

Later, Passman et al, [1986) studies the shearing motion of a fluid-saturated gran-
ular material using mixture theory. They assume that:

fi = —f, =£5(0, d1,grad ¢,) — D(0, ¢1)(u; — uy) | (133)
where D is the drag coefficient such that D > 0. They show that;

f; = —mgrad ¢, (134)
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where = is again the interface pressure, for which they also propose a constitutive
equation. In their numerical study of simple shearing flow, Passman el al, [1986)
assume that D is constant,

In their formulation of continuum theories for suspensions, Nunziato et al. [1086]
propose the following constitutive relations:

fy4+f,=divs (135)
where! ‘
f, = pygradeg, + ¢, Fi(uy —u,) + 2¢,F,divDy (136)
where! ‘ ,
Fi = a1 4 26;Dy, (1=1,2) (137)

They identify the first term in equation 136 as the net buoyant force on the particles,
while a; and oy represent Stokes drag and the Faxen force on the particles, respectively.
- The coefficient B; corresponds to a lift force given by Saffman [1965] and B, corresponds
to a lift ( or lateral) force identified by Ho and Leal [1974] (See Appendix B.). Based on
Einstein’s [1956] result that the mixture vmcosxty increases with the volume fraction,
Nunziato et al. [1986] assume:

S = dJ,T/Df (138)

It should be noted thai this equation does not agree with equation 129 proposed earlier
by Nunziato and McTigue [1984] . ‘

McTigue et al. [1986] study the rheological effects of nonuniform particle chstrnbu
tion in dilute suspensions, Their formulation of the theory is basically that of Nunziato
et al. [1086] given by equations 135 - 137, They provide the following low concentration
forms for the coefficients o; and f;: '

Ouy ‘

Sy — é% (139)
L

3(6.46) ( pjpl \* .
— 140
@2 dra (Qtr D’ ! (140)
7 . g
Br— ks, (141)

(tr Dz) |

Ba - — [l-"d'; D, % (142)

where g; and g, are funct;ions‘ that depend on the geometry of the flow. They assume:
S = 2¢,nD (143)

where 7 is defined as an interaction viscosity, and D is the deformation rate of the
mixture. Agaun, this definition, in general, is diflerent from those given earlier by the
same authors (cf. equations 129 and 138 ).
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Passman [1986] derives a general representation for the interactive force. He assumes
that: ‘

f = f(w,d,D) ‘ (144)

where w and d are objective vectors and I is o symmetric objective tensor (See Ap-
pendix A). Passman then shows that by using the representation theorem for isotropic
functions, equation 144 can be written as:

y €4

f = a(A)w + az(A)Dw + ay(A)D'w

+ Br(A)d + Bo(A)Dd + By(A)D*d ‘(145)

where: ‘ ‘
A=A {11,12,Ia,w ow,weDw,we Diw,

ded,deDd,deD*,wedweDdweDd| (146)

and Iy, I, and I3 are the principal invariants of D.

3.3 Generalization of Single Particle Results
3.3.1 Drag

The relationship between the drag force and velocity of a single particle is well estab-
lished {Khan and Richardson, 1987]. Unfortunately, the large quantity of experimental
data and variety of correlations available for the single particle do not exist for mix-
tures containing large numbers of particles. An exception to this is the special case of
fluidized beds. Due to the relative ease of performing experiments in fluidized beds,
and the simple force balance involved, a large amount of data is collected and corre-
lated. Since the data is correlated using the Galileo number (a dimensionless buoyancy
force), it is not easily applied to more general flow situations, Barnea and Mizrahi
(1973] give a critical review of publications, up to 1973, concerning the drag coefficient
for an assembly of spherical particles. A more recent extensive review of the various
drag correlations for fluidized beds is given by Khan and Richardson [1989].

Several authors obtain drag force expressions for application to mixtures, typically
using one of two approaches. They either propose modifications to the available drag
correlations for single particles, or they apply a correction to the Stokes formula for
drag on a single sphere. Note that we are considering only laminar flow in which the
solid, or dispersed, phase is made up of spheres. Ishii and Zuber [1979] and Ishii and
Chawla {1979] discuss drag correlations {for mixtures in other flow regimes,

To use existing single particle drag correlations requires the assumption that com-
plete similarity exists for the functional form of the drag coefficient versus Reynolds
number curve. The advantage of this approach is that the extensive data for the sin-
gle particle case can be used to find the drag force (at least approximately) between
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the phases of the mixture. Perhaps the simplest approximation that has been used is
[Rudinger, 1969):
' fa p7ra20pu
fm = v

= Y= 14!
VI,, “wa*‘ ( 7
or simplified and written in vector form:
| 3 pv ‘
£ =2 . : 14
mE R bl Vel v ; ( 8‘)

where f,, is the multiple particle (mixture) drag force per unit volume, f, is the single
- particle drag force, v is the volume fraction of solid, p is the density of the fluid, a is
the radius of the spheres, Cp is the single particle drag coefficient, and v, is the relative
velocity between phases. lshii and Zuber [1970] use a single particle correlation with
u modified (mixture) Reynolds number. The mixture Reynolds number is based on a
mixture viscosity defined as:

~2.bygut
%ﬂ - (1 - =) (149)
! ’m

where uy, is the mixture viscosity, py is the fluid viscosity, v is the volume fraction of
the solid phase, v, is maximum packing fraction, and p* is defined by:

u = ﬁ‘—/ﬁfﬂ‘i (150)
Ly + [y

where y, is the viscosity of the solid phase. This correlation is intended for a number
of different flow situations; for the special case of solid particles in a fluid equation 149
may be approximated as:

e = pg(L = 1.60)74 (151)

Drag force is then calculated using a particle Reynolds number defined by:

2ap vy
Re = =PI (152)
Hm
to get Cp from a single particle correlation, and using Cp in the relation:
1 ,

fD = -2—p]7ra.20pvf A (153)

The derivation of corrections for Stokes drag formula has a disadvantage over the
methods discussed above in that the results are a‘mctlv valid only for low Reynolds
number (i.e., less than one). An advantage of working with low Re expressmnb is that
nmore ngoxous theoretical calculations are possible.

Drew [1976] obtains an approximate expression for drag through a simple manipu-
lation of Batchelor's [1872] result for sedimentation of spheres. Batchelor considers the
sedimentation of a dilute suspension of identical small rigid spheres and obtains the
result that the mean sedimentation velocity (correct to order v) of a single sphere is:

U = ug(1 -~ 6.56v) (154)
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where u, is the velouty of & single sphere in an unbounded fluid and v is the volume
fraction of the apheres. Drew [1976) combines this with the expresmon for Stokes drag:

fpe = Bmpgau, (165)

where gy is fluid viscosity, f, is the force on u single sphere, and a is the sphere radius,
to obtain:

foom bl S (156)

The drag force per unit volume on the solid (or dispersed) phase is then:

_fpoe _ bmpsau
Jo= vy = VTR - G 8e) (187)
or'? .
= 201 4 655 -
fo = 5 azu(l + 6.55v)v, L (168)

where the settling velocity is set equal to the relative velocity (v = v,) and all other
varinbles are as previously defined.

Tam [1968] theoretically obtains a correction to Stokes drag law that accounts for
the volume fraction of the dispersed phase’®, The modified expression for drag on &
single sphere is:

4 + 3v + 3By - 31

fps = 6mpsa P Vy (159)
Apazidis [1985) rewrites equation 159 as:
‘ s p, “
fp = u-‘-f{;— = E%f(u)v,. (160)
o :

for multiple particles and uses it in his sugpension model, F(v) in equation 160 is given

by:
F(v) = v 4 + 3v -+ 38 — 312 (161)
B (2 - 3v)? .

Note that this expression diverges as v — &,

2Using a binomial serles we can write;

—

N — =1+655u}429u o V
) A

But since Katchelor's origlnal expression (l.e., the left-hand side of the above equation) is correct only
to order v, Drew truncates the series after the second term. ‘

13The same expreasion is derived by Brinkman [1047) 22 years earlier, though from a different
starting point {Tam, 1869)

o
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3.3.2 Lift

An exp\ression for lift in the flow of a mixture is obtained by Drew |1076] , who gener-
alized Saffman’s result for a single particle to: |

, E .
= SCALIY |y D - v ()
4 a
where py is the density of the fluid, uy is the viscosity of the fluid, » in the volume
fraction of the solid (or dispersed) phase, a is the particle size, v is the velocity of the
fluid, u is the velocity of the solid phase, and Dy is the symmetric part of the fluid
velocity gradient, given by:

D, = —;- [gmd v o (gmdv)T] ) (163)

Decker (1988] comments that it is not clear that this form will reduce to Saflman’s
result; nor is it clear what is meant by the absolute value or square root operating on
Dy. McTigue et al.” [1086] clarifies the definition of | Dy |=% by writing the above
expression as: ‘

5
3(6.46) pjujv why .

Magnus (or spin) forces are generally neglected in models of two-phase flow on
the basis of order of magnitude arguments [Saflman, 1865; Boothroyd, 1967]. These
arguments, however, are only strictly valid for the low Reynolds number (and otherwise
idealized) situations used by Saffman [1065]) and Rubinow and Keller {1061] to derive
their analytic results, At least one experimental study [Aoki et al., 1979) has stated that
at higher Reynolds numbers particle migrations can be explained by Magnus forces. It
is by no means certain, on the basis of these arguments, that Magnus forces can be
neglected in two-phase flows, We generalize Rubinow and Keller's results in the same
manner as Drew generalizes Saflman’s to get:

3
4 = Zupf(W, -~ Wy)(u - v) (164)
where: 1
W, = 5 [gmd u - (grad u)T] (166)
and )
Wy = 5 lgrad v — (grad V)T] (167)

An interaction term of this form was included in the mixture balance equations em-
ployed by Atkin and Craine [1976a] . The net lift force on the solid phase is simply the
sum of these two effects, or

fr =11 + fi (168)

Note that this expression is frame-indifferent.
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McTigue et al. [1986] use an expression {or 11ft in their model that also includes a
term of the form:

fi = LD;divD, (169)

where L is o constant coefficient and Dy is the rate of deformation tensor of the fluid,
D/, deflned above, This lift force is apparently a aecond order effect and is discussed
in reltmon to ‘Ho and Leal' lift in Appandxx B.

3.3.3 Virtual Mass

Having presented an expression for virtual mass force for the simple case of a single
sphere, we now need to specify the coefficient, Cym, and the relative acceleration, aym,
for more general situations, The virtual mass force fym is given by (using Drew's [1979)
notation): |

‘ fum == Cvmp/avm ‘ : (170)

where a,,, should be an objective form of the virtual mass acceleration,

The problem of deriving an objective quantity for the relative acceleration is inves-
tigated by Drew and Segel [1971a] and El-Kuissy [1975] . Drew et al. [1079] gives a
thorough analysis of this problem and proposes an expreesxon they refer to as the most
general objective acceleration for two-phase flow!4

O(u — v)

ot
+ [(A ~ 2)grad u) ++ (1 ~ A)grad v)] (u ~ v), (171)

+ [grad (u — v)ju

By =

where A = A(v) and AM(v — 0) = 2, A(¥ — o0) = 0. Later, Drew [1083] proposed
another {rume-indifferent relative acceleration given by:

Diu  D*v [611

| Ov ‘
By = S T (grad u)v J {—5{ + (grad v)u} (172)

A number of investigators perform numerical studies using equation 171 for relative
acceleration in their virtual mass terms (Hacox et al,, 1980; Kazimi and No, 1086,
Lahey et al., 1080; Thorley and Wiggert, 1985] . Lahey et al, [1980] study the effect
of adding virtual mass eflects to their numerical model. They numerically solve a one-
dimensional two-fluid model for the special case of adiabatic air/water bubbly flows
through nozzles and diffusers. The model includes the interaction effects of drag and
virtual mass. The inclusion of a virtual mass term in their model equations did not
noticeably change the final numerical results, though it did enhance the numerical
stability of the system, Hancox et al. [1980] uses equation 171 in their one-dimensional
model for gas-liquid flows and finds that it leads to numerical instability resulting in
imaginary velocities for some values of A, Kazimi and No {1986] include a virtual mass
term using equation 171 as the relative ucceleration in their two-fluid model. They

"The expression given in equation 171 is clearly not the most general expression for relative ac-
celeration, The additlon of any frame-indifferent quantity would always yield a still more ‘general’
expression,
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numerically determine values of Cyy that yield stability of their numerical solutions,
'l"hor]ey and Wiggert [1085) use a similar formulatior tc sevmhmte,propagntion velocities
in a mixture, They conclude that the inclusion of virvual mass effects in their model
results in & more accurate and genm'ul expression {or the acoustic propagation velocity
in two-phase media, ‘

Drew and Lahey [1087] also show that the objective form given in equation 171
(with A = 2) reduces to the appropriate expression for the case of a single sphere,1®

As discussed earlier, for a single, non.deformable, spherical particle C\,, = % For
two-phuse flows, it is reasonable to assume that this coefficient would depend on the
void fraction, However, its functional form has not been extensively studied and is not
well known; many workers use the value of 1 for lack of any better duta, Zuber (1964]
attempts to estimnate the effect of com*entmtlon on induced mass, With the nssumption
of uniform concentration Zuber obtains the expression:

Gum = "‘"—'a( V',"'"“‘"""_‘- (173)

where @ is particle rodius and v is volume fraction of the dispersed phase. Clearly
this expression indicates that virtual mass effects increase with increasing solids con-
centration, That effect is observed experimentally by Mokeyev [1977] using an electro-
liydrodynamic analog to simulate two-phase flow in which the fluid is ideal. Mokevev
obtains an empirical function:

(’1

mj— = 0.6+ 2.1v ' (174)

0,19 <v <042

and observes that Cyy, is constant for v < 0.19, Ishii and Mishima [1084) note that
equations 173 and 174 compare quite favorably.

It is apparent from the expression given in equation 173 that the significance of the
virtual mass effect is very dependent upon volume fraction, Clearly, it also increases for
larger particles, What is not necessarily evident from this equation is that the relative
importance of the virtual mass also depends upon the density of the phases, being most
important when the particles are light (less dense). Immich [1980] defines a parameter
A for estimating the contribution of virtual mass as:

1ot
A = Pl
E (175)

1o p={S

where pd is dispersed phase density and p. is continuous-phase density. A behaves
as a weighting function, varying between 0 and 1. Both Immich [1980] and Shapiro

151n the same paper, Drew and Lahey [1087] also propose a frame-indifferent expression that in-
corporates both lift and virtual mass. While the entire expresslon is frame-indifferent, the individual
terms representing lift and virtual mass effects are not. This seems questionable in that each term
describes a different physical phenomenon, both of which may or may not be present in a given flow,
For instance, In a steady flow where virtual mass effects are not present, one would still expect the
expression (l.e,, for the lift force only) to yield a frame-indifferent quantity for the interactions.



8.8 (eneralization of Single Particle Results ' ‘ : .83

(1086] use this pmamet er Lo weight their virtual mass expressions in studymg impulsive
motions of suspensions,'®

3.34 Basset Force

When a particle is part of a suspension, Zuber {1864] proposes that the Basset force
should: be increased by a factor of (1 — )72, Wallis [1969] suggests that this over-
estimates the effects of neighboring particles. Andérson and Jackson [1967] assume
that the Basset force is negligible for a ‘large assembly’ of particles. Evaluation of the
actunl significance of the Basset force in two-phase flows awalts further work as no
experimental or numerical studies are currently available,

3, 3.5 Buo’yzmcy

When body forces are present and the components of the mixture have different densi-
ties, there will be a buoyant force acting between the phases. While it is important to
mdude the buoyancy terrn in the force balance on a single particle, in mixture theory
the body force terms in the balance of linear momentum equations incorporate this
effect. There should not be a buoyancy term in the interaction force vector.

3.3.6 Diffusion

Congider the gravity driven sedimentation of a single particulate phase in a liquid.
Several investigators study this problem from the standpoint of both averaged field
equations [Anderson and Jackson, 1967; Drew and Segel, 1971b; Drew, 1876] and
mixture theory [Thacker and Lavelle, 1977; Thacker and Lavelle, 1978; Hill et al,,
1980) (see Hill et al. [1980] for additional references). Thacker and Lavelle [1978]
study the linear stability of the governing equations for sedimentation derived from
mixture theory, They find that the solutions of the equations are unconditionally
unstable. The addition of viscous, virtual mass, and inertial interaction forces to the
~ momentum equations does not affect the stability of the solutions, Drew and Segel
[1971b] obtain a similar result using averaged equations. Hill et al. [i080] are able
to obtain stable solutions of the mixture equations by including diffusive interaction
forces in the momentum balances. Clearly one would expect a viable {wo-component
(phase) flow model to, at least qualitatively, describe a relatively simple situation such
as sedimentation, We conclude that to obtain well-posed and meaningful problems in
mixture theory one must include an interaction term of the form:

fy = aygrad p; + asgrad py (176)

for a two component mixture, Here, a; and ap are constants and p; and p; are the
densities of the mixture components. Miller’s (1968] work (discussed previously) leads
to the same conclusion using a different appronch, These densities are related to the

-

16Cook and Thomas [1084] study the virtual mass etlects for a mixture of a bulk liquid, bubbles,
and the liquid associated with each bubble,
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densities of the components, taken by themselves, through:

pr=ps(l = v) o (1m)

p2 = pov | | (178)

Assuming the constituents are incofnpressible, equatioh 176 may be rewritten as:
for = (az - al)grad v (179)

Note that thus is a frame-indifferent quantity [Chadwick, 1976} . This kind of mteraction

 term may also be thought of as accounting for Brownian motion. [Drew, 1976] .}

Leighton and Acrivos [1986, 1987a,b] measure what they refer to as the shear-
induzed diffusion coefficient in suspensions of spheres. It is not clear precisely how this
quantity relates to @; and a;, since there appears to be some lift effect due to the fluid
shear.

4 Conclusion

The flow behavior of fluid-solid mixtures in transport lines has been of interest in chem-
ical processes for many years. In general, empirical relations that predict the flow and
pressure drop in such processes have been developed for specific ranges of solids and
gas properties as well as for various geometries. A traditional way of modeling the
behavior of fluids or suspensions that cannot be modeled by the classical Newtonian
fluid model is by non-Newtonian models that are homogeneous. The theory of multi-
phase mixtures present another avenue of research which can. au‘ount for the inherent
non-homogeneities in the problem.

The theory of interacting continua (or mixture theory) is a means for studying the
interaction between several constituents by generalizing the equations and principles
for a single continuum. These balance equations express properties common to all ma-
terials and motions and hence the differences among the various components that make

~ up the mixture must be augmented in the theory by constitutive relations. Mathemat-

ically, the purpose of constitutive relations is to supply connections among kinematic,

mechanical, and thermal fields that are compatible with the balance equations and

that, in conjunction with them, provide a theory that is solvable for properly posed
problems. In mechanics, a constitutive relation is a restriction upon forces, or motions,
or both. Postulating constitutive equations in more complex situations, such as multi-

plase flows, requires a deeper understanding of the nature of the problems. Applicatior |

of mixture theory to fluid-particle systems, such as a fluidized bed or fluid-solid trans-
port, requires constitutive relations to determine, for example, the stress of each phase
and the interaction forces.

In this work, we have reviewed the existing constitutive relations for these inter-
active forces. The emphasis has been on the particle-fluid interactions. The general

1"For a discussion of Brownian motion, see Batchelor [1976) and Probstein [1989]. A comparison of
Brownian and turbulent diffusion is given in a study by Ounis and Ahmadi [1989)].
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approach, in multiphase flow studies, has been generalization of the problem of a single
spherical particle immersed in an infinite fluid medium by introducing a volume frac-
tion dependence for coefficients such as drag and virtual 'mass. To mesh and merge the
traditional approach with the mixture theory representation of these interaction mech-
anisms, we have first reviewed the literature on the dynamics of a single particle in a
fluid continuum. The work reviewed includes theoretical as well as experimental efforts
to formulate appropriate forms for the forces acting on a particle. We then present
a review of studies based on continuum theories of mixtures. Various forms for the
interactive forces have been given within this context for a variety of problems, such
as mixture of ideal gases, mixture of two fluids, flow through porous media, fluidized
beds, etc. Finally, we show the attempts, made by various investigators, to generalize
the results both theoretical and experimental, of a single particle to a cloud or an
assembly of particles by including a volume fraction (or concentratlon) dependence in
the material properties, such as viscosity, or coefficients, such as the drag coefficient.

A summary of the available results for each interaction force is given below (Also
see Table 2):

¢ Drag acts in the direction of flow and should always be included in any model
of two-component flow.

o Diffusion acts in the direction of density gradients. Little is known about the
form of the coefficients, but we speculate (on the basis of the stability analyses
discussed previously) that a term of this form should be included for all situations.

° ‘Slip-Shea.r’ Lift acts perpendicular to the direction of flow. Its importance
increases with increasing volume fraction, relative velocity, fluid density, fluid
viscosity, and fluid velocity gradients. It cannot be neglected in most situations.

e ‘Spin’ Lift acts perpendicular to the direction of low. Though typically a much
smaller effect than ‘slip-shear’ lift, it may become significant at some points in the
system (especially for larger particle sizes, because W, — W becomes larger). Its
magnitude increases with increasing volume fraction, fluid density, and relative
velocity.

¢ Virtual Mass effects are present only if there is relative acceleration between
the mixture components. The virtual mass force acts in the direction of flow
and becomes larger with increasing volume fraction and particle size. Its relative
magnitude, in comparison to the other forces accelerating the particles, depends
upon the relative densities of the components. It is especially important for large
particles that are less dense than the fluid; for example large air bubbles in a
liquid medium. |

o Basset Force is present only in unsteady (or accelerating) flows. It acts in the
direction of flow and increases with increasing particle size, fluid density, and
fluid viscosity. It has been suggested (km not Vepﬁpd\ that it also increases with
volume fraction.
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The chief conclusion of this review is that for laminar flow of a mixture consisting
of an incompressible fluid with entrained solid particles one may write the interaction
force of the solid phase on the fluid as:

fi = (a2 — oy)grad v + ag(u — v) + a4‘Df(u - V) .
+ag(W, — Wy )(u — v) + asaym (180)

where v is the solid volume fraction, u is solid velocity, v is fluid velocity, py is the fluid
density, p, is the solid density, g is the acceleration of gravity (or other body force), a;
and ay are unknown coeflicients, and: '

D, = %— [grad v + (grad V)T} (181)
W; = —;— [gradv — (grad v)T] | (18:‘2)
W, = -;— [grad u-— (grgd u)T] (183)

ag = -zg-%f(u) (184)

. 1
ay = = - (trD%)7 (185)
as = %p,u | (186)
2r 4 1420
ap = —-a VT (187)
F(v) = v(1 + 6.55v) ' (188)

From right to left, the terms on the right-hand side of equation 180 reflect the presence
of diffusion (non-uniform solid distribution), drag, ‘slip-shear’ lift, ‘spin’ lift and virtual
mass. We are neglecting the Basset force for the present because its significance in flows
with many particles has not been established; evidence suggests that it is important

only for special cases. If the flow is steady, virtual mass effects may also be neglected
(i.e. ag = 0).
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Table 2. Effect of Flow Properties on Interactions

J

" Volume Relative | Fluid Fluid | Particle | Velocity
Interaction Fraction | Velocity | Viscosity | Density | Size Gradient
‘Drag v(1+6.550) | u~v fhg 0 % 0
Diffusion grad v 7 7 7 7 ?
‘ ; Y14 b 3 1 n21-1
‘Slip-Shear’ Lift v u-v Y P} - [trD3)"*Dy
‘Spin’ Lift v u-v 0 ps 0 W, - W;
Virtual Mass piidy 0 0 0 o® Gy
i 1
Basset Force (1-v)"% 0 Iy P; a? 0

There are obvious ‘gray’ areas in the above information that await further studies
for clarification. For instance, there have been no investigations as to what form ay
and o, may have. Also, it is not clear if and when the Magnus (‘spin’ lift) effect is
significant. The remaining coefficients have not been extensively studied for general
two-phase flows; thus, the forms given above are ad hoc applications of results that
are strictly valid under more restricted conditions. Despite the assumptions involved,
‘however, these expressions do provide a qualitative model of how the interaction forces
vary with the system parameters. The coefficients can be considered functions of v only
(because v varies with position in the flow) for the purpose of performing numerical
studies; the remainder of the expression is then treated as an arbitrary constant to be
studied as a parameter in the problem.
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A Frame-Indifference

and Constitutive Equations

~A.1 Introduction

The differences among the materials thal make up different bodies are reflected in the
theory by constitutive relations. In mechanics, a constitutive relation is a restriction
on the forces or the motion of the body or both, This means that a body undergoes a
motion when forces act on it, but the motion “caused” depends on the nature of the
body. Mathematically, the purpose of the constitutive relations is to supply connec-
_ tions between kinematic, mechanical, and thermal fields that are compatible with the
balance equations and that, in conjunction with them, provide a theory that is solv-
able for properly posed problems. The assumption that the body force is external in a
constitutive relation. Indeed, the forces of most interest in continuum mechanics are
contact forces, which are determined from the stress tensor field T. The mechanical
behavior of real materials is very diverse and complex; it is impossible to formulate
equations capable of describing the stress in a body under all circumstances. However,
just as different figures in geometry are defined as idealizations of natural objects, con-
tinuum mechanics seeks to establish particular relations between the stress tensor and
the motion of the body for “ideal materials” [Truesdell and Noll, 1965] .

These equations describe the most important features of the behavior of a material
in a given situation. In some instances, it may be necessary to represent the same real
material by different ideal materials in different circumstances. A classic example is
that of the theory of incompressible viscous fluids, which gives an excellent description
of the behavior of water flowing through pipes, but is useless for the study of the
propagation of sound waves through water. While a constitutive equation is a postulate
or a definition from the mathematical standpoint, physical experience remains the first
guide, perhaps reinforced by experimental data. Very rarely is it possible to formulate
the basic equations of a theory from physical insight only. However, once the theorist
has collected the information he wishes to use in defining the ideal materials to be used
in his theory, a list of mathematical principles, some perhaps really only guidelines,
become essential in formulating definite constitutive equations [Truesdell and Toupin,
1960] . _

Constitutive relations are required to satisfy some general principles. First, they
should hold equally in all inertial coordinate systems at any given time (often referred
to as coordinate invariance requirement). This guards against proposing a relation in
which a mere change of coordinate description would imply a different response in the
material. Many of the so-called “power law” models used in describing non-Newtonian
fluids are not invariant. In general, this difficulty can easily be overcome by stating the
equations either in tensorial form or by using direct notations not employing coordinates
at all.

Another principle that is often used as a guide for selecting constitutive parameters
is the principle of equipresence. Truesdell and Noll [1965] state this principle as:
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A quantity present as an independent variable in one constitutive equation
should be so present in all, unless, of course, its presence contradicts some
law of physics or rule of invariance. ‘

Miiller [1968] uses this principle in proposing constitutive equations for a mixture of
two fluids. However, Rivlin [1972] discusses some cases where this principle seems to
be contradictory.

The principle of material frame-indifference (sometimes referred to as objectivity),
which requires that the constitutive equations be invariant under changes of frame, is
perhaps the most important of all. It is a consequence of a fundamental principle of
classical physics that material properties are indifferent, that is, independent of the
frame of reference of the observer. A good example of the intuitive concept of this
principle is given by Truesdell and Noll [1965]

A body of known weight, say one pound, when suspended by a given spring
is observed to extend it by a given amount, say one inch., The spring and
weight, still connected, are then laid upon a horizontal disc, to the center
of which the free end of the spring is attached. The disc is then caused to
spin at a steady speed such as to extend the spring again by one inch. The
spectators are expected to agree that the centripetal force required to hold
the weight from flying off is exactly one pound. That is, the response of the
spring is unaffected by a rigid motion.

This principle requires that constitutive relations depend only on frame-indifferent
forms (or combinations thereof) of the variables pertaining to the given problem.

A.2 Change of Frame

The fundamental quantities that are measured in kinematics are distance and time
intervals. The position of an event [a pair (x,t) consisting of a point x in space and
a time t] such as velocity, acceleration, or some property can be defined only if a
reference frame is specified. Truesdell and Noll [1965] state that “a frame of reference
may be described as a possible way of relating physical reality to a three-dimensional
Euclidean point space and a real time axis.” Two examples of a frame of reference
are the fixed stars and the walls of a laboratory, The frame of reference should not
be understood as a synonym for coordinate system. In particular, the concept of a
change of reference frame should not be confused with a change of coordinate system.
A change of coordinate system is only concerned with the spatial variable x; a change
of frame is concerned with space and time. A change of frame i1s defined as a one-to-
one mapping of space-time (x,t) onto itself, which preserves the following properties:
(a) the distance between an arbitrary pair of points, (b) the time interval between an
arbitrary pair of instants, and (c) the order in which two distinct instants occur,
A change of frame can be expressed as:

=c(t) + Q(t)x, (189)
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where the x*, t* denote position and time in the new frame, and the x, ¢ are position
., and time in the old frame, In these equations c(t)is a vector, Q(t) an orthogonal tensor
e, QE)QT(L) = QT()Q(t) = I}, and ¢, is a real number.

A quantity that remains invariant under all changes of reference frame is called
frame-indifferent or objective. In particular, we have the following transformation laws:

1. A scalar remains unchanged under changes of frame,

2. An objective vector v transforms according to:

vt = Qt)v. o (191)

3. A frame indifferent second-order tensor 8, regarded as a linear transformation, is
one that transforms objective vectors into objective vectors, Thus, an objective
tensor transforms according to:

8" = Q(1)SQ7(1). (102)

Functions whose values are scalars, vectors, or tensors are called frame-indifferent
or objective if both the dependent and independent variables transform according to
the above rules. Thus, if:

T = T(a,v,S), | (198)

where a is a scalar, v is a vector, and S is a second-order tensor, then if T is to be
frame-indifferent, we must have;

T = T(a*,v",8") = T(a, Qv, QSQT), (194)
and thus by Equation 192, we have:

T(a,Qv,QSQ") = QT(a,v,8)Q". (195)

A.3 Examples

Having introduced the concept of frame-indifference (objectivity), we now present ex-
amples of how one determines frame-indifference of an expression. Though the concepts
employed are quite general, we will consider frame-indifferent relative accelerations.

A change of frame is defined by:

x"(X, 1) = c(t) + Q(t)x(X, t), (196)
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as in the previous section. Here x denotes the current configuration of the body and X
denotes the reference configuration. Taking two material time derivatives of equation
196 we obtain [Truesdell and Noll, 1065] : |

0

V(K ) = ox" (X, ) = QU (X, 1) + QM) x(X,8) + &) (197)

ot

and:

a*(X, 1) = z%v*(x,t) = Q(t)a(X, ) + 20(t) v(X,1)

L Q) x(X,t) + &(t) (198)

where the dots denote time derivatives. Note that the velocity can be written in terms
of either the reference configuration, X, or the current configuration, x:

v(X,t) = ¥(x, ) | (199)

so that a (the material time derivative of velocity) can be written as the two equivalent
expressions: (0.1) (x4
0 Ov(x,t)0x  OV(x,t).
X,t) = —v(X,t) = Ll ’ 200
aX,t) = vt = 5 (200)
Typically in fluid mechanics, equations are written in terms of the velocity referred
to the current configuration, i.e. :

v = v(x,t) (201)
Given this definition for v, a in equation 198 is written as the material time derivative
(&): |

_Dv_dvex ov
Dt = 6x 6t T Bt
Equation 198 gives the transformation of a under a change of frame. The partial of

v with respect to ¢ then transforms according to:

Ov*

(202)

—5;' =a —L'v (203)
where: 5 ‘
'V .
L=gradv = T - (204)
and: ' ‘
L =grad* v* = QLQT + QQ7 (205)

A RELATIVE ACCELERATION THAT - 1S NOT
FRAME-INDIFFERENT

Consider the relative acceleration given by:

Du Dv
o = HC T Pr | (206)

i
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from aqﬁation 198 we see thal;
| a:)m = Qlaum - QQ(U — ’V) ' (207)

and thus the expression in equation 206 is not frame-indifferent by comparison of equa-
tion 207 with equation 191 (which is the deflnition of a frame-indiflerent vector),

A ‘ RELATIVE ACCELERATION THAT I8
FRAME-INDIFFERENT
Consider the relative acceleration given by:
Du Dv
By = ['-f)* - (grad u)(u - v)] - [b-z— ~ (grad v)(v — u) (208)
which we can rewrite as:
Du Dv , ‘
B = {.r}‘{ - Zr] = lgrad (v w)) (u - v), (200)

We have, from equation 207:

Du Dvy)* Du Dv ]
5 -5 =9l - Bt (210)
from equation 197:
(u—v) =Q(u-v) \ (211)

and from equatibn 205:
lgrad (v + u)]" = Q [grad (v +u)] Q7 +2QQ7 (212)
Using équations 210, 211, and 212 in equation 209 yields:
8m = Qaym (213)

which by comparison with equation 191 verifies that the relative acceleration vector
given by equation 208 is frame-indifferent.

B Lift Forces

B.1 Comparison of ‘Slip-Shear’ and ‘Spin’ Lift

Boothroyd [1967) compares the relative magnitudes of the ‘slip-shear’ lift derived by
Saffman [1065, 1968) and the ‘spin’ lift derived by Rubinow and Keller (1961] . The
‘slip-shear’ lift on a single particle is written as:

du"

o= 6.46p7 pia?
- p’fpfa dy

(v —v) (214)
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and the ‘spin’ lif{ is written as

Note that f1,, acts in the same direction (pwpendmul&r to the slip velocity) as fr,. If
- we nssume that the particle angular velocity is given by:

1dv

0= 5 (216)
then equation 215 may be written:
1dv
= B2 (g
fim = mpsa Edy(u v) (217)
Forming the ratio of frm to fr, for flow in a pipe yields:
fim [Re, R )}
= 0.24< |ZELT 1
T 0.2 R0 4 (218)

where R is the radius of the pipe, U is a reference velocity, and Rey is the pipe Reynolds
number based on R and U. Boothroyd concludes from this expression that quite often
Srs 18 much larger than frm,.

We wish to carry this one step further and assume that the fluid velocity has a

parabolic profile:
2 il
v = Vinas [1 - (%) ] (219)

With this profile, equation 218 becomes:

ff‘;'" = 0.344 (£ ) Re] | (220)

at the wall of the pipe (r = R). With the choice of a = 0.01R and Rey = 2000, we
obtain:

fim = 0.164f1, | (221)

We conclude from this that fr, is generally much smaller than fr, as equation 221
represents a relatively high Reynolds number and a reasonable value for §. Also, the
calculation was done for a particle near the wall, where fr, is expected to be greatest
(at least for the assumed velocity profile). Though it appears fr, may genera.lly be
negligible, it may increase the observed lift force on a particle as much as 15 % ;| more
if the particles are larger than @ = 0.01R and/or laminar flow exists at higher Reynolds
numbers. It is clearly not advisable to neglect the ‘spin’ lift interaction without careful
consideration of the problem at hand.

We now wish to repeat the above calculations for the general expressions for lift
presented in this report. We begin with:

{Imt =

e
<

b1 (W = W) u —v) (222)
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bk
3(0.46) prujv - Y
le ] “('}I";“-)"“*L'ai“*(tl'ni) *D](u - V) ' (2‘3‘3)
Now assume: ‘
u=0 (224)
py 4
v = Vigag |1 = (E) } e, (226) |
t D5 AN | (226)
TR = B
then: | )
ey 0.5783 242 et B (227)
(fLode : u? dr| ]| ox

where the subscript » indicates the force acting in the radial direction. This expression
can be simplifled to:

(frm)s ( a) 4
st = (8179 | = ) Rej 228
(Fue): r) el (228)
With a = 0.01R and Rey = 2000 we obtain:
frm = 0.366 1L, (229)

It seems possible that, with this lift model, (frm)» will have a significant effect on the
particle distributions in some situations,

B.2 ‘Ho and Leal’ Lift

Ho and Leal [1074) use an asymptotic expansion to calculate the lift on a neutrally
buoyant spherical particle in a simple shear or a Poiseuille flow, Their analysis utilizes
the concept of an ‘undisturbed’ flow (that is, the flow field that would exist if the
particle were not present) and arrives ut a lateral force on a particle given by:

1, = k*Re[B8Gh(s) + AvGa(s)] (230)

This expression is valid for all undisturbed flow fields of the form a + Az + y2% Here,
d is the distance between walls, a is some characteristic length scale (such as particle
radius), and & = 4. «, #, and 4 are constants, G(s) and Gy(s) are functions of the
flow geometry numerically calculated and tabulated by the authors, and o = £ is the
dimensionless z coordinate. The Reynolds number, Re, is defined by:

Re = EL%% (231)
By

where py and py are the density and viscosity of the fluid respectively and v; is the
velocity scale (i.e., mean flow velocity),
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McTigue et al. [1086] cite the above result in using an expression for lift that
includes a term of the form:
fr = LDydivDy | (282)

where L is o constant coefficient and Dy ls the rate of deformation tensor of the fluid
defined hy:

D, = ;— {grtmd vy -k (grtmdv_f)T} (283)

They have stated thut the term given by equation 232 is u generalization of the lift force
(equation 230) derived by Ho and Leal (1974] . As this is not an obvious conclusion,
we wish to evaluate equation 232 for u flow field of the form a + B2 + v2? and compare

the result to Ho and Leal's expression for lift (equation 230). If:

a+ Bz vzt
vy 0

n

0 0 B+2y2
gradvy=| 0 0 0
00

0

0 0 B-42vz
o 0 "0
A+ 29z 0 0

then:

2o

Dy =

1 2y Y
diVszi 0 = | 0
0 0

Substituting these expressions into equation 232, we obtain:
fre, = (29%2 +90)e, (234)

or. ' :
fu=22 418 | (235)

Cousider the case of simple shear for which v = 0, Equation 235 with 4 = 0 implies
fL = 0; however, equation 230 with v = 0 implies:

f, = k2Re(B)2G1(s) (236)

Since G1(a) is not generally equal to zero [Ho and Leal, 1974] , it seems that Ho and
Leal’s result, equation 230, does not generalize to the form of equation 232, Though the
lift term given by equation 232 does not appear to correspond to Ho and Leal’s result,
this is not an argument that it should not be included in the interaction terms for
two-phase flow., Passman [1086) shows that the momentum interaction, approximated
to the second order, does include a term of this form.
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