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ABSTRACT Increasing use of renewable energy sources, liberalized energy markets and most importantly,

the integrations of various monitoring, measuring and communication infrastructures into modern power

system network offer the opportunity to build a resilient and efficient grid. However, it also brings about

various threats of instabilities and security concerns in form of cyberattack, voltage instability, power

quality (PQ) disturbance among others to the complex network. The need for efficient methodologies for

quicker identification and detection of these problems have always been a priority to energy stakeholders

over the years. In recent times, machine learning techniques (MLTs) have proven to be effective in numerous

applications including power system studies. In the literature, various MLTs such as artificial neural

networks (ANN), Decision Tree (DT), support vector machines (SVM) have been proposed, resulting in

effective decisionmaking and control actions in the secured and stable operations of the power system. Given

this growing trend, this paper presents a comprehensive review on the most recent studies whereby MLTs

were developed for power system security and stability especially in cyberattack detections, PQ disturbance

studies and dynamic security assessment studies. The aim is to highlight the methodologies, achievements

and more importantly the limitations in the classifier(s) design, dataset and test systems employed in the

reviewed publications. A brief review of reinforcement learning (RL) and deep reinforcement learning (DRL)

approaches to transient stability assessment is also presented. Finally, we highlighted some challenges and

directions for future studies.

INDEX TERMS Classifiers, cyberattacks, deep reinforcement learning, intruder detection system, machine

learning techniques, power quality disturbance, power system, reinforcement learning, test systems, transient

stability assessment, voltage stability.

I. INTRODUCTION

Over the past few decades, power system operations are

constantly being modernized so as to accommodate the inte-

gration of renewable energy and storage systems (RES),

liberalized market, numerous measuring and communication

technologies devices to name a few [1]. While the modern-

ization contributed immensely to safer, reliable and cleaner

energy distribution to users, the transition also brings along

new challenges to the network’s security and stability [2].

The overreliance of modern power system’s applications such

as state estimation, Supervisory Control and Data Acquisi-

tion (SCADA) systems, Phasor Measurement Unit (PMU)
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on open communication technologies including the internet

have exposed the networks to various vulnerabilities and

threats [3]. As a key critical infrastructure, the secure and

stable operation of power system is usually treated with

topmost priority by the governments and utility stakeholders

as the various social, political, and economical activities are

closely tied to the nation’s power system. Adversaries can

access network nodes and alter measurements including con-

trol commands, thereby destabilizing the operation, creating

blackouts, financial losses and in some situations, national

security can be put into jeopardy [4].

Furthermore, the geometric growth in energy demands, the

introduction of certain disturbing loads, major changes in net-

work topology, the increasing strains on transmission lines,

etc. are dangerously pushing the power system towards and
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beyond stability limits, thus creating instabilities and power

quality disturbances (PQD) problems [5], [6]. In recent times,

these instabilities and disturbances concerns have drawn the

attention of the industrial and academic communities as

they are leading causes of outages, economic losses, equip-

ment malfunctioning and failures. According to Electrical

Power Research Institute (EPRI), power supply outages cri-

sis created an economic loss estimates of $104 billion to

$164 billion annually [7]. Several studies in the literature

have discussed the threats, effects and impacts of these dis-

turbances, insecurities and instabilities [8]–[11]. Monitoring

the power system’s status especially during load changes

and post contingencies have always been a major concern to

energy stakeholders and operators. Over the years, various

statistical models and signal processing techniques [12]–[14]

have been proposed in security and stability studies. Despite

demonstrating satisfactory performances, the conventional

methods have proven to be computationally inept, expensive

and time-consuming as they struggle in addressing the emerg-

ing analytic needs of the complex modern power system.

In recent times, machine learning techniques (MLTs) have

been vastly used in modelling and monitoring complex appli-

cations. Numerous MLTs such as Artificial Neural Net-

work (ANN), Decision Tree (DT), Principal Component

Analysis (PCA), etc. have been proposed in various capacities

involving power system security and stability assessments.

Unlike traditional methods, MLTs have proven to be compu-

tationally powerful, systematic and explicitly reliable when

they are deployed in classification studies. In the literature,

various simulation results in power system’s research works

have shown that MLTs have the capacity to learn and under-

stand the changing characteristics of varying loads, network

data, etc. that are peculiar to the dynamic nature of modern

power system.

In line with the increasing concerns regarding power sys-

tem security and stability, quite a number of review works

in the literature have presented detailed description of the

problems and notable solutions including machine learning

approaches. Sun et al. [9] surveyed relevant cyber security

studies with regards to dangers and solutions to improve the

security of power grids. The work presented in [15] focused

on surveying tools and techniques to uncover SCADA sys-

tems vulnerabilities. It also addressed different methods

including machine learning algorithms for SCADA com-

munication security. However, the study is only limited to

SCADA communication aspect of the power system. In a

similar study, Glauner et al. [16] reviewed different MLTs,

features and datasets in detecting non-technical losses which

includes electricity theft, defective meters and billing errors.

Also, the study was limited to a specific domain as the

authors did not include the study of MLTs on other key power

system menaces. With regards to RES menaces, the authors

in [17] presented a review on power grid protection especially

with the challenges attributed to the numerous integration of

RES. In the work, several MLTs deployed in the generation,

forecasting and integration of RES into the power system

were studied. Also, Saini and Kapoor [18] presented a sur-

vey on PQ classifications using machine learning and signal

processing tools. The work focused only on power quality

analysis.

To bridge the research gaps, we reviewed a wide range of

machine learning architectures and explored the power sys-

tem security and stability challenges that have benefitted from

MLTs. This paper identifies four main power system security

and stability domains: SCADA network vulnerability and

threats, PQD studies, voltage stability assessment (VSA) and

transient stability assessment (TSA) where MLTs have been

extensively deployed. This review focuses on highlighting the

methodologies, achievements and limitations in the classi-

fier(s) design, dataset generation and test systems employed

in the reviewed publications. A brief review of reinforce-

ment learning (RL) and deep reinforcement learning (DRL)

application especially in TSA studies is also presented. Con-

ventional methods for power system security and stability

solutions were not extensively reviewed in the paper as there

are various works that have covered such approaches in the

literature [19]–[21].

The review paper is intended for power system security and

stability researchers with the intention of building analytics

and/or artificial intelligence security solutions for power sys-

tem infrastructure, using the current and emerging machine

learning approaches. Different from the previous studies,

this paper gathers together different approaches, strategies,

procedures, limitations and research gaps onMLT application

to power system security and stability studies. Specifically,

the major contributions of this paper are stated briefly as

follows:

• A comprehensive review of the most recent state-of-

the-art ML approaches and the applicability in power

system security and stability domain;

• The major power system security and stability domains

(TSA, VSA, PQD and SCADA network vulnerability

and threats) are extensively discussed;

• An elaborate review of several MLTs applied to power

system security and stability problems as regards to the

classifier(s) design, dataset generation, preprocessing

techniques, optimization techniques and test systems

deployed; and

• The challenges, limitations and research gaps of the cur-

rent machine learning techniques’ applications in power

system security and stability studies and the directions

for the successful deployment of MLTs in future power

system security and stability applications.

Accordingly, the remainder of the paper is organized as

follows; an overview of power system security and stabil-

ity is presented in Section II. The section briefly discussed

the TSA, VSA, PQ disturbances and SCADA network vul-

nerability analytics. Section III summarizes some of the

power system stability and security solutions in the literature.

Section IV presents a detailed analysis onMLTs for the power

system stability and security menaces. Section V presents the
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research gaps and future directions and Section VI concludes

the paper.

II. OVERVIEW OF POWER SYSTEM

SECURITY AND STABILITY

Ensuring that the power system is secured and stable espe-

cially after it has been exposed to varieties of strains and

different contingencies is a major challenge that energy stake-

holders are facing in today’s world. Recent incidents world-

wide have shown that the geographically dispersed power

system are facing various security and stability crisis that

warrants comprehensive protective and preventive measures.

Historically, ensuring the security and stability of power sys-

tem have always been a challenge. Operators of the old power

system used to struggle in efficiently monitoring the network.

In actual fact, operators usually expect reports on trips and

faults from consumers [4]. However, despite the numerous

innovations that epitomizes the modern power system in

recent times, various evidences and reports have revealed that

the modern power system globally are facing higher numbers

of security and stability challenges. Also, the integration of

numerous internet of things (IoT) infrastructures and other

sophistically advanced gadgets affiliated with the modern

power system are creating security and stability crisis to the

network as some of the protocols and standards are highly

vulnerable to cyberattacks and intrusion. In addition, the con-

tinuous quest for industrialization as well as the building of

smart cities continue to create upsurge in unhealthy energy

demand. The industrialization quest also creates the intro-

duction of certain disturbing loads into the power system.

The upsurge in energy demands is pushing generation and

transmission facilities towards and beyond operational sta-

bility limits and the consequences are equipment failures,

instabilities and PQDs.

Over the years, varieties of security and stability challenges

have continued to plague the power system. Four major cat-

egories of power system menaces are identified as highly

relevant to the stable and secured operation of themodern-day

power system namely:

•Power Quality Disturbance (PQD)

•SCADA Network Vulnerabilities and Threats

•Transient Stability Assessment (TSA)

•Voltage Stability Assessment (VSA)

A. POWER QUALITY DISTURBANCE

Power quality disturbances can be defined as the sudden devi-

ation manifested in voltage/current magnitude, phase angle

and frequency from the standard rating. The disturbances are

mostly created due to the introduction of non-linear loads,

switching devices, rectifiers and inverters, etc. into the power

system [7], [22], [23]. As explained by Wang and Chen [22],

the continuous integrations of disturbing loads and RES are

creating deterioration risks and malfunctioning of machiner-

ies at energy generation, transmission and consumption lev-

els. Varieties of PQD effects include voltage sag, harmonic

distortion, notch, flicker, spikes, etc. and they are capable

of creating severe problems which include equipment mal-

function, short life span and failures [24], [25]. According to

EPRI, of all power supply outages crisis, PQ issues accounts

for approximately 15% of the economic losses estimates of

$104 billion to $164 billion annually [7]. Thus, the mitigation

of PQD have continued to receive massive attention in the

power system’s research community.

B. SCADA NETWORK VULNERABILITIES AND THREATS

Critical infrastructures (CI) such as the power system, oil

and gas pipelines, water distribution, etc. are monitored and

controlled by SCADA systems which links the CI together

as a network through advanced Information Technologies

(IT) [26]. As shown in Fig. 1, the SCADA system architecture

for the electricity grid basically consist of four major opera-

tional parts namely [27], [28]:

• The ‘‘Field’’ devices such as sensors for sensing the

status of SCADA equipment under concern (power

level, pressure, etc.) and control them according to the

received commands.

• The ‘‘Remote Station’’ devices which include the

Remote Terminal Units (RTUs) and Programmable

Logic Controllers. They serve the purpose of sending

and receiving digital data to and from the control centers

and the field devices.

• The ‘‘Control Centre’’ devices consisting of the Mas-

ter Terminal Units (MTU) that issues command to the

remote station devices.

• HumanMachine Interface (HMI): devices which present

processed data to operators usually via graphic user

interface. With the interface, operators can monitor and

interact with SCADA processes.

Historically, when SCADA systems were first deployed,

the major threat was sabotage through the physical destruc-

tion of the utility’s hardware as the old SCADA systems had

private and dedicated networks that are secured by traditional

air gapped separations [29], [30]. However, over the past

two decades, SCADA networks have been equipped with

IoT devices that sometimes communicate over open channels

which exposes the networks to numerous vulnerabilities and

network based cyber-attacks [28]. These threats and attacks

are projected to escalate in geometric rates in the nearest

future as intruders/attackers find the energy infrastructures

(arguably the most important of all CI) as a lucrative avenue

to gain attention [31]. The Industrial Control Systems Cyber

Emergency Response Team (ICS-CERT) announced that, out

of the 245 recorded cyber incidents on CI in 2014, 79 were

targeted at the energy sector [2].

Based on the motives and the cause of attacks, SCADA

threats and attacks can be categorized as [32]:

1. Internal/Malicious – operators, employees or contractors

with intentional motives to cause disasters to the SCADA

network. Example is the well-publicized stuxnet worm

attack by a resentful engineer via a removable drive [15].
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FIGURE 1. SCADA architecture [26].

2. Internal/Non-malicious – operator making an accidental

mistake that causes harm to power system infrastructures.

Example is the 2003 Ohio Davis-Besse nuclear plant

‘‘Slammer’’ worm infection that led to the plant being

disabled for hours [33].

3. External/Opportunistic - hackers seeking a challenge or

playing around.

4. External/Deliberate – this can be described as an attack by

an external organized group that targets vulnerabilities in

another nation/state power system such as the 2015 cyber-

attack on Ukrainian power grid whereby the hackers were

linked to Russia [34].

These experiences and several reported cases have show-

cased the immeasurable consequences of attacks on SCADA

networks.

C. TRANSIENT STABILITY ASSESSMENT

Various incidences such as some specific blackouts in

the United States, some European and Asian countries

have shown that instabilities arising from RES, increasing

energy demands and disturbances demands the necessity for

improved tools in monitoring dynamic security of modern

power system. According to [35], evaluating the capacity of

a power system to withstand and survive a finite set of con-

tingencies to an acceptable steady-state condition is termed

dynamic security assessment (DSA). As shown in Fig. 2,

transient stability, voltage stability and frequency stability are

identified as the main DSA categories.

Transient stability assessment (TSA) provides system

operators analytical judgment of the power system dynamic

performance under various contingencies. As defined by

James et al. [36], transient stability is the ability of all the

generators to preserve synchronism after a severe distur-

bance such as a fault or sudden loss of generator/ load or

other components. Transient instability is among the key

causes of numerous power instability scenarios including

islanding and widespread blackouts experienced recently in

Iran and Russian [37]. According to the authors in [38], sys-

tem operators must be able to evaluate the power system

stability condition and, if needed, organize corrective actions

to preserve the needed stability in order to avoid the blackouts

and failures. Traditionally, TSA mathematically corresponds

to solving a set of high-dimensional non-linear differential

algebraic equations (DAE). Conventional TSA methods such

as the time domain simulation (TDS) and direct methods

(e.g. transient energy function (TEF) methods, the extended

equal-area criterion (EEAC) and Lyapunov exponents have

been widely proposed in numerous literature. Generally,

the main limitation of these methods is the large computa-

tional effort to evaluate the swing curves for all the generators,

for different load levels, faults and clearance times. Thus,

the conventional TSA methods do not meet the requirements

demanded by modern power system.

D. VOLTAGE STABILITY ASSESSMENT

While the attention has mostly focused on transient stabil-

ity, another increasingly important dynamic security topic in
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FIGURE 2. Dynamic security assessment architecture [35].

modern power system is voltage stability. Unlike transient

stability that deals majorly with generators’ synchronism,

voltage stability is majorly tied to load dynamics as well as

reactive power management [39]. Voltage stability denotes

the power system’s ability to maintain the bus voltages at

acceptable values after a disturbance from a given operating

condition [40]. The authors in [41], [42] explained that, the

voltage profile of a power system is usually preserved within

a stable range, however when the power system encounter a

significant fault or disturbance, several incidents may occur.

These incidents include: the voltage profile may lose stability

thereby instituting the induction motors to decelerate radi-

cally, draws high reactive current and ultimately lead to a pro-

gressive and uncontrollable decline in voltage magnitudes.

Apart from blackouts, other effects of voltage instability on

the network includes the swift removal of generator(s) or

transmission element(s) and low voltage supply [8]. Thus,

a blackout may ensue within few minutes. Based on the time

frame, voltage instability crisis can be categorized into short

term and long term [43]:

• Short term voltage stability (STVS)- STVS problems

occur within a short time frame (seconds) after the fault

clearing. The short term voltage instability is mostly

triggered by the dynamic characteristics of complex

induction motor loads.

• Long term voltage stability- unlike the STVS, the time

frame for long term voltage instability problems or col-

lapse is longer (average of 0.5-30 minutes). Long term

voltage instability problems are mostly experienced in

heavily loaded power system. The long term voltage

instability is mostly triggered by slow acting equip-

ment, such as tap-changing transformers and current

limiters [44].

The consequences of the voltage instability problems that

were experienced in France, Tokyo and more recently in

Israel have shown the economic and social significances

of voltage instability, hence making voltage stability anal-

ysis one of the most discussed topics in the power system

research world. Voltage stability analysis involvesmonitoring

the power system reaction to continuous change in generator

and load dynamics.

III. POWER SYSTEM STABILITY AND

SECURITY SOLUTIONS

In the olden days, majority of power system stability and

security challenges were judged on visual inspections based

on operators’ knowledge and experiences. However, more

recently, several conventional methods have been proposed

to maintain the steady operation of the heterogeneous power

system. In the literature, numerous signal processing tech-

niques have been proposed for PDQ studies over the years.

Also, various mathematical formulations that focused on esti-

mating the power system’s margin towards voltage instabil-

ity, time-domain simulations and direct methods have been

proposed for DSA studies. Furthermore, as Intrusion Detec-

tion Systems (IDSs) are adjudged as the de-facto protection

methodology for information technology systems, several

statistical and theoretical formulations have been applied

as models for various SCADA intrusion detection schemes

down the years. However, due to varieties of factors, these

statistical formulations are too rigid and computationally

inept for some specific scenarios. Hence they are inca-

pable of effectively protecting the modern heterogeneous

systems [33], [45]. In addition, with the deployment of PMU

devices into modern power system, significant progress has

been made with regards to efficient measurement documen-

tation as the PMU devices provide time synchronized phasor

measurements thereby enhancing fast decision making and

control actions which ultimately assist in creating a path

for the successful realization of accurate and effective DSA.

However, important factors such as the enormous data asso-

ciated with PMU devices, the uncertainties associated with
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measurement errors, intrusion on PMU devices and most

importantly, the non-linearity and computational complexity

of the current and future power system operations, etc. have

exposed the limitations of conventional security and stabil-

ity methods in effective mitigation. The need for proactive,

well-calibrated, fast, reliable and advanced security and sta-

bility methods for modern-day power system have become

essential to all energy stakeholders especially in the face of

incessant blackouts and other power system menaces. In the

last three decades, machine learning algorithms are proving

extremely efficient in power system studies. MLTs have been

widely proposed in power system studies involving the mon-

itoring and classification of various power system menaces.

IV. MLTs FOR POWER SYSTEM MENACES

It is becoming increasingly challenging to protect the

modern-day power system using conventional methods.

MLTs and deep learning techniques are continuously prov-

ing to be a feasible option as they tick the various security

factor boxes i.e. high performance, high speed of execution

and efficiency. Machine learning methods have been widely

proposed in power system literature for monitoring, intru-

sion detection, prediction and classification of various power

system menaces. Based on the deployed learning mecha-

nisms, Sharma andWang [46] categorized existingMLTs and

deep learning techniques into supervised learning, unsuper-

vised learning and reinforcement learning. With regards to

supervised learning, the learning techniques require the prior

knowledge of a training dataset to learn a link between the

input as well as the expected output. Examples of supervised

learning techniques include NN, SVM, DT, etc. On the other

hand, unsupervised learning techniques attempt to find hid-

den patterns in the data without the need of any labelled

data, training dataset and expected output. Examples of

unsupervised learning include K-Means, PCA, etc. With

regards to reinforcement learning techniques, a learning agent

observes and interacts with a system environment, alters the

state of the environment by taking some control actions.

Afterwards, they observe the effects of the actions in order

to maximize the notion of cumulative reward [47]. Exam-

ples of RL algorithms include Q-learning, DQN, SARSA,

DDPG, etc. [48]. From the conventional point of view, MLTs

for power system studies are generally divided into three

major phases: dataset generation, data preprocessing (feature

selection/extraction) and evaluation/classification. In some

studies, authors deployed various optimization techniques

and ensemble multiple machine learning algorithms to boost

the classification performances. The rest of this section

explicitly discusses some of the power system studies that

have been done using MLTs.

A. MLTs FOR POWER QUALITY

DISTURBANCE CLASSIFICATION

In any real power system, there are multiple sources and types

of power quality disturbances, hence the accurate detection

and classifications of specific events are highly crucial [49].

Due to its massive success, various research works in the liter-

ature have proposed several combinations of machine learn-

ing algorithms and signal processing techniques for detecting

and classifying PQD events. Basically, the combination fol-

lows the architectural framework shown in Fig. 3.

FIGURE 3. PQD classification steps.

1) PQD FEATURE EXTRACTION/SIGNAL ANALYSIS STAGE

In the literature, synthetic parametric equations of power

quality disturbances based on IEEE standards are sim-

ulated using software such as MATLAB to generate

single and multiple classes of large dimension feature

dataset [23], [49]–[54]. The large dimension feature data

generated is not ideal to be used as the input of the clas-

sifier as they will significantly increase computational time

and reduce classification accuracy. Hence there is usually

a need for the extraction of the dominant features for clas-

sification [53]. In the literature, several signal processing

techniques have been deployed for extracting the dominant

features of PQD waveforms. Various time domain signal

processing techniques such as EMD [24], [55] and frequency

domain techniques such as FT [56] have been successfully

deployed for feature extraction in MLT based PQD stud-

ies. Despite the fact that the methods presented good per-

formances, the fact that either frequency or time domain

techniques cannot analyze signals at neither time nor fre-

quency domain respectively is a massive limitation. As bet-

ter options, several authors have deployed time-frequency

domain techniques as they are capable of extracting fea-

tures from both domains. The authors in [57]–[59] deployed

wavelet transform as it offers good time-frequency charac-

teristics and it is well known to have excellent ability in

analyzing local discontinuities of signals [51]. In similar stud-

ies, Alshahrani et al. [60] and Naik et al. [61] opted for DWT

and WPT respectively as they offer additional advantage

with regards to fixed window size. Also, in order to boost

the feature extraction performance and speed of extraction,

Abdoos et al. [49] deployed VMD and ST signal processing

as they have few tuning parameters in comparison to several

other methods. As a widely used signal processing tool, WT

have various mother wavelet filters and decomposition levels.

Manimala et al. [54] explained that the choice of the mother
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wavelet is crucial in wavelet analysis and it can affect the

analysis results. The authors further explained that suitable

mother wavelet can be determined based on properties such

as PQ indices calculation, orthogonality, maximum num-

ber of vanishing moments, and compactness support. In the

literature, the most frequently used mother wavelet class

for PQD studies is the fourth order daubechies 4 wavelet

(DB4) as it possesses the described characteristics and it

is known to have a close similarity to power disturbance

signal [51], Daubechies was deployed in studies such as

the works in [23], [50], [57], [62]. With regards to feature

vector decomposition modes, various authors have decom-

posed generated signal samples at various resolution levels

to get wavelet coefficients that suits their classification spec-

ifications. Eristi and Demir [62] applied a 8-level wavelet

decomposition to construct a nine-dimensional feature vector

that suits their RBF kernel-based SVM classification study.

Furthermore, at each decomposition level, different numbers

of statistical methods such as standard deviation, mean, skew-

ness, kurtosis, RMS, Shannon entropy, log energy entropy

and norm entropy, etc. are calculated for feature vector which

are used as the input vector for the MLT classification.

Bosnic et al. [53] deployed mean, standard deviation, skew-

ness, kurtosis, RMS, Shannon entropy, log energy entropy

and norm entropy while Kanirajan and Kumar [63] used stan-

dard deviation, variance, norm, median, absolute deviation

and mean absolute deviation as it suits the specification of

their proposed classification models. For better performance,

various authors have explored the use of multiple extraction

techniques whereby the advantage of one signal processing

tool is boosted by the ensemble partner. Using the combi-

nation of WT and MRA, Kanirajan and Kumar [63] argued

that WT and MRA provides an excellent time frequency

resolution as they provide a short window for high frequency

components and longwindow for low frequency components.

In a similar work involving two signal processing technique,

Biswal et al. [64] used EMD to separate out intrinsic mode

functions and applied HT on the intrinsic mode functions to

extract instantaneous amplitude and frequency components.

2) PQD FEATURE SELECTION/OPTIMIZATION STAGE

In order to enhance the PQD event classification perfor-

mances, various authors proposed the deployment of sev-

eral feature selection/reduction and optimization techniques.

The main objective of using these techniques is to eliminate

redundant features such as noise in the extracted signals

and to optimize the classifiers’ performance accuracy [53].

Most feature selection methods for PQD feature vectors can

be either wrapper based or filter based [49]. As explained

Abdoos et al. [49] explained that wrapper based feature selec-

tion are time consuming but highly efficient while filter based

are faster as they rank features based on intrinsic attributes.

Ahila et al. [51] deployed a PSO based wrapper selection

model to obtain the optimal number of hidden nodes and

to select the beneficial subset of features in their PQD

classification study. Despite the fact that the work in [50]

did not deploy any feature selection method, the authors

acknowledged that the use of optimization technique for fea-

ture selection creates better classification even though they

may require huge computational resources, time and complex

simulations. As a means to obtain optimal structure coupled

with reduced feature vector dimension, Abdoos et al. [49]

deployed sequential forward selection (SFS) and sequential

backward selection (SBS) as wrapper based methods and

Gram–Schmidt orthogonalization (GSO) as feature selection

and optimization techniques respectively. Using the combi-

nations, the authors were able to eliminate redundant fea-

tures, reduce the computational cost and most importantly,

improved the generalization capability of the deployed clas-

sifier in their PQD study. In a related work, Bosnic et al. [53]

also deployed SFS to identify the most discriminative fea-

tures in the PQD feature vector in their classification study.

As GSO is well known for its numerical instability with

respect to rounding error, Liquan et al. [57] opted for the

highly rated particle swarm optimization (PSO) in optimiz-

ing the SVM parameters in their PQD classification study.

In another work that involves the use of heuristic optimiza-

tion technique, Khokhar et al. [23] used ABC algorithm to

select optimal features in their PQD event classification study.

In order to avoid combinational problems that are peculiar

to some of the popular heuristic optimization techniques,

the authors in [65] used ant colony optimization (ACO) as

the feature selection/optimization technique in their PQD

study. Similarly, Manimala et al. [54] used Genetic Algo-

rithms (GA) and Simulated Annealing (SA) optimization

techniques for the selection of the most dominant features for

the SVM classifier deployed in their study.

3) CLASSIFICATION STAGE

In the literature, numerous machine learning and deep learn-

ing algorithms such as SVM [49], [53], [55], [57], [59],

DT [64], [66], K-Means [67], various ANN types includ-

ing Probabilistic Neural Network (PNN) [23], [68]–[70],

Feed Forward Neural Network (FFNN) [51], [61], Radial

basis function network (RBFNN) [63], [67] and deep

neural networks such as Convolutional Neural Network

(CNN) [22], [52], etc. have been employed in PQD classifica-

tion. However, despite the numerous varieties of classifiers’

proposed for PQD classification, SVM and PNN are the

most widely deployed, owing to some of their attributes that

makes them highly suitable for PQD classifications. Being a

derivation of Bayesian and kernel fisher discriminant analy-

sis algorithm, PNN are well known for their high accuracy

and excellent classification performance in studies involv-

ing signal outliers. Khokhar et al. [23] and Huang et al. [69]

explained that PNN is highly efficient in classifying PQD

events as they do not require initial weight settings com-

pared to other neural network models such as FFNN and

RBFNN. Also, as a technique that is based on the Vapnik–

Chervonenkis dimension theory of Statistical Learning The-

ory and structural risk minimization principle, SVM is highly

rated as a powerful classifier. Various authors in the literature
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have successfully deployed SVM in numerous power sys-

tem studies. Abdoos et al. [49] used a RBF kernel SVM

for classifying PQD events. In the study, the authors used

improved ant colony optimization algorithm to determine the

parameters of the RBF kernel. Eristi and Demir [62] also

deployed RBF kernel SVM as the authors argued that the

kernel type can behave like a linear kernel or a sigmoid kernel

under different parameter settings. In a comparative study

conducted in [54], the authors compared the result of rbf ker-

nel SVM and polynomial kernel SVM. The authors achieved

a better classification accuracy with RBF kernel compared to

polynomial kernel. However, in another comparative study on

a developed model involving three classifiers (DT, k-nearest

neighbors (KNN) and SVM), Singh and Singh [65] adjudged

DT as the most effective classifier as it presented the best

result in terms of accuracy and classification time. In a

work that involves neural network, Kanirajan and Kumar [63]

deployed Gaussian functions for their RBFNN. In the study,

the authors varied the weight by updating it at every iteration

so as to boost the classification accuracy.

4) COMPARISON AND DISCUSSIONS OF MLT

FOR PQD CLASSIFICATION

In Table 1, we summarize some recent works that involved

the deployment of MLTs in the detection and classifica-

tion of PQD events. The feature extraction techniques, opti-

mization/feature selection technique(s) adopted and machine

learning algorithm(s) that the authors deployed in the classi-

fication of PQD events are presented. As shown in Table 1,

the ideas of MLT approaches to PQD events detection and

classifications have been hugely successful. Furthermore,

it can be observed fromTable 1 that themost adoptedmachine

learning tools is the SVM as it guarantees efficiency and high

accuracy. In addition, it can be observed that the integrations

of optimization techniques have positive influences on the

classification results.

B. MLTs FOR SCADA NETWORK VULNERABILITIES

AND THREATS

The widespread cyber presence especially in the form of

advanced communication gadgets and IoT deployments in

today’s SCADA network have raised the power system’s

vulnerabilities to security threats, attacks and intrusions that

conventional security measures such as whitelisting, encryp-

tion algorithms, authentication, antivirus programs, firewalls,

traditional IDS, etc. are incapacitated as mitigation strate-

gies [45], [71], [72]. In the past decade, the world have

witnessed how various forms of cyberattacks on SCADA

network have geometrically increased [3], [45]. It is increas-

ingly imperative to devise effective IDSs that can efficiently

detect attacks and intrusions in early stages. The ability

of MLTs in autonomously learning, adapting to variations

and acting without being pre-programmed have enhanced

their reputation as credible methodologies for intelligent and

efficient IDSs in recent times. Traditionally, MLTs appro-

ach for SCADA network IDSs involve three major stages:

(1) dataset generation, (2) Data Preprocessing and (3) Clas-

sification/ Detection.

1) DATASET GENERATION STAGE

Traditionally, for an intruder to compromise a SCADA net-

work, it is predictable that the intruder will somehow create

a footprint or disruption no matter how marginal. SCADA

network attack mitigation using MLTs involves the capture

and analysis of SCADA network data traffic to build a train-

ing and testing dataset. Even though communication between

SCADA components can be performed by different network

protocols, the most widely deployed in the literature is the

MODBUS over TCP/IP [3], [28], [45]. However, due to

the unavailability of real-time SCADA dataset, researchers

make use of publicly available datasets such as the simulated

Mississippi State University (MSU) SCADA laboratory gas

pipeline dataset [28], [73], [74] and KDD99 dataset [75].

Other notable public dataset include the cybergym dataset [3],

UC Irvine machine learning repository dataset [73] and the

University of Arkansas’s National Center for Reliable Elec-

tric Power Transmission (NCREPT) testbed dataset [72]. It is

worth mentioning that some authors such as Shitharth [76]

and Gao et al. [45] simulated SCADA testbeds in their clas-

sification studies. Shitharth [76] designed a SCADA network

structures that comprises of 100 sensor nodes using Network

Simulator 2 to generate the SCADA datasets.

In a similar study, Gao et al. [45] simulated a SCADA

testbed using virtual host Nova as MODBUS master and

PLC by HoneyD as slaves to generate two separate datasets.

In order to have a balanced dataset for the classifiers’ training

and evaluation, some intrusive actions in form of cyberattacks

are usually integrated into the simulated testbeds. Typical

intrusive attacks into SCADA testbeds including command

injection, response injection and denial of service attack,

man-in-the-middle attack, etc. are usually incorporated into

the simulated testbed [3], [33], [46]. Sufficient network traf-

fic that contains both normal traffic and the abnormal traf-

fic (due to the intrusion) are captured as dataset for data

preprocessing.

2) DATA PREPROCESSING STAGE

Preprocessing processes such as feature reduction, selection/

extraction, mapping and scaling are highly important for

efficient SCADA intrusion classification [3], [74], [77]. The

main purpose of deploying these preprocessing techniques

is to have a well-organized dataset that can be used for

efficient training, testing and validation at the classification

stage. According to Ullah and Mahmoud [74], the prepro-

cessing procedures assist in removing irrelevant and redun-

dant features which can cause overfitting, skew predictions

and misclassification. The preprocessing techniques also

have positive influences on the classifications’ computation

time. Various preprocessing techniques such as categorical

labelling, cleaning, scaling, extraction, selection, standard-

ization and normalization are typically deployed on raw col-

lected SCADA network dataset. To reduce the dimension
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TABLE 1. Comparison of recently proposed MLT based approaches for PQD event classification using MLT.

of dataset, Khan et al. [78] used PCA, CCA and ICA.

To improve on the reduced data features, Khan et al. [78]

further used bloom filter and AllKNN for balancing and

re-sampling of the dataset deployed in their study. In a similar

study, Mansouri et al. [73] deployed, PCA, ICA, GHA,

SVD and SOM for dimension reduction to boost the NN
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classification accuracy in their SCADA security study. With

regards to feature extraction procedures, Kalech [3] deployed

five feature extraction methods including feature extraction

based on function code and feature extraction based on

time factor, etc. In a related work, Wang et al. [75] deployed

information gain for ranking dataset feature and for select-

ing dominant features before utilizing SVD to obtain a

low-dimensional approximation of the original feature. Ullah

and Mahmoud [74] also used information gain for ranking

features, InfoGainAtributeEval as evaluator and ranker as

search method and filter based approach for feature selec-

tion. In another related work, Perez et al. [28] used Gaussian

Mixture Model (GMM), K-means cluster, Zero imputation &

indicators and forward-filling techniques as data cleaning

methods in their SCADA IDS study.

3) DETECTION AND CLASSIFICATION STAGE

Various MLTs such as SVM [28], [32], [77], K-Nearest

Neighbour [78], [79], LR [75], various neural net-

works and deep neural networks including CNN [72],

RNN [30], [45], etc. have been extensively deployed for

SCADA network monitoring, intrusion prediction, detection

and classification studies in recent times. Logically, most

SCADA IDS models are binary classification, which makes

them well suited for SVM models. Hence, numerous forms

of SVM models have been proposed in the literature. Jiang

and Yasakethu [32] and Maglaras and Jiang [80] successfully

deployed K-Means clustered OCSVM in classifying data as

normal and flagging the anomalies into clusters. Explaining

the choice of OCSVM as the classifier deployed in their

study, Maglaras and Jiang [77] argued that unlike several

other MLTs, OCSVM do not need any labeled data for

training. Hence making it ideal in SCADA IDS environment.

In a similar study that adopted OCSVM, the author in [77]

successfully used a RBF kernel for training the developed

OCSVMclassifier. In a comparative study, Da Silva et al. [81]

compared the result of OCSVM with SVDD models in suc-

cessfully detecting SCADA system cyberattacks. The authors

revealed that both algorithms are well suited for the classifi-

cation task. Another prominent machine learning algorithm

that is well recognized in SCADA network IDS literature is

the neural network models. Kalech [3] described the efficacy

of SOM by combining it with HMM in successfully detect-

ing temporal patterns on two different MODBUS datasets.

In a related approach, Shitharith [76] deployed IWP-CSO

in optimizing the input features for a Hierarchical neuron

architecture based neural network (HNA-NN) classification

model.

Several authors in the literature ensemblemultiplemachine

learning algorithms as the limitation of one algorithm can be

boosted by its partner thereby creating better classification

algorithms that offer improved performances and robustness.

Nader et al. [33] ensemble SVDD and KPCA for classifying

intrusion on the MSU dataset. In a related work, the authors

in [82] successfully deployed CNN and RNN for cyberat-

tacks detection using a SWAT dataset. Also, Gao et al. [45]

ensemble LSTM-RNN and FNN for detecting cyberattacks

on a simulated SCADA testbed.

In order to identify which machine learning algorithm

is better suited for a particular dataset, several authors

explored different machine learning algorithms on the same

dataset. Beaver et al. [83] explored the feasibility of different

algorithms including NB, SVM, RF, OneR, J48, NNge in

detecting command and data attack injections into SCADA

network. From the achieved result, the authors acknowledged

NNge and RF as the best performers compared to the other

models. In a similar study, Qu et al. [84] deployed some

supervised learning models including DT, KNN, SVM, RF,

LR and OCSVM for SCADA network traffic IDS. From

the result, the authors acknowledged OCSVM as the best

performer. In a similar comparative study, Perez et al. [28]

compared the performance of SVM and RF using Mean,

standard deviation and min-max approaches in classifying

both binary and a 7-class dataset that contains 20 features of

MODBUS packet datasets.

4) COMPARISON AND DISCUSSIONS OF MLT APPROACH

FOR SCADA NETWORK IDS

Table 2 presents the summary of some recent research works

that deployed the use of MLTs for SCADA network intru-

sion detection schemes. In Table 2, we present a summa-

rized description of the dataset simulation/deployed, the data

preprocessing/ optimization technique(s) adopted and the

machine learning algorithm(s) that some authors in recent

literature deployed in the classification of SCADA dataset.

As shown in Table 2, the deployment of machine learn-

ing algorithms for SCADA network intrusion detection and

classification studies have been successful. From Table 2,

the accuracy achieved explained that most of the attacks

that were integrated into the various systems have been

reliably detected or classified. However, as most research

works depend solely on simulated testbeds and open source

datasets, most of the proposed schemes cannot be used to

efficiently evaluate the potency of the model in practical real

life systems.

C. MLTs FOR TSA

Power system stability monitoring and assessment with

regards to its operation positioning neat stability mar-

gins is highly important for the efficient operation of the

infrastructure [85]. The conventional TSA methods are

computationally incompetent in handling large scale modern

power system due to the enormous data involved. A report

stated that an estimated 2500 PMU devices was installed

in Chinese North Interconnection and each of them records

more than 30 features every 20 milliseconds [84]. With

such huge amount of data collected at high speed, using

conventional TSA methods including time domain simula-

tion and transient energy function alone are computationally

intensive and may not meet the requirements of modern-day

real-time TSA. Researchers in recent times have therefore

turned to MLT, RL, DL and DRL approaches. These learning
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TABLE 2. Comparison of recently proposed MLT based approaches for SCADA network protection.

techniques have been heavily deployed in recent studies pecu-

liar to power system control problems including TSA studies.

Different from conventional methods, these techniques have

the capacity to process large amounts of PMU data, analyze

them and classify the corresponding stability state of a system

accordingly [86]. Malbasa et al. [87] explained that machine

learning approach has the generalization ability whereby

properly trained data-basedmodel canmake accurate stability

predictions. The rest of this subsection first described the

steps of MLTs approach to TSA. The subsection also briefly

described a review of RL, DL and DRL approaches to TSA.

With regards to MLTs approach, the steps for conventional

methodologies are: feature generation, preprocessing and

classification/prediction.

1) FEATURE GENERATION

The generation of input vector sets is identified as the

first and the most important step in establishing reliable

TSA model analysis [88]. Widespread use of phasor mea-

surement units (PMU)- based wide area measurement sys-

tem (WAMS) have assisted in the acquisition of synchronized

measurements thus allowing the possibility of implementing

advanced wide-area protection, decision making and control

operations. Synchronously sampled power system variables

provided by phasor measurement units (PMUs) collected

before and/or immediately after clearing a fault have been

utilized as data samples for TSA studies in numerous liter-

ature [89]–[92]. As the selection of the appropriate features

is an important criteria for TSA, most studies involving MLT
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approach to TSA usually resort to the generation/extraction of

these feature sample data through TDS processes [89], [91],

[93], [94]. As explained by Mosavi et al. [85], one major

concern in TSA studies is the selection of proper trajectory

features. In numerous studies, different trajectories such as

terminal voltage amplitudes, rotor variables including angles

and rotor speed [91], [95], [96] are used as predictors to

judge whether the system is stable or not. Using a different

approach to TDS, He et al. [97] utilized pattern identification

strategy using dominant instability generator grouping based

on shortest path algorithm for selecting input features. Sim-

ilarly, Zhou et al. [5] used bootstrapping technique to gen-

erate dataset samples for the proposed prediction algorithm

in their TSA study. To generate input data for their algo-

rithm, Mosavi et al. [85] used a set of size and type inde-

pendent trajectory features (s&tIFs) that measures suitable

awareness level of the network status and its distance from

instability.

2) FEATURE PREPROCESSING AND OPTIMIZATION

In order to remove redundancies and improve classifica-

tion and prediction of transient instability, various authors

have proposed numerous feature reduction, selection and

optimization techniques that fits the type of datasets and

classification algorithms they proposed. In the TSA study

conducted by Li and Yang [90] using PMU post fault

data, the authors were able to reduce the features of their

dataset to one-third using binary jaya feature selection tech-

nique. In a similar study, Li et al. [94] deployed a fea-

ture selection method based on kernelized fuzzy rough sets

(KFRS) and memetic algorithm. Also, the authors in [98]

chose Sequential Forward Selection (SFS) as feature selec-

tion method for their proposed TSA algorithm. In another

related work, Zhang et al. [99] argued that PSO has better

optimization ability and better searching efficiency com-

pared to other conventional optimization techniques, hence

the authors deployed PSO in the ELM prediction based

TSA study.

3) CLASSIFICATION/PREDICTION

Usually, MLT based TSA studies in the literature

usually adopt the ‘offline training, online application’

model [95], [99] whereby the training model is performed

offline and the TSA testing is done online. In order to mini-

mize misclassification cost, He et al. [100] deployed boosting

algorithms to build the classificationmodel as a weighted vot-

ing of multiple DTs. In another study, Wang et al. [86] used

core vector machines for its offline training procedure. In a

similar study, Mahdi and Genc [101] used a generated dataset

to train a multilayer perceptron offline before it was deployed

for online TSA testing. In most recent studies in the literature,

the testing of the various proposed schemes for transient

stability studies are conducted using the IEEE 39-bus test

system popularly known as the New England test system [5],

[89]–[91], [96]. Various generators and loads variation are

usually modelled, with various considered contingencies

which include three-phase to ground short-circuit faults etc.

and fault clearing times are varied in cycles. Despite the

numerous success that have been achieved using the ‘offline

training, online application’ model’, Li and Yang [90] argued

that the ‘offline training, online application’ is inapplicable

in the real world as offline generated training sets cannot

exhibit all the attributes expected of the time-varying modern

power system. Furthermore, the authors explained that when

a model is not satisfied with some of the sample data during

the online application, the offline training is conducted all

over.

Historically, since Sobajic and Pao [102] employed ANN

for critical fault clearing 30 years ago, numerous authors

have deployed varieties of ANN for successful TSA clas-

sifications [96], [103]. Notably, some other MLTs such as

SVM [5], [95], KNN [97], DT [92], Bayesian [91], etc.

have also been successfully deployed for TSA classifica-

tions in the literature. Owing to its capability to map non-

linear relationship between inputs and outputs, Lin [103]

claimed that neural networks are superb classifiers for tran-

sient stability studies as their outcomes can be continuous

such that the margins and boundaries for transient stability

can appear smoother. Conversely, He et al. [100] argued that

DTs are excellent choices for building online DSA classifier

as they have good interpretability which makes them well

suited for TSA studies. Similarly, Kamwa et al. [104] also

explained that DTs are good classifiers as they perform well

with regards to cluster problems. As a viable alternative,

the application of SVM for TSA studies have been men-

tioned repeatedly in the literature. Supporting the motion

that SVM are excellent classifiers for TSA, Zhou et al. [5]

explained that apart from the good prediction guaranteed

using SVM, SVM can calculate the ‘‘distance’’ between an

instance and stable boundary, which can be further used

to define the confidence index. However, Tian et al. [105]

clarified that despite the numerous advantages that SVM

brings, their deficiency lies with the parameter selection and

a wrong choice will result in poor classification. On the

other hand, Random forest based TSA is another area that

is showing a lot of promise as RF models can calculate

feature weights and sort features in ranking order accord-

ing to the weights [93]. Compared to other learning algo-

rithms, the authors in [106] and [107] explained that ELM

has superb generalization performance with quicker learn-

ing speed. Also, the authors in [36] used LSTM in their

TSA study.

As ensemble paradigm are known to present more

accurate classification models compared to single MLTs,

Zhou et al. [5] andYuanhang et al. [108] presented ensemble

classifiers using multiple SVMs. In a related TSA work that

involves ensemble approach, Xu et al. [109] used an ensemble

structures of multiple ELMs for TSA training and classifica-

tion. Deploying a different approach. Baltas et al. [88] pre-

sented a comparative study using three different algorithms
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(DT, SVM and ANN) with the aim of suggesting which

algorithms is more suited for the deployed data.

4) REVIEW OF RL AND DRL APPROACHES TO TSA

The past few years have seen increasing efforts concen-

trated on the application of RL and DRL in various decision

making and control problems such as power system studies

most especially with regards to TSA and emergency con-

trol [47], [99]. As explained by Yang et al. [110], the mod-

elling of RL is synonymous to the process of human learning

knowledge. Thus, RL algorithms do not necessarily require

the complete dynamics of an environment in order to learn,

they can learn self-improvement sorely by judging the feed-

back from its own experience in the environment. Various

power system security and stability devices such as power

system stabilizer have been modelled based on RL algo-

rithms. Similarly, Glavic [111] designed a resistive brake

controller that is based on RL algorithm. According to the

authors in [47], the architectural structure of the application of

RL in power system stability and control studies involves two

stages namely: learning and execution. While the learning

stage refers to the usual RL implementation, the execution

stage deploy the knowledge acquired from the learning stage

for decision making. As TSA crisis can be considered as a

wide-area control systems’ (WAC) crisis, Druet et al. [112]

investigated the deployment of RL usingMonte Carlo control

to define the switching control law for tripping generators in

order to avoid loss of synchronism.

However, due to scalability challenges, traditional RL

algorithms struggle especially with regards to large scale

power system.As viable alternatives, RL have been combined

with DL to form DRL algorithms which can implement vari-

eties of tasks requiring high dimensional raw input and policy

control [48]. As explained in [113] the rise of DRL is linked

to the evolution of the powerful deep neural networks. The

authors in [114]–[116] designed various Wide Area Control

(WAC) strategies to boost transient stability using various

RL and DRL methods. Using a modified IEEE 68 bus as

test system, Yousefian et al. [116] proposed a WAC design

using RL and NN, which optimizes the closed-loop perfor-

mance of a wind integrated power grid through Approximate

Dynamic Programming (ADP). From the simulation result

achieved, the authors were able to provide transient stability

index which guarantees the system’s convergence to post-

fault equilibrium. Similarly, Zhang et al. [89] used RBM to

extract trajectory cluster features which as set as inputs for a

DBN classifier.

5) COMPARISON AND DISCUSSIONS OF MLT APPROACH

FOR TRANSIENT STABILITY ASSESSMENT

Table 3 presents the summary of some recent research works

that deployed the use ofMLTs for TSA. In Table 3, we present

a summarized description of the test system, the preprocess-

ing/optimization technique(s) adopted and machine learning

algorithm(s) that some authors in recent literature deployed

in TSA studies.

D. MLTs FOR VOLTAGE STABILITY ASSESSMENT

Various blackout events have shown how crucial the man-

agement of reactive power and more importantly the mon-

itoring and evaluation of voltage stability status is a key

issue for maintaining global stability of modern power sys-

tem [117], [118]. Conventional methods of analyzing voltage

stability such as the calculation of the P-V and Q-V curves at

selected load buses using numerous numbers of load flows in

traditional models have shown worrying limitations [43].

Sajan et al. [119] and Velayati et al. [117] explained that,

apart from the fact that some of the traditional methods

disregard the dynamic behaviors of modern power system,

the methods require comparatively large computations [120]

and they do not provide a detailed practical information on the

stability problems [43]. In recent years, the use of MLTs have

been identified as a promising alternative for overcoming

the various shortfalls of the conventional voltage stability

methods [118], [121]. The process of MLT approach to VSA

is divided into two main stages.

1) FEATURE GENERATION AND SELECTION PROCESS

As explained by Goh et al. [43], power system can be classi-

fied as being in the voltage stability region if it can main-

tain steady acceptable voltages at all buses in the system

under normal operating conditions and after being sub-

jected to a disturbance. Conventionally, the typical input

vectors for MLT based VSA are retrieved as voltage phasor

from PMUs.

Similar to TSA, the input vectors are usually used to train

the classifier’s algorithms mostly through offline training

and the output vector is the Voltage Stability Margin Index

(VSMI) [119], [120], [122]. Diao et al. [123] pre-trained a

DT algorithm offline using a voltage security analysis con-

ducted using the past representative and forecasted daily

operating conditions that involves 29 different scenarios for

an American Electric Power (AEP) test system. In the study,

synchronized feature attributes are obtained in real time

using PMU devices and compared with the offline thresholds

determined by the DTs to assess stability status. As voltage

stability monitoring models are highly nonlinear complex

models with large volume of dataset involved, the need for

feature selection and reduction is highly important. Moham-

madi and Dehghani [124] explained that the large quantities

of power system attributes are not appropriate to be used

directly as classifier’s inputs. Hence, several feature extrac-

tion methods have been proposed in the literature. In an effort

to boost the efficiency and accuracy of a developed SVM

based VSA approach, the authors in [125] deployed multi-

objective optimization for the selection of features for the

SVM training. Similarly, the authors in [124] deployed both

PCA and correlation analysis techniques as feature reduction

and feature selection technique respectively in their DT based

voltage stability study. In another related study, Bahmanyar

and Karami [6] reduced a developed ANN inputs signifi-

cantly using GSO. In a similar study, Xu et al. [121] chose
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TABLE 3. Comparison of recently proposed MLT based approaches for voltage stability TSA.

RELIEF algorithm as the feature selection technique for a

developed NNRW training.

Furthermore, to improve the accuracy, reduce generaliza-

tion error and training time, various optimization techniques

have been deployed to optimize machine learning param-

eters in VSA studies. Owing to its excellent performance

with regards to generalization errors, GA has been widely

deployed in the literature for VSA. While Sajan et al. [126]

deployed GA to boost the performance of a modelled SVM

parameter, the authors in [120] used GA to improve the

parameter tuning of a modelled ANN. As an alternative

to GA, the author in [119] opted for ICA for tuning the

ANN meta-parameters in their VSA study. In another work,

Jayasankar et al. [8] deployed linear optimization for the

modelled FFBPN.

2) CLASSIFICATION OF VOLTAGE STABILITY MARGIN INDEX

Prominent machine learning algorithms such as NN [39],

[119], [120], [122], [127] and DT [123], [124] have

been deployed in various voltage stability studies most

especially in predicting the voltage stability margin index

(VSMI). Zhang et al. [41] explained that, by learning from

a voltage-stable database, the nonlinear mapping relation-

ship between the power system operating parameters (input)

and the voltage stability margin (output) can be mined

and reformulated efficiently using neural networks. Also,

Jayasankar et al. [8] described the computation time for

ANN as very small and it gives incredible VSMI accuracy

values. However, ANN have limitations, Zhang et al. [41]

argued that traditional neural networks learning algorithms

usually suffer from excessive training and the parameter

tuning can be worrisome, then leading to substandard gen-

eralization performance. As a viable alternative, ELM have

been deployed by some authors as they can learn faster

and predict VSMI more accurately. Velayati et al. [117] and

Zhang et al. [41] successfully deployed ELM in classifying

VSM. In a related study, while deploying NNRW for short

term voltage instability problem, Xu et al. [121] argued that

NNRW are better options compared to traditional NN as they

have efficient tuning mechanisms which makes them highly
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TABLE 4. Comparison of recently proposed MLT based approaches for voltage stability assessment.

suited for VSM classification. As alternatives to various neu-

ral networks methods, numerous studies in the literature has

successfully deployed DT for VSA studies. Mohammadi and

Dehghani [124] clarified that, with regards to less dataset

samples, DT has simpler splitting rules and performs excel-

lently in online voltage assessment classification. Another

possibility is the prospect of SVM for VSA studies. By using

the same dataset, Sajan et al. [126] compared the results of

an optimized SVM with two modelled neural network and

conveniently achieved better result from the optimized SVM

approach. In another comparative study involving SVM, neu-

ral network and Adaptive Neural Fuzzy Inference System

(ANFIS) models in a load-ability margin estimation study,

Suganyadevi and Babulal [128] achieved the best result from

the developed SVM model.

3) COMPARISON AND DISCUSSIONS OF MLT APPROACH

FOR VOLTAGE STABILITY ASSESSMENT

Table 4 presents the summary of some recent research works

that deployed the use of MLTs for the prediction, monitoring

and analysis of voltage stability assessment. Table 4 presents

a summarized description of the test system employed,

the data preprocessing/optimization technique(s) adopted,

machine learning algorithm(s) that some authors in recent

literature deployed in VSA studies.

V. RESEARCH GAPS AND FUTURE DIRECTIONS

Despite the astonishing accomplishments that have been

achieved in the application of MLTs for power system secu-

rity and stability studies, a number of challenges still remain

unsolved. The prediction and detection accuracy of MLTs

are known to depend majorly on the quality and quantity

of the dataset and test systems employed. However, due to

the non-availability and inadequacy of realistic power system

data from real power stations and field devices, scholars

and researchers have been restricted to the use of simulated

datasets, open source datasets and the development of scal-

able testbeds which have shown inconsistency in predictions

and classifications. Also, apart from the number of input

dataset, another important factor that is peculiar to machine

learning applications is the tuning of the parameters. The

rigorous events performed in tuning the parameters so as to

achieve desired results means the MLT approaches requires

a high level of expert interaction and they can sometimes be

time consuming. Furthermore, most articles in the literature

usually assume that PMU data are complete, trustworthy and
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available for online use. In the real world, the measurements

may not always be available due to jamming, malfunctioning

or even attacks.

With regards to MLT approaches to SCADA network

intrusion mitigation, most research works typically train the

developed algorithms using network traffic from open source

datasets which mostly are outdated and are no longer relevant

with regards to new cyberattack trends. With the high rate of

newly developed sophisticated cyberattacks being witnessed

worldwide, creating a solution to an outdated problem can be

irrelevant.

Furthermore, the dependency on traditional schemes such

as TDS for feature extractions in MLT based TSA is rec-

ognized as a strong determinant in TSA accuracy. However,

being a conventional method, TDS is well-known for its com-

putational complexity especially with regards to large scale

power system. Better and faster means of feature extractions

for machine learning approach to stability studies can be a

focus for future research works.

Also, the issue of offline training and online testing that

is peculiar with MLT based stability approach can be a huge

liability. Conventionally, most research works deploy static

post faults power flows for classifier training offline. How-

ever, it is well known that modern power system is robust and

they have various measures in place to control, protect and

restore the systems especially after suffering a disturbance.

Therefore, class imbalance crisis cannot be overlooked as it

is unrealistic to depend on only the static post fault data in

evaluating the stability of the systems. The training samples

generated during offline simulations may not be a relevant

representation of the current or future status of the power

system. Hence, deploying the offline training process may

inevitably lead to a poor applicability of the trained model

when it is deployed for online TSA testing.

Future research work on MLT based approach to power

system security and stability menaces should focus on

detailed validation of the approaches using large scale test

system which have similar characteristics as modern power

system.

VI. CONCLUSION

In recent times, power system security and stability has been a

major concern to all energy stakeholders especially the oper-

ators. Operators must be well equipped in timely recognition

of potential intrusion, attacks, disturbances, and situational

awareness. The deployment of conventional methods has

shown flaws especially in terms of resiliency and adaptation

to the trends of current and future power system. To address

these problems, this paper presents a comprehensive review

of the most recent MLT based approaches to addressing the

dominant power system menaces: power quality disturbance,

SCADA network vulnerability and threats, transient stability

assessment and voltage stability assessment. Unlike many

of the previously published works, the paper addresses the

methodologies applied, the limitations, drawbacks and future

TABLE 5. Definitions of all acronyms mentioned in the paper.

directions of the most recent trends in MLT applications to

power system security and stability solutions.

APPENDIX

Table 5 presents all the acronyms used in the paper.
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