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Abstract

The decline of the number of newly discovered mineral deposits and increase in demand for different minerals in recent years
has led exploration geologists to look for more efficient and innovative methods for processing different data types at each stage
of mineral exploration. As a primary step, various features, such as lithological units, alteration types, structures, and indicator
minerals, are mapped to aid decision-making in targeting ore deposits. Different types of remote sensing datasets, such as satellite
and airborne data, make it possible to overcome common problems associated with mapping geological features. The rapid increase
in the volume of remote sensing data obtained from different platforms has encouraged scientists to develop advanced, innovative,
and robust data processing methodologies. Machine learning methods can help process a wide range of remote sensing datasets
and determine the relationship between components such as the reflectance continuum and features of interest. These methods are
robust in processing spectral and ground truth measurements against noise and uncertainties. In recent years, many studies have been
carried out by supplementing geological surveys with remote sensing datasets, which is now prominent in geoscience research. This
paper provides a comprehensive review of the implementation and adaptation of some popular and recently established machine
learning methods for processing different types of remote sensing data and investigates their applications for detecting various ore
deposit types. We demonstrate the high capability of combining remote sensing data and machine learning methods for mapping
different geological features that are critical for providing potential maps. Moreover, we find there is scope for advanced methods
such as deep learning to process the new generation of remote sensing data that provide high spatial and spectral resolution for
creating improved mineral prospectivity maps.
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1. Introduction

One of the fundamental steps in mineral exploration is lo-
calizing the geological features related to target mineralization
by providing and investigating geological maps. These maps
involve different features such as lithological units, alteration
types, structures, and indicator minerals (Brimhall et al., 2005;
Ninomiya et al., 2005; Rowan et al., 2006; Gad and Kusky,
2007; Beiranvand Pour et al., 2019a). Over time, geological
mapping methods have evolved; and nowadays, the combina-
tion of remote sensing data and advanced data analytics such
as machine learning is gaining much attention (Cracknell and
Reading, 2014; Harvey and Fotopoulos, 2016; Bachri et al.,
2019; Chakouri et al., 2020). This combination helps geolo-
gists overcome common challenges of traditional methods such
as subjective judgment that can provide reliable maps and avoid
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wasting money on prospecting for barren regions.
There are numerous difficulties associated with mapping geo-
logical features, particularly in areas that are hard to access.
Traditionally, this task has been carried out by expert knowl-
edge of survey lines, navigation systems, and data collection in
the field. Moreover, fieldwork is affected by climate conditions,
topography, field experts, and operating approaches (Latifovic
et al., 2018; Sang et al., 2020). Remote sensing data collected in
different spatial, spectral, and temporal resolutions enable geol-
ogists to provide a solution for most of the challenges and short-
comings involved with geological field mapping (Harris et al.,
2011; Beiranvand Pour and Hashim, 2016; Dai et al., 2017).
Based on the data type and exploration stage, geological maps
can be created on small or large scales (Usui and Okamoto,
2010; Bartalev et al., 2014). Remote sensing technology can
play an important role in geological survey, mapping, analysis,
and interpretation. It offers a unique ability to investigate ge-
ological features of remote regions on the Earth’s surface (Al-
Nahmi et al., 2017).
Remotely sensed multispectral imaging (MSI) has historically
been used for the visual analysis of geological formations and
lithological units (Goetz and Rowan, 1981). Early studies with
prototypes of airborne imaging spectrometers (AIS) demon-
strated their ability for detecting different features such as in-
dicator minerals (Asadzadeh and de Souza Filho, 2016). The
use of satellite imagery for mapping geological features has
been extended with the latest advances in multispectral and hy-
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perspectral remote sensing instruments such as enhanced the-
matic mapper plus (ETM+), operational land imager (OLI), ad-
vanced space-borne thermal emission and reflection radiome-
ter (ASTER), and Hyperion (Rezaei et al., 2020). A new in-
sight into geological mapping improvement has been offered by
remote sensing data and innovations in digital image process-
ing methods (Bachri et al., 2019). Lithological discrimination
(Leverington and Moon, 2012; Black et al., 2016; Testa et al.,
2018; Metelka et al., 2018; Ninomiya and Fu, 2019), alteration
(Rowan et al., 2006; Kratt et al., 2010) and structural mapping
(Raharimahefa and Kusky, 2009), and delineating rocks and
minerals (Mahanta and Maiti, 2018) have been made possible
by processing spectral images obtained by airborne to space-
borne instruments.
The unprecedented rise in the diversity of remote sensing data
obtained from different platforms, as well as ground measure-
ments, has enabled scientists to provide innovative and effective
methodologies for data processing (Ali et al., 2015). A large
number of image processing methods have been developed over
the last decades to identify, discriminate, and enhance features
such as lithological units, alteration zones, and structures to aid
in discovering mineral deposits using remote sensing data (Shir-
mard et al., 2020). Image processing methods are mainly used
for enhancement, feature extraction and detection, segmenta-
tion or classification, fusion, change detection, and compres-
sion of satellite images (Asokan et al., 2020). These tasks are
conducted by applying various mathematical algorithms to ex-
tract useful information (Babbar and Rathee, 2019).
The abundance of computational power and the advent of big
data and machine learning help geologists overcome the issues
they need to deal with during different stages of mineral explo-
ration. Mathematical geologists have adopted advanced com-
puter and software tools for tasks such as data interpolation
(e.g., using geostatistical methods) (van der Meer, 1994), map-
ping singularities (Cheng, 1999), separating anomalous zones
(Cheng, 2007), and integrating data layers (Farahbakhsh et al.,
2020b). The new knowledge obtained through digital anal-
ysis and novel methods of data mining is greatly benefitting
human decision-making. Machine learning as a subdomain
of artificial intelligence has been considered reliable since it
can accurately and efficiently classify remotely sensed imagery
(Maxwell et al., 2018). The combination of machine learning
with other methods like geostatistics can also help in analyz-
ing remote sensing data (Varouchakis et al., 2021). However,
this combination has less been considered for mineral explo-
ration. Machine learning makes it possible to manage high
dimensional data and map features with complicated charac-
teristics (Maxwell et al., 2018). The combined use of remote
sensing data and machine learning algorithms have proven to
facilitate and improve mineral exploration. Machine learning
methods draw a growing interest in the area of remote sensing
data analysis as a solution to the problems of geological or min-
eral exploration (Bachri et al., 2019). It is important to provide
a roadmap of work in this area of interest, given the rapid de-
velopment of machine learning and deep learning methods.
In this paper, we provide a comprehensive review of the ap-
plication and adoption of machine learning methods in remote

sensing data processing for modeling geological patterns and
exploring ore deposits. Firstly, we discuss the characteristics of
remote sensing data that are popular in the community of explo-
ration geologists and obtained by satellites, airplanes, drones,
and ground-based instruments. Secondly, we review the appli-
cation of remote sensing data in mapping lithological units, al-
teration types, structures, and indicator minerals known as key
features in discovering ore deposits. Thirdly, we look into the
progress of the most popular and recently used machine learn-
ing methods for processing remote sensing data focusing on
mineral exploration. We classify the machine learning meth-
ods in our study into five groups that include dimensionality re-
duction, classification, clustering, regression, and deep learning
methods. Finally, we discuss challenges and highlight potential
future works given interdisciplinary focus of our review. This
paper provides a roadmap of the development of the field with
some of the most recent deep learning approaches that have not
been used for remote sensing beforehand, such as graph deep
learning methods, Bayesian deep learning, variational autoen-
coders, and other newcomers such as transformer recurrent neu-
ral networks.

2. Methodology

We begin by providing a categorization scheme that groups
different machine methods and then present a literature review
of machine learning methods relevant to the mineral exploration
industry. We review those publications demonstrating the ap-
plication of such methods in remote sensing data processing
via detection of geological target features. The main keywords
used for searching documents on Google Scholar and Scopus
include ”machine learning”, ”remote sensing”, and ”mineral
exploration”, determined by consulting with experts and ac-
cording to previous studies. Moreover, we use appropriate key-
words to search for the documents focused on applying machine
learning methods for delineating geological target features, in-
cluding lithological units, alteration types, structures, and indi-
cator minerals known as key elements in mineral exploration
that can be mapped using remote sensing data.
We plot the frequency of publications on this topic using dif-
ferent keywords. Figure 1a shows the number of publications
in recent years using the keywords of ”machine learning” and
”remote sensing” based on the results obtained by searching
documents in the Scopus research publication database. Figure
1b shows the number of publications using the keywords that
include ”machine learning”, ”remote sensing”, and ”mineral”.
Figure 1c shows the number of publications using the keywords
that include ”machine learning”, ”remote sensing”, and ”min-
eral exploration”, which are in the scope of this review paper.
As shown in these plots, the number of publications that focus
on the applications of machine learning methods in process-
ing remote sensing data has continuously increased in the last
decade.
Remote sensing is a broad field with a wide range of appli-
cations, and only a small portion of these studies are related
to mineral exploration. Although the number of publications
shown in Figure 1c is much lower than Figure 1a, both show
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Figure 1: Number of publications in the last decade based on the Scopus re-
search publication database and obtained by searching keywords: a) “machine
learning” and “remote sensing”, b) “machine learning”, “remote sensing”, and
‘mineral’, and c) “machine learning”, “remote sensing”, and “mineral explo-
ration”.

an increasing trend that indicates the combination of remote
sensing data and machine learning methods is a hot topic and
is gradually getting attention from industry experts and re-
searchers. The low number of publications in Figure 1c also
reveals the gap for developing the application of remote sens-
ing and machine learning methods in detecting mineral deposits
with potential benefits to the community of exploration geolo-
gists.

3. Remote sensing data

Our focus is to review and categorize remote sensing data
that are usually used for mapping geological features, par-
ticularly related to mineralization based on previous stud-
ies. The data acquiring platforms include satellites, airborne,
and ground-based instruments (Prost, 2014; Toth and Jóźków,
2016). We summarize the characteristics of different popular
remote sensing data in mineral exploration based on their plat-
forms in Table 1.

3.1. Satellite data

In general, satellite datasets are acquired by passive and ac-
tive remote sensing systems differentiated by the source of en-
ergy used to collect data. Passive systems rely on ambient en-
ergy from an external source, mostly the sun on Earth, while

active systems create their own energy. Optical and radar (ra-
dio detection and ranging) data, that are categorized as passive
and active remote sensing data, respectively, constitute the most
important data types used for geological mapping. Optical sen-
sors measure the intensity of the electromagnetic spectrum over
a small range of wavelengths, and the resulting electronic sig-
nal is referred to as a channel when processed (Lee et al., 2020).
On the other hand, a radar remote sensing system works in the
microwave portion of the electromagnetic spectrum, defined as
wavelengths between 1 millimeter (mm) and 1 meter (m) (Zhou
and Guan, 2011). Next, we review both data types in mapping
important features for detecting potential mineralization zones.

3.1.1. Optical data
Landsat satellites are the most famous satellites that provide

optical data and have been widely used in geological mapping.
They have continuously monitored Earth’s surface to satisfy
various information and data requirements for more than four
decades (Wulder et al., 2008). Among these satellites, Landsat
5, Landsat 7, and Landsat 8 have been more of interest to ex-
ploration geologists for mapping different geological features in
recent years. Landsat 5 was launched in 1984, and in addition
to the multispectral scanner (MSS), it carried the thematic map-
per (TM) sensor. The TM sensor gathered data in seven bands
in the visible, shortwave infrared, and thermal regions. The TM
sensor’s spatial resolution is 120 m for the thermal band and 30
m for the other bands (Banskota et al., 2014).
Landsat 7 was launched on 15 April 1999 and carries the ETM+

sensor. It acquires data in eight spectral bands with different
spatial resolutions, including visible and near-infrared (VNIR)
bands 1–4 and shortwave infrared (SWIR) bands 5 and 7 with a
spatial resolution of 30 m and panchromatic band 8 with a spa-
tial resolution of 15 m. The thermal infrared band 6 provides a
spatial resolution of 60 m (Rajan Girija and Mayappan, 2019).
Geologists benefit from using shortwave infrared bands because
they are sensitive to soil and rock content changes, making it
possible to differentiate some basic rock types. Landsat 8 was
launched on 11 February 2013 and carries two sensors, includ-
ing OLI and thermal infrared sensor (TIRS). It offers images
in 11 spectral bands with the same resolution as that of ETM+

in the VNIR and SWIR bands 1–7 and the panchromatic band
8. The spatial resolution of band nine that is used for cirrus
cloud detection is 30 m. The last two thermal bands of 10 and
11 have a 100 m resolution. The spectral ranges of OLI bands
are designed to prevent the atmospheric absorption properties
within the ETM+ bands (Zhang et al., 2016). In the band 4
(0.780–0.900 µm) of the ETM+ sensor, the water vapor absorp-
tion characteristics exist at 0.825 µm and they are eliminated in
OLI by adding band 4 (0.630–0.680 µm) and band 5 (0.850–
0.880 µm) (Zhang et al., 2016).
ASTER is part of the Earth observation system (EOS) Terra
platform and tracks solar radiation in 14 spectral bands.
ASTER measures reflected radiation in three bands ranging
from 0.52 to 0.86 µm (VNIR) and six bands ranging from 1.6 to
2.43 µm (SWIR) with a resolution of 15 and 30 m, respectively.
ASTER has five bands in the range of thermal infrared (TIR)
from 8.125 to 11.65 µm wavelengths. Each scene in ASTER
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Table 1: Characteristics of popular remote sensing data obtained by different platforms that are used for mapping geological features.
Satellite/Sensor Subsystem Band Number/Name Spectral Range (µ) Ground Resolution (m) Swath Width (km) Year of Launch

Landsat 5

MSS

Band 4 Green 0.50–0.60

57×79

185 1984

Band 5 Red 0.60–0.70
Band 6 NIR 1 0.70–0.80
Band 7 NIR 2 0.80–1.10

TM

Band 1 Blue 0.45–0.52

30
Band 2 Red 0.52–0.60
Band 3 Green 0.63–0.69
Band 4 NIR 0.76–0.90
Band 5 SWIR 1 1.55–1.75
Band 6 Thermal 10.40–12.50 120
Band 7 SWIR 2 2.08–2.35 30

Landsat 7 ETM+

Band 1 Blue 0.45–0.52

30

185 1999

Band 2 Red 0.52–0.60
Band 3 Green 0.63–0.69
Band 4 NIR 0.77–0.90
Band 5 SWIR 1 1.55–1.75
Band 6 Thermal 10.40–12.50 60
Band 7 SWIR 2 2.08–2.35 30
Band 8 Panchromatic 0.52–0.90 15

Landsat 8
OLI

Band 1 Coastal Aerosol 0.43–0.45

30

185 2013

Band 2 Blue 0.45–0.51
Band 3 Green 0.53–0.59
Band 4 Red 0.64–0.67
Band 5 NIR 0.85–0.88
Band 6 SWIR 1 1.57–1.65
Band 7 SWIR 2 2.11–2.29
Band 8 Panchromatic 0.50–0.68 15
Band 9 Cirrus 1.36–1.38 30

TIRS Band 10 TIRS 1 10.60–11.19 100Band 11 TIRS 2 11.50–12.51

ASTER

VNIR
Band 1 0.520–0.600

15

60 1999

Band 2 0.630–0.690
Band 3 0.780–0.860

SWIR

Band 4 1.600–1.700

30

Band 5 2.145–2.185
Band 6 2.185–2.225
Band 7 2.235–2.285
Band 8 2.295–2.365
Band 9 2.360–2.430

TIR

Band 10 8.125–8.475

90
Band 11 8.475–8.825
Band 12 8.925–9.275
Band 13 10.250–10.950
Band 14 10.950–11.650

4



Continued from the previous page.
Satellite/Sensor Subsystem Band Number/Name Spectral Range (µ) Ground Resolution (m) Swath Width (km) Year of Launch
WorldView-1 Panchromatic 0.45–0.90 0.5 17.6 2007

WorldView-2

Panchromatic 0.450–0.800 0.46

16.4 2009

Bnad 1 Coastal Blue 0.400–0.450

1.84

Bnad 2 Blue 0.450–0.510
Bnad 3 Green 0.510–0.580
Band 4 Yellow 0.585–0.625
Bnad 5 Red 0.630–0.690
Band 6 Red Edge 0.705–0.745
Bnad 7 NIR 1 0.770–0.895
Band 8 NIR 2 0.860–1.040

WorldView-3

Panchromatic 0.450–0.800 0.31

13.1 2014

VNIR

Coastal Blue 0.400–0.450

1.24

Blue 0.450–0.510
Green 0.510–0.580
Yellow 0.585–0.625
Red 0.630–0.690
Red Edge 0.705–0.745
NIR 1 0.770–0.895
NIR 2 0.860–1.040

SWIR

Band 1 1.195–1.225

3.7

Band 2 1.550–1.590
Band 3 1.640–1.680
Band 4 1.710–1.750
Band 5 2.145–2.185
Band 6 2.185–2.225
Band 7 2.235–2.285
Band 8 2.295–2.365

CAVIS

Desert Clouds 0.405–0.420

30

Aerosols 1 0.459–0.509
Green 0.525–0.585
Aerosols 2 0.620–0.670
Water 1 0.845–0.885
Water 2 0.897–0.927
Water 3 0.930–0.965
NDVI-SWIR 1.220–1.252
Cirrus 1.350–1.410
Snow 1.620–1.680
Aerosol 3 2.105–2.245
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Continued from the previous page.

Satellite/Sensor Subsystem Band Number/Name
Spectral Range (µm)/

Frequency Ground Resolution (m) Swath Width (km)
Year of Launch/

First Flight or Operation

Sentinel-2

Band 1 Coastal Aerosol 0.433–0.453 60

290 2015

Band 2 Blue 0.458–0.523
10Band 3 Green 0.543–0.578

Band 4 Red 0.650–0.680
Band 5 Red Edge 1 0.698–0.713

20Band 6 Red Edge 2 0.733–0.748
Band 7 Red Edge 3 0.773–0.793
Band 8 NIR 0.785–0.900 10
Band 8A Narrow NIR 0.855–0.875 20
Band 9 Water Vapor 0.935–0.955 60Band 10 SWIR/Cirrus 1.360–1.390
Band 11 SWIR 1 1.565–1.655 20Band 12 SWIR 2 2.100–2.280

RapidEye

Blue 0.440–0.510

5 77 2008
Green 0.520–0.590
Red 0.630–0.685
Red Edge 0.690–0.730
NIR 0.760–0.850

SPOT 5

Panchromatic 0.48–0.71 5

60 2002
Band 1 Green 0.50–0.59

10Band 2 Red 0.61–0.68
Band 3 NIR 0.78–0.89
Band 4 SWIR 1.58–1.75 20

SPOT 7

Panchromatic 0.45–0.75 1.5

60 2014
Band 1 Blue 0.45–0.52

6Band 2 Green 0.53–0.60
Band 3 Red 0.62–0.69
Band 4 NIR 0.76–0.89

Hyperion 242 spectral bands 0.357–2.576 30 7.7×42 2000
HyMap 126 spectral bands 0.45–2.50 ∼5 - -
AVIRIS 224 spectral bands 0.36–2.50 ∼20 ∼10.5 1987
AVIRIS-NG 425 spectral bands 0.38–2.51 ∼5 4–6 2012
Geoscan Airborne Multispectral Scanner (AMSS) 46 spectral bands 0.49–12 ∼10 - -
UHD 285 Hedgehog Camera 285 spectral bands 0.45–0.95 - - 2013
NEO HySpex VNIR-1600 160 spectral bands 0.41–0.99 - - -
RADARSAT-1 SAR C-band 5.3 GHz 10–100 ∼100 1995
RADARSAT-2 SAR C-band 5.405 GHz 3–100 ∼50 2007

Sentinel-1

Stripmap C-band

5.405 GHz

5 80

2014Interferometric wide swath C-band 5×20 250
Extra wide swath C-band 20×40 400
Wave C-band 5 20

ALOS PALSAR L-band 1.3 GHz 10–100 30–350 2006
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covers an area of 60×60 km (Rowan and Mars, 2003). The
European space agency has been developing a new family of
missions called Sentinels specifically for the operational needs
of the Copernicus program. Each Sentinel mission is based on
a constellation of two satellites to fulfill revisit and coverage re-
quirements, providing robust datasets for Copernicus services.
These missions carry a range of technologies, such as radar and
multi-spectral imaging instruments for land, ocean, and atmo-
spheric monitoring. Sentinel-2 is a polar-orbiting, multispectral
high-resolution imaging mission for land monitoring. Sentinel-
2A was launched on 23 June 2015, and Sentinel-2B followed
on 7 March 2017. They provide images that can be used for de-
tecting mineral occurrences on the Earth’s surface and consist
of 13 VNIR and SWIR spectral bands with a spatial resolution
of 10 m for four bands, 20 m for six bands, and 60 m for three
bands (Drusch et al., 2012).
High-resolution images have to be usually purchased from
commercial vendors such as DigitalGlobe (Maxar Technolo-
gies) 1, Planet Labs or Planet 2, and Spot Image (Airbus De-
fence and Space) 3. DigitalGlobe is an American commer-
cial vendor of space imagery and geospatial content and op-
erator of civilian remote sensing spacecrafts, such as IKONOS,
QuickBird, GeoEye-1, and WorldView satellite system that are
a network of commercial and orbital platforms designed by
Ball Aerospace and Technologies (Good et al., 2018). In 2007,
WorldView-1 (WV-1) was launched with a 50-centimeter (cm)
spatial resolution panchromatic (PAN) imaging system. The
primary objective of the single-band PAN system with no multi-
spectral bands on board was to quickly collect high spatial reso-
lution imagery, best suited for generating detailed data from the
digital elevation model (DEM). The next major breakthrough
was the launch of WorldView-2 (WV-2) in 2009, which pro-
vided high-resolution PAN data at a pixel size of 46 cm plus
VNIR bands at a spatial resolution of 1.85 m. The first instru-
ment for collecting eight high-resolution multispectral bands
ranging from 0.4 to 1.04 µm wavelengths was WV-2 (Kruse and
Perry, 2013). The only 16-band commercial high-resolution
Earth-imaging satellite currently in space is WorldView-3 (WV-
3), launched in August 2014. WV-3 has the enhanced capability
of eight SWIR (1.2–2.33 µm) bands with a spatial resolution of
3.7 m, in addition to eight VNIR (0.42–1.04 µm) bands at a spa-
tial resolution of 1.2 m (Kruse et al., 2015).
The Planet is an American private Earth-imaging company
with three distinct constellations of satellites, including Doves,
SkySats, and RapidEye. Among them, RapidEye data, in com-
bination with other satellite data types, have been used for map-
ping geological features, such as pegmatite deposits (Peng and
Gao, 2013). Spot Image is headquartered in France and is
mostly known as the commercial operator for SPOT (Satel-
lite Pour l’Observation de la Terre) Earth observation satel-
lites. This company also distributes multi-resolution data from
other optical and radar satellites, such as very high-resolution
Pleiades satellites. SPOT is a commercial high-resolution op-

1https://www.maxar.com
2https://www.planet.com
3https://www.intelligence-airbusds.com

tical Earth-imaging satellite system operating from space. It
has been designed to improve the knowledge and management
of the Earth by exploring the Earth’s resources, detecting and
forecasting phenomena involving climatology and oceanogra-
phy, and monitoring human activities and natural phenomena.
The SPOT system includes a series of satellites (SPOT 1–7)
and ground control resources for satellite control and program-
ming, image production, and distribution. Among different
SPOT satellites, the combination of SPOT 5 and other multi-
spectral data has been widely used for mapping geological fea-
tures (Harbi and Madani, 2014; Ahmadirouhani et al., 2018;
Bishta, 2018; Bishta and Sonbul, 2021).
Google Earth made it possible to view, map, and navigate any
remote locations on the Earth’s surface free of cost (Bailey
et al., 2012; Fisher et al., 2012) and is considered as one of the
most efficient tools for geoscience. Google Earth comprises a
wide range of true-color visible spectrum satellite imagery ob-
tained from different Landsat imagery and high-resolution data
available from commercial vendors (Tewksbury et al., 2012;
Fisher et al., 2012). It is of enormous use to identify main out-
crop positions in pre-field planning and reconnaissance surveys
and connect remote areas with outcrops confirmed by field data.
In addition, it is a beneficial instrument in remote and war-torn
or politically troubled areas.
The invention of the Hyperion sensor marked the beginning of
hyperspectral remote sensing. Hyperion is the first space-borne
hyperspectral sensor, which is capable of providing data in the
spectrum of VNIR and SWIR, launched in November 2000 as
part of NASA’s EO-1 Millennium Mission (Pearlman et al.,
2003). It comprises the 0.36–2.58 µm spectrum of VNIR and
SWIR regions with 242 spectral bands at roughly 10 nanome-
ters (nm) spectral resolution and 30 m spatial resolution (Pearl-
man et al., 2003).

3.1.2. Radar data
The Canadian government approved an Earth observation

program named RADARSAT (1980). Since the launch of
RADARSAT-1 (1995) and the release of RADARSAT-2 (2007),
Canada has been supplying C-band synthetic aperture radar
(SAR) data without interruption. With the latest planning of the
next generation mission, the RADARSAT constellation, there is
also a solid commitment to ensuring data reliability in the fu-
ture. This perennial data supply allows users to incorporate this
important pool of knowledge into their operating applications at
the national and international levels (Iris et al., 2019). Sentinel-
1 is a polar-orbiting, all-weather, day-and-night radar imaging
mission for land and ocean services. Sentinel-1A was launched
on 3 April 2014 and Sentinel-1B on 25 April 2016. Sentinel-1
C-band SAR sensors have dual-polarization (co-polarized VV
or HH, and cross-polarized VH or HV), wide-swath interfer-
ometric mode, and spatial resolution of 5×20 m (Zoheir et al.,
2019). SAR data from microwaves is an excellent component of
professional data used to map geological structures. The phased
array type L-band synthetic aperture radar (PALSAR) sensor is
a fully polarized (HH, HV, VH, and VV) L-band SAR sensor
and multi-observation modes (fine, polarimetric, and ScanSar)
with a spatial resolution of 10, 30, and 100 m, respectively (Ma
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et al., 2017).

3.2. Airborne data

Nowadays, airborne data are collected using both airplanes
and drones, and specific sensors have been developed for them.
Multispectral and hyperspectral airborne data have been avail-
able from the Geoscan AMSS MKI and MKII sensors since
1997 (Agar, 1994). The design of advanced visible infrared
imaging spectrometer-new generation (AVIRIS-NG) was de-
veloped based on AVIRIS with some modifications and im-
provements. AVIRIS measures solar irradiance with a whisk-
broom scanning mechanism with 224 bands of 10 nm spec-
tral resolution across-track components. The AVIRIS-NG data
has a high signal-to-noise ratio and is free of smile/spikes and
keystone errors. AVIRIS-NG is a hyperspectral imaging spec-
trometer with a spatial resolution of 8.1 m with 427 contigu-
ously spaced 5 nm bands from 0.38 to 2.51 µm (Hamlin et al.,
2011). In October 1999, the hyperspectral mapper (HyMap)
was developed and operated in Australia. This sensor covers
the wavelength of 0.45 to 2.48 µm and consists of 126 spectral
bands, and provides a spatial resolution of 2 to 10 m. With the
exception of absorption levels near 1.4 and 1.9 µm, due to at-
mospheric water vapor, HyMap can achieve a continuous con-
tinuum (Ishidoshiro et al., 2016). The airborne sensors such
as Geoscan AMSS MKI, GER DAIS 63, AVIRIS, De Beers
AMS, TEEMS, HyMap, CASI, SFSI, and SpecTir have been re-
viewed with details of spectral and spatial characteristics (Agar
and Coulter, 2007).
Unmanned aerial systems (UAS) are known under several dif-
ferent names and acronyms such as unmanned aerial vehicle
(UAV), aerial robot, or simply drone, with the most common
words being UAV and drone (Colomina and Molina, 2014).
Drones have been progressively used in mineral exploration.
Rugged terrain or outcrops difficult to reach on foot or by cars
may be quickly surveyed with UAVs from a safe distance with
limited human resources on-site, ensuring protection, speed,
and quality. The importance of using UAV-based hyperspec-
tral images for geological exploration mapping has been shown
in limited studies (e.g., Booysen et al. (2020)). Hyperspectral
sensors have recently begun to be installed on UAVs by the
Helmholtz Institute Freiberg for Resource Technologies (Jakob
et al., 2017; Jackisch et al., 2020). It is possible to obtain higher
spatial resolutions (from millimeters to tens of centimeters) and
a number of scanning viewpoints are possible with hyperspec-
tral sensors. Colomina and Molina (2014) described the fun-
damental characteristics of some common and representative
sensors, including visible-band, near-infrared (NIR), thermal,
multispectral and hyperspectral cameras, laser scanners, and
synthetic aperture radars for UAVs. Heincke et al. (2019) devel-
oped multi-sensor drones for geological mapping and mineral
exploration with a new integrated positioning system that is not
based on global positioning system (GPS). This allows precise
positioning across areas with low GPS reception, such as mine
tunnels and narrow valleys.

3.3. Ground-based data

Ground-based hyperspectral sensing, especially in the VNIR
and SWIR portions of the electromagnetic spectrum, has grown
more popular for geological purposes. Remote measurements
with ever greater spectral and spatial resolutions have been
achieved, although proximal sensing with high spectral resolu-
tion (10 nm) for quick characterization of rocks, minerals, and
soil is widespread (Salazar and Coffman, 2020). Hyperspectral
images captured by specialised cameras can be used for map-
ping alteration minerals. In the Gongchangling iron deposit, a
typical profile of a high-grade iron ore body has been exam-
ined and analyzed (Song et al., 2020). Polarized microscopy
has been used to examine the materials, and changes in zona-
tion were determined based on hydrothermal mineral assem-
blages and paragenesis. Furthermore, the Norsk Elektro Optikk
(NEO) HySpex imagining system was used to produce hyper-
spectral pictures of wall rocks from each alteration zone. Their
findings show that spectral characteristics reveal obvious reg-
ular variations; for example, as the high-grade iron ore body
moves from proximal to distal, the wavelengths of chlorite and
garnet account for the majority of the hydrothermal alteration
minerals grow longer and the absorption depths shrink.
A hyperspectral scanner can be mounted on a platform, for ex-
ample, about 4 m above ground (Krupnik et al., 2016). For in-
stance, HySpex can be used for scanning field sceneries, which
may be readily put on a tripod and rotation stage. A two-
dimensional charge-coupled device (CCD) sensor array is used
in this camera; the first dimension is utilized for spectrum sep-
aration, while the second is employed for imaging in a single
spatial direction. The sensor’s movement covers the second
spatial dimension. The camera captures 1600 pixels on each
track, resulting in a less than a millimeter spatial resolution.
The rotating stage’s speed can be adjusted such that the single
lines captured by the camera create a picture with nearly square
pixels. One hundred sixty bands can be recorded in the spec-
trum range of 410 to 990 nm with a spectral sampling distance
of 3.7 nm by binning the 320 sensor pixels in the spectral direc-
tion. The data can be captured with a radiometric resolution of
12 bits (Buddenbaum et al., 2012).
The hyperspectral snapshot camera approach enables quick pic-
ture data capture in a portable manner. The UHD 285 hyper-
spectral snapshot camera is a non-scanning hyperspectral cam-
era primarily intended for real-time data capture. The full-
frame photos are captured with a dynamic picture resolution
of 14 bits on a silicon CCD chip with a sensor resolution of
970×970 pixels in the 450 to 950 nm region. The integration
time of capturing one hyperspectral data cube in a regular so-
lar light environment is 1 millisecond (ms). The camera can
acquire over 15 spectral data cubes per second, making hyper-
spectral video recording possible (Jung et al., 2015).

4. Target features

In one of the first studies on the application of image pro-
cessing techniques for mineral exploration, Sabins (1999) pro-
posed two key approaches for targeting mineral deposits. The
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Figure 2: An illustrated deposit model of a porphyry copper deposit (modi-
fied from Lowell and Guilbert (1970)). Panel (a) presents a schematic cross-
section of hydrothermal alteration minerals and types, which includes propy-
litic, sericitic, advanced argillic, and potassic alteration. Panel (b) presents a
schematic cross-section of ores associated with each alteration type. Panel (c)
presents a scale showing the level of interpreted exposure for Iranian alteration
sites based on ASTER mapped alteration units.

first is lithological and structural mapping, and the second is
mapping hydrothermal alteration zones. Later, three methods
were suggested by Rajesh (2004): (i) lithological; (ii) struc-
tural; and (iii) alteration mapping. Identifying mineralization
zones as the fourth approach is also important for vectoring dif-
ferent deposits (van der Meer et al., 2012). Since the 1970s, im-
age processing algorithms have been implemented for detecting
different types of mineral deposits, particularly porphyry cop-
per and gold deposits. Schematic cross-sections showing the
association of alteration and mineralization zones in a porphyry
copper system is illustrated in Figure 2. Moreover, they have
been used for exploring iron ore, volcanogenic massive sul-
fide (VMS), skarn-hosted, chromite, rare earth elements (REE),
brine and evaporite, porphyry molybdenum, zinc, and lead, dia-
mond, and bauxite deposits (Cardoso-Fernandes et al., 2020a).
Next, we discuss the most important target features in mineral
exploration.

4.1. Lithology

Ore deposits are volumes of rock containing desired elements
in appropriate amounts and quantities that can be economically
exploited. Any ore-forming hydrothermal transport system in-
cludes massive amounts of rock (or magma) through which ore-
forming elements are released. For example, VMS deposits
are high-grade metal accumulations associated with submarine
magmatic rocks (Heinrich and Candela, 2014). Mineral de-
posits in sedimentary rocks are the major resource of lead and
zinc that occur as either Mississippi valley type or stratiform
clastic sediment-hosted deposits. These deposits consist of a
variety of minerals hosted by a wide range of carbonate and
siliciclastic rocks (Leach et al., 2005). The major resources of
Cu, Mo, Sn, W, In, and Re and a significant source of Au, Ag,

Pb, Zn, and other minor and rare metals are associated with
intrusive rocks magmatic-hydrothermal ore systems. Porphyry
and epithermal Cu, Mo, and Au deposits are some examples of
these deposits (Richards, 2011). Therefore, discriminating and
identifying different rock units are inseparable and fundamen-
tal parts of the mineral exploration process, and remote sensing
data can provide extraction of critical geological features.
Several image processing algorithms have been examined in
poorly mapped or unmapped areas to represent and optimize the
distinction of various spectral lithological divisions in order to
differentiate lithological units utilizing various types of satellite
data (Beiranvand Pour et al., 2019a). Dimensionality reduction
techniques such as principal component analysis (PCA), inde-
pendent component analysis (ICA), and minimum noise frac-
tion (MNF), have been applied on OLI and ASTER spectral
bands to map lithological units (Beiranvand Pour et al., 2019a;
Ali and Beiranvand Pour, 2014). Classification methods such
as spectral angle mapper (SAM) and maximum likelihood es-
timation (MLE) have also been applied on Hyperion, ALI, and
ASTER data for mapping different lithological units (Beiran-
vand Pour and Hashim, 2014). Amer et al. (2010) used the im-
ages obtained by PCA and a newly evolved ASTER band ratio
to produce lithological maps in the Central Eastern Desert of
Egypt. Within this study, different ophiolitic rocks, including
serpentinite, metagabbro, metabasalt, and granitic rocks such
as grey and pink granites, were discriminated against for vec-
toring chromite deposits. Yu et al. (2012) used ASTER imagery
along with ASTER-derived DEM and aeromagnetic data to ap-
ply the support vector machine (SVM) method for automated
lithological classification of a study area in northwestern In-
dia. In this study, the SVM was compared with the maximum
likelihood classifier (MLC). Results revealed that the SVM had
better precision in the classification of independent validation
samples and similarities to the available lithological bedrock
database. In recent years, modern sensors such as WV-3 that
provide high-resolution images have been evaluated for litho-
logical mapping, and results have been compared to ASTER
and OLI data to satisfy the criteria for large-scale geological
mapping Ye et al. (2017).

4.2. Alteration types
Geochemical properties of wall rocks in an ore deposition

region cause alteration and eventually forming a diversity of
mineral deposit types and metals such as porphyry copper and
epithermal gold systems (Sillitoe, 2010). Porphyry deposits are
characterized as large volumes (10–>100 km3) of hydrother-
mally altered rocks clustered on porphyry stocks that may also
include precious metallic mineralization of skarn, carbonate re-
placement, sediment-hosted, and epithermal types (Richards,
2003). Argillic, phyllic, propylitic, and silicic alteration pat-
terns are some of the important indicators for vectoring por-
phyry and epithermal deposits (Testa et al., 2018). In the case of
sediment-hosted deposits, dissolution and hydrothermal brec-
ciation of carbonate host rocks that occur from acid-producing
reactions typically associated with fluid mixing is the most fre-
quent alteration observed in MVT deposits. The alteration and
halo production style associated with SEDEX deposits relies on
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the host sedimentary structure and permeability plus porosity
characteristics. Since the alteration amplitude is usually much
lower in SEDEX systems than in VMS systems, the scale of
halos across favorable formations can be much greater. Iron-
manganese carbonate and silicate alteration are two major al-
teration types that can be mapped by the detailed analysis of
target deposits Leach et al. (2005). Therefore, distinguishing
altered rocks and identifying alteration patterns are so critical
for delineating the favorable area of mineralization; hence, re-
mote sensing data analysis is an effective tool.
The ability to discriminate between altered and unaltered zones
is essential in geological mapping for different purposes, such
as mineral exploration. Due to various mineral assemblages,
each alteration type indicates a particular spectral pattern. Geol-
ogists use these spectral characteristics as diagnostic features to
identify and distinguish between various alteration types using
remote sensing data. Multispectral and hyperspectral remote
sensing instruments provide detailed spectral data on the geo-
chemistry of rocks comprising the Earth’s crust. This technol-
ogy has been used for decades to map weathering characteris-
tics in different regions, e.g., van der Meer et al. (2012); Beiran-
vand Pour et al. (2019a,b); Bolouki et al. (2020). PCA (Ghulam
et al., 2010), SAM (Ferrier et al., 2002), spectral information
divergence (SID) (Sheikhrahimi et al., 2019), and the integra-
tion of selective dimensionality reduction techniques (Shirmard
et al., 2020) are some of the methods that have been applied on
remote sensing data to map hydrothermal alteration zones. Dif-
ferent alteration types such as propylitic, phyllic, argillic, and
advanced argillic have been discriminated by applying various
methods such as selective PCA on ASTER data (Noori et al.,
2019). Moreover, AVIRIS-NG hyperspectral data with 5 nm
spectral resolution allowed the identification of various altered,
and weathered clay groups in target areas (Tripathi et al., 2020).

4.3. Structures
Several types of mineral deposits such as epithermal,

mesothermal, carlin-type gold, and other hydrothermal deposits
are usually associated with fault, vein, and shear zone systems.
Such structural features can be useful to future exploration ef-
forts in regions associated with structurally controlled minerals
(Grebby et al., 2012). The structural analysis applied to mineral
exploration aims to identify how deformation has impacted the
permeability in rocks, either spatially or overtime (Mickleth-
waite et al., 2010). The extraction of tectonic lineaments using
satellite data is a basic application of remote sensing data analy-
sis. For a number of applications, mapping tectonic lineaments
such as faults and dykes are of high importance, mainly due
to their relationship with hydrothermal mineralization (Farah-
bakhsh et al., 2020a).
Recent advances in remote sensing technology have improved
the application of optical and radar remote sensing data for
investigating geological structures such as tectonic lineaments
that involve rectilinear and curvilinear structures in covered and
uncovered areas. Structural lineament interpretation helps to
understand the tectonic and geodynamic processes of an area
(Chinkaka, 2019). A variety of algorithms and remote sensing
data formats have been used to map geological structures. For

instance, the spatial convolution filtering technique has been
widely used for processing PALSAR data (Beiranvand Pour
et al., 2016). Lineaments have been automatically extracted
by applying edge detection methods on shuttle radar topogra-
phy mission (SRTM), OLI, and ASTER data (Hamimi et al.,
2020). Various methods such as spectral band ratio indices,
supervised classification techniques namely SAM, SID, direc-
tional filtering technique, and manually extracting tectonic lin-
eaments have been applied on ASTER, SAR/RADARSAT-1,
ASAR/ENVISAT, SPOT 5, and SPOT 7 data for mapping ge-
ological structures (Beiranvand Pour et al., 2018; Sheikhrahimi
et al., 2019; Tagnon et al., 2020; Ibrahim et al., 2017). Im-
age processing methods can be applied on radar remote sens-
ing data for evaluating the regional structural control of scat-
tered gold anomalies (Zoheir et al., 2019). SAR data with the
help of remote sensing data processing, enhanced a vivid litho-
tectonic insight for the South Eastern Desert in Egypt (Zoheir
et al., 2019).

4.4. Minerals
It is crucial to differentiate unique minerals as an indica-

tor of high economic potential zones. Identifying mineraliza-
tion zones using remote sensing data has been widely done
for locating porphyry copper, epithermal gold, and VMS de-
posits around the world (Bolouki et al., 2020). Quantitative and
validated (subpixel) surface mineralogic mapping was initiated
with the advent of hyperspectral remote sensing data (Rajan
Girija and Mayappan, 2019). This led to a variety of techniques
for matching image pixel spectra to library and field spectra
and unraveling mixed pixel spectra to pure end-member spec-
tra for extracting compositional details from a subpixel surface
(van der Meer et al., 2012). For example, the footprint of min-
erals such as clay minerals (e.g., kaolinite and illite), sulfate
minerals (e.g., alunite), carbonate minerals (e.g., calcite and
dolomite), iron oxides (e.g., hematite and goethite), and silica
(quartz) enabled to map alteration facies (propylitic, argillic,
etc.), which are the key indicators for targeting epithermal and
porphyry-related deposits (Testa et al., 2018; Rajan Girija and
Mayappan, 2019; van der Meer et al., 2012).
Ultramafic igneous rocks can be classified into those where ox-
ide minerals host the metals of interest and those where the
metals of interest are maintained as sulfides or are closely cor-
related with sulfides. Stratiform, podiform, and breccia-related
chromite, magnetite-rich layers (often Ti and V-bearing), and
ilmenite-rich layers or discordant bodies are found in oxide ore
deposits. Massive, net-textured, and disseminated Ni-Cu-PGE
(platinum group elements) occurrences, and PGE-rich reefs
containing disseminated sulfides have ore minerals (Ripley and
Li, 2018). Therefore, remote sensing data can be used exten-
sively and effectively for mapping these minerals (Awad et al.,
2018). There are many methods used for extracting indicator
minerals from remote sensing data. PCA and ICA are two of
the commonly-used image processing algorithms in the mineral
mapping (Cardoso-Fernandes et al., 2020a; Farahbakhsh et al.,
2016). Several spectral analyses have been implemented on
short-wave infrared bands of ASTER for detecting spectral fea-
tures of interest attributed to alteration mineral assemblages at
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different scales (Beiranvand Pour et al., 2019a). ASTER, ALI,
and Hyperion are some of the most common remote sensing
data used for mapping minerals (Beiranvand Pour and Hashim,
2014). Kruse and Perry (2013) extracted minerals as regions
of interest from airborne visible/infrared imaging spectrometer
(AVIRIS), ASTER, and World View-3 data by applying min-
imum distance classification. In this study, calcite, budding-
tonite, alunite, kaolinite, muscovite, and silica can be named as
some of the minerals extracted and mapped by mentioned re-
mote sensing data. Moreover, image processing methods have
been applied to lightweight drone-based hyperspectral data for
direct mapping of REEs in Marinkas Quellen, Namibia, and Si-
ilinjärvi, Finland (Booysen et al., 2020).

5. Machine learning

Mapping geological features is a fundamental step in min-
eral exploration. The combined use of machine learning meth-
ods and remote sensing data can be considered an easy and in-
expensive approach for mapping lithological units, alteration
zones, structures, and indicator minerals associated with min-
eral deposits. In several fields, rapid advancements in acquir-
ing high-resolution remote sensing data have led to the explo-
sion of big data that offers a new opportunity for data-driven
discovery (Sun and Scanlon, 2019). Machine learning meth-
ods are effective for remote sensing data analysis since they
can automatically learn the relationship between input features
such as reflectance continuum with desired outputs for predic-
tion or classification. Moreover, they are robust in spectral
and ground truth measurements against noise and uncertainties
(Gewali et al., 2018).
Broadly speaking, machine learning methods are of two ma-
jor types, which include supervised and unsupervised learning.
Supervised machine learning methods require labeled data that
are used for regression and classification problems to model the
relationship between input features and outcomes (Kotsiantis,
2007). Machine learning-based classification methods for dif-
ferent datasets (problems) offer different outcomes, i.e., vari-
ous classified maps. A machine learning method that provides
the best accuracy for solving a problem may not work for an-
other problem or dataset. Hence, prior to problem-solving, var-
ious methods for a given dataset must be examined (Çığşar and
Ünal, 2019).
Unsupervised learning methods have the ability to recognize
patterns in data without the need for target labels. Examples
of unsupervised learning include clustering and data reduction
strategies such as PCA. Clustering methods discover structures
in data using a given measure of similarity amongst data in-
stances in order to develop clusters (groups). Clustering meth-
ods are commonly used in machine learning and image process-
ing (Xie et al., 2020). Reducing the feature set dimensionality is
important in machine learning in order to decrease the complex-
ity of a problem, remove outliers and noise, and finally shorten
the model training time. In smaller datasets, simplified models
are often more robust and are less influenced by variations due
to noise or outliers (Caggiano et al., 2018).
Deep learning is a branch of machine learning that seeks to

model high-level abstractions in data by applying multiple pro-
cessing layers with complex structures. Deep learning methods
such as recurrent neural networks (RNNs), convolutional neu-
ral networks (CNNs), autoencoders, deep belief networks, and
restricted Boltzmann machines have been successfully applied
to transform different fields (Benuwa et al., 2016; Schmidhu-
ber, 2015; Velliangiri et al., 2019). Ensemble methods inte-
grate multiple machine learning models for classification or re-
gression problems that typically outperform standalone meth-
ods (Sagi and Rokach, 2018). Random forest is an example of
an ensemble method based on the bagging paradigm and de-
cision trees, which can be used for classification or regression
problems (Rokach, 2010). The combination of selected ma-
chine learning methods into ensemble learning paradigms such
as boosting, stacking, and bagging has been prominent (Diet-
terich, 2002; Guan et al., 2014; Yang et al., 2010).
Machine learning methods are essentially data-driven ap-
proaches that can be used in several ways, such as processing
high-dimensional data into lower dimensions, predicting cer-
tain trends in the data, and identifying certain characteristics or
components in the data. Hence, there is a great potential and op-
portunity for applying machine learning methods for addressing
the increasingly growing size and complexity of remote sensing
data (Cracknell and Reading, 2014). The synergy of machine
learning and remote sensing data, including satellite, airborne,
and ground-based data, could be helpful in mineral exploration.
Next, we review the most prominent and recently used machine
learning algorithms in processing remote sensing data for min-
eral exploration. Machine learning methods are categorized
into dimensionality reduction, classification, clustering, regres-
sion, and deep learning methods. Table 2 provides a list of
sample studies focused on using machine learning methods in
remote sensing data analysis for mapping potential mineraliza-
tion zones. Moreover, the workflow of using the combination
of remote sensing data and machine learning methods for cre-
ating critical evidential maps in mineral prospectivity mapping
is presented in Figure 3.
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5.1. Dimensionality reduction techniques
Dimensionality reduction techniques such as PCA (Wold

et al., 1987), ICA (Comon, 1994), and MNF (Nielsen, 2011) are
multivariate statistical approaches that transform a collection
of correlated input variables into uncorrelated or independent
components and have been popular for processing remote sens-
ing data (Shirmard et al., 2020). Traore et al. (2020) used Land-
sat 8 satellite images for lithological and alteration mapping by
applying PCA and MNF for alluvial gold exploration. Clay
and carbonate minerals, iron oxides, ferrous silicates, and litho-
logical units were recognized and mapped in the study area.
Abdolmaleki et al. (2020) used PCA for classifying and assess-
ing Sentinel-2 data to explore iron oxide copper gold (IOCG)
mineralization. Takodjou Wambo et al. (2020) applied PCA
and ICA on a regional scale to extract spectral details related
to vegetation, iron oxide/hydroxide minerals, Al-OH and Fe-
Mg-OH minerals, carbonate group, and silicification using OLI
data. (Sekandari et al., 2020) adopted and implemented PCA to
prospect for Zn-Pb mineralization in Kerman, Iran using differ-
ent remote sensing data, which includes Landsat 8, Sentinel-2,
ASTER, and WV-3.
Sheikhrahimi et al. (2019) used ASTER data with PCA for
mapping hydrothermal alteration minerals and to better dis-
criminate structural features associated with orogenic gold oc-
currences in the Sanandaj Sirjan zone, Iran. In this region,
PCA was used for image transformation in order to delineate
lithological units and alteration minerals, which provided a
fast and cost-efficient means to start a comprehensive geolog-
ical exploration program. Propylitic, phyllic, argillic, and ad-
vanced argillic alteration and silicification zones are typically
associated with Au-Cu, Ag, and/or Pb-Zn mineralization in the
Toroud–Chahshirin magmatic belt, north of Iran. Noori et al.
(2019) implemented selective PCA and related methods to map
hydrothermal alteration zones. Furthermore, comprehensive
fieldwork and laboratory research with methods such as X-ray
diffraction (XRD), petrographic study, and spectroscopy were
done to validate output maps resulted from remote sensing data
processing. The findings suggest a range of high potential ep-
ithermal polymetallic vein mineralization and demonstrated po-
tential for the method in other metallic provinces and semi-arid
regions worldwide.
El Atillah et al. (2019) applied PCA to extract lithological units
and structures in Bou Azzer-El Graara inlier, Anti-Atlas Cen-
tral, Morocco. They used a false-color composite image ob-
tained by applying PCA on ASTER data to map lineaments.
This case yielded a satisfying performance (74%), especially
after removing the lines corresponding to objects other than
faults such as paths, borders, boundaries between geologi-
cal formations, hill summits, and shadows. Shirmard et al.
(2020) applied PCA, ICA, MNF and compared their efficiency
for mapping different alteration types using ASTER data. As
shown in Figure 4, they demonstrated that these dimension-
ality reduction techniques can be implemented jointly in re-
mote sensing data processing for mapping those hydrothermal
alteration zones related to epithermal Cu-Au deposits. PCA
was used in identifying structural target features such as cracks
(Zhang et al., 2020) and faults (Wang et al., 2020a) using

UAV images that can be useful in mineral exploration. Re-
cently, PCA and MNF methods were considered in three sepa-
rate datasets describing spectral imaging characteristics in geo-
science and mineral exploration. The datasets were real-life
case studies and obtained using innovative spectral imaging
methods such as UAS-borne or small-angle terrestrial imaging
and sensors at various spectral resolutions in VNIR, SWIR, and
longwave infrared (LWIR) (Lorenz et al., 2021).

5.2. Classification

We discuss some of the key methods used for classification
problems in the scope of our applications that consider remote
sensing for mineral exploration. Although some of the methods
listed (such as neural networks and random forests) can also be
used for regression and prediction, our focus is classification.

5.2.1. Minimum distance classification
The minimum distance (MD) classifier is a supervised learn-

ing method that utilizes the mean vector of each class in multi-
dimensional space and measures the Euclidean distance of each
class from each image pixel vector to the mean vector (Richards
and Jia, 2006). MD has not been broadly used in remote sens-
ing data analysis, particularly in mineral exploration. Kruse and
Perry (2013) defined the regions of interest to extract the end-
member spectra for mineral mapping and then applied a min-
imum distance classification on 86-band AVIRIS SWIR data
with a 7.5 m spatial resolution and simulated WV-3 SWIR data.
In a recent study using Hyperion, ASTER, and OLI data, litho-
logical units (from Udaipur district, state of Rajasthan in west-
ern India) were mapped by four supervised classifiers that in-
clude MD, SAM, SID, and support vector machine (Pal et al.,
2020). Gemusse et al. (2019) used Sentinel-2, ASTER, and OLI
data in a study aimed at providing land use classification maps
and evaluating their accuracy. In another study, methods such
as MD and SAM were used to localize pegmatites (Gemusse
et al., 2019). An MD classifier is usually applied due to its flex-
ibility and efficacy; however, it does have the downside of poor
classification accuracy. In more recent work, the weighted MD
classifier based on relative offset boosted the accuracy (Wang
and Jiang, 2019).

5.2.2. Support vector machines
support vector machine (SVM) is a supervised machine

learning method used for classification and regression prob-
lems which over the years has proven to be robust and effective
(Cortes and Vapnik, 1995). SVM projects the dataset into an-
other feature space in which the dimensionality is smaller than
that of the input space, which makes the process of classifica-
tion much simpler (Tahmasebi et al., 2020). SVM has remark-
ably found its application in mineral exploration, particularly
for processing remote sensing data with key developments dis-
cussed here-forth.
Othman and Gloaguen (2014) demonstrated the ability of SVM
in targeting chromite deposits by classifying the lithological
units of the Mawat ophiolite complex in northeastern Iraq uti-
lizing ASTER data. In this study, multiple types of surface re-
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Figure 3: Workflow of using the combination of remote sensing data and machine learning methods for creating evidential maps.
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Figure 4: Known mineral occurrences overlaid on the classified map gener-
ated by integrating selected components of dimensionality reduction techniques
(Shirmard et al., 2020).

flectance, at-sensor temperature, texture, and geomorphic pa-
rameters were jointly processed to create layers with maximum
precision in classification. The findings led to the discovery of
a new chromite-bearing site spanning over 0.3 km2. The col-
lected samples revealed that the chromite was coarsely crys-
talline within dunite host rocks. Xu et al. (2019) showed that
mapping alteration zones using remote sensing data and SVM
was significant for metallogenic prediction of gold deposits. In
this study, remote sensing data were used to circle favorable
metallogenic areas and find new gold occurrences. The study
found that alteration maps are highly reliable and could play a
crucial role in discovering metallic minerals. The favorable ar-
eas of gold deposition can be outlined according to alteration
zones and the findings of field inspection.
In classification and detailed extraction of rocks and minerals,
Wang and Zheng (2010) used the SVM classifier for alteration
mapping by processing two Hyperion images of a study area
in Beiya, northwest of Yunnan, China. The results indicated
that alteration zones were reliably delineated using Hyperion
data. Mineralogical and lithological knowledge derived from
Hyperion data was fairly similar to the geological map and prior
study findings in a gold deposit. Abdolmaleki et al. (2020) ap-
plied SVM in a study for the classification and evaluation of
Sentinel-2. They created a mineral prospectivity map by com-
bining remote sensing, geological, geophysical, and geochem-
ical data. The potential map of IOCG mineralization indicated
that it is in good alignment with previous geological field stud-
ies. Gasmi et al. (2016) used the VNIR and SWIR spectral
bands of ASTER data, PCA, false-color composite images, and
SVM for discriminating lithological units. The outcomes were
consistent with the field survey and the geological map already
released.
Cardoso-Fernandes et al. (2020b) proposed a methodology
based on the semi-automatization of SVMs to map lithium-
bearing pegmatites and detected known Li-pegmatite units as
well as other Li-exploration target zones. It was also revealed
that class inequality negatively affected SVM accuracy since

known Li-pegmatites were not detected. Recently, the applica-
tions of remote sensing data obtained from UAVs with SVM
were reviewed in mining from exploration to reclamation (Park
and Choi, 2020). In an innovative study, Lorenz et al. (2021)
implemented the SVM classification method for mapping min-
eralization zones using the data obtained by a drone.

5.2.3. Artificial neural networks
Artificial neural networks, also known as neural networks

are machine learning methods inspired from biological neural
systems (Rumelhart et al., 1986; LeCun et al., 1988; Hornik
et al., 1989). The rapid uptake of neural network approaches
in remote sensing data analysis has been mainly due to their
ability to learn complex patterns and taking into account non-
linear and complex relationship between explanatory and de-
pendent variables (Lek and Guegan, 1999). Simple neural net-
works, also known as multi-layer perceptron have been applied
for analyzing remote sensing data with promising results and
some key studies are discussed as follows. Rigol-Sanchez et al.
(2003) used a simple neural network model to discriminate ar-
eas of high mineralization potential using remote sensing data
and known mineral occurrences in the Rodalquilar gold region,
southeast Spain. A potential map of gold mineralization was
effectively provided suggesting that both historically identified
and unknown potentially mineralized areas can be recognized.
These initial findings indicate that neural networks can be con-
sidered a robust spatial data modeling method for mineral ex-
ploration.
Leverington (2010) examined the efficiency of Landsat 5 and
Hyperion data for discriminating lithological groups in an area
and attempted to show the usefulness of broadband and hyper-
spectral datasets. In this study, TM data were categorized using
a neural network algorithm, and then both TM and Hyperion
data were unmixed linearly using ground truth spectra. Wang
et al. (2010) applied probabilistic neural networks to integrate
multi-mineral anomalies caused by geological information (ge-
ology, geophysics, geochemistry, and remote sensing) and to
provide a 1:25000 potential map of Molybdenum and poly-
metallic Pb-Zn-Ag mineralization in Luanchuan, province of
Henan, China. Neural networks are an efficient tool for map-
ping lineaments which provide key features for mineral explo-
ration. Borisova et al. (2014) compared the results of using
neural networks for mapping lineaments with the results ob-
tained from the visual analysis of satellite imagery and geo-
logical maps. Recent contributions in the field of neural net-
works have been through deep learning methods, which focus
on large and complex neural network architectures for multime-
dia and big data-related problems (Schmidhuber, 2015). There
is a wide range of emerging research topics in the area of neural
networks, particularly in deep learning, which is reviewed later
(Section 5.5).

5.2.4. Random forest
A decision tree is a commonly used machine learning method

for classification and regression problems by constructing an
inverted tree with a root node, internal nodes, and leaf nodes
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(Quinlan, 1986). The algorithm is non-parametric and can ef-
ficiently deal with large, complicated datasets without impos-
ing a complicated parametric structure (Song and Ying, 2015;
Quinlan, 1987). The major problem of decision trees is over-
fitting on the training dataset and their inability to generalise
over complex datasets (Utgoff, 1989). A random forest is an en-
semble machine learning method based on bagging that creates
an ensemble of decision tree-based classifiers that addresses
the limitations of decision trees (Breiman, 1996). The random
forest ensemble consists of several trees systematically con-
structed by arbitrarily chosen subgroups of training data from
which the trees constructed independently (Ho, 1998; Belgiu
and Drăguţ, 2016). It is important to note that the final decision
is made using all the trees in the ensemble (forest). A voting
procedure is used to make a decision using the ensemble of
trees for classification problems. In regression tasks, the mean
prediction of the individual trees from the ensemble is used to
make a decision.
Chung et al. (2020) applied random forests to minimize the
number of variables for the model-building to pick the best rep-
resentative bands using hyperspectral remote sensing data for
the classification of magnesite and gangue-related minerals, in-
cluding dolomite, calcite, and talc. Cardoso-Fernandes et al.
(2019) used random forest with SVMs in application to litho-
logical mapping using the same level 1-C Sentinel-2 images ac-
quired in October 2017. The outcrops were mapped using both
methods that correctly identified Li-bearing pegmatites in three
open-pit mines.
Kuhn et al. (2018) used the random forest classifier to charac-
terize the lithology of a largely unexplored region neighboring
a historically important gold mine, using a combination of geo-
physical and remote sensing data. Given minimal data, the au-
thors found the random forest can be an essential additional tool
available to geoscientists in a greenfield of orogenic gold miner-
alization. In another study (Cracknell and Reading, 2014), five
machine learning algorithms (naive-Bayes, K-nearest neighbor,
random forest, SVM, and simple neural networks) were com-
pared in terms of the efficiency in extracting different litholog-
ical units using Landsat 7, and spatially controlled remotely
sensed geophysical data. Wang et al. (2020b) integrated multi-
source and multi-sensor remote sensing data and applied ran-
dom forest to discriminate critical lithological units through
exploring rare metals that promoted computing efficiency and
classification accuracy.
Random forests have a number of applications in remote sens-
ing data analysis for the extraction of target features critical
for mineral exploration. Cracknell and Reading (2013) com-
pared random forests and SVMs for the inference of the spa-
tial distribution of lithology from combined airborne geophys-
ical and multispectral satellite data in a dynamic, folded, and
high-grade metamorphic terrane. Bachri et al. (2020) combined
the spectral, textural, and geomorphic information of Sentinel-
2 and PALSAR and mapped lithological features using random
forests. Mineral exploration and geological mapping in a re-
gion with steep topography, dense vegetation, and limited out-
crop are challenging. SAR can potentially penetrate vegeta-
tion canopies and assist geological mapping in such environ-

ments. Radford et al. (2018) applied random forests to classify
rock units using airborne polarimetric terrain observation by
progressive scan (TOPSAR) and geophysical data. In another
study, Belgiu and Drăguţ (2016) reviewed the applications of
random forests in remote sensing data analysis.

5.3. Clustering
K-means clustering (KMC) can be used for separating N data

points into K clusters (Lloyd, 1982), where each data point is
categorized into a cluster with the smallest discrepancy among
its value and the mean value of the cluster. In order to clas-
sify the representative data known as cluster centers, KMC can
handle a dataset with high dimensionality (Tang et al., 2019).
As a standard clustering algorithm, KMC is widely used to
process hyperspectral images for recognizing objects. How-
ever, the alignment of data points and cluster centers with the
standard KMC algorithm can become very complicated due to
mixed pixels. In order to classify different types of minerals us-
ing the AVIRIS hyperspectral image of the Cuprite mining area,
Ren et al. (2019) suggested an improved KMC algorithm. They
utilized three approaches to pick the initial cluster centers and
spectral information separation instead of the Euclidean dis-
tance to determine the similarity. Finally, they found that the
enhanced KMC algorithm could get stronger clustering results
and greater mineral mapping precision than the conventional
algorithm by comparing the clustering results with the mineral
distribution map of the study area and the United States Geo-
logical Survey (USGS) mineral spectral library. El Atillah et al.
(2019) generated a lithological map using KMC in a study area
using ASTER, Landsat 7, Landsat 8, and Sentinel-2 data. The
accuracy of the results was tested by comparison with field data
and geological maps of the study area. In an unaltered rock area
of Cuprite, Nevada, USA, KMC results were combined with the
results obtained from spectral unmixing and full-pixel classifi-
cation to produce a single distribution map of rocks and miner-
als. In this study, KMC was applied to airborne hyperspectral
HyMap images, verifying that the result of mapping was con-
sistent with both available geological maps and the outcome of
the field survey (Ishidoshiro et al., 2016).
We note that KMC is a canonical clustering method and there
has been major progress in this area for large and more com-
plex datasets. The applications that used KMC can be further
improved with these methods. Agglomerative clustering is the
most common type of hierarchical clustering used to group ob-
jects in clusters based on their similarity (Olson, 1995; Johnson,
1967). It is also known as AGNES (Agglomerative Nesting)
where the algorithm starts by treating each object as a single-
ton cluster. The pairs of clusters are successively merged until
all clusters have been merged into one big cluster containing
all objects. The result is a tree-based representation of the ob-
jects, named dendrogram (Navarro et al., 1997). Density-based
spatial clustering of applications with noise (DBSCAN) on the
other hand has been a popular clustering algorithm that uses lo-
cal density estimation to identify clusters of arbitrary shapes not
possible with the KMC (Ester et al., 1996). Spectral clustering
transforms a clustering problem into a graph partitioning prob-
lem and has been one of the more recent addition to the family
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of clustering methods (Biernacki et al., 2000). The aim of spec-
tral clustering is to identify sub-graphs (representing commu-
nities) based on the connections between nodes (Von Luxburg,
2007).
An unsupervised classification approach typically applied to
satellite images is the iterative self-organizing data processing
technique (ISODATA) (Karimi and Peng, 2004). In a multi-
dimensional attribute space, the spectral reflectance from sev-
eral bands has been used to evaluate clusters. Multispectral and
hyperspectral images have been widely classified using ISO-
DATA (Sydow, 1977). The number of features used for classifi-
cation can be expanded by incorporating other bands or external
data measured on a continuous scale, such as digital elevation
maps or geophysical data.
El Atillah et al. (2019) carried out lithological cartography us-
ing ISODATA and KMC methods. An idea of the mineralogy
of the study area was provided by the assembly of lithologi-
cal, structural, and hydrothermal alteration data derived from
ASTER, ETM+, OLI, and Sentinel-2 data. The quality of find-
ings was assessed and compared with field data and geologi-
cal maps of the study area. In a study, Ducart et al. (2016)
employed an ISODATA model to a data collection consisting
of Hyperion VNIR 74 bands, LIDAR-derived digital terrain
model, gamma-ray spectroscopy, gravimetry, and OLI-derived
normalized difference vegetation index (NDVI) data. The se-
lection of these data for the classification was based on their
own importance in outcropping iron ore identification.

5.4. Regression analysis

Regression is a methodology for predictive analysis that can
calculate the relative effect of many factors statistically and
explain logically how values depend on predictor variables
(Sudaryatno et al., 2020). Regression analysis as a branch of
machine learning and statistics which can be effectively used
in remote sensing for predicting target zones. Holloway and
Mengersen (2018) applied logistic, linear, multinomial regres-
sion, and boosted regression trees in remote sensing data anal-
ysis. Yetkin et al. (2004) used multi-linear regression analysis
for mapping an alteration trend (in Melendiz Volcanic Com-
plex, Turkey), where some mineral occurrences were extracted
to detect alteration zones such as potassic, phyllic (sericitic),
propylitic, argillic, and silicification. Moreover, the youngest
volcanic complex in Hasandag was discovered to be poorly al-
tered, and the volcanic complexes of Keciboyduran, Melendiz,
and Tepeköy were found to be strongly altered. The alteration
zones involved buried faults that may provide evidence for the
source of alteration.
Mansouri et al. (2018) used multivariate regression to construct
a statistical model to map iron outcrops where the accuracy of
the model was verified by a map of iron outcrops and geological
exploration. Based on field observation, the mineralization of
iron has occurred in contact with limestone and intrusive rocks.
Hoang and Koike (2017) established a novel tool for translat-
ing ETM+ imagery into pseudo-Hyperion imagery using their
band reflectance data correlations. This approach can be ap-
plied for mapping metallic minerals such as gold, silver, and

copper. Lin et al. (2020) built evidential variables using geo-
logical, remote sensing, and geochemical data. They designed
a conjugate gradient logistic regression (CG-LR) model based
on these evidential variables to predict exploration goals in the
study area. Finally, geological, remote sensing and geochem-
ical data were efficiently integrated into the CG-LR model to
predict skarn deposits. Li et al. (2018) presented a multivari-
ate regression model based on hyperspectral imaging to quanti-
tatively analyze and predict the device capability and optimize
device parameters for detecting minerals and geological survey.
We note that uncertainty quantification in predictions is impor-
tant and there lies uncertainty due to model parameters and data
collection due to a wide range of issues such as noise, sparse
datasets, and limitations of sensors used for data collection (Ga-
hegan and Ehlers, 2000). Although not much has been done
in terms of uncertainty quantification, there is scope for using
Bayesian regression analysis (Fernandez and Steel, 2000) with
Bayesian linear and logistic regression (Genkin et al., 2007) in
the scope of remote sensing (Ruiz et al., 2014; Storvik et al.,
2005) and mineral exploration (Porwal et al., 2006; Rendu,
1976).

5.5. Deep learning
There exist only a few studies with the application of deep

learning in processing remote sensing data for mineral explo-
ration. Deep learning methods are neural network-based ma-
chine learning methods that can be used for supervised and un-
supervised learning (Guo et al., 2016). Moreover, they can be
used for semi-supervised learning, which refers to a learning
problem that involves a small portion of labeled examples and a
large number of unlabeled examples from which a model must
learn and make predictions on new examples (Zhu and Gold-
berg, 2009). Deep learning methods have the ability to model
complex and large datasets and are loosely grouped into feed-
forward and recurrent neural network architectures (Shrestha
and Mahmood, 2019). Among a variety of deep learning meth-
ods, convolutional neural networks (CNNs) have gained more
attention in remote sensing due to their success in image pro-
cessing (Lecun and Yoshua, 1998). CNNs belong to a class of
deep feedforward neural networks that have been successfully
applied to image processing tasks due to their ability to pro-
vide automatic feature extraction using convolutional and pool-
ing layers (Fu and Aldrich, 2019). The development of a CNN
model varies for different datasets and tasks, and the optimal
number of a convolutional and pooling layer is often experi-
mentally determined in multimedia applications. Furthermore,
pre-trained CNN architectures are widely shared openly that ad-
dress the limitations of computational resource needs for large
datasets and models (Tahmasebi et al., 2020; Alom et al., 2018).
Latifovic et al. (2018) reviewed the ability of deep neural net-
works to assist mapping of geological target features by offering
an initial objective layer of surface materials that experts can
change to accelerate the production of maps and increase the
accuracy between mapped areas. The CNN was evaluated for
predicting surficial geological classes under two sampling sce-
narios. In the first scenario, a CNN used the samples obtained
from the field that needed to be mapped and in the second, a
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CNN trained in one field is then extended to areas where the
samples available were not included in CNN model training.
The study was carried out in five areas using aerial imagery,
Landsat reflectance, and high-resolution digital elevation data.
Finally, the fusion spatial-spectral function was primarily de-
rived in a model by stacking local spatial characteristics ob-
tained by a CNN-based model and spectral data.
Recurrent neural networks are deep learning methods that have
the ability to model temporal data and dynamical systems
(Elman, 1990; Werbos, 1990). The long-short term mem-
ory (LSTM) network (Hochreiter and Schmidhuber, 1997) is
a prominent recurrent neural network that has been applied to a
wide range of spatiotemporal problems, including remote sens-
ing; however, not much has been done in the scope of mineral
exploration. There exists a number of combinations of LSTMs
with other deep learning methods, such as LSTM-CNN combi-
nation for image datasets with temporal features such as real-
time video processing (Xia et al., 2020). Convolutional LSTM
has been developed based on features from CNN which has
been useful for spatiotemporal datasets (Shi et al., 2015). These
have been used for remote sensing applications (Li et al., 2020a;
Kwak et al., 2019; Boulila et al., 2021) and have potential in the
scope of mineral exploration.
Zhao et al. (2020) applied the CNN method on the hyperspec-
tral data obtained in the Nevada mining region by the AVIRIS.
The hierarchical spatial-spectral feature extraction with long
short-term memory (HSS-LSTM) classification achieved accu-
racy of 94.70 percent which exceeded the most widely used
methods. Sang et al. (2020) proposed a deep learning frame-
work for high-resolution target feature mapping using UAV
data. The UAV collected high-resolution images incorporated
groundwork study to support lithological mapping. The frame-
work provides an automated mapping mechanism based on the
basic simple linear iterative clustering-convolutional neural net-
work (SLIC-CNN). The CNN was used to classify the structure
of the image and to validate the lithological distribution, while
SLIC was used to outline the rock mass boundary. The fusion
and mapping results were explained by the mode and expert de-
cision process.
Recently, Li et al. (2020b) proposed a new deep learning-
based multi-label remote sensing image scene classification
(MLRSSC) framework by integrating CNN and graph neural
network (GNN). The multi-layer integration graph attention
network model addresses MLRSSC, where graph attention net-
work has been used to exploit the spatio-topological relation-
ships of the scene graph completely. Extensive tests on two
public MLRSSC datasets demonstrated that CNN-GNN com-
bination achieved superior efficiency. Furthermore, Gao et al.
(2021) presented a novel remote sensing scene classification ap-
proach based on a high-order graph convolutional network (H-
GCN). The experimental reports on test functions indicated the
viability and usefulness of the proposed approach for the clas-
sification of remote sensing scenes. These novel methods are
effective in analyzing remote sensing data and can be used for
mineral exploration purposes.

6. Discussion: challenges and future prospective

Mineral exploration is the process of discovering economi-
cally productive quantities of minerals that involves a chain of
events that ideally leads to a mineable resource. The explo-
ration methods taken to find new mineral deposits can differ
based on the type of deposit, the location of the study area,
the presence of infrastructure, and the presence and nature of
existing geological knowledge available in an area. Mineral
exploration needs theoretical knowledge about how and why
a mineral exists in nature at a certain location in the Earth’s
crust in order to provide an exploration plan. Mineral discov-
ery aims to locate an economic deposit at the lowest possible
cost and in the shortest possible period. The success rate of
exploration and the return on investment are low, because ex-
ploration is an incredibly risky sector. In recent years, due to
the decline of the discovery success rate of mineral exploration
and the increasing demand for critical metals, geologists are
encouraged to apply new data types and approaches to identify
new mineral deposits. With the introduction of remote sensing
data, supercomputers, and modeling based on machine learn-
ing methods, there is more potential for new resource discov-
ery although complications and challenges exist. At present,
much of the groundbreaking activities in the field of mineral
discovery rely on three areas: digitization and the use of artifi-
cial intelligence, remote sensing and geophysical technologies
development, and new approaches to exploration through cover
(Gonzalez-Alvarez et al., 2020).
The challenges of remote sensing given big data and complex
machine learning methods face our era. Big data refers to a
series of datasets so large and diverse that conventional algo-
rithms and models for data analysis are infeasible. The chal-
lenges are in acquisition, preparation, searching, sharing, tran-
sition, analysis, and interpretation of the data. The complexity
of machine learning methods in terms of the number of model
parameters and model architecture has been increasing to ad-
dress different data types. Therefore, when using remote sens-
ing to understand geo-processes, it is critical to consider multi-
source, multi-scale, high-dimensional, dynamic state, isomer,
and non-linear characteristics of remote sensing data. The char-
acteristics are fundamental assumptions and objectives when
evaluating remote sensing big data and extracting information
from them (Liu, 2015).
Satellite, airborne, and ground-based remote sensing data are
typically very large and complicated datasets that take much
time to decode without any assurance that hidden information
could be detected. Valuable information can be decoded from
such dynamic signals with the help of machine learning meth-
ods. However, emerging machine learning methods have not
been applied in some branches of science. Recent deep learning
methods could be applied in mineral exploration using remote
sensing data. CNNs are ideal for automating feature extraction
and capturing complex relationships in image-based data which
is highly applicable for different types of remote sensing data
for problems in geosciences. CNN has been designed to con-
centrate on salient characteristics and spatial dependence in im-
ages that can reflect valuable characteristics such as nearby re-
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gions in the case of remote sensing data. Experimental findings
suggest that spectral and spatial knowledge can be exploited
entirely by CNNs. In this context, Ding et al. (2017) proposed
a hyperspectral image (HSI) classification approach based on
CNN where the fully convolutional kernels can be learned from
the data automatically by clustering without knowing the num-
ber of clusters. The CNN approach achieved improved clas-
sification performance which has been useful in identifying
and discriminating target features for mineral exploration such
as lithological units, alteration types, structures, and indicator
minerals.
Although machine learning methods have been widely used for
remote sensing data analysis, there remains a gap in uncertainty
quantification in predictions. In general, assessing the uncer-
tainty in remote sensing-based model applications is challeng-
ing. The model validation is usually carried out via compari-
son with ground truth or alternative information that presum-
ably represents the ground truth. Different approaches have
been developed to address the validation problem, which re-
sults in a large variety of potential models. A number of stud-
ies reviewed remote sensing data validation methods and doc-
umented their similarities and differences (Wang et al., 2016;
Loew et al., 2017; Wu et al., 2019). As mentioned earlier,
Bayesian inference provides a principled approach to uncer-
tainty quantification in model parameters. Recently, there has
been tremendous progress in the area of Bayesian neural net-
works and Bayesian deep learning (Wang and Yeung, 2020;
Shi et al., 2017); however, these methods have not been much
used for remote sensing, and their application for mineral ex-
ploration is absent. These methods have the potential to provide
the meaningful interpretation of remote sensing data given chal-
lenges such as noise in data, sparse datasets, and missing data.
The quantification of uncertainty using Bayesian inference can
be used to project the uncertainty associated with model pa-
rameters and data. Recently, Chandra and Kapoor (2020) pro-
posed a Bayesian neural network framework that takes into ac-
count multiple data sources using Markov Chain Monte Carlo
(MCMC) sampling which can be extended in the field of re-
mote sensing and mineral exploration given multiple sources of
data and information. Bayesian framework driven by MCMC
sampling has been used for geoscientific models where differ-
ent sources of information have been incorporated for infer-
ence of geophysical parameters in landscape evolution models
(Chandra et al., 2019). The approach has also been used in
3D geological and geophysical data fusion for mineral prospec-
tivity (Olierook et al., 2021). Bayesian framework has also
been used for spatio-temporal reconstruction of lithologies in a
paleo-climatology study for the last 250 million years (Chandra
et al., 2021). Therefore, the Bayesian approach has good poten-
tial to integrate remote sensing data to explore mineral deposits.
As an alternative approach, transfer learning can be applied
in remote sensing data processing for detecting ore deposits.
Transfer learning is inspired by the field of educational psy-
chology and refers to the transfer of learning that happens when
learning in one condition increase (positive transfer) or decrease
(negative transfer) the performance (Baldwin and Ford, 1988).
There are challenges in deep learning methods given several

sources of knowledge and data that needs to be integrated for
developing a robust model. The autoencoder is a prominent un-
supervised machine learning method which aims to compress
data and reconstruct it accurately (Wang et al., 2014). Re-
mote sensing data needs to be compressed for machine learn-
ing methods and the use of autoencoders and its variants such
as deep autoencoders that feature CNN (Pu et al., 2016) can be
useful for mineral exploration.
Generative adversarial networks (GANs) are prominent deep
learning methods used for generating images and data (Good-
fellow et al., 2014). GANs are more recently becoming very
popular for addressing the issue of class-imbalanced prob-
lems (Ali-Gombe and Elyan, 2019; Shamsolmoali et al., 2020),
which are key challenges in geoscience and remote sensing.
Hence, they have the potential to be used for remote sens-
ing (Jiang et al., 2019) and mineral exploration to generate
data for class imbalanced problems or to reconstruct data in
cases of missing regions in remote sensing data. Finally, the
use of spatio-temporal tectonic data analysis to augment ma-
chine learning models for mineral exploration can also be ex-
plored for understanding the original tectonic environments
in which ore deposits may have formed. Recently, (Diaz-
Rodriguez et al., 2021) used machine learning methods with
data generated from a plate tectonic model that captures the
time-dependence of subduction zone evolution in the context
of porphyry Cu systems for the last 100 million years. Such
spatio-temporal machine learning approaches, placing ore de-
posits in a plate tectonic and plate boundary evolution context,
have the potential to significantly improve our understanding
of the geological niche environments that give rise to particular
ore deposits in space and time.
The computational cost of machine learning algorithms in-
creases rapidly with the increase in size and quality of remote
sensing data. The trade-off between the result accuracy and
the computational effort should always be taken into account.
In general, data-driven techniques may pose the risk of over-
fitting and problem dependence which requires additional re-
search. The results of previous studies indicate that there is no
universal approach to solve all problems. Thus, the selection
of the appropriate technique is based on specific applications
and experiment conditions. Recently developed machine learn-
ing algorithms enable geologists to deal with high-complexity
and high-dimensional problems or data. However, questions
remain with regard to the efficiency of novel algorithms con-
cerning the computational costs of conducting data analysis of
high-dimensional data, handling outliers, and providing more
insight into the analysis of black-box models. In summary,
machine learning methods enable scientists to analyze com-
plex datasets and solve challenging big data problems. Despite
their complexity and the lack of clear and reliable guidelines for
model settings and the interpretation of results, machine learn-
ing methods have been widely distributed and implemented.
Nevertheless, to pursue such state-of-the-art methods, geolo-
gists must be motivated by a deeper understanding of problems
in the area of mineral exploration.
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7. Conclusions

We reviewed the implementation and adaptation of some
popular and recently established machine learning methods for
remote sensing data processing and investigated their appli-
cations for exploring different ore deposits. Remote sensing
datasets have provided a new data resource to overcome prob-
lems associated with mapping geological features from field
data alone. As a data-driven classification or prediction tool,
neural networks have been widely applied in remote sensing
data processing as well as a large number of research areas
ranging from engineering and environmental science to physics
and astronomy. Dimensionality reduction techniques can trans-
form high-dimensional problems into a low-dimensional space
and potentially mine special features from remote sensing data
for mineral exploration. Recent advancements in deep learn-
ing methods have the potential to deal with large and com-
plex remote sensing data with features in processing spectral
and ground truth measurements against noise and uncertainties.
Deep learning methods can be very effective in identifying tar-
get features and mineral discovery using remote sensing data.
Advanced deep learning methods can improve the mapping of
geological target features for both small and large-scale studies
as the success rate of mineral exploration in the face of increas-
ing demand for critical metals. The limitations of different ma-
chine learning methods and their specific requirements are the
key obstacles that exploration geologists have been facing. In
general, using advanced analytics in mineral exploration is im-
portant for achieving sustainable development goals in the min-
ing industry. These techniques can help geoscientists limit the
negative impact of mineral prospecting activities on the ecol-
ogy, environment, and climate with efficient and effective cost-
cutting solutions.
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