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Abstract

Multiphaseflowshavebecomethesubjectofconsiderableattentionbecauseoftheir

importanceinmany industrialapplications,suchasfluidizedbeds,pneumatictrans-

portofsolids,coalcombustion,etc.Fundamentalresearchintothenatureofpneumatic

transporthas made significantprogressinidentifyingkeyparameterscontrollingthe

characteristicsoftheseprocesses.,,Duringtllelastfewdecades,many studiesconcerning

theflowoffluid-solidmixtureshavebeenpublished.Most ofthesestudiesrelyalmost

entirelyon empiricalcorrelations,whichgenerallycomparepoorlytoexperimentalob-

servationsinallbut thespecificsituationsforwhichtheyaredeveloped.While these

approachesmay be quiteusefulinpredictingtheglobalcharacteroftheflowsystem,

theydo notacountforlocalvariationsofsolidconcentration,velocity,and pressureor

forvelocitydifferencesbetweenthephases.

The two foremostapproachesusedinmodelingmulticomponentsystemsareaver-

agingand mixturetheory.Inthefirstmethod,point-wiseequationsofmotionaremod-

ifiedtoaccountforthepresenceoftheothercomponentsand theinteractionbetween

components.Theseequationsarethenaveragedovertimeor some suitablevolume,

whichislargecomparedwithsome characteristicdimensionbutsmallcomparedtothe

dimensionsofthewholesystem.The secondapproachusedinthemathematicalmod-

elingofmulticomponentsystemsismixturetheory,whichisa means forstudyingthe

interactionbetweenseveralconstituentsby generalizingtheequation._and principles

ofthemechanicsofa singlecontinuum.Inbothapproaches,constitutiverelationsare

requiredtorepresenttheinteractiveforcesand thestresstensorsforeachconstituent.

Inthiswork,we reviewtheexistingconstitutiverelationsfortheinteractiveforces.

The emphasisofthisstudyison a mixturecomposedofsphericalparticlesofuniform

sizeand a linearlyviscousfluid.Sectioni introducesourapproachand theimportance=

ofthisstudy.In Section2,thedynamicsofa singleparticleas studiedinclassical

hydrodym_micsand fluiddynamicsispresented.Thishas beena subjectofstudyfor

- more than 200 years. In Section 3, we review the literature for the constitutive relations

as given in multiphase studies, i.e., generalization of single particle and as given in

literature concerning the continuum theories of rrfixtures or multicomponent systems.

" In Section 4, a comparison between these representations a_.d _he earlier approach,

i.e., forces acting on a single particle will be made. The importance of flow regimes,

particle concentration, particle size and shape, rotation of the particle, effect of solid

walls, etc. are discussed. In Appendix A, a brief review of the "principle of material

frame indifference" as used in modern continuum mechanics is provided. Examples of

" frame-indifferent and frame-dependent forms of the relative acceleration (related to the

virtual mass force) are also given. In Appendix B, an order-of-magnitude analysis

and com)arison for various interactive forces are provided.

_

_
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LIST OF SYMBOLS

a sphere radius,

s_,_ relative acceleration
Ac acceleration number

CD drag coefficient

CH Basset coefficient,

Cv,_ virtual mass coefficient .

D! rate of deformation tensor of the fluid ,

fs buoyancy force, bold face denotes vector

rB, single particle buoyancy foxce, bold face denotes vector

fe diffusion force, bold face denotes vector

fD drag force, bold face denotes vector

lD, single particle drag force, bold face denotes vector

fR Faxen force, bold face denotes vector i'

" f_ Basset force, bold face denotes vector

f1 total interaction force, bold face denotes vector'

fr pressure force, bold face denotes vector

f, tota_ force on a particle, bold face denotes Vector

f_._ virtual mass force on a particle, bold face denotes vector

g acceleration of gravity

=

- I indentity tensor

o ID first principle invariant of D

IID second principle invariant of D

IIID third principle invariant of D

k velocity gradient in simple shear-

K magnitude of the curl of the fluid velocity field

K curl of the fluid velocity field

• m/ mass of fluid displaced by solid particle

m, mass of solid particle

m_,_ added (or virtual) mass of solid particle

- p,! fluid pressure
: Q an orthoganal second order tensor

o Re Reynolds number
t time

=

ta dummy variable of integration

: T/ fluid stress tensor
u solid (distributed) phase velocity, boldface denotes vector

: ut local acceleration of a particle

v fluid (continuous) phase velocity, boldface denotes vector

v_ reference velocity

v,. relative velocity between phases, boldface denotes vector

=



VA volume of fluid above the particle

V_ volume of particle

W spin tensor

x current configuration

x" current configuration, new frame

X reference configuration

'Y position of sphere center
s void fraction

temperature

A parameter in relative acceleration expression, function of volume fraction

A weighting function for virtual mass force

#! fluid viscosity

/_, solid viscosity

v volume fraction of the solid phase

vy kinematic viscosity of the fluid
7r 3.14159

p mixture density

p/ fluid (or continuous) phase density

p, solid (or 'distributed) phase density

r dummy variable of integration

free energy density

w frequency

angular velocity of a sphere
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1 Introduction

Multiphase flows have become the subject of considerable attention because of their

increasing importance in many industries. The large number of articles published con-

cerning Multiphase flows typically employ one of two continuum theories developed to

describe such situations; Mixture Theory ( or theory of interacting continua ) or Aver-

aging [Ishii, 1975] . Both approaches are based on the underlying assumption that each

phase may be mathematically described as a continuum. Mixture theory was first for-

mulated by Truesdell [1957]. It provides a means for studying motions of bodies made

up of several constituents by generalizing the equations and principles of the mechanics

of a single continuum. The fundamental assumption in this theory is that at any instant

of time, every point in space is occupied by one particle from each constituent. The

historical development and the details of this theory are given in the review articles by

Bowen [1976], Atkin and Craine [1976], Bedford and Drumheller [1983], and the recent

edition of Rational Thermodynamics [Truesdell, 1984]. In contrast, Averaging directly

modifies the classical transport equations to account for discontinuities or 'jump' con-

ditions at moving boundaries between the phases [Drew and Segel, 1971a; Ishii, 1975].

The modified balance equations must then be averaged in either space or time (hence

the name Averaging ) to arrive at an acceptable local form. In this approach (cf. An-

derson and Jackson [1967] and Drew and Segel [1971a]) point-wise equations of motion,

valid for a single fluid or a single partlcle, are modified to account for the presence of

the other components and the interactions between components. These equations are

then averaged over time or some suitable volume that is large compared with a char-

acteristic dimension (for example, particle spaci.ng or the diameter of sohd particles)

but small compared to the dimensions of the whole system. From the mathematical

manipulation of the averaged quantities, a number of terms (some of unknown physical

origin) arise. These terms are usually interpreted as some form of interaction between

the constituents. Constitutive relations to represent these interactive forces , as well

as for the stress tensors for each constituent, are then required. The primary con-

ceptual difference between the two approaches is the location of the averaging step in
the development of the balance equations. Mixture theory implicitly assumes a locally

averaged field before any equations are written; Averaging makes it an explicit step in

" the development of the conservation equations. With few exceptions, both approaches

: arrive at the same set of equations [Decker, 1988].

Once conservation equations have been established, constitutive relations must be

specified to complete the description of the system. Modeling a mixture requires con-

stitutive relations for stress of each component of the mixture and expressions for

momentum exchange between the components. Note that this hst is for a purely me-

chanical system (i.e., no temperature differences or chemical reactions are accounted

for). In general relations would have to be included for thermal conductivity, chemical

reaction rates, etc. (see Bowen [1978]). Selection of appropriate constitutive relations

: for the stresses in the components of a mixture may be a difficult task, but for our cur-

rent purpose we assume this has'been accomplished. This report considers the selection

of constitutive equations describing the momentum exchange, or interaction, between

the components of the mixture. Though the continuum theories discussed above do, in
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general, allow one to model a mixture of many components in any flow regime, we will

consider only two component mixtures in laminar flow here.

The two-phase flows of concern here typically consist of a large number of solid

particles or gas bubbles suspended in a fluid medium (such as air or _ater). Most
of the momentum exchange relations that have been proposed for these types of two-

phase flows are based on generalizations of the force balance on a single particle moving

through a fluid, The overall plan of this report reflects that approach. First, a discussion

and overview of the dynamics of a single particle in a fluid is presented. Then, each of

the forces acting on the particle is discussed individually. Finally, continuum theories

for representing interaction forces (i.e., momentum exchange mechanisms) are discussed

and the expressions for forces on single particles are generalized to mixtures including

many p;_rticles.

2 Single Particle Dynamics

2.1 Introduction and Background

Tchen 1 [1947] synthesizes the work of Basset, Boussinesq, Stokes, and Oseen on the

motion of a sphere fettling under the force of gravity in a fluid at rest. The resulting

force balance, sometimes known as 'the Basset-Boussinesq-Oseen (BBO)equation, is

given by"

4_ra3 2_ra_

--_p,i_ = 3 pfiz - 6v#]au

a it i_(tl) .1, 4va3

g(p,- (1)V t - tl 3

where u is the velocity of the particle, Pf and p, are density of the fluid and particle,

respectively, a is the particle radius, g is the acceleration of gravity, /_1 and L,! are

viscosi'Ly and kinematic viscosity of the fluid, respectively. The terms on the right

hand side of equation 1 reflect the presence of virtual mass, Stokes drag, Basset history

effects, and buoyancy. Tchen [1947] modified equation 1 to describe unsteady Stokes

motion of a solid spherical particle in _ fluid with a uniform flow field. His modifications

include replacing the particle velocity by its relative velocity, and the addition of a term

accounting for pressure gradients in the fluid. The resulting expression is'

4_raa 47ra3 27ra3

f_ 47ra3
g(p,--pi)

4/- 3 '

where v is the velocity of the fluid in the neighborhood of the particle but far enough

away to be unaffected by it. Note that equation 2 is one scalar component of a more

gene rM vector equation. Corrsin and Lumley [1956], noting that equation 2 applies only

1Tchen's theory is studied extensively by Gouesbet et al, [1982,1984].
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in the absence of fluid velocity gradients, propose a more genera3 equation, which Lakes

velocity gradients into account in its expression for the pressure gradient, Considering

a small rigid sphere of radius a and mass m, instantaneously centered at Y(t) and

moving with velocity v(t), they propose the following equation for the force on the

sphere:

( )L l'm,--_-= mt Dt Y(O

-a,,_i,:o_,,(t)-v_[x(t),t]+,, ....."' (a)
oo /rr.//_

+(_,- =j)g_

The undisturbed flow field is v_(x,t) where the subscript i denotes vector component,

m f is the mass of fluid displaced by the sphere, and dynamic and kinematic viscosity

are #1 and vt, respectively, There are two disti,Lct time derivatives in equation 3, The

derivative _ denotes the time derivative foklowing the moving sphere, so that'

d (4)
d"__v_[Y(t)'t] = \ Ot + u_ O_j)Ix=Y(_)

The derivative _ is used to denote the time derivative following a fluid element, and:

is the fluid acceleration as observed at the instantaneous center of the sphere.

The source of disagreement over the form of the single particle force balance concerns

the pressure gradient term, Tchen [1947] originally proposed the addition of a term

accounting for the pressure gradient based on an intuitive argument. He proposed the

scalar equation:

:, = voj + _ , (6)

Corrsin and Lumley [1956] argued that, for a nonuniform flow field, the full Navier-

Stokes equations should be used to determine the pressure gradient (See Section 2.8).

They give, in vector form:

(- )r,= vp.f .N +(g_a,,),,- ,v',_ , (7/

Buevich [1966] criticizes both previous studies [Tchen, 1947; Corrsin and Lumley, 1956]

in pointing out that adding a term to the BBO equation is nol necessary, He uses a

change of reference frame to derive a new equation of motion from the original BBO

equation and shows that the term'

i1_ ..... lr " ,_1, , . _1' ' rr,t"
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arises without "the artificial introduction of additioiial terms," Soo [1975,1976] argues

that the pressure gradient force is exactly balanced by fluid inertia forces and should

not appear in the force balance in any form. Maxey and Riley [1983], based on an

analysis similar to that of Buevich, incorporate a "pressure" term of the form:

f'p= Vpi (O-O-V-v+(gradv)v) (9)Ot x=V(_)

Note that equation 8 incorporates a time derivative following the moving sphere,

whereas equation 9 uses a time derivative foUowing a fluid element. Maxey and l-iiley

[1983] argue that equation 9 is the more physical/y realistic expression in that the effect

of"stresses caused by pressure and viscosity is to produce the same net force that would

act on a fluid sphere of the same size, They propose the following equation for the force

on _/sphere in a nonuniform flow:

du.A" _ Dv_ Y(Om, dt - (m° - ml)'qi + m/ "-_

-_mf_- u_(t)- vi[Y(t),t]- la'vh,_10 (t)

+6ra2/z! / dr _ - .

Note that the inclusion ofvelocity gradients in their analysis results in modifications

to the virtual mass, Stokes drag, and Basset history terms. These velocity gradients

correspond to the physical effect known as Faxen forces and will be discussed later.

Table 1. Force Due to Pressure Gradient

Author Pressure Term

Tchen, 1947 Vpi (_ "4"v_)

Corrsin and Lumley, 1956 V/_,f (_2x.o,+ (grad v)v - vV:ev)

Buo,i h,966 ro, +

Soo, 1975,1976 0

Maxey and Pdley, 1983 Vpy (_ + (grad v)v)x=Y(t)
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Though equation lt/is complete for a single particle irl Stokes flow, there are, in

general, other forces that must be considered (even for a purely mechanical system).

In flows with high relative velocity between phases, or large velocity gradients in the

fluid phase, lift may become an important effect [McLaughlin, 1989]. Also, spin of the

particle is not taken into account in the above equations, Each of the effects included

in equation 10, plus these two that are not, will now be discussed individually, _ a

2.2 Drag

At low Reynolds number (i.e,, low relative velocity) the inertial terms in the Navier-

Stokes equations may be neglected. The resulting drag force on a sphere is given by

[Stokes, 1851]'

Iz_= 6_ra_jv, (11)

where #! is the viscosity of the fluid and all other variables are defined as above.

Equation 11 is known as Stokes' law for the resistance of a moving sphere.

Forces exerted on bodies moving through a fluid are generally expressed in terms

of a dimensionless drag coemcient, CD, defined through the relation:

Yv

C D = lp/v_ra2 (12)2

W_ith this definition, Stokes' law (equation 11) yields:

24

Cv = R--; (13)

where'.

Re = 2sv, p! (1.4)
/z!

is the Reynolds number based on the sphere diameter. This drag coefficient is generally
=

: an acceptable approximation up to Re = 0.2 [Khan and Richardson, 1987] . Oseen

modified Stokes' solution by including the inertial terms of the Navier-Stokes _quations

- for the flow field far from the body [Schlichting, 1979] , The Oseen improvernent is

given by:

. = 1+ (15)

and is applicable for values of Reynolds number up to about 2. If Re _>.2, the usual

approach is to determine CD experimentally as a function of particle Reynolds number

and present it as a table, graph, or correlation. Morsi and Alexander [1972] present a

theoretical investigation of the flow of a spherical particle (i) in a one-dimensional flow,

(ii) in a uniform two-dimensional fluid flow about a circular cylinder, and (iii) about a

2RobinBon[195{}]also studies the motion of small particles in a potential field,of flow. l_izk and
Elghobashi [1985]study the motion of a spherical particle in a turbulent flownear a wall.

:_Thebehavior ofbubbles, drops and particles in variousflowfieldsis discussed in the book by Clift

- et al. [1978]. _.
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lifting aerofoil section. The experimental drag curve is divided into a number of regions

and is approximated in each region by a curve of the form:

kl k2

= R-;+ +
where the values of kl, k2, and ks are given for different ranges of the Reynolds number

in the Appendix of Morsi and Alexander [1972]. Khan and Richardson [],987] present

an extensive review and critique of available experimental data and correlations for

drag on a single sphere.

2.3 Lift

2.3.1 Introduction

It is observed [Segre and Silberberg, 1961; Segre and Silberberg, 1962a,b] that spheres

in laminar Foiseuille flow through a pipe (at low Re) accumulate in an annulus some

distance from the tube axis. Following the initial observations, a number of investigators

verify this 'tubular pinch' effect and attempt to explain the lateral (or lift) _'orce acting

on the spheres [Denson et al., 1966; Eichorn and Small, 1964; Jeffrey and Pearson, 1965;

Oliver, 1962; B epetti and Leonard, 1964]. Though some authors attempt to explain

the radial migrations in terms of particle spin (i.e., Magnus forces), spheres prevented

from spinning 4 also reached equilibrium positions between wall and centerline [Denson

et al., 1966; Lawyer and Lu, 1971; Oliver, 1962; Repetti and Leonard, 1964]. Lawyer

and Lu 5 [1971] and Brenner [1966] give detailed reviews and comparisons of these

experimental results. Denson et al. [1966] and Aoki et al. [1979] both fail to observe

annulus formation at particle Reynolds numbers higher than those used by the previous

investigators. They do, however, agree with previous results in that particles lagging

the flow migrate to the tube axis and particles preceding the flow migrate towards the
tube wall.

Bretherton [1962] shows that, based on creeping flow equations, there is no lateral

: force on a single rigid spherical particle in a unidirectional flow. Saffman [1965, 1968]

deduces that, since e_:perimental results contradict this conclusion, inertial effects must

be involved. Saffman _btains a result for 'slip-shear' lift on a particle at low Reynolds

number analogous to a result derived earlier for 'spin' lift by Rubinow and Keller [1961].

Both results are discussed in the following sections. Saffman includes particle spin in

his analysis and shows [Saffman, 1965] that, under circumstances where his results and

: Rubinow and Keller's results strictly apply, the 'shear' lift dominates the 'spin' rift (see

also Boothroyd [1967] ). Aoki et al. [1979] claims that for larger particle Reynolds

numbers (i.e. Rep :> 1.) the Magnus effect explains the observed particle migrations.

Here, the particle Reynolds number, Rep, is defined as:

Rep - av,.pl (17)
/z!

4One author [Oliver, 1962] drills a small hole in the side of each sphere so that the offset center of
gravity counteracts rotation.

5Lawyer and Lu [1971] , after reviewing previous particle migration results, calculate particle tra-
j jectories using an incorrect expression for Saffman's [Saffman, 1965] 'slip-shear' lift.



2.3 Lift 7

Ho and Leal [1974] calculate another form of lift force on a single particle in a

channel. This force is apparently a result of wall effects and is discussed in Appendix

B. Auton [1987] studies the lift force on. a sphere due to a weak shear flow of an inviscid
fluid.

2.3.2 'Slip-Shear' Lift

Saffman [1965, 1968] uses an expansion valid for small values of the reciprocal viscosity

to calculate the lift force on a small sphere in a slow unbounded simple shear flow. His

result is given by:

- (18)fL = 6.46_j ]

where k is the velocity gradient in simple shear, pl the density of the fluid, a is the

radius of the sphere, u is the particle velocity and v is the fluid velocity. Even though

Saffman has retained t,he inertial terms of the Navier-Stokes equations in his analysis,

• the flow is not inertially dominated. Decker [1988] points out that Saffman's analysis of

lift force includes the following implicit assumptions: the flow is uniform and parallel,

the slip velocity is parallel to the plane of fluid shear, the shear or velocity gradients

of the fluid are linear and the particle spin vector lies in the plane of fluid shear, but

is normal to the sllp vector. The lift force Saffman derives is normal to the slip vector

and the spin 'vector of the particle. If the particle lags the fluid, the lift will move the

particle towards the faster adjacent fluid and vice versa if the particle leads the fluid.

2.3.3 Magnus Force

Consider a spinning body traveling through a fluid such that its axis o'f rotation does

not coincide with its direction of translation (i.e., its path or trajectory). The body

will experience a lift force in a direction perpendicular to the plane defined by its axis

of rotation and its trajectory. The magnitude of this force, known as the Magnus force,

depends upon spin rate, velocity, and shape of the body. The so-called 'Magnus effect,'

in which the force just described causes a deflection perpendicular to the flight path,

was first investigated in relation to deflection of projectiles (such as tennis bulls or

baseballs). Although named after Magnus, who studied the lift caused by rotation of

a cylinder, the effect of spin on the flight of tennis balls was first noted by Newton in

' the 1600s. An historical review is given by Barkla and Auchterlonie [1971] .

A relatively large amount o{ work has been done concerning the Magnus force act-

ing on spinning objects of large size [Swanson, 1961] . The theoretical analyses for

these situations, however, are based on inviscid flow and are therefore inappropriate

for predicting lift on small particles at low Reynolds numbers where viscous effects are

expected to dominate. Generally, lift coefficients are measured empirically; though ex-

perimental work has also been primarily concerned with large objects at high Reynolds

numbers. Tsuji et al. [1985] performs experiments on small spheres (5 mm dia.) at

Reynolds numbers as low as 550. These are apparently thesmaljest particles and lowest

Reynolds numbers for which experimental data exists.

Rubinow and Keller [1961] obtain an analytic expression for the lift force on a

small spinning sphere. They used an expansion valid for small values of the particle
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Reynolds number to calculate the transverse force on the sphere. For a sphere of radius

a, spinning with angular velocity _, and moving through an unbounded stationary

fluid with velocity u, they obtain a lift force of:

fL = 7rP/a'an x u (19)

where p] is the density of the fluid. Unfortunately, this is a rather restricted result
and attempts to extend the expansion technique to situations where there are velocity

gradients in the fluid (such as in Poiseuille flow) have fMled. Jeffrey and Pearson

[1965] attempt a semi-empirical comparison of their experimental results for particles
in Poiseiulle flow with Rubinow and Keller's equation. Though the results of the

comparison are not convincing, the r-dependence of the calculated and measured radial

velocities corresponds reasonably well.

Clearly, the Magnus effect can be quite important when the body is 'spun' by an

external force. It is not clear, however, what spin, if any, a particle in an arbitrary

flow might have. Unless it has just struck a bounding wall or some other obstacle, one

might expect the particle to have a spin equal to the vorticity of the fluid velocity field,

or even no spin at all. For a sphere in a Poiseuille flow, Jeffrey and Pearson [1965]

observe experimentally that:
1

12 = _curl v (20)

to within 7% for neutrally buoyant spheres, and to within timir experimental error for

spheres with a higher density.

2.4 Virtual Mass

When a particle is accelerating with respect to a fluid, an added mass force, which

is not present under steady conditions, must be included in the force balance on the

particle. A good qualitative explanation is given by Birkhoff [1960] '

... let a light paddle be dipped into still water and then suddenly given

a rapid acceleration broadside. It is a matter of common experience that

the apparent inertia (i.e., resistance to acceleration) of the paddle is greatly
increased by the water around it. This increased inertia is what is called

the "virtual mass" of the paddle, the difference between the real mass and

the virtual mass being called the "induced mass" or "added mass."

The virtual mass is a means of quantifying the force required to displace the fluid

surrounding the accelerating body. One can write Newton's Second La w for a solid

spherical body of diameter D and density p,, accelerating (at a) through a liquid of

density p/, as [Lahey, 1982] '

4'_ 3 1

The added mass, m,,,,, accounts for having to accelerate the surrounding liquid, m,,n

is equal to one-hMf the mass of the displaced liquid for a perfect sphere. The virtual
J

__

tm

.... • . , , _
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mass coefficient, C_,_ is defined through:

f,,== (22)

where C_,,_= 1/2 for a single perfect sphere accelerating through a fluid medium and

a_,_ is an expression for the particle acceleration. Clearly, from equation 21, virtual

mass has greater relative importance in the force balance when the particle has a lower

density in comparison to the fluid. _

2.5 Basset Force

A particle accelerating through a fluid medium will experience virtual mass and Basset

forces, One may think of virtual mass forces as resulting from the potential flow .Field

created by the accelerating particle. Likewise, the Basset force may be considered ._

result of the viscous flow field created by the particles motion. Viscous phenomena,

such as boundary layer growth, are described by diffusion equations and thus the flow

field at time t is a function of the entire history of the particle motion. For laminar

flow around a sphere, Basset [1888] obtained the result:

where Pl is the fluid density, d is the particle diameter, u and v are the velocity vectors,

t is time, t I is the dummy variable of integration, and uy is the kinematic viscosity.

This expression constitutes an instantaneous flow resistance and may be considered a

correction to the viscous d_ag accounting for transient conditions; it is often referred to

as the Basset integral. It has certain limitations in that it was derived for the situation

of a particle experiencing high acceleration at low velocity,

Ahmadi and Goldschmidt [1971] showed that the Basset integral does not have a

= strong effect on particle motion at sufficiently long times (large t). It may, however,

contribute significantly at short times and several studies of a sphere moving in a fluid

- have incorporated Basset forces. Odar and Hamilton [1964] attempt to extend Basset's

result to higher velocities. They rewrite equation 23 in a more general form:

fH'- --CHPya2_v/_ft:(g--t')-_ d_/(u- v)dg I (24)

where all the previous variables have the same definitions, a is the particle radius_
and Cn is a numerical coefficient to be determined. They also define the acceleration

- number as:
_2

Ac - (25)
2au_

where u, a, and ut are velocity, radius, and local acceleration of the sphere, respectively.

_ By performing experiments with a sphere oscillating in a fluid the authors obtain em-

pirical values of CH for 0 < Ac < 2. Odar [1966] later finds that the values of CH

_Kowe et al. [1988] analyzes the motion of a single bubble or particle in a,n _celerating fluid flow

where the effect of virtual mass becomes important,
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measured for the oscillating sphere discussed above a/so predict free fall of a sphere

quite well. He then expresses the data from Odar and Hamilton's previous paper by

the following correlation:
3,12

= 2.88+ (26)

Note that as v ---, 0 or a ---, _, Ac _ 0 and C_ _ 6 'which is the value Basset obtained.

Hjelmfelt et al. [1967] derives and sol_es the equation of motion describing a sphere

oscillating in a fluid. Obtaimng displacement as a function of time, they show that

the Basset history integral contributes significantly to the calculated displacement of

the sphere, and in some situations may be more important than virtual mass or drag.

Hjelmfelt and Mockros [1967] perform a similar study for spheres falling in a viscous

fluid. Again, Basset's history integral is shown to be quite important. In the above

study, the displacement-time relations for the fallingspheres are verified by experiment.

See also Ahmadi and Goldschmidt [!971].

It is apparent from equation 24 that fH becomes large when the local acceleration

is high. This fact is demonstrated experimentally by Hughes and Gilliland [1952] who

observe a drag force many times that due to steady state drag. It is not as apparent

from equation 24 (which represents a single term in the equation of motion of the

sphere) that fn is more important for greater values of pfpo. For small values of this

density ratio _,the Basset term may generaUy be neglected [Soo, !967] r.

Tatem [1988] has recently shown that the Basset integral may be expressed as a

semi-derivative s. Though Tatem is simply presenting a different way to write the same

quantity_ it may simplify numerical calculations to replace the Basset integral with his

expression.

2.6 Faxen Force

Stokes' expression for drag is derived for a single sphere translating at low Reynolds

number in a stationary fluid. The drag force on a sphere translating through a fluid

that is moving and has velocity gradients will generally have a different value. For

steady Stokes flow, the correction for this condition is given by the Faxen relations

[Happel and Brenner, 1973] , so that the drag force on a sphere is'

where a is the sphere radius, ill is the viscosity of the fluid, u is the velocity of the

sphere, and v is the velocity of the fluid. Including this effect in the force balance on

a sphere results in modifications (due to the curvature of the velocity profile) to the

virtual mass term and the Basset history term in addition to the Stokes drag [Maxey

and Riley, 1983].

= Tin some applications small particles and droplet_ may encounter normal shocks. Forney et al.

[1987] studies the effect of the Basset history integral behind a normal shck wave. The effect,of Basaet
J forces on asymptotic particle turbulent diffuMvity is studied by Shi [1987]

SBy semi-derivative Tatem means a fractional derivative "according to the }_iemann.Liouville inte-
grM definition."
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2.7' Buoyancy

When body :forces are present, aparticle immersed in a fluid medium of different density

than the particle will experience a buoyancy force. Evaluating the magnitude of this

force is a simple matter that is discussed in any elementary book on fluid dynamics (for

example White [1986]). Consider a sphere immersed in a fluid medium with the entire

system in a gravity field. Balancing forces on the sphere gives:

]'s=p,v.g+ _:.4p:g-(_,q+v)p:.q (2s)

where fs is the net buoyancy force, p, is the density of the sphere, p/is density of the

fluid, V_ is the volume of the sphere, VA is the volume of the fluid above the sphere,

and g is the acceleration of gravity. This equation can be simplified to:

fs = P;g(p,- pl)= g(m, --m]) (29)

where m, and m/are the mass of the sphere and the mass of an equal volume of fluid,

respectively.

2.8 Pressure Gradient

An object of finite size immersed in a viscous fluid with a pressure gradient will expe-
rience a force due to that pressure gradient. This force arises from 'the fact that the

pressure on the 'upstream' side of the object will be greater than that on the 'down- '

stream' side. A force balance on a sphere in a fluid with a pressure gradient yields the
relation:

' f, = -_:vp: (30)
The Navier-Stokes equation (without body forces) may be written'.

1 Dv
-, --Vp./ - ,:V2v (31)

° pl Dt

so that equation 30 may be rewritten as:

.-" fv= V,p: -._--[- vyV2v (32)

or, defining:

,_: = _¢p: , (33)
&S:

Dv v/V_.v )r,_="_:(:D-7- (341

2.9 Temperature Gradient

When a small particle or a liquid drop is suspended or inserted in'a gas or a liquid which

_ is not in thermal equilibrium, i.e., a temperature gradient exAsts, then the particle moves

in the direction of decreasing temperature (if there are no other outside forces acting

on the particle). _his phenomenon is studied by Phillips [1975], Talbot et al. [1980],

Rosner [1988], Barton and Subramanian [1989], and Kempers [1989] among others.
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3 Multicomponent Plows

3.1 Introduction and Background

In proposing the constitutive relation for the diffusive body force (i.e., interaction force)

in a multiparticle system, rnany investigators [Anderson and Jackson, 1967; Drew and

Segel, 1971a; Homsy et al., 1980] generalize the problem of a single spherical particle

undergoing slow rectilinear motion in an infinite fluid by introducing a void fraction

dependence for certain coefficients. The interactive force is, in general, a function of

the fluid pressure gradient; thedensity gradients (the buoyancy forces); the'relative

velocity (the drag force on the particles); the relative acceleration (the virtual mass of

the particles); the magnitude of the rate of deformation tensor of the fluid ( the lift

force oil the particles ); the spinning motion.L,as well as the translation of particles (the

Faxen's force); the particles' tendency to move toward the region of higher velocity (the

Magnus. effect ); the history of the particle motion (the Basset force ); etc.

Conformance with: the accepted principles of constitutive equations as given by

Truesdell and Noll [1965] , such as invariance to coordinate transformations, frame

indifference, homogeneity, and isotropy, is essential in forming constitutive models for

two-phase continua (see Appendix A),

Inthis section of the report, we will present an historical overview of the develop-

ment of expressions for the interaction forces in multicomponent flows. The following

sections will concentrate on contin.uum theories for the representation of tile interaction

force and generalization of the single particle results already discussed to the case of

many particles.

In generalizing the forces acting on a single particle to a mixture of solid particles

and fluids, many investigators start with the work of Landau and Lifshitz [1959].

They show that the velocity of a single sphere, being an _rbitrary function u(t), can be

represented as a Fourier integral:

O_

or

Since, assuming creeping flow, the equations are linear_ the total drag may be written

. as the integral of the drag forces for velocities that are the separate Fourier components

u_,e-i'_*. These forces are given in Landau and Lifshitz [1959] as:

_rpja_u.,e_,,_t l 6_,! 2i._ 3v/_-_t }O,

Noticing that"

we can write the above as:

vpja3e_,.,,{6V,.u 2 3x/_ (1 +i)1

_, , ,,,
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Integrating over w, the first and second terms give u(t) and u(t), respectively. The

somewhat more complicated integration of the third term is shown in Landau and

Lifschitz [1959] . It is shown that:

{ } j:2Re (1 +i)j0 (U)_e"i_dw 2 't u(r) dr. (40)

Tiros, we can finally write the expression for the drag as',

g_7+ _,-_+ (41)a7r' oo dr

or:

2 du ._f"oodUdr drf_ = _pfa_ +6_j_ + 6pj_;7-_, _4_-_-_' (42)
In genera, equation 42 can be rewritten as:

du

jf_t du dr (43)f_:_u+_7?+_ o__; t_:--;-_'

where:

al = 67r#.ca,

2

a_ : _'_rpyaa; (44)

aa = 6pya_x/'fij-_ ",

If, in addition to the particle velocity u, the fluid is also moving with velocity v, then

to generalize equation 43 we need only replace u by the relative velocity (u - v).

Anderson and Jackson [1967] appear to be the first who motivate the use of an

interaction force of type 43, Their reasoning for using equation 43 is that the interaction

force shoula depend "not only on the instantaneous motion of the particle, but also on

the instantaneous fluid velocity field in "which it moves and which in turn depends on

the complete history of the particle's motion," They, however, neglect the effects of the

last term in equation 43, which is usually referred to as the "Basset force".

When equation 43 is generalized to the case of an assembly of particles it seems

natural to assume that the coefficients al, az, and aa become functions of the void

fraction _. This is indeed _uggested by Anderson and Jackson [1967] , who further
comment:

lt seems less reasonable, however, to include a term analogous to the B_Lsset

force, since the presence of a large assembly of particles dispersed through-

out the fluid is likely to erase any historical effect of the motion of a given

particle on the fluid flow in its own neighborhood,



14 , 3 MULTICOMPONENT FLOWS '

Anderson and Jackson [Anderson trod Jackson, 1967] and Jackson [Jackson, 1970; ,lack-

son, 1971; Jackson, 1985] , in a series of papers, use different versions of 43 in their

analysis, e,g,'

f,: j, (45)

where u and v are the velocities of the solid and fluid constituents respectively, e(x, t) is

the voidage fraction of volume occupied by the fluid phase, ft(e) is the drag coefficient,

and C(e) is the virtual mass coefficient. According to these authors, last term in this

equation accounts for the presence of the buoyancy force, Another i!orm used by Jackson

[Jackson, 1985] is',

= - v - v)+ c( )pjN(u v). (46)

The coefficient of dra,g, _(e), is studied extensively and will be discussed later in

this report. Anderson and Jackson, for l_ck of any experimentaldata or physical

ebservation, use a value of one-half for C(e) in their analyses. This is the value for

the virtuM mass coefficient when a single sphere is moving through an infinite fluid.
An important shortcoming in the works of Anderson and Jackson [1967, 1968] and of

Jackson [1971] is the use of frame-dependent forms for the relative acceleration. This

is a common misunderstanding among workers in the area of two-phase flow [Murray,

1965; Soo, 1967' Wall_is, 1969] and is discussed later in this report and in the appendix.

Drew and Segel [1971a] consider a structure for the interactive force similar to

equation 45, but do not include the div T/ in their equation. Instead, they consider
the effect of surface tension and also include a term that represents the force on the

particles due to the pressure, of the fluid phase. They show that this term is related

to the gradient of the volume fraction of the solid particles and contains the buoyancy

= forces, The form speciflcal]y proposed by them for the interactive force is:

fx = -p/gra,d a" + S(u- v)

where:

fl + ft = T'grad A (4:8)

where T" is the average surface tension, tensor, A depends on Lhe local geometry, a" is

related to the void fr_ction, S is c_lled the drag coefficient tensor, and M is the virtual
mass tensor.

The appearance of the first tcrm (-p/grad a') in equation 47 is of fundt_rnental

importance in multicomponent flows. Drew and Segel [1971.a] arrive at this conclusion

by assuming that the interactive force has a component dueto the fluid pressure ('with

further assistance from their averaging technique). Nevertheless, the inclusion of density

gradients in postulating constitutive equations for the interactive force is a milestone

in l,he theory of mixtures (due to Miiller [1968]).9

9The reoaon for including the gradient of the densitt¢t_in the diffusivebody 'forceis that, in a
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3.2 Continuum Theories and Representation of" f1

t _When describing, from a con muum point of view, the behavior oi' materials such as

rubber, water, metals, or polymers, one can regard each of these _s a single continuum.

However, in many instances, we encounter ideal gas mixtures, fluid mixtures, bubbly

liquids, alloys, suspensions, fluidized particles, porous media and pneumatic systems

that canno_ be regarded as a single constituent continuum, lt is more appropriate to

assume tha'_ the raaterial cortsis_s of more than one constituent, A general theory of
I,

' interacting continua, i,e., mixture theory, based on modern continuum mechanics can

be applied to the above-mentioned problems. Truesdell [1957] is tim first to set up

the mathematical theory of mixtl_res in which phenomena of diffusion, dissociation,

combina*ion, and chemical reaction in the broadest sense can be represented. Later,

Truesdell [1962] studies the mathematical theory of the diffusion of mass in a mixture

._ using four different approaches, na_mely' (i) the kinematical, leading to Fick's equation

,_ of diffusion, (ii) the hydrodynamical (Maxwell,.Stefan equations of motion for the con-

stituents in a mixture of fluids), (iii) the kinetic (Maxwell.Chapman.Enskog formulas

in a mixture of dilute monatornic gases), and (iv) the thermodynamic approach, which

is suitable for the diffusive flux in more general fluid mixtures.

. ' Adkins [1963a,b] develops a theory of non-linear diffusion based on ideas of Truesdell

and Toupin [1960], i.e., mixture theory. To account for diffusion phenomena, Adldns

[1963a,b] assumesthat the body force acting on a given component (per unit mass of

" that component ) can be subdivided into an extraneous body force that is identical in

character for single component systems, and a diffusive force. Adkins [1963a] assumes

that this diffusive force depends upon the densities of the constituents at the point

under consideration and upon their relative velocities. In a follow-up paper, Adkins

[1963b] presents a generalization that makes the diffusive forces dependent_ in addition,

upon velocity gradients and their time derivatives (related to virtuM mass effects),

and als(, upca density gradients In both cases, the form of the force is restricted to

satisfy the necessary requirements for invariance under rigid body motions (principle

° of material frame-indifference), Adkins [1963a,b] studies a few problems such as steady

fluid-solld system, the particles need not be uniformly distributed Mfiller [1968] '. gives an interesting

thermodynamical argument for the inclusion of the density gradients. He showed that the omission of
, the denBity gradients would lead to models that. are too restrictive, tle called such mixtures "simple"

and he found that for a simple mixture oi' two fluids:

- = pl +

: where qJl and _ are the free energy densitles for the two constltue.nts .and pi and P2 are the de,nsitie_
of the two constituents measured per unit volurne of the mixture.

The result that qJ._is independent of p2 and_2 'is independent of pi are known from classical
thermochemiBtry to be too special. Mfiller [1968] showed that a mixture of ideal gases is a Bimple
mixture, ttowever, in general_ such a condition on the free energy is too restrictive and doeBnot include
most fluid mixtures, Therefore, to avoid such a restrictive theory, inclusion of density gradients in

- the constitutive equations appears necessary. Als), in hydrodynamics a body submerged in a fluid
= experiences a force proportional to the density difference between the body and the fluid, Similarly,

Mfiller {1968] reason,) that, if one visualizes the mixture as a multitude of molecules inwhich the
molecules in the a phase are distributed uniformly but the molecules of the other phase are not, then

= there is a resultant force upon the a-molecules due to intermolecular interaction.
-
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diffusion through fluid in laminar flow, flow of mixture between1 rot_ting cylinders,

propagation of plane waves through a.mixture, etc., using this theory. Through a series ',

of _Lssumptions. and _ Very interesting _malysis, Adkins [1963b] shows that tile classical

diffusion equations based on Fick's law can be obtained using his non-linear theory,

In their theory of non-linear diffusion, Green and Adkina [1964] regard the diffusive

force @ (which is equal to _ in our notation) as "a retarding force exerted on each
Pl P_I

fluid due to the other and it is natural to suppose that it at least, depends on all the

quantities that appear in the constitutive equ_ttibns for the partial stresses,..." They
therefore assume that:

'I' = ,I'(_D,2 D, r '- A,u- v,p_,p2) (49)

where lD and 2D are the strain ra;tc tensors for two phases, and F aud A are the skew-

symmetric parts of the velocity gradients of the two ph_ses. The form of the quantities

,.,,.,,appearing as the arguments'in equation 49 guarantee that the diffusive body force

is invariant under superposed rigid body velocities, and under superposed rigid-body

angul:._r velocities of the whole mixture. For a mixture of two ideal fluids, equation 49
is assumed to reduce to:

which if • is assumed a linear function of the arguments takes the form:

= (u-- (u- v)' -- t-curl
pdl pd_ (51)

where di and d2 are functions of p_ and p_. If the principle of ma,terial flame-indifference

is to be applied for all orthogonal transformations, then the second term irt equa.tion
51 must be omitted,

Green and N-aghdi [1965] propose a dynamical theory of interact, ing continua and,

as an example, study the mixture of two Newtonian compressible viscous fluids, They

assume that if the diffusive force is a linear function of the velocity and the velocity

gradients of each fluid, it can be represented by,.

where a_, Bl, and B2 are functions of Pl, P_, and temperature T, and:

1

1

where u_ and v_ are the velocities of the two fluids, Based on the standard thermody-

namical arguments used in continuum mechanics (ct Colemtm and Nol] [1963] ), Green
and N_ghdi [1965] show that B_ :> 0, B_ _ 0, and:

OA O_ OA 0_

a_= p_0_ 9_, P_0_ O_ (55)
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where _1 - .1 42 = _ and A is the Helmholtz free energy function for the mixture,
Mills [1966] studies the mixture of Newtonian fluids and derives the incompressibility

condition (or volume _dditlvity), which is an additional constraint relating the densities

of the two fluids in the reference contlguratioi_ to that of the present configuration, This

, constraint is shown to be', P__!-F p--2-_= 1 (56)
, , plo P2o

where pl0 _nd p_0 are the densities ofeach fluid per unit volume of that fluid and pl

andp2 are the densities of each fluid per unit volume of the mixture, Mills [1966] also
assumes that the diffusive :force is given by:

i

and he shows that for an incompressible mixture of two Newtonian fluids, it takes the
form:

f' =- 70 +Ve - ]j

+ S_(ul- v_)+ B2e_jk(r_,k- a_,_), (hS)

where p is an arbitrary scalar, A is the Helmholtz energy function for the mixture, and

Bi _nd B_ _re assumed to be functions of p and T,

Crochet _nd Naghdi [1966] study the flow of fluid through an elastic solid, using

mixture theory. They propose the following form for the diffusive force',

f = fo+ fo (_9)

where fo is the equilibrium value of f (when the velocity gradients _nd the relative

velocity all vanish), If the solid is an elastic material, Crochet and Naghdi [1966] show
that:

' fo = p__--grad p2 -- P2tr
op_.

where A is again the Helmholtz free energy fimction, a,nd F(_) is the displacement

gradient for the solid phase, i.e.:

F(_)=gr_ax(X,t) (6_)

and in the above expression:
2

OA

O_,_,--___'a_x_'_ (62)

Green and N_ghdi [1967] develop a theory of mixtures where the energy equation

" and the entropy production, inequality are postulated for each constituent. For a mix-
ture of two ideal fluids they obtain:
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+ (D1 - D2)(vl l) --.v_2)) (63)

vhere_l = ! _=-!- and:• Pl ' P_ '

A1 =: A1(_.,_2,8_,82) (64)

' A2 = A2(4_, _2, 0_,¢)2) (65)

M{iller [1968] develops a thermodynamic theory for mixtures of fluids, using mixture

theory and invoking principles of frame-indifference, equipresence, etc. He assumes that
_he interactive force is a function of.,

,,

( 00)f ' f' P=' a, j '__'5-__'o,-Sgj ' _ =1,2 (66)

: where O_is the tempe::ature of the mixture, Applying the principle of material frame

indifference, he shows that equa'tioIl 66,' for a binary mixture, should 'Lake the form',

f, f, e=,-d:g, ,D_,a,j ,o, (67)

where:

D,j [ \_ + 8m,] a = 1,2. (69)

M/iller [1968] then shows that a further consequence of the principle of material frame-

indifference is that the constitutive function fi must be an isotropic vector function

relative to the orthog0nal group. Using representation theorems ( c.£ Truesdell and

No]] [1965] ), and assuming t,hat f_ is linear in the variables, M(ine,r [1968] proposes the

following relation for f_',

. O0 _ Op_ "_V__ (71)
B=I

where the coefficients fl , f_ , mhd f_ can depend on pz and _,

In a later paper, Green and Naghdi [1968] generalize their e.arIier work so as to

include the temperature gradient and the density gradients in their formulation. Thus,

they show that:
0_

h = _ +_-+ D(,_- ,_) (_)

OF Op_ 8F 8p_ _¢

i_,.,
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where ¢ = ¢(pl,p_,0) and F is the Helmholtz free energy at equilibrium, i.e,, A =

F(pl,p2,0),

Craine [1971] studies the steady oscillation of an infinite plate in a binary mixture l

of incompressible Newtonian fluids, The form that he uses for the interactive force is:

ag 00

/' : _(_)- _)) + _, +__=--T (74)

where p = pl + p_ and a, 3, and "_ are functions of p and 0. From thermodynamic

restrictions due 4o the Clausius-Duhem inequality Craine [1971] shows that'

= -,\ (75)

where .k is a Lagrange multiplier associated with the constraint of incompressibility of

the mixture, i.e,:

(p_o- p)tr'D +(p- p_o)t__O- (g_,_dr_)" (u(")- u(_)):: o (76)

where:
pl

Pie = -- (77)

P_' (78)
p_o- {I- 7)

are the reference densities of the two constituents, when separated. It should be noted

that equations 77 and 78 imply thai.'

pl p2

pl0 P_.o

Drew [1976] studies the effect of.lift and Brownian motion. tte writes the interphase

force, li, as:

fl : f_ + f (80)

where tv is the pressure force on the particles and f represents the effect of other forces

such as drag lift, etc,, on the particles, Following Drew and Segel [1971a] , fp has the

form:

fp = p/grad u (81)

where Pt is the fluid pressure and u is the volume fraction of the solid phase.

In addition tc, using the "principle of phase separation ''1° [Drew and Segel, 1971a]

("a bulk-phase variable should depend only on variables from that same phase"), Drew

[1976] also introduces two principles'

1°This so-called principle that is often attributed to Drew and Segel [1971a] iB actually first put
- forward as an assumption by AdkinB [1963a]:

lt is assumed that within the mixture, the properties of any given component are de-
fined by means of constitutive equations relating the partial stress tensor, the density

= (or concentration) and the kinematic quantltleB, Buchas velocity gradlents_ acceleration

gradients and their Buccessive time derivatives, for that component,

Furthermore, Adkins [1963a] points out tha.t:
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1. The principle of local dependence on dispersed phase variables states that nonlocal

effects (specifically gradients) of dispersed phase variables should be omitted from
constitutive relations.

2. The principle of correct low concentration limits states that when the dispersed

phase is sufficiently dilute, the mL'(ture behaves as if it were made up of the

continuous phase alone. 11

Based on these three "principles," which perhaps should be called "assumptions,"

Drew proposes a general isotropic linear dependence of f1 on u- v, Dy, and grad (div v)

given by:

f, = aS(u - v)+ aBAv + Cgrad (divv) + LD/(u - v) (82)

where u is the velocity of the solid (dispersed) phase; v is the velocity of the fluid

(continuous) phase; D/is the rate of deformation tensor for the fluid; A is the Laplacian

operator; and the quantities S, L, B, and C are scalar functions of the invariants, which

can be constructed from u--v, D/, and Av. It should be noted that these "principles,"

especially the "principle of local dependenee," put severe restrictions oil the structure

of the dispersed (solid) stress tensor. This subject matter is discussed in Massoudi and

Boyle [1987].

The first term in equation 82 is the drag term, the second and third terms are called

viscous forces (which do not involve the particle motion), and the fourth term is the

lift force. The drag force, in general, has the form'a

fD "- uS(z/,/_l,P,,P],iu - v ,._D,]lD, IIID)(U - v) (83)

where ID, IID, and IIID are the principle invariants of D/, and the lift force has the
" form:

fL = n(u, tzf,P,,Pf, Iu - v [,ID,IID, IIID)Df(u - v) (84)

Using the principle of low concentration limit, Drew [1976] shows that as v _ 0:

: s -, +6.55 ), (85)

,c (86)

It would hre possible, for example, to postulate that the partial stress tensor for a given
fluid should be dependent not only upon the kinematical quantities defined for the fluid

itself, but also upon the concentration, velocity gradients, acceleration gradients, and

. time derivatives of these quantities defined, at the point under consideration, for the
other fluids in the mL'cture. This would give an explicit coupling of mechanical properties.

Later, Green and Adkins [1964] use this generalization and formulate a general theory of non-linear
" diffusion where they study a mixture of two non-Newtonian fluids, and the problem of the diffusion of

- a non-Newtonian fluid through a Cauchy elastic solid.

11Interestingly, a similar idea is put forward earlier by Green and Adkins [Green and Adkins, 1964].

In their formulation for a mixture of non-Newtonian fluids, they state: "Also, in the absence of one

fluid the constitutive equation for the other must reduce to the usual one for that fluid alone/_



3.2 Continuum Theories and Representafion of f_ 21

3

l

L _ -3(6,46)r,(p I-"8_ }/.,])½ D! , (88)

where _ is the volume fraction of solid. The effect of Brownian motion on the particles

is included in the force -K.grad_.

In a later paper, Drew et al, [1979] considers the phase separation mechanism and

its relationship with the effect of virtual mass during the acceleration of a two-phase

mixture, An important contribution of this work, though largely performed previously

by E1-Kaissy [1975], is the derivation of objective virtual mass accelerations. Drew et

al. claim that the most general objective acceleration a.m for two-phase flow has the
structure:

D'u (grad u)(u - v) - (grad v)(v- u)a.m - D--T- D_

+ (1 - A)[grad (v - u)] (u -- v), (89)

where

D' 0
- + [grd(.)]. (90)

• Dt 8t

and

D ! 8
= -- zr-[grad (.)] v (91)

Dt Ot

where A is a parameter, superscripts 8 and f refer to the solid and fluid phases, respec-

tively, and as before u is the velocity of the solid phase and v the fluid phase. Equation
89 cart be written in several forms, Two examples are given by Drew et al. [1979] '

" Dlu D'v

a_,,, - Di D_ _ (1 - A)[grad (v - u)] (u - v), (92)

or

D'(u - v)

- a_._ = Dt + [(A - 2)grad u + (1 - A)grad v] (u - v), (93)_

D'(u-.v
: Walhs [1969] Hi.nze [1975] and Soo [1967] use - .d as the virtual mass acceleration' _ DC

: term in their investigations. Equation 93 clearly indicates that this terr._, alone, is not

frame-indifferent (see Appendix A) and is, thus, not a valid choice for a_m.

- Shi, R.ajagopal_ and Wineman [1981] use mixture theory to study the diffusion of an

ideal fluid through a non-linear elastic media They assumed that all the constitutive

- functions depend upon:

A = A(F, p2, VF, gradp2,T, gradT, u,v,L,M) (94)

i

ll_l,_,ll_llr , ,r ,'.1' ,r ..... Ir,-i , rill ,I ' I._ ' d ,rl .... W I,r,i ,11',ii1_ r Iiii ill ,ii llr '_ll'nl " ,_', II _" III[ i ,, ,,qill _
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where P is the deformation gradient of the solid continu_, f)2 the density of fluid mea-

sured per unit volume of the mixture, T the teraperature of mixture, u a,nd v are the

velocities of solid and fluid, respectively, and I., and M are velocity gradients of the

fluid and solid phases, respectively. Following Crochet and Naghdi [1966] , Shi et al.

[1981] also assume th,_t the diffusive force can be written as the sum of a sta,tic par_

and a dynamic part, i.e.'

Based on the bMance of energy and the a,pplicatJon of the Clausius-Duhem inequality,

they show that'

OF_j OA OA 0;2 p 8p_ (96)
ff_= -P_ 8aL 8Fij t- O_8p2 8x_ .olo t)xk

where A = A(Fij, p, T), and p is an indetermin_te scalar arising from the use of the

constraint of incompressibility of the mixture, i.e.'

p___,_+ h ==_ (97)
Plo P_o

Shi et al, [1981] assume the following form for the dynamic p_rt of the interactive
force:

i'.g= ,_,(,_k- ,,_) (_8)
where c2 is a function of pl, P_ and T, and the entropy inequality indicates that c2 > 0.

Therefore, the gcneral form for '1:e interactive force, used by Shiet al. [1981] is given
aS'

04_

where:

¢, = ,o,(.A.,- ,4) (loo)

and A1 is the Helmholtz free energy of the solid continua.

Shi et al. [1981] assume that the solid phase was initiMly isotropic, hence, the de-

pendence on Fii is replaced by CO.= F_iFkj and. the free energy full.orion A is expressed
a,S'

A=A(I,,I,.,h,O,.,T) (_0_)
where:

I_ = C, (102)

1

I,. = _(I_ .- C,_C,_) (103)

h = a_t Ic,j I (lo_)

The above relations, the fact that p_det F = p_0 a.nd.the constraint of incompress-

ibility, given by equation 97, imply:

. P20
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the expression for equa,tion 106 is given as:

, c9¢1 p 0pl OA 8p_ p: p2

fk -. tgxk p:o O_k F P: c9p20*k -b.a .... (ul_,- v)Plo P_o

- p_ +z:N; _,j.-b_c,j

Now, to evaluate A, an expression for the free energy function is needed, The

appro_ch given by Shi, Rajagoped, and Wineman [1981] is a very general approach and

in principle can be _pplied to any multieomponent system, including fluid-solid 'flow_,

In their study, they are interested in the diffusion of a fluid through rubber, where its

'free energy function for use in swelling is given by Treloar [1975] as'

=u(1:-_-_:nI.) (:o7)A

1 RT

K 2Mo (:08)
where R is the gas constant_ T is absolute temperature _nd M_ is the molecular weight

: between cross-links, Therefore, using equation 105 in equation 107 and applying the

resalts to equation 106, Shiet al. shows that'

,o¢, v op_ xp_oop_ p,KoI, (_,_ _,) (io9)

Nunzi_to [1983] develops a theory for fluid-particle flows b_sed on mixture theory,
He defines the extra momentum transfer n. as:

n. = f. -vVCa (110)

" where ¢. is the volume fraction of the a-th constituent, _nd 7ris a L_grange multiplier

associated with the incompressibility of the mixture, Nunzia_o [1983] also defines the
extra stress tensor Ta as:

. r_= :.+ ¢op_I (111)

- where p_ is a Lagrange multiplier, Because of these definitions, in the linear momentum

equation for constituent a, Nunzi_to obtains the following'

(_- po)v¢o (1:2)=

which he calls the "diffusive force", which "can account for the contact pressure _Lthigh

concentrations (cf. Anderson and Jackson [1967]) and the diffusive pressure associated

with the Brownian motion of small particles at dilute concentrations (cf. Drew [1976]),"

He proposes the iTollowingconstitutive rela,tions:

nj = -¢.f(uj- .,)= -,,t (::_)
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" which is a linear isotropic function of DI.where F is defined as the "drag tensor,

F = c_aI+ 2c_D/ . (1.14)

where a.l and a2 m_y be scalar valued functions of ¢, trod the invariants of DI. Nunziato

indicates that the drag forces t_re characterized by tile diagonal of F, while (F - diag F)

indica.tes the lift forces. As ¢, _ 0, al and a_ must reduce to their t_ppropriate low

concentration limits (ct. Bt_tchelor [1972] and St_ffman [1965], respectively), which tLre:

_--s(1+5,5_¢0) (115)
Sl -'-_ ,_ a2

t

3(3,23)( pj_,j,'_a, _ 4_ra .iD; I/ (116)

where a is the particle ra,dius. Furthermore, he suggests the following relations for the
pressures:

_ - pj = _j +,oj(u_- u,), (,j - u,) (].17)

=- p,= -_o+ ,,,_,, (11s)
where:

8Ao

/3, = p,-_- (119)

where Ao is the free energy of the solid particles, [1 anti [, were called bulk viscosities,
and v can be thought of t_sinterft_ce pressure, and'

¢o = -¢oclivuo (120)

Passman et al. [1983] develops t_ theory of multiphase mixtures =rod proposes the

following constitutive relationship for v:

v = p_-- fl_ + ¢_A,div u, + div (A,grtLd ¢_), a = 1,2 (121)

where _,, is the configuration pressure. Writing this equation for both constituents and

' elimint_ting _, they show that;

: P_-P._ =Za--Z2-+ div [(Aa + A_)gr_d ¢_] + Ca,k_divua + (1- Ca)A_divu2 (122)

where D_, A_, and ,\.. are functions of the volume fraction ¢o. They assume _2 = 0

(fluid), a.nd give: the following expltmation' "Physically, the expression 122 asserts

that the differences in the pressures of the solid and the fluid result from three effects:

intergranular contact forces tht_t are represented by ft1, local varit_tions in the stress field

due to _ non-homogeneous particle distribution that _re represented by the moduli A_,

.4_, and bulk viscous forces due to intergr_mular fl'iction a.nd the fluid viscosity which

are represented by the viscosities A_, A_." Based on the work of Stuhmiller [1977] , they
_

suggest:

= Po - Zo+ Ao¢odiv,,o .+wo(uo - u_). (uo - ,,_) (a _ b) (123)



3,2 Co.ntinuum Theories and Representation off1 25

which by eliminating _r between the two phases becomes:

vi -pF = _1-_2+ ¢_,_div u_-(1 - ¢i),_,divu, +,(wl- w_)(ul - u2)• (ui- u2) (124)

In their study of particle segregation in Poiseuille flow, Nunziato und McTigue [1984]
assumed that'

.. f/= --¢,P(u] - u,) + ¢,r/div D/- p/grad C, (125)

where F is given by equation 11.4, ]'hey also state that the second term on the right-

hand side of equation 125 represents the Faxen forces arising in shear flows where in
the low concentration limit',

3

". In contrast to previous studies based on mixture theory, where the force on one phase

was equal and opposite to the force on the other phase ( summation laws in mixture

theory ), Nunziato and McTigue, [1984] propose:

2 f= = di,, S (127)

where S is called the interaction stress ( cf, Williams [1978]), Theret'ore:

f0 =: div S - f/ (1.28)
=

where f0 is the momen'turn transfer for the solid particles, Based on the work of Lin et

al, [1970], Nunziato and McTigue assume'

" S = 2¢,_.D, (129)

where in the case of particles moving with the fluid, the mixture stress T defined as',

_ T = _2(T° - po,,o ® ao) + pu ® u + S (130)

results in the correct effective viscosity to within O(¢_) if',

7

..= (131)

: This is based on Einstein's analysis, Note that u in equation 130 is the velocity of the

mixture defined by'

pu = plU_ "t- p2Uj (132)

Later, Passma, net al, [1986] studies the shearing motion of a fluid-saturated gran-

ular material using mixture theory. They assume that:

f_ = -f2 = fr(0, ¢l,grad ¢1)- D(0, ¢_)(u_- u,) (133)

where D is the drag coefficient such that D .> 0, They show that:

g = -vgrad ¢_ (134)
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where _r is ,tLgMn the interflLce pressure, for wlhich they also propose a constii, utive

equation, In their numericM study of simple shearing flow, P_ssrnan et al, []986]
_smlme that D is constant,

In their formulation of continuum theories for suspenslon_, Nunziato et M, []986]

propose the following constitutive relations:

fj + L = divs (335)

where',

f, = pfgrad¢,-t' ¢,F_(u! - u,) + 2¢,F_div Dy (136)

where:

ri =-a,iI + 2B;D], (i = 1, 2) (137)

They identify the first term in equation 136 hs the net buoyant force on the particles,

while al and a_ represent Stokes drag and the Faxen force on the particles, respectively,

The coefficient _a corresponds to a llft force g_ven by SMrman [1965] _nd Z_ correspo.uds

to a hfr ( or lateral) force identified by Ho and Leal [1974] (See Appendix B,), B_sed on

Einstein!s [195:6]result %hat the mixture viscosity increases with the volume fr_ction,

Nunzi_to et M, {1986] ttssume:

S = ¢oriD! (138)

It should be noted tha_ this equation does not _gree with equation .129proposed earlier

by Nunzlato _ncl McTigue [1984],

McTigue et hl. [1986] study the rheologicM effects of nonuniform p_rticle distrlbu-

'tion in dilute suspensions, Their formulation of the theory is basically tha_, of Nunzi_to

etal, [1986] given by equations 135- 137, They provide the following low concentration
forms for the coefficients ai mid _i:

2a,_

{

1

7

[trD _ ]
_., (342)

- [divD] Igl--g_

where gl and g_ are functions 'that depend on the geometry of the flow, They assume:

, ' S = 2¢,_]D (343)

where 77is de_ned a.s bn interaction viscosity, and D is the deformation rate of the

mixture. Agaan, this definition, in general, is different from those given e;_rlier by the

same authors (cf. equations 129 ;snd 3.'38),
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Pr_ssmn.n I]986] deriv_,s _ general represen%ation for the inter ' -_active force, He assumes

thn,t:

f ----f(w, d, D) (]4,4)

where w and d are objective'vectors and D is a, symmetric objective tensor (See Ap-

pendix A), Pa,ssman then shows that by using the represen'_ation theorem for isotropic

funct, ions, equation 144 can be written as:

f = a'l(A)w + a_(h)Dw + cta(h)D';w

+ _qa(A)d + _2(h)Dd +/3a(A)D_d (145)

where',

A = A [Ii,I2,Ia,w, w,w, Dw, w,o D_w,

d ®d,d, Dd,d, D_d,w, d,w, Dd,w, D_d] (146) _

_md I1, I2, _nd la are the principal invariants of D,

3.3 Generalization of Single Particle Results

3.3.1 Drag

: The relationship between the drag force and velocity of a single particle is well e_tab-

lished [Khan and I:[icha,rdson, 1987], Unfortunately, the large quantity o:fexperimental

data and variety of correl_ttions available for the single particle do not exist for mix-

• tux'es containing large numbers of particles, An exception to tiffs is the special case of

fluidized beds..Due to the relative ease of performing experiments in fluidized beds,

and the simple force balance involved, a large amount oi' data is collected and corre-

lated, Since the data is correlated using the Galileo number (a dimensionless buoya,ncy

force), it is not easily applied to more general flow siluatlons, Barnea and Mizrahi

[1973] give a critical review of pubhct_tions, up tc, 1973, concerning the drag coefl]cient

for an assembly oi' spherical particles. A more recent extensive review of the various

• drag correlations for fluidized beds is given by Khan and Richa,rdson [1.989],

Several authors obtain drag force expressions for application to mixtures, typically

using one of two appro_tches, They either propose modifications to the available drag

" correlations for single particles, or they apply a correction to the Stokes formula for

1 drag on a single sphere, Note that we are considering only laminar flow in which the

solid, or dispersed, phase is made up of spheres, Ishii and Zuber [1979] and Ishii and

Chawla [1979] discuss drag correlations for mixtures in other flow regimes,

To use existing single particle drag correlations requires the assumption that com-

plete similarity exists for the functional ft)rra of the drag coeI13cient versus Reynolds

= number curve, The advantage of this _,,pproach i_ that the extensive dh,ta for the sin-

' gle particle case can be used to find the drag force (at least approximately) between
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the ph_Ls¢_sof t,he mixture, .Perllap_ the simplest _,q_proximation that htts bee.rl used is

[Rudinger, 1969]:

l '_ _/,, =. = (J47)
I,'v '_rraa

or simplified and written in vector form:

8a

where fm is the multip!e particle (mixture) drt_g force per unit volume, f, is the dnglc

p_Lrticle drag force, _ is the volume fraction of solid, p is the density of _he fluid, a is

tlle r_dius of the spheres, CD is the _ingle particle drag coefl_ldent, aud v, is the relative .

velocity between phases, ltdfii and Z'uber [1979] use a single particle co'rreh_tion with

a modified (mixture) Reynolds number. The mixture Reynolds number is based on a

mixture viscosity defined _s:

#" (1 v) -'_'_'_''""--, = - -- (149)

where #m is the mixture viscosity, #1 is the fluid viscosity, v is the volurne fraction of

the solid phase _,n s maximum packing fraction, trod #" is defined by:

_. _ I_0. 0,4/z/ (150)
Iz, + #1

where #, is the viscosity of the Bolid phase, This correlation is intended for a number

of different flow situations; for the special case of solid particles in a fluid equation 149

may be approximated as'

- 1,6v)-' (151) ,
Drag force is then calculated using a particle Reynolds number defined by:

Re = ?---aP--lv--L (152)
#m

tc, get CD from a single p_rticle correlation, and using CD in the relation:

= 7ra, CDv, (153)

The derivation of corrections for Stokes drag formula has a d.ist_dvant_ge over the

methods discussed _bove in that the results are strictly valid only for low Reynolds

" number (i.e,, less than one), An advantage of working with low t2e expressions is that

more rigorous theoretical calculations are possible,

Drew [1976] ob'tallts a.n _pprox.imate expression for drag through a simple manipu-

-" lat,ion of Batchelor_s [1972] result for sedimentation of spheres. Batchelor considers the

sedimentation of tt dilute suspension of identical small rigid spheres and obtains the

. result that the mean sedimentation velocity (correct tc, order _) of a single sphere is'

= So( .- s4)
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where Uo is the velocity of a, single sphere irt tul unbounded fluid and u is the volume

, fraction of the spheres, Drew [1976] combines this with the expression for Stokes drag:
t

for = 0_r#]auo (155)

where #1 is fluid viscosity, f0 is the force on tr single sphere_ and a is the sI",]tere,radius,
to obtain:

6,Trg j au

The dra,g force per unit volurne on the solid (or dispersed) phase is then:

fD = _fDs 67rg!au

or 12 ,

where the settling velocity is set equa,1 to the rela.tive velocity (u= v,) a,nd all other
variables t.rreas previously defined,

Tam [1909] theoretically obtains a correction to Stokes drag law that accounts for

the volume fr_ction of the dispersed phase la, The modified expression for drag on a

. single sphere is'

[4 + 3v-_ 3v_ 3v_efD_ 6'rrl_l a
(2_ Sv) _ v, (159)[

: Apt_zjdis [1985] rewrites equatioll 1.59 I_s:
=

= .,--- = (l 0)

for multiple p_rticles trod uses it in his suspension model, ,T'(v) in equ_tion 160 is given

by:

4 + 3v-_, 3V_V - 3v _

,T'(u) = v (2 - 3v) _ (161)
=

Note thtrt this expression diverges _s v -, _8'

lzUaing a binomial series we can write:

1
= I + 6,55v-_.42.9v_ + O(va)

But since Batchelor_a original expression (i,e.,, the left.hand side of the above equation) ia correct only
to order'v, Drew truncateu the series .after the aecot_d I,erm,

_3The same expreaslon ia derived by Brinkman [1947] 22 years earlier, though from a differen_

strutting point [Tam, .1909],
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3.3.2 L|ft

An expression t'or lift ill the flow of a mixture is obttLined by Drew [197(_], who gener-

alized Sa,ffman's result for a, single p_rticle to:

, [ ,

= ' Dj -
47r a

where Pl is tile density of the fluid, #1 is the viscosity of the ttud, _J is the volume

fraction of the solid (or dispersed) phase, a is the particle size, v is the velocity of the

fluid, u is the velocity of the solid phase, _nd DI is the symmetric pttrt of tlm fluid

velocity gr_Ldient, given by:

D/=_I [grad v ",i.,(gr_,dv) T! , (163)

Decker. [1988] comrnents that it is not clear that this form will reduce tc, Saffm_Ln's

result; nor is it clea,r what is meant by the lLbsolute v_lue or sc_u_re root operating on
DI. McTigue et al, [1.986] clarifies the definition Of[ D! -_" by writing the M_ove

expression as:
it

= .... (. v) (lo4)..... , ...... (tr D}) D I -47r a

Magnus (or spin) forces are generally neglected in models of two-phase flow on

the b_sis of order of m_,gnitude _rguments [S_ff,n_n, 1965; Boothroyd, 1967], These

arguments, however, t_reonly strictly valid for the low Iteynolds number(and otherwise

idealized) situations used by Saffman {1965] and Rubinow and Keller []961] tc, derive

their analytic results, At least one experimental study [Aoki et al., 1.979]h_Lsstated theft

at higher Reynolds numbers particle migrations can be explained by Magnus forces, lt

is by no means certa_in, on the basis of these arguments, that Magnus ford'es ca,n be

neglec:Led in two-ph_se flows, We generalize Rubinow and Keller's results in the same

manner as Drew generalizes S_.ffm_m's to get'

3

where:

I_lld

An interaction term of this form was included in the mixture balance equations em-

ployed by Atkin and Craine [19763] , The net lift force on the solid phase is simply the

sum of these two effects, or:

fL = fL_ -t fl, a (168)

Note that 'this expre,_)sion i_ frn,me-indifferent,
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McTigue et al, [1986] use.'_m expression for lift in tlmlr model t,hat also includes a
term of the form',

f_ = LDjdiv D t (109)

where L is a constant coemcient and D t is the rate of deformation tensor of the fluid,

D/, defined above, Thin lift force is apparently a second order effect and is discussed
in relation to 'Ho and Leal' lift in Appendix B,

3,3,3 Virtual Mass

Having presented an expression for virtual mass force for the simple case of a single
i

sphere, we now nt:ed to specify the coefficient, Cv.L, and ttm relative acceler_tmn, a,m,

for more genera[ situations, The virtual mass force frm is given by (using Drew's [1979]

notation)',

' where a.,,, should be _m objective form of the virtual mass acceleration,

The problem of deriving an objective quantity for the relative acceleration is inves-

tigated by Drew and Segel [1971a] and E1-Kaissy [1975] , Drew et al, [1979] gives a

1 thorough analysis of this problem and propose8 an expression they refer to as the most

general objective acceleration for two.phase flow14',

O(u- v)
arm - 0_

• + [(A ....2)grad u)-t- (1 -- A)grad v)] (u - v), (171)

' another frame-indifferent relative _cceleration given by:

arm =--_ - "Di- = "_ . (grad u)v -_. -_-(grad v)u (172)

A number of investigators 'perform numerical studies using equation 171 for relative

acceleration in their virtual mass terms [Hacox et a3,, 1980; Kazimi and No, 1986;

Lahey et al,, 1980; Thorley and Wiggert, 1985] . Lahey et al, [1980] study the effect

of adding virtual mt_ss effects _,o their numerical model, They numerically solve a one-

dimensional two-fluid model for the special case of adiabatic air/w_ter bubbly flows

through nozzles and diffusers, The model ,_:lcludes the interaction effects of drag and

virtual m_ss, The inclusion of a virtual mass term in their model equation_ did not

noticeably ch_nge the final numerical results, though it did enhance th.e numerical '

sta,bility of the system, Hancox et al, [198C1]uses equation 171 in their one-dimensional

model for gas-liquid flows and finds that it leads to numerical instability resulting irt

imaginary velocities for some 'wdues of _, Kazimi and No [1986] include a virtual mass

term using equ_tion 171 as the relative acceleration in their two-fluid model, They

_'_The expression given in equation 171 is clearly not the moat general expre_fion for relative ac-

celeration, ':[he addition o1' any frame.hadifl'e, reut quautity would always yield a atill more _general _

expresaion,
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num'eri(:ally determine wlues of C_., thai, yMd stability of their numerical solutions,

Thorley and Wiggert [1985] use a similar formulatio7 _¢ ,,_wlut_tepropagation velocities
in a m._xture, They conclude that the inclusion of vn,_ual ma_s effects in their model

results m a more rLccur_te _md gener_l expression :for the tmou_tic propagation velocity

in two-phase media,

Drew and L_dmy [1987] also show that the objective form given in equation 171

(with ,_ = 2) reduces to the appropriate expression for the case of a single sphe,re,,1_

As discussed e_trlier for a single I_on,,defor,m_ble, spherical particle C,,., - _- For) ) --- 2,

two-pha, se flows, it is reasonable tc, assume that this coefficient would depend on robe

void fraction, However, its 'functional form has not been extensively studied a.nd is not

well known; many workers use the value of _ for lack of troy better dtLt_t,Zuber [19134]
_ttempts to es'timate the effect of concentration on induced mass, With the assumption

of uniform concentration Zuber obtains tlm expression',

C,._ = 2V---aavl+ 2v•3 -i----T (17a)

where a, is particle r,dius and u is volume fraction of the dispersed phase, Clearly

this expression indicates that virtual mass effects increase with incre_tsi,tg solids con-

centration. That effect, is observed experimentally by Mokeyev [1977] using an electro.

hydrodynamic analog to simulate two-phase flow in which the fluid is ideal, Mokeyev

obtains an empirical function:

C,m
- +

3

0,19 S _ S 0,42

and observes that C,., .is constant :for v _< 0,19, ishii and Mishima [1984] note that
equations 173 rind 174 compare quite favorably,

It is appa,rent from the expression given in equation 173 that the significance of the

virtual mass effect is Very dependent upon volume fraction, Clet_rly, it also increases for

larger particles, What is not necessarily evident from this equation is that the relative

importance of the virtual mass also depends upon the density of the phases, being most

° important when the particles are light (less dense), Immich [1980] defines a parameter
A for estimating the contribution of virtual mass as:

!Lt

A= __,,_m_.
1 + _at

2 O_

. where p_ is dispersed phase density and p_. is continuo'us,.phase density, h beh_,ves

as a weighting function, varying between 0 and 1, Both Immich [1980] and Shapi,ro

_In the same paper, Drew an¢t Lahey [1987] _lso propose a frame,-indlfforent expression that in-

corporates both lift and virtual mass, While the entire expression I_ frame-indifferent, the indlvldual

terms representing llft, trod virtual ma_s effects are not, This seemB questionable in that each term

describes a different phyBical phenomenon, both of which may or may not be present irl a given flow,

:: Ii'or instance, in a _teady flow where virtual mas_ effect_ are not pre_ent, one would still expect the

expre_aton (i,e,, for the lift force only) to yield a frame-indlfferont quantity for the interact, ion_,
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,,

[1986] use this parameter to weight their virtual mass expressions in studying impulsive

motions Ofsuspensions, 1¢_

3.3,4 Basset Force

When a particle is part of a suspensiotl, Zuber [1964] proposes that the Basset force

should, be increased by a factor of i(1 - a), _'_, Wallis [1969] suggests that this over-

estimates the effects ofmeighboring particles. Anderson and Jackson [1967] assume

that the Basset force is negligible for a "large assembly' of particles. Evaluation of the

actual significance of the Basset force in two-phase flows awaits further work as no
experimental or numerical studies are currently available,

3.3,5 Buoyancy

When body forces are present and the componeuts of the mixture have different densi-

ties, there will be a buoyant force acting between the phases. While it is important to

include the buoyancy term in the force b_!ance on a single particle, in mixture theory
the body force terms in the balance of linear momentum equ_ttions incorporate this

effect. There should not be a buoyancy term in the interaction force vector.

3.3.6 Diffusion

Cons'ider tile gravity driven sedimentation of a single particulate phase in a liquid.

Several investigators study this problem from the standpoint of both averaged field

equations {Anderson and Jackson, 1967; Drew and Segel, 1971b; Drew, !976] and

mixture theory [Thacker and Lavelle, 1977; Thacker and Lavelle, 1978; Hill et al.,

]980] (see Hill et al. [1980] for _dditio.ual references), Thacker and Lavelle [1978]

study the linear stability of the governing equations for sedimentation derived from

mixture theory, They find that the solutions of the equations are unconditionally

unstable. The addition of viscous, virtual mass, and inertial interaction forces to the

momentum equations does not affect the stability of the solutions. Drew and Segel

[1971b] obtain a similar result using averaged equations. Hill et al. [i980] are able

to obtain stable solutions of the mixture equations by including diffusive interaction

forces in the momentum balances, Clearly one would expect a viable two-component

(phase) flow model to, at least qualitatively, describe a relatively simple si_uation such

- as sedimentation, We conclude that to obtain well-posed and meaningful problems in

mixture theory one must include an. interaction term of _he form'.

f,q = algradpl + a2grad p_ (176)

for a two component mixture, Here, al and a_ are constants and px and p_ are the

densities of the mixture components. M/iller's [1968] work (discussed previously) leads

tc, the same conclusion using a different approach. These densities _re related to the
..___

16Cook and Thomas [1984] study the virtual mass effects f'oI' a mixture of a bulk liquid, bubbles,

and the liquid a_Boctated with each bubble,
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densities of the components, taken by themselves, through:

p_ = pi(1 - _) (177)

p2= pov (178)

Assuming the constituents are incompressible, equation 176 may be rewritten as:

fd] = (a2 -- a_ )grad v (179)

Note that thi_ Js a frame-indifferent quoontity [Chadwick, 1976] . This kind of interaction

term may aJso be thought of as accounting for Brownian mo_ion [Drewl 1976] a7

Leighton and Acrivos [1986, 198Ta,b] measure what they refer 'Lo as the shear-

induced diffusion coefficient in suspensions of spheres. It is not clear precisely how this

quantity relates to c_1 and c_2, since there appears to be some lift effect due to the fluid
shear.

4 Conclusion

The flow behavior of fluid-solld mixtures in transport fines has been of interest in chem-

ical processes for many years. In general, empirical relations that predict the flow and

pressure drop in such processes have been developed for specific ranges of solids and

gas properties as well as for various geometries.' A traditional way of modefing the

behavior of fluids or suspensions that cannot be modeled by the classical Newtonian

fluid model is by non-Newtonian models that are homogeneous. The theory of multi-

phase mixtures present another avenue of research which can account for the inherent

non-homogeneities in the problem.

The theory of interacting continua (or mixture theory) is a means for studying the

- _nteraction between several constituents by generalizing the equations and principles

for a single continuum. These balance equations express properties common to all ma-

terials and motions and hence the differences among the various components that make

up the mixture must be augmented in the theory by constitutive relations. Mathemat-

: ically, the purpose of constitutive relations is to supply connections among kinematic,

mechanical, and thermal fields that are compatible with the balance equations and

that, in conjunction with them, provide a theory that is solvable for properly po_ed

problems. In mechanics, a constitutive relation is a restriction upon forces, or motions,

or both. Postulating constitutive equations in more complex situations, such as multi-

p?lase flows, requires a deeper understanding of the nature of the problems. Appficatio:

_ of mixture theory to fluid-particle systems, such as a fluidized bed or fluid-solid trans-

port, requires constitutive relations to determine, for example, the stress of each phase-

and the interaction forces.

In this work, we have reviewed the existing constitutive relations for these inter-

: active forces. The emphasis has been on the particle-fluid interactions. The general

_TFora discussion of Brownian motion, see Batchelor [1976] and Probstein [1989]. A comparison of
Brownian and turbulent diffusion is given in a _tudy by Ounis and Ahm_di [1989].

-
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- approach, in multiphase flow studies, has been generalization of the problem of a single

spherical particle immersed in an infinite fluid medium by introducing a volume frac-

tion dependence for coefficients such as drag and virtual'mass. To mesh and merge the

traditionaJ approach with the mixture theory representation of these interaction mech-

anisms, we have first reviewed the literature on the dynamics of a single particle in a

fluid continuum. The work reviewed includes theoretical as well as experimental efforts

to formulate appropriate forms for the forces acting on a particle. We then present
a review of studies based on continuum theories of mixtures. Various forms for the

interactive forces have been given within this context for a variety of problems, such

as mixture of ideal gases, mixture of two fluids, flow through porous media, fluidized

" beds, etc. Finally, we show the attempts, made by various investigators, to generalize

the results, both theoretical and experimental, of a single particle to a cloud or an

assembly of particles by including a volume fraction (or concentration) dependence in

the material properties, such as viscosity, or coefficients, such as the drag coefficient.

A summary of the available results for each interaction force is given below (Also

see Table 2)'

• Drag acts in the direction of flow and should always be included in any model

of two-component flow.

• Diffusion acts in the direction of density gradients. Little is known about the

form of the coefficients, but we speculate (on the basis of the stability analyses

discussed previously) that a term of this form should be included for all situations.

• 'Slip-Shear' Lift acts perpendicular to the direction of flow Its importance

increases with increasing volume fraction, relative velocity, fluid density, fluid

viscosity, and fluid velocity gradients. It cannot be neglected in most situations.

• 'Spin' Lift acts perpendicular tothe direction of flow. Though typically a much

smaller effect than 'slip-shear' lift s it may become significant at some points in the

system (especially for larger particle sizes, because W, - W! becomes larger), Its

magnitude increases with increasing volume fraction, fluid density, and relative

. velocity.

• Virtual Mass effects are present only if there is relative acceleration between

- the mixture components. The virtual mass force acts in the direction of flow

and becomes larger with increasing volume fraction and particle size. Its relative

magnitude, in comparison to the other forces accelerating the particles, depends

upon the relative densities of the components. It is especially important for large

particles that are less dense than the fluid; for example large air bubbles in a

liquid medium.

• Basset Force is present only in unsteady (or accelerating) flows, It acts in the

' direction of flow and increases with increasing particle size, fluid density, and

volume fraction.

_
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The chief conclusion of this review is that for laminar flow of a mixture consisting

of an incompressible fluid with entrained solid particles one may write the interaction

force of the solid phase on the fluid as:

f, = (a2 - al)grad u + aa(u - v)+ a, Dy(u-- v)

- Wj)(u (180)

where u is the solid volume fraction, u is solid velocity, v is fluid velocity, p! is the fluid

density, p0 is the solid density, g is the acceleration of gravity (or other body force), al

and c_2 are unknown coefficients, and:

1 [grad v + (grad v) T] (181)D]=_ ..

:+,

W]= _'1[grad v - (grad v) T] (182)

1 [grad u - (grad u) T] (183)Wo=_

(184)
' O_3 -- 2 a 2

3(6.46)47rp}#}u (tr D})- } (185)
a4 =

+ 3

= , (is6)

a6 = 2_ra_ul + 2v (187)
3 l-u

9v(v) = u(1 + 6,55u) (188)

From right to left, the terms on the right-hand side of equation 180 reflect the presence

of diffusion (non-uniform solid distribution), drag, 'slip-shear' lift, 'spin' lift a.nd virtual

mass. We are neglecting the Basset force for the present because its significance in flows

with many particles has not been established; evidence suggests that it is important

only for special cases. If the flow is steady, virtual mass effects may also be neglected

(i.e. a6 = 0).
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Table 2. Effect of !?'low Properties on Interactions

Volume Relative Fluid Fluid Particle Velocity

Interaction Fraction Velocity Viscosity Density Size Gradient

Drag u(1 + 6.55 u - v #] 0 o-_ 0

Diffusion grad v ? ? ? ? ?

Li t v

'Spin' Lift v u - v 0 p/ 0 W, - W,]
I

• Virtual Mass v L+-_ 0 0 0 _31 -_ _vm

Basset Force (1 - u)-_ 0 #_ p_] a2 0:

There are obvious 'gray' areas in the above information that await further studies

for clarification. For instance, there have been no investigations as to what form al

and a_ may have. Also, it is not clear if and when the Magnus ('spin' lift) effect is

significant. The remaining coefficients have not been extensively studied for general

two-phase flows; thus, the forms given above are ad hoc applications of results that

• are strictly valid under more restricted conditions. Despite the assumptions involved,

however, these expressions do provide a qualitative model of how the interaction forces

vary with the system parameters. The coefficients can be considered functions of u only

(because v varies with position in the flow) for the purpose of performing numerical

studies; the remainder of the expression is then treated as an arbitrary constant to be

studied as a parameter in the problem. '
,,
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A Frame-Indifference

and Constitutive Equations

A.1 Introduction

The differences am0ng the materials thai make up different bodies are reflected in the

theory by constitutive relations. In mechanics, a constitutive relation is a restriction
on the forces or the motion of the body or both, This means that a body undergoes a

motion when forces act on it, but the motion "caused" depends on the nature of the

body. Mathematically, the purpose of the constitutive relations is to supply connec-

tions between kinematic i mechanical, and thermal fields that are compatible with the

balance equations and that, in conjunction with them, provide a theory that is solv-

able for properly posed problems. The assumption that the. body force is external ilta

constitutive relation. Indeed, the forces of most interest in continuum mechanics are

contact forces, which are determined from the stress tensor field T. The mechanical

behavior of real materials is very.diverse and complex; it is impossible to formulate

equations capable of describing the stress in a body under all circumstances. However,

just as different figures in geometry are defined as idealizations of natural objects, con-

tinuum mechanics seeks to estabhsh particular relations between the stress tensor and

the motion of the body for "ideal materials" [Truesdel] and Noll, 1965] .

These equations describe the most important features of the behavior of a material

in a given situation. In some instances, i't may be necessary to represent the same real

material by different ideal materials in different circumstances. A classic example is

that of the theory of incompressible viscous fluids, which gives an excellent description

of the behavior of water flowing through pipes, but is useless for the study of the

propagation of sound waves through water. While a constitutive equation is a postulate

or a definition from the mathematical standpoint, physical experience remains the first

guide, perhaps reinforced by experimental data, Very rarely is it possible to formulate

the basic equations of a theory from physical insight only. However, once the theorist

has collected the information he wishes to use in defining the ideal materials to be used

in his theory, a hst of mathematical principles, some perhaps really only guidelines,

become essential, in formulating definite constitutive equations [Truesdell and Toupin_

1960] .

Constitutive relations are required to satisfy some general principles. First, they

should hold equally in all inertial coordinate systems at any given time (often referred

to as coordinate invariance requirement). This guards against proposing a relation in

which a mere change of coordinate description would imply a different response in the

material. Many of the so-called "power law" models used in describing non-Newtonian

fluids are not invariant. In general, this difficulty can easily be overcome by stating the

equations either in tensorial form or by using direct notations not employing coordinates
at all.

Another principle that is often used as a.guide for selecting constitutive parameters

is the principle of equipresence. Truesdel] and Noll [1965] state this principle as'.

,r_lf ' ,iL,, _11,
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A quantity present as an independent variable in one constitutive equation

should be so present in all, unless, of course_ its presence contradicts some

law of physics or rule of invariance.

Miiller [1968] uses this principle in proposing constitutive equations for a mixture of

two fluids. However, Pdvhn [1972] discusses some cases where this principle seems to

be contradictory.

The principle of material frame-indifference (sometimes referred to as objectivity),

which requires that the constitutive equations be invariant under changes of frame, _s

perhaps the most important of all. It is a consequence of a flmdamental principle of

classical physics that material properties are indifferent, that is, independent of the

frame of reference of the observer. A good example of tile intuitive concept of this ,,

principle is given by r_uesdell and Noll [1965]:

A body of known weight, say one pound, when suspended by a given spring

is observed to extend it by a given amount, say one inch. The spring and

weight, still connected, are then laid upon a horizontal disc, to the center

of which the free end of the spring is attached. The disc is then caused to

spin at a steady speed such as to extend the spring again by one inch. The

spectators are expected to agree that the centripetal force required to hold

the weight from flying off is exactly one pound. That is, the response of the

spring is unaffected by a rigid motion.

This principle requires that constitutive relations depend only on frame-indifferent
7.

forms (or combinations thereof) of the variables pertaining to the given problem.

A.2 Change of :Frame

The fundamental quantities that are measured in kinematics are distance and time

intervals. The position of an event [a pmr (x, t) consisting of a point x in space and

a time t] such as 'velocity, acceleration, or some property can be defined only if a

reference frame is specified. Truesdell and No]] [1965] state that "a frame of reference

may be described _sa possible way of relating physical reality to a three-dimensional

Euclidean point space _nd a real time axis." Two examples of a frame of reference

are the fixed stars and the walls of a laboratory, The fi'ame of reference should not

be understood as a synonym for coordinate system. In particular, the concept of a

change of reference frame should not be confused with a change of coordinate system.

- A change of coordinate system is only concerned with the spatial 'variable x; a change

of frame is concerned with space and time. A change of frame is defined as a one-to-

" one mapping of space-time (x, t) onto itself, which preserves the following properties:

= (a) the distance between mn arbitrary pair of points, (b) the time interval between an

arbitrary pair of instants, and (c) the order in which two distinct instants occur,

A change of frame can be expressed as:

x"= + (ls9)

_

,,
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t" =t- t,, (19o)

where the X',t* denote position and time in the new frame, and tile x,, t are position

, and time in the old frame, In these equations c(t) is a vector, Q(t) an orthogonal tensor

[i,e,, Q(t)qT(t)=Qr(t)q(t)= I], and to is a real number,

A quantity that remains invariant under all changes of reference frame is called

frame-indifferent or objective, Irl particular, we have the following transformation laws',

1, A scalar remains unchanged under changes of frame,

2, An objective vector v transforms according to:

v" = Q(t)v, (191)

3, A frame indifferent second-order tensor S, regarded as a liuear transformation, is

one that transforms objective vectors into objective vectors, Thus, an objective

, tensor transforms according to:

S" = Q(t)Sqr(t), (102)

Functions whose values are scalars, vectors, or tensors are called frame-indifferent

or objective if both the dependent and independent variables transform according to
the above rules, Thus, if',

T= v, s), (19 )

where a is a scalar, v is a vector, and S is a second-order tensor, then ii" T is to be

frame-indifferent, we must have',

T" (a,,v , ) = T(a, Qv, QSQT), (194)

and thus by Equation 192, we have:

T(a, Qv, QSQ T)= QdL'(a, v, S )Q T, (195)

A,3 Examples

Having introduced the concept of frame-indifference (objectivity), we now present ex-

amples of how one determines frame-indifference of an expression, Though the concepts

employed are quite general, we ,will consider frame-indifferent relative accelerations,

A change of frame is defined by'

x'(X, t)= c(t)+ Q(t)x(X,t), (196)

=
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an in the previous section, Hero x denotes the current configur_tion of the body and X

denotes the reference configuration, Taking two material, time derivai,lves of equation

196 we obt_n [Tmesdel] and Noll, 1965] :

8

v-(x,_)= _x'(X,_)=q(_)v(x,_)+ Q(_)x(x,_)+_(t) (_9_)

and: O

.'(x,_) = b_v'(x,_)=q(_).(x,_) + 2Q(_)v(x,_)

+ _)x(X,_)+ _(_) (l_s)
where the dots denote time derivatives, Note that the velocity can be written in terms

of either the reference configuration, X, or the current configuration, x',

v(X,_)=_(x,_) (1_0)

so that a (the material time derivative of velocity) can be written as the two equiv_en'_

expressions',

t) _(x,_)Ox ,_(x,_).(x,_) = _v(X, =. 0_ 0_+- 0--7-- (200)
Typically in fluid mechanics, equations _re written in terms of the velocity referred

to the current configuration, i,e, :

v = _,(_,_) (201)

Given this definition for v, a in equation 198 is written as the material time derivative

Dv _v 0x 0v

• Equation 198 gives the transformation of a under a change of flame. The partial of

v with respect to t then transforms according to:

Ov*
= a" - L'v" (203)

0_

where' Ov
L = grad v = -- (204)

0x

and',

L" = grad" v" = QLQ T + QQT (205)

A RELATIVE ACCELERATION THAT IS NOT

FRAME-INDIFFERENT

Consider the relative acceleration given by',

- Du Dv

a,,,. = D-'T- D'-7 (206)
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from equt,_tion 198 we see that:

a;., = qa,,., . 2Q(u --v) , (207)

and thus tlm expression in equn,l,ion 206 is not frame-indifferent by comptrrison of equa-

tion 207 with equa.tion 3.91 (whic h is the definition of a frtune-indifferent vector),

A RELATIVE ACCELERATION THAT IS

FRAME-INDIFFERENT

Consider the relative _cceleration given by',

lD. u)]arm = [Dr "-(grad u)(u - v)] -[._-.-(gr_d v)(v -
(20S)

which we ctm rewrite _s:

= [Du Oy] .. [grad (v + u)] (u- v) (209)arm 1,Dt Dt

We h_ve, from equation 207:

Dt -D-t-= Q Dt Dt . 21_(u - v), (210)

from equation 197:

(u- v)" = Q(u- v), (211)

and from equal, ion 205:

[grad (v-t- u)]" = Q [gr_d (v-t- u)t QT + 2(_QT (212)

Using equations 210, 211, and 212 in equation 209 yields:

which by comparison with equation 191 verifies that the relative acceleration vector

given by equation 208 is fr_tme-indifferent,

B Lift Forces

B.1 Comparison of _Slip-Shear _ and _Spin _ Lift

Boothroyd [1967] compares the relative magnitudes of the 'slip-shear' [ifr derived by

Saffman [1965, 1968] and the 'spin' lift derived by Rubinow and Keller [3961], The

'slip-she_r' lift on a single particle is written a,s',

IL, = 6,46#)p}a 2 (u- v) (214)

k
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and the_spin_liftiswrittenas:
h

Note that fLm acts in the aame direction (perpendicular to the slip velocity) as fL,, if

we n,ssume that the particle angular velocity is given by',

1 dv

then equation 215 may b_ written',

1dv

Forming the ratio of fL,, to fL, for flow in a pipe yields',

f Lr. = O,24__ [.R R dv ] _

where R is the radius of the pipe, U is a reference velocity, and Re/is the pipe Reynolds

' number based on R and U. Boothroyd concludes from this expression that quite often

fL, is much larger than fLm,

" We wish to carry this one step further and assume that the fluid velocity has a

parabolic profile:

[= v,,o.1-. (21o)

With this profile, equation 218 becomes',

• (220)
flu ' J

at the wall of the pipe (r = R). With the choice of a= 0,0lR and Re] = 2000, we
obtain:

fL,,,=O, 54fLo (,221)

We conclude from this that f_ is generally much smaller than fL0 as equation 221

. represents a relatively high Reynolds number and a reasonable value for _, Also, the
calculation was done 'for a particle near the wall, where fLm is expected to be greatest

(a,t least for the assumed velocity profile), Though it appears f_m may generMly be

negligible, it may increase the observed lift force on a particle as much as 1.5% ; more

if the particles are larger than a = 0,0lR and/or laminar flow exists at higher Reynolds

numbers. It is clearly not advisable to neglect the _spin_lift interaction without careful

consideration of the problem at hand,

We now wish to repeat the above calculations for the general expressions for lift

presented in this report. We begin with:

f_,., = _.p/(W, -- W/)(u -v) (222)

' .... ,, - -v- - --
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= . VL-M-.(tr D})'_r D,,(u- v) (223)4_ a

Now _tssume:

. =o ' (224)

,,ro=2 , (22_)

then:

(fLm)' = 0,5783__- (Idv _') l (227)(fL0)r d3:
IZ/ r=l_

wherethesubscriptr indicatestheforceactinginther_tdi_fldirection,Thisexpression

c_nbe simplifiedto',

With a = O,01,R and I:l,e/= 2000 we obtain:

/,,_= 0,a6_h,, (229)

It seem_ possible that, witll this lift model, (fz,m)r will have a 8igniflctmt effect on the

particle distribution_ in some _ituations,

B.2 'Ho and Leal _ Lift

Ho trod Leal [1974] use an asymptotic expansion to calculate the lift on a. neutrally

buoytmt spherical particle in a simple shear or t_ Poiseuille flow, Their analysis utilizes

the concept of an 'undisturbed' flow (that is, the flow field that would exist if the

particle were not present) a,nd arrives tLta latertd force on a particle given by',

This expression is valid for all undisturbed flow fields oi?the form _ + flz + 7z "_,Here,

d is the distance between walls, a is some chara,cteristic length scale (such as particle

radius), and _ = _. a, _/, and 3' _re constants, G_(s) and O_(a) are functions of the

flow geometry numerically calculated m_d tabulated by the authors, and a = _ is the

dimensionless z coordinate. The Reynolds number, Re, is defined by',

_ = et_ _- (_at)

where Pa' and #! sre the density and viscosity of the fluid respectively snd v_ is the

velocity scale (i,e,, mean flow velocity),



_B.2 'r.lo lt.hd l,eal' Lift : ' 45

McTigue et _l, [1986] cite the above re,suit in using an expression for lift, that
include_ tt term oi' tire form:

f_ = LD/dlv D t (232)

where L is s constant coefficient ttnd D I is the rate of deform_Ltion tensor of the fluid

defined by:

, Dj=_

They have stttted that the term given 'by equation 232 is a generalizat, ion of the lift force

(equation 230) derived by Ho and Leal [1D74] , As this is not a,n obvious cortclusjort,

we wish to evalut_te equation 232 for a flow field of the form a +/_z + 7z _ end compare

the result toHo and Leal's expression for lift (equation 230). If:

( c_+_Z+TZ' )

v]= 0

grad vi = 0 0
0 0 0 ,

1 o o Z+27z
DI 0 0 ' 0

, div D I = _ 0 0

Substituting these expression_ into equation 232_ we obtain:

or',

ConbJder the c_se of simple she_r for which 7 = 0, Equation 235 with 7 = 0 imphes

fL = 0; however, equatlon 230 with 7 = 0 implies:

Since at(s)is not generally equal to zero II-lo and Leal, !974], it seems that Ho _ud
Leal's result, equation 230, does not generalize to the form of equ_tlon 232. Though the

- lift term given by equation 232 does not appear to correspond to Ho and Lead's result,
"- this is not _n _rgument that it _hould not be included in the interaction terms for

two.phase flow. Passm_n [1986] shows that the momentum interaction, _pproxirnt_ted

" to the second order, does include a term of this form.
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