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ABSTRACT 

Variability in product quality continues to pose a major 

barrier to the widespread application of additive manufacturing 

(AM) processes in production environment. Towards addressing 

this barrier, monitoring AM processes and measuring AM 

materials and parts has become increasingly commonplace, and 

increasingly precise, making a new wave of AM-related data 

available. This newfound data provides a valuable resource for 

gaining new insight to AM processes and decision making. 

Machine Learning (ML) provides an avenue to gain this insight 
by 1) learning fundamental knowledge about AM processes and 

2) identifying predictive and actionable recommendations to 

optimize part quality and process design. This report presents a 

literature review of ML applications in AM. The review 

identifies areas in the AM lifecycle, including design, process 

plan, build, post process, and test and validation, that have been 

researched using ML. Furthermore, this report discusses the 

benefits of ML for AM, as well as existing hurdles currently 

limiting applications. 

Keywords: additive manufacturing, machine learning, deep 

learning, data analytics, algorithm, survey, review 

1. INTRODUCTION 

Additive Manufacturing (AM) is an advancing and 

increasingly popular manufacturing technology that embodies 

the revolutionary progress of the modern manufacturing industry 

[1]. It is a process in which a part is made by joining material, 

layer by layer, directly from 3D model data [2]. AM offers 

competitive advantage over traditional manufacturing 

techniques by enabling fabrication of low volume, customized 

products with complex geometries and material properties, in a 

cost-effective and time-efficient way [3]. The rapid proliferation 

of AM technologies has resulted in seven well-defined sub-

categories of AM, several of which are capable of producing 

metallic parts [2]. With continuing technological advances, AM 

has evolved from being limited to fabricating prototypes to 

producing end-use metallic parts in various applications (e.g., 

aerospace, defense, biomedical, and automotive) [4].  

Despite the growth of and advancements in the AM industry, 

achieving consistency with part quality and process reliability in 

AM remains a challenge [3]. The fundamental reason for this 

situation is that both the shape and material properties of a part 

are formed during the AM process. Realizing any AM part 
involves intricate design, material, and process interactions over 

the course of a complex multi-stage process that includes five 

major steps: designing, process planning, building, post-

processing, and testing and validation [5]. The controlled and 

precise execution of each of these steps is needed to fabricate a 

qualified part.  

Recent efforts to reduce AM part variability have focused on 

learning as much as possible about parts and processes through 

monitoring and inspection [6]. Advancements in sensor 

technologies, sensor fusion and data acquisition methods [7], 

have led to an unprecedented increase in AM data, encompassing 

many of the aspects of “big data” (Table 1). The different types 
of data generated throughout the design-to-product 

transformation cycle are creating new opportunities (Figure 1) 

for knowledge discovery throughout AM processes [8].  

Table 1. Characteristics of AM Data 
Volume ~0.5 TB of in-situ monitoring data per build [9] 

~TBs of CT scan data 

Velocity Up to 600 variables logged per second during the build  

75 GB/s of image data [11] 

Variety  Numerical (machine logs, process parameters) 

2D images (thermal, optical) 

3D (CAD models, CT scans) 

Audio (acoustic signals) and videos (thermal, optical) 
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Figure 1. AM Lifecycle, Examples of Associated Data, and Decision Making Applications

In a sense, AM has become a manufacturing domain that is 

data-rich but knowledge-sparse. Extracting knowledge from the 

vast amounts of available AM data can be a tedious process. 

Despite the advances in measurement science and increasing 

number of datasets from the AM lifecycle, there is limited 
scientific understanding to characterize AM materials-geometry-

process-structure-property-performance relationships. 

Advanced computational and analytical tools are needed to 

process the high dimensional and complex data. To this end, new 

developments in the domain of Machine Learning (ML) offer 

great potential to transform AM data into insightful knowledge.  

ML techniques offer the ability to discover implicit 

(formerly unknown) knowledge and identify relationships in 

large manufacturing data sets, transforming unprecedented 

volumes of data into actionable and insightful information 

[10,11]. For AM, ML offers new opportunities to optimize and 

better control AM processes [12]. In this paper, we explore the 
state-of-the-art literature on the applications of ML techniques 

throughout the AM lifecycle.  

2. MACHINE LEARNING FOR AM 

2.1 Overview of Machine Learning Techniques 
Machine learning concerns the construction and study of 

systems that can automatically learn patterns from data. Models 

built with ML can be used for prediction, performance 

optimization, defect detection, classification, regression, or 

forecasting [10]. The largest factor in determining the 

effectiveness of ML is the data used to train the ML model. ML 

models are only as good as the training data has prepared them 

to be.  

ML techniques [13] generally fall into two categories: 

supervised learning and unsupervised learning. In supervised 
learning, a labeled set of training data provides examples of 

input values and the corresponding correct output. The ML 

algorithm trains the model using this labeled dataset, inferring 

the functional relationship between the input and output 

domains. Supervised learning can be used for both classification 

and regression. In unsupervised learning, there is no labeled 

training data set available. Instead, the ML algorithm tries to 

automatically separate the training dataset into different clusters 

by grouping parameters in the dataset and identifying target 

classes. Unsupervised learning is useful for applications such as 

detecting anomalous conditions. The decision between using a 

supervised or unsupervised ML approach will depend on 
perceived benefits for a given scenario.  

The typing of supervised and unsupervised models provides 

a high-level classification in which different ML algorithms can 

be further categorized. Some popular ML models used for both 

classification and regression are Support Vector Machines 

(SVMs) and Neural Networks (NNs). An SVM model identifies 

hyperplanes that separate the data into different classes. A NN is 

a computational model that consists of a network of nodes 

(“neurons”) and weighted edges between nodes. NNs are very 

powerful because they can automatically identify features in the 

raw data that are needed to make good predictions. These 
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capabilities make NNs very suitable for many AM problems 

where identifying features in the input data may be difficult.  

ML algorithms such as deep learning neural networks are 

especially useful for very complex tasks such as image and audio 

processing. Deep learning systems employ several hierarchical 
layers of processing nodes, which help to identify progressively 

complex features in the input data. Convolutional neural 

networks (CNNs) are a special type of deep learning model and 

are particularly useful for processing image data. A CNN is 

composed of special processing layers that process image pixels 

represented as matrices. CNNs progressively extract complex 

features from an image, such as edges, textures, and shapes, 

which are used to classify the image, for example as a faulty or 

good layer in an AM process. 

The follow sections introduce how some of the approaches 

described above have been applied to AM. 

2.2. Overview of Literature Survey on ML Applications 
in AM  

In this paper we review research related to ML applications 

throughout the AM lifecycle. Findings have been gathered from 

an extensive review of literature published over the last ten years 

using keyword queries such as “additive manufacturing” and its 

subcategories [2], coupled with the concepts of “ML.” After 

sifting through hundreds of query results, we analyzed over 50 

papers, including journal articles and conference papers. The 

aims of this review are to 1) identify where ML techniques have 
been successfully applied in the AM lifecycle, and 2) summarize 

and organize findings from the existing state-of-the-art research 

in this domain so that new opportunities can be identified. 

Figure 1 categorizes the AM design-to-product 

transformation cycle based on decision support needs and ML 

opportunities. Here, we have focused on the following four 

categories: 1) Design, 2) Process and Performance Optimization, 

3) In-Situ Process Monitoring and Control, and 4) Inspection, 

Testing and Validation. In each of these categories, we focused 

on a few functions that are currently being analyzed using ML 

by the research community. For example, in the build phase, 

research on In-situ Process Monitoring and Control has focused 
on defect detection, machine-condition monitoring, and real time 

process control. The following sections delve into the main 

findings of this survey.  

3.   AM DESIGN  

The AM design process can be decomposed into several 

stages [5]. Several functions within these stages are currently 

being implemented using a variety of ML techniques: design 

recommendations, topology and lattice optimization, tolerancing 

and manufacturability assessment, and material design and 
selection. Table 2 presents a summary of the ML techniques used 

to provide Design Decision Support. 

3.1. Design Recommendations  
Design-recommendation systems using ML have been 

developed to assist AM designers. Yao et al. [14] developed a 

hybrid, machine-learning algorithm to provide design feature 

recommendations and to assist inexperienced designers in the 

AM conceptual design phase. Their algorithm combines 

unsupervised learning (hierarchical clustering) with a trained, 

supervised classifier (support vector machine (SVM)). 

Furthermore, they indicate a plan to use ontology-based expert 

systems to represent more complex AM design knowledge.  

Table 2. Overview of ML techniques used to provide Design 

Decision Support 
AM Application ML Technique Reference 

Design feature 

recommendation 

Hierarchical 

clustering, SVM 

Yao et al., 2017 [14] 

Part mass, support 

material and build-time 

prediction 

NN Murphy et al., 2019 

[15] 

Build-time prediction  NN 

 

 

 

Munguía et al., 2008 

[16] 

Di Angelo and Di 

Stefano, 2011 [17] 

Cost estimation Dynamic clustering, 

LASSO, Elastic net 

regression 

Chan et al., 2018 [18] 

Topology optimization Genetic algorithms, 

NN 

Gaynor et al., 2015 

[19] 

Geometry compensation 

to counter thermal 

shrinkage and 

deformation  

Feed-forward NN 

with back-

propagation 

Chowdhury and 

Anand, 2016 [20] 

Shape deviation 

prediction (tolerancing) 

Bayesian Inference Zhu et al., 2018 [21] 

Classification of AM 

powders 

CNN, Random Forest 

Network (RFN) 

 

SVM 

Ling et al., 2017 [22] 

 

DeCost et. Al, 2017 

[23] 

Researchers are also employing ML techniques to help 

novice designers predict design for AM (DfAM) attributes such 

as expected build time and required support structures. Murphy 

et al. [15] employed 1) an autoencoder NN that was trained to 

compress and reconstruct voxelized part designs followed by 2) 

predictive NNs to predict part mass, support material, and build 

time. Their existing efforts have achieved limited prediction 

accuracy; consequently, they plan to implement CNNs in the 

future to improve accuracy by recognizing and representing local 

geometries such as lattices.  

Munguía et al. [16] used an NN to predict build time for 
Laser Powder Bed Fusion (L-PBF). NN was used for two 

reasons. First, it can learn and adapt to different cases. Second, 

it provides accurate estimates regardless of the different types of 

machine models. These estimates were calculated using only 

three parameters: Z-height, part volume, and bounding-box 

volume. Compared to analytical and parametric time estimators, 

which have prediction errors rates between 20-25 percent, the 

NN resulted in error rates between 2-15 percent. Similarly, Di 

Angelo and Di Stefano [17] also implemented a NN-based build-

time estimator. However, they used a parametric approach to 

capture a more complete set of build-time factors that considered 
both the dimensional and the geometric features of the object. 

The authors claim that their custom-designed NN, which used 

eight build-time driving factors, yielded successful results. 

Additionally, researchers are using ML techniques to 

develop cost-estimation frameworks for AM by leveraging the 

large amounts of available product and production-related data. 

For example, Chan et al. [18] predicted the cost for a new print 
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job based on historical data from similar parts. They used the 

similarities in the 3D geometry and printing processes of parts to 

extract important features from the part geometry. ML 

algorithms for dynamic clustering, least absolute shrinkage and 

selection operator (LASSO), and elastic net regression are 
applied to feature vectors to predict cost based on historical data.  

3.2 Topology Optimization 
Topology optimization is a more critical problem in AM 

than traditional, subtractive processes because of the enormous 

customizability offered by AM processes. Optimization, in this 

case, usually means selecting the topology that minimizes the 

total mass of the structure. Gradient-based optimization 

algorithms, stochastic algorithms such as genetic algorithms, and 

NNs have all been explored for topology optimization in AM 

[19].  
Chowdhury and Anand [20] developed a geometry-

compensation method to counteract thermal deformation in AM 

parts caused by temperature gradients during AM fabrication. 

Their methodology uses a back-propagation NN, trained on 

surface data from the CAD model, to predict the surface of the 

fabricated part. The trained network can modify the 

stereolithography (STL) file whenever the CAD surface data for 

a new part predicts poor surface quality of the final part. The 

authors successfully demonstrated a reduced error in 

manufactured parts’ conformity to CAD design by using their 

NN results. 

3.3 Tolerancing and Manufacturability Assessment 
Zhu et al. [21] proposed a prescriptive, deviation-modelling 

method coupled with ML techniques to accurately model shape 

deviations in AM. Bayesian inference is used to estimate 

geometric deviation patterns by statistical learning from different 

shape data, thus supporting more accurate tolerancing for AM 

parts. 

In addition to tolerancing, researchers are using ML to 

assess the manufacturability of AM-designed parts. Balu et al. 

[24] proposed a deep-learning-based approach for assessing 
manufacturability. Deep learning is used to learn different 

Design for Manufacturing (DFM) rules from labeled voxelized 

CAD models, without additional shape or process information. 

AM is mentioned as an applicable technology that could benefit 

from such a deep-learning-based DFM framework. 

3.4 Material Classification and Selection  
Machine-learning techniques have been explored to uncover 

knowledge about the fundamental physical, mechanical, 

electrical, electronic, chemical, biological, and engineering 
properties of materials [25]. This knowledge is particularly 

useful for the classification of AM powders. Ling at el. [22] used 

deep-learning techniques to classify SEM images of AM 

powders based on the different powder-size distributions. A 

CNN was used to transform images and extract features. A 

random forest network (RFN) classifier was used to sort the 

transformed images into different size distributions.  

DeCost et al. [23] developed a feature, detection-and-

description algorithm to create micro-structural-scale, image 

representations of AM powders. The algorithm applied 

computer-vision techniques to capture the image of the real 

object. Scale-invariant feature transformations, together with a 

vector of locally aggregated descriptors, were then used to 

encode that image into a digital representation. The authors used 

this encoding approach, over a NN-based representation, due to 
its strong rotation and scale invariances. This feature is important 

because AM powder micrographs do not have any natural 

orientation. After applying the algorithm, the authors used an 

SVM to classify the various representations into different 

material systems, with an accuracy greater than 95 percent.  

4. AM PROCESS AND PERFORMANCE 
OPTIMIZATION 

A growing field of study is using data-driven analysis to map 

the complex relationships among process (P) parameters, final 

material structure (S), properties (P) and performance (P), also 
known as PSPP, of the AM part [26]. While finite element 

modeling (FEM) methods have provided some success in 

mapping complex PSPP relationships, accurately representing 

AM processes using high fidelity modeling is difficult. Physics-

based models are complex, requiring a deep understanding of 

material properties and the physical laws governing the AM 

process. Low fidelity models suffer from lack of information 

about physical properties, specially due to variabilities from 

machine to machine and material to material [27].  

ML techniques have the potential to successfully discover 

complex PSPP relationships, overcoming many of the 
limitations associated with the techniques listed above. The 

gamut of such techniques generally focuses on understanding 

either process response or performance response [26], by either 

using data-driven approach, or combining both physics-based 

and data-driven approaches. Table 3 presents a summary of 

literature reviewed in this domain.  

Table 3. Overview of ML techniques used for AM Process and 

Performance Optimization 
AM Application ML Technique Reference 

Build precision 

(deposition height) 

prediction  

Back propagation (BP) 

NN, LS-SVM 

Lu et al., 2010 [28] 

Process parameter 

optimization (melt pool 

depth and height) 

Genetic algorithm, Self-

organizing maps 

Fathi and 

Mozaffari, 2014 

[29] 

Powder spreading 

prediction  

BP NN Zhang et al., 2017 

[30] 

Melt pool width 

prediction  

Gaussian Process 

Regression 

Yang et al., 2018 

[31] 

Material toughness 

optimization  

Self-Consistent 

Clustering  

Yan et al., 2018 

[32] 

Porosity prediction  RFN Kappes et al., 2018 

[33] 

Wear strength 

prediction  

Genetic programming, 

NN 

Garg and Tai, 2014 

[34] 

Part density prediction  Kriging, Polynomial 

regression, NN 

Yang et al., 2018 

[35] 

4.1 Data-Driven Approaches to Characterize Process 
Response 

Lu et al. [28] used a variety of ML techniques to monitor 

responses in a Directed Energy Deposition (DED) process. 

Specifically, they map the complex, non-linear relationship 
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between DED process parameters - laser power, scanning speed, 

and feed rate – and one performance response – building 

precision as measured by deposition height. The authors adapted 

a back propagation NN (BP NN) with an adaptive, learning rate, 

and a momentum coefficient algorithm. The modifications 
accelerated the training time and improved the results. 

Similarly, Fathi and Mozaffari [29] developed a data-driven 

framework for optimizing process parameters in L-PBF. The 

authors used a bio-inspired, optimization algorithm, called 

Mutable Smart Bee algorithm, and a fuzzy inference system to 

relate process parameters to melt-pool depth and layer height. 

Derived relationships were combined with a non-dominated, 

sorting, genetic algorithm to optimize process parameters. 

Additionally, they proposed using an unsupervised, machine-

learning approach - known as self-organizing maps - to further 

post-optimize the process.  

4.2 Physics-Based-Simulation Approaches to 
Characterize Process Response 

In lieu of empirical data, another ML approach is creating 

surrogate models from physics-based simulation data. For 

example, Zhang et al. [30] used ML to predict powder-spread 

parameters as a function of spreading speed and surface 

roughness of the powder bed. They developed a synergistic, 

multi-step framework combining 1) a Discrete Element Method 

(DEM) to simulate a powder spreading process with 2) a BP NN 

to regress between the highly non-linear results obtained from 
DEM. The result is a powder-spreading process map that can be 

used by AM operators to manufacture parts with desired surface 

roughness. 

Yang et al. [31] used the results from an L-PBF, single-track, 

heat-transfer simulation to predict melt-pool width for different 

combinations of processing conditions. Their prediction 

approach combines a Dynamic Variance-Covariance Matrix, the 

kriging method, Gaussian Process Regression, and genetic 

algorithms to optimize process parameters. Their approach led to 

a maximum, relative, error magnitude (MREM) less than 0.03 

percent and an average, relative, error magnitude (AREM) less 

than 0.005 percent for the AM case study.  

4.3 Combined Approaches to Characterize 
Performance Response 

The process response, together with the raw-material 

properties and the final-design structure, are critical factors in 

predicting the performance response of AM-fabricated parts. Yan 

et al. [32] proposed combining physics-based models, process 

models, material models, and data-mining techniques to better 

understand those factors and their relationship to performance. 

In this case, the performance response was the mechanical 
toughness of the built part. The authors combined self-consistent 

clustering analysis with a reduced-order modeling technique to 

predict the toughness. They did so by mapping the 

microstructural descriptors to toughness. However, they 

discovered that ML techniques like Kriging and NN are better 

suited for evaluating larger databases. They propose to use this 

discovery in the future for comprehensive modeling of PSP 

relationships. 

Kappes et al. [33] focused on predicting three performance 

responses for AM-built parts: fraction porosity, median pore-

diameter and median pore-spacing. Their goal was to predict 

responses by combining information/models about the process 

(L-PBF), the structure (sample position and orientation), and the 
material (Inconel 718). The authors used an RFN to make those 

predictions for two reasons. First, RFN is capable of both 

classification and regression. Second, RFN is insensitive to 

irrelevant features. These capabilities were important because, in 

AM, not all processing conditions are consistently important 

across different processes and materials.  

In another approach, Garg and Tai [34] combined genetic 

programming and NN using the least squares method. This 

combined model was used to predict the wear strength of 

aerospace parts produced using Fused Deposition Molding 

(FDM). The final structure and raw material for each part were 

known in advance. The process variables were layer thickness, 
orientation, raster angle, raster width, and air gap. The values of 

these variables provided the inputs into both the GP and the NN. 

The authors showed that their combined approach gave better 

statistical predictions than using a single ML algorithm. 

Similarly, Yang et al. proposed a super-metamodeling 

framework (SMOF) to predict relative density of AM parts as a 

function of process parameters such as scanning speed, scanning 

spacing and laser pulse frequency in an L-PBF process [35]. The 

SMOF was built by aggregating Kriging, polynomial regression, 

and NN into a weighted composite to improve overall prediction 

accuracy while being insensitive to dataset variation. The results 
positively indicated the superiority of SMOF over individual 

metamodels, with a final AREM of only 5.47 percent.  

5. IN-SITU PROCESS MONITORING AND CONTROL 

One of the most focused areas of machine-learning 

applications in AM is in-situ process monitoring and control. In-

situ monitoring technologies are rapidly growing; they now 

include highs-speed optical cameras, thermocouples, 

pyrometers, and photo-detectors, among other sensors [6]. 

However, achieving real-time control for AM is still at a nascent 

stage – despite the streams of “big,” multi-modal, sensing data 

capable of being collected. This is due to a few reasons. First, it 

is still unclear which sensor data is most meaningful for 

implementing control strategies. Second, the “data-fusion” 

techniques needed to understand all that sensor data do not exist. 
Finally, the ML techniques needed to analyze that fused data do 

exist; but, they have only recently been applied in AM.  

Nevertheless, by using in-situ data to characterize the 

current “state” of a part, combined with a priori knowledge of 

part and process, we can predict the “state” of the final part [6]. 

Using ML to improve real-time control of AM fabrication 

processes has a significant potential benefit – post-process-

inspection tasks might be reduced – possibly significantly. By 

moving some of that post-process inspection upstream, as part of 

the fabrication process, potential defects in the final parts could 

be detected earlier. This saves inspection time; but, it also saves 

materials and processing [36]. 

 Current efforts towards using ML to realize the vision of 

real-time control for AM processes are primarily focused on 
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monitoring the state of either the built part, or the AM machine 

itself. Some elementary work on process control has also been 

done. Table 4 provides a summary of literature reviewed in this 

domain.  

Table 4. Overview of ML techniques used for in-situ process 
monitoring and control 

AM Application ML Technique Reference 

Part Defect Detection and Prediction 

Porosity detection  SVM, k-Nearest Neighbors 

(k-NN), feed forward NN 

Imani et al., 

2018 [37] 

Quality of fusion and 

defect detection  

Bayesian classifier Aminzadeh and 

Kurfess, 2018 

[38] 

Anomaly detection 

and classification  

Bag-of-keypoints (words), K-

means unsupervised 

clustering, CNN 

Scime and 

Beuth, 2018 

[39,40]  

Melt pool features and 

spatter detection  

SVM, CNN Zhang et al., 

2018 [41] 

Defect detection and 

classification with 

acoustic emissions 

Spectral CNN  Shevchik et al., 

2018 [42] 

Probabilistic graph-based 

deep belief networks 

Ye et al., 2018 

[43] 

Fault detection from 

multi-sensor data 

Support Vector Data 

Description (SVDD) 

Grasso et al., 

2018 [44] 

Quality monitoring 

using heterogeneous 

sensors in FDM 

Bayesian Dirichlet process, 

Evidence Theory, NN, Naïve 

Bayes clustering, SVM, 

Quadratic discriminant 

analysis 

Rao et al., 2015 

[45] 

Defect detection for L-

PBF using in-situ 

images coupled with 

ex-situ CT scans 

SVM, NN  

 

SVM ensemble classifier 

Petrich et al., 

2017 [46] 

 

Gobert et al., 

2018 [47] 

Machine-Condition Monitoring 

Machine-condition 

monitoring  

k-NN, Bayes Classifier, NN, 

SVM 

 

Uhlmann et al., 

2017 [48] 

FDM machine-

condition monitoring 

using acoustic 

emissions 

SVM, K-means clustering, 

Hidden semi-Markov model 

Wu et al., 2015 

[49][50][51] 

Process Control 

PID process control 

for FDM 

SVM Liu et al., 2017 

[52] 

Image-guided process 

control for L-PBF 

Markov Decision Process Yao et al., 2018 

[53] 

5.1. Part Defect Detection and Prediction  
AM parts can have several different types of defects 

including porosity, poor surface finish, layer delamination, 

cracking, and geometric distortion, to name a few [54]. Detecting 

defects is important to identifying failed builds and predicting 

the final properties of the part.  

5.1.1 Defect Detection with Visual Data 
Imani et al. [37,55] presented a qualify-as-you-build model 

where ML techniques use real-time sensor data to identify 

process conditions that are likely to cause porosity. The authors 

analyzed the relationship between laser power, hatch spacing, 

and velocity, on the size, frequency and location of pores in parts 

produced through L-PBF. Statistical features are extracted from 

layer-by-layer in-situ images. These features are subsequently 

classified by ML techniques like SVM, k-NN, and feed forward 

NN to identify process conditions most likely to produce pores.  

Aminzadeh and Kurfess [38] developed an online 

monitoring system, using computer vision and Bayesian 

inference, to inspect both the porosity and the quality of parts in 
metal L-PBF. They created a labeled dataset of defective and 

non-defective features from in-situ camera images of each layer. 

They extracted frequency-domain features from those images 

and used a Bayesian classifier to identify of defective vs non-

defective parts.  
Instead of using layer wise images of the powder after laser 

interaction, Scime and Beuth [39] used computer vision and ML 

techniques to detect and classify anomalies and flaws in the 

powder prior to fusion. They investigated six different types of 

powder bed anomalies captured in labeled images from an L-

BPF machine. The bag-of-keypoints ML technique used to 

detect and classify anomalies was able to detect the presence of 

an anomaly in 89 percent of cases, with 95 percent accuracy in 

correctly identifying the type of anomaly. Separately, the authors 

showed that accuracy can be further improved by implementing 

a multi-scale CNN for autonomous anomaly detection and 

classification [40]. 

Zhang et al. [41] used Principal Component Analysis (PCA) 

with SVM to enable using CNN to recognize features in the laser 

melting process. Features include melt pool, spatter, plume, and 

anomalies. The accuracy is reported to be 92.7 percent. 

5.1.2 Defect Detection with Acoustic Data 
Acoustic emissions (AE) have also been used for defect 

detection. AE sensors are non-intrusive to the build process and 

provide high throughput for real-time monitoring. Ye et al. [43] 

developed a method of analyzing acoustic signals with deep 

belief networks (DBN) to detect defects in the L-PBF process. 

Temperature changes from melting to solidification create 

variations in the acoustic signals. The authors trained a DBN to 

recognize defects based on the categorizations of balling, 

keyholing, and cracking, using the sparking sound spectrum in 

the time domain and the signal power spectral density in the 

frequency domain. 
Shevchik et al. [42] investigated the use of AE combined 

with CNN to detect various defects due to lack of fusion. The 

authors used a fiber Bragg grating acoustic sensor to detect the 

airborne AE signals, generated from the melting, sparking, 

spattering, and solidification processes. The signals collected in 

the time domain are transformed to the frequency domain using 

the wavelet packet transform, an extension of the traditional 

wavelet transform. The Spectral CNN, an extension of CNN with 

improved efficiency in classification and regression, is used to 

recognize features in the frequency domain that correspond to 

defects in the L-PBF process. The confidence level in SCNN is 

between 83 to 89 percent, according to the authors. 

5.1.3 Defect Detection with Multi-Sensor Data  
As aforementioned, data gathered from in-situ monitoring 

of AM processes is highly varied. Registering and fusing 

together data from multiple sensors provides a rich context for 



       © 2019 by ASME 

 

7 

fault detection. Therefore, a growing area of research involves 

multi-sensor data fusion for process monitoring and control.  

Grasso et al. [44] explored data fusion methodologies to 

combine in-situ data from multiple sensors embedded in 

Electron Beam PBF systems. The Support Vector Data 

Description (SVDD) ML technique is used to classify in-control 

vs. out-of-control process signals. The SVDD automatically 

detects faults and process errors that can be related to the stability 

of embedded signals from multiple sensor data streams. The 

limitation of their approach is that it applies only to serial 

production of the same product. 

Rao et al. [45] fused data from a heterogeneous sensor suite 

as part of an online-monitoring system for FDM. The suite 

comprises of thermocouples, accelerometers, an infrared 

temperature sensor, and a real-time, miniature, video borescope. 

Process failures (such as nozzle clog) are detected from the fused 

sensor data using the non-parametric Bayesian Dirichlet process 
mixture model and evidence theory, achieving a prediction 

accuracy of up to 85 percent. In comparison, existing 

approaches, such as probabilistic NN, Naïve Bayes clustering, 

and SVM had poorer performance.  
Petrich et al. [46] and Gobert et al. [47] used multi-sensor 

data fusion to detect discontinuity defects – such as pores, over-

heating areas, and unmolten powders – in L-PBF. They merged 

together homogenous sensor data (eight sets of layer-wise 

images of the powder bed under varying lighting conditions, pre- 

and post-sintering) with heterogenous sensor data (post build CT 

scans). Ground-truth labels (anomalous or normal) extracted 

from the CT scans were used to train NN and SVM [46], as well 

as SVM ensemble classifiers [47] to detect defects directly from 

images. Ensemble classifiers can analyze multiple images under 

different lighting conditions with a high classification accuracy 

(85 percent) as compared to classification using images from 

only a single lighting condition (65 percent accuracy).  

5.2. Machine-Condition Monitoring 
Another approach to in-situ monitoring is observing the 

machine logs or build condition instead of monitoring the part. 

Clustering techniques can classify features extracted from 

machine logs and identify normal or problematic build states 

[48]. In a series of papers, Wu et al. [49–51] developed an 

approach for FDM machine condition monitoring using AE data 

to identify normal and abnormal machine states. They extracted 

time- and frequency-domain features from the data and used a 

variety of ML algorithms (SVM with radial bias function kernel 

[49], K-means clustering [50], and hidden semi-Markov model 

[51]) to classify normal vs. abnormal machine-condition states. 

Their monitoring method can be used as a diagnostic tool to 

identify failure states such as material runout or filament 

breakage.  

5.3. Process Control 
Liu et al. [52] developed an online closed-loop controller for 

FDM. Their control architecture consists of 1) real-time image 

acquisition, 2) a tool for image analysis, and 3) a Proportional-

Integral-Derivative (PID) controller for closed-loop control. 

They identified two types of defects, overfill and underfill, at 

different severities. After extracting textural features from the 

image data collected from a microscope, they used SVM to 

differentiate those features into two groups: normal and 

defective. Then they used another SVM to identify the severity 

of defects. The PID controller used the results of that analysis to 

modify the feed rate to mitigate each type of defect.  
Yao et al. [53] developed a smart, closed-loop optimal 

control system for L-PBF. They used multifractal analysis to 

estimate the defect condition of each layer, and then predicted 

the future evolution of defects in following layers. Finally, they 

modeled the stochastic dynamics of layer-to-layer defect 

conditions as a Markov decision process for deriving an optimal 

control policy.  

6. INSPECTION, TESTING AND VALIDATION 

ML techniques are used for final AM part inspection and 
validation. The focus is primarily on surface metrology, and 

defect detection and classification using ex-situ measurements, 

such as X-CT data. Table 5 presents an overview of the literature 

reviewed in this domain (excluding X-CT). 

Table 5. Overview of ML techniques used for post-process 

inspection and validation 
AM Application ML Technique Reference 

Classification of 

dimensional variation 

from laser scanned 3D 

point cloud data 

Sparse representation, k-

NN, NN, Naïve Bayes 

SVM, Decision tree 

Tootani et al., 

2017 [56] 

Defect detection 

(porosity)  

Augmented layer-wise 

spatial log Gaussian Cox 

process (ALS-LGCP) 

Liu et al., 2018 

[57] 

Tootooni et al. [56] developed a new method to classify 

dimensional variations in parts made with FDM based on 

spectral graph theory. They used Laplacian Eigenvalues as 

extracted features from laser-scanned 3D point cloud data, 

followed by supervised ML techniques to classify dimensional 
variation, including sparse representation, k-NN, NN, naïve 

Bayes, SVM, and decision tree. The sparse representation 

technique provided the highest classification accuracy (F-score 

> 95 percent). Their approach requires a priori knowledge of the 

part for training, thus limiting applications to other parts.  

Liu at al. [57] proposed an augmented layer-wise 

spatiotemporal log Gaussian Cox process (ALS-LGCP) model 

to quantify the spatial distribution of pores within each layer of 

an AM part and track sequential evolution across layers. They 

applied the ALS-LGCP to binder-jetted parts, and used Bayesian 

predictive analytics to predict porosity prone areas in successive 

layers, achieving statistical fidelity approaching 85 percent.  
Senin and Leach [58] developed a smart information-rich 

surface metrology technique using multi-sensor data fusion and 

ML. They identified AM as an example where advanced 

measurement techniques are needed due to complex geometries 

and lack of uniform material properties. 

7. CONCLUSION  

This paper presents a detailed review of ML applications 

throughout the AM design-to-product transformation cycle. We 

have categorized the literature based on the applications as they 
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pertain to the different phases in the AM product lifecycle. With 

most of the reviewed research published in 2017 or later, the ML 

methods identified throughout this paper are the beginnings of 

what is sure to be a growing effort of ML applications for AM. 

We observed why ML methods are well suited to solve problems 
in the AM domain and which methods are most commonly being 

used. To date, ML for AM research has been opportunistic, where 

researchers have identified areas rich with data, such as in in-situ 

process monitoring and control. The high dimensionality and 

complexity of AM data makes it well-suited for popular ML 

algorithms. For instance, supervised learning techniques, such as 

NN and SVM, are most popular due to the availability of labeled 

datasets. This paper lays a foundation for a more methodical 

approach to ML for AM moving forward.  

While ML techniques are rapidly being adopted into AM 

applications, there are many opportunities for improved future 

applications. For instance, unsupervised learning techniques are 
not as widely adopted. However, with the increasing amounts of 

unlabeled AM datasets, these techniques are likely to become 

more popular and thus should be further investigated. 

Alternatively, as ML algorithms require training data, increased 

interest in ML for AM will lead to new approaches for supervised 

ML.  

ML models are very poor at diagnosing conditions that have 

not been previously encountered. This limitation puts an 

emphasis on collecting data for training by creating scenarios 

that will address a wide range of operating conditions and 

dimensionality space. A major challenge in the maturation of ML 
for AM is the lack of availability of accurate, accessible, and 

extensive databases for AM processes, products, and materials 

[26]. While each build can generate terabytes of data, there is a 

lack of standard practices for handing datasets characterized by 

high volume and velocity in real time.  

Absence of a common data structure, and standard methods 

for data integration and fusion, prevents rich, multifaceted, data-

driven analysis. Furthermore, generating exemplar data via 

experimentation is difficult and expensive. Even if data is 

available, poor quality of data makes it unsuitable for ML 

algorithms. Low resolution of in-situ optical data, limited fields 

of view, and high temporal load result in poor quality data sets 
[6]. This hinders feature selection for ML algorithms. The 

development of feature libraries for AM feature characterization 

would help address some of the current challenges that make it 

difficult to select a suitable ML algorithm compatible with the 

available data.  

8. FUTURE WORK 

As reviewed in this paper, there already are many AM 

applications that are benefitting from ML techniques. However, 

even more applications areas remain unexplored. For instance, 
in the domain of AM design, deep learning techniques could be 

used to train on voxelized CAD models to make better 

predictions of DfAM attributes such as part mass, support 

structures, and build time. The in-situ, monitoring-and-control 

domain could benefit from the advantages of deep learning 

techniques for use in fault detection and build failures. CNN, for 

example, can detect and classify both macroscopic and 

microscopic faults using layer-wise, optical-sensor data. Moving 

forward, potential opportunities like these will continue to be 

identified. 

Identifying new opportunities in the AM lifecycle is simply 

a precursor to the data challenges that will arise when seeking to 
take advantage of these opportunities. For instance, further 

research is needed for in-situ data sensor fusion. The fusion of 

thermal, acoustic, optical and other build environmental data can 

create a more holistic, reliable and accurate information source 

for real-time defect detection and correction with feedback 

control. Other opportunities include using ML to build models 

correlating in-situ and ex-situ data, such as IR videos with NDE 

X-CT data. Such an approach could enable the “qualify-as-you-

build” goal for AM and reduce dependence on post build NDE 

qualification. As new AM data sets continue to emerge so will 

new opportunities to leverage ML techniques to improve the 

fabrication of AM parts. 
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