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Abstract

models is provided at the end.

thus saving labour, time and cost.

Background: Over the last 20 years in biotechnology, the production of recombinant proteins has been a crucial
bioprocess in both biopharmaceutical and research arena in terms of human health, scientific impact and economic
volume. Although logical strategies of genetic engineering have been established, protein overexpression is still an
art. In particular, heterologous expression is often hindered by low level of production and frequent fail due to
opaque reasons. The problem is accentuated because there is no generic solution available to enhance heterologous
overexpression. For a given protein, the extent of its solubility can indicate the quality of its function. Over 30% of
synthesized proteins are not soluble. In certain experimental circumstances, including temperature, expression host,
etc, protein solubility is a feature eventually defined by its sequence. Until now, numerous methods based on machine
learning are proposed to predict the solubility of protein merely from its amino acid sequence. In spite of the 20 years
of research on the matter, no comprehensive review is available on the published methods.

Results: This paper presents an extensive review of the existing models to predict protein solubility in Escherichia coli
recombinant protein overexpression system. The models are investigated and compared regarding the datasets used,
features, feature selection methods, machine learning techniques and accuracy of prediction. A discussion on the

Conclusions: This study aims to investigate extensively the machine learning based methods to predict recombinant
protein solubility, so as to offer a general as well as a detailed understanding for researches in the field. Some of the

models present acceptable prediction performances and convenient user interfaces. These models can be considered
as valuable tools to predict recombinant protein overexpression results before performing real laboratory experiments,

Keywords: Protein solubility, Protein solubility prediction, In silico prediction, Recombinant protein expression,
Escherichia coli, Machine learning, Bioinformatics, Computational biology

Introduction

In biotechnology, production of recombinant proteins is
a crucial process in both biopharmaceutical industries
and scientific research. So far, Escherichia coli (E. coli), a
bacterium that requires simple conditions to grow is still
the favoured host for cloning and overexpressing most
proteins which are non-glycosylated and do not have
many cysteine residues [1].
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Even though logical strategies of genetic engineering
are well established, such as strong promoters and
codon optimization, protein overexpression is often, still
an art. In particular, heterologous expression is often
afflicted with low levels of production and insoluble re-
combinant proteins forming inclusion bodies (protein
aggregations). Yet, there is no generic solution available
to enhance heterologous overexpression. The use of fu-
sion proteins can sometimes be more successful at the
expense of decreased total yield as a result of the fusion
partner production. Features that differentiate between
proteins in the negative (non-expressed) and positive
(expressed) classes might indicate sequence characteristics

© 2014 Habibi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:hnarjeskhatoon2@live.utm.my
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Table 1 A summary of key components of studies to predict protein solubility (in chronological order)

# Paper Dataset(s) Feature selection method(s) Modeling technique(s) Web server
1 [7] Bacterial protein sequences with ‘soluble’ Wrapper: SYM Support vector machine -

and ‘insoluble” in NCBI are selected randomly.

Size: 5692

Soluble: 2448

Insoluble: 3244

2 [10] HGPD Filter: Student’s t-test Two techniques: ESPRESSO:
E. coli Support vector machine http://mbs.cbrc,jp/ESPRESSO
Size: 5100
Soluble: 1774

Insoluble: 3326

YEL/SL/SOLT-L L /WO [eu3dPaWoIq MMM //:dNy
YELISL ‘Y L0T s2pWIojuIolg NG ‘I 12 IqieH

Wheat germ Sequence pattern-based method
Size: 2939
Soluble: 1941
Insoluble: 998
3 [5] eSol Two methods: Random forest ProS:
Size: 1918 1. Filter: Student’s t-test http://shark.abl ku.edu/ProS/
Soluble: 886 2. Wrapper: Random forest
Insoluble: 1032
4 (8] Four datasets: - Two methods: SCM:
Sd957 Support vector machine http://iclab.life.nctu.edu.tw/SCM/
Dataset Chan et al. [18] (Table 1, row 11) Scoring card method (SCM)
Solpro
PROSO I
5 [4] eSol - Four techniques: -
Size: 1600 1. Support vector machine

2. Random forest
3. Conditional inference trees

4. Rule ensemble

6 [6] PROSO I Wrapper A two-layer model: PROSOII:
1. Layer 1: Parzen window + logistic mips.helmholtz-muenchen.de/prosoll
regression

2. Layer 2: Logistic regression

91 Jo g abeyq
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Table 1 A summary of key components of studies to predict protein solubility (in chronological order) (Continued)

7

(22]

eSol

Size: 1625
Soluble: 843
Insoluble: 782

Decision tree

(23]

eSol

Size: 2159
Soluble: 1081
Insoluble: 1078

Wrapper: SYM

Support vector machine

HGPD

E. coli

Size: 7823
Soluble: 2796
Insoluble: 5027

Wheat germ
Size: 3955
Soluble: 2739
Insoluble: 1216

Filer: Student’s t-test

Random forest

(24]

SOLP

Seven methods:

1. Filter: Information gain

2. Filter: Gain ratio

3. Filter: Chi squared

4. Filter: Symmetrical uncertainty
5. Wrapper: ReliefF

6. Wrapper: SVM recursive feature
elimination (SvmRfe)

7. Embedded: One attribute rule

Support vector machine

121genes from different species were
expressed in 6 different vectors.

Size: 726

Soluble: 231
Insoluble: 236
Non-expressed: 259

Feature selection package in LIBSVM:

Filter (F-score) + Wrapper (SVM)

Support vector machine

YEL/S1/SOLT-L L7 L/WOY [RAUSDPIWIOIG MMM//:d1Yy

YEL:SL "¥10T s21pwaojuolg DNG ‘b 12 1qiqeH
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Table 1 A summary of key components of studies to predict protein solubility (in chronological order) (Continued)

12 [20] A database collected through literature search. N/A Logistic regression http://www.biotech.ou.edu/
Size: 212
Soluble: 52
Insoluble: 160
13 [17] Solpro Wrapper A two- layer model: SOLpro:
1. Layer 1: 20 Support vector machines scratch.proteomics.ics.uci.edu
2. Layer 2: One support vector machine
14 [25] eSol Using histogram Support vector machine -
15 9] PROSO Two methods: A two-layer model: PROSO:
1. Wrapper Layer 1: Support vector machine http://mips.helmholtz-muenchen.de/proso/
2. Filter: Symmetrical uncertainty Layer 2: Naive Bayes
16 [26] ldicula-Thomas 2006 N/A Support vector machine -
17 [27] Idicula-Thomas 2006 Filter: Unbalanced correlation score Support vector machine -
18 [28] Idicula-Thomas 2005 Filter: Mann-Whitney test Discriminant analysis -
(A heuristic approach of computing
solubility index (S))
19 [29] Genes of C. elegans with one expression Filter: Linear correlation - -
vector and one Escherichia coli strain. coefficient (LCO)
Size: 4854
Soluble: 1536
Insoluble: 3318
20 [30] TargetDB Wrapper: Random forest Decision tree -
Size: 27,000
21 [14] SPINE Wrapper Decision tree -
Size: 562
22 [31] SPINE Embedded: Decision tree Decision tree -
Size: 356
Soluble: 213
Insoluble: 143
23 [18] Some genes of E. coli were expressed. N/A Regression -
Size: 100
24 [9] Some genes of E. coli were expressed. N/A Regression -

Size: 81

YEL/SL/SOLT-L L /WO [eu3dPaWoIq MMM //:dNy
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that could be modified in optimization, corresponding to
what was attained with codon optimization, where se-
quences of gene are modified to become compatible with
the translational apparatus [2]. As the host expresses the
proteins, one cause of non-expression is the harmful inter-
action with the metabolism of the host [3].

For a given protein, the extent of its solubility can in-
dicate the quality of its function. In general, over 30% of
recombinant proteins are not soluble [4]. About 33 to 35
percent of all expressed non-membrane proteins are in-
soluble and about 25 to 57 percent of soluble proteins
are prone to aggregate at higher concentrations [5]. For
a determined experimental condition (i.e. temperature,
expression host, etc.), the solubility of a protein is deter-
mined by its sequence [6].

The trial-and-error procedure of protein overexpres-
sion can be avoided by identifying the promising pro-
teins to improve the experimental success rate [7].
There are two types of approach for predicting solubility
of protein: sequence-based and structure-based. In the
structure-based technique, the free energy difference
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between aggregation and solution phases is computed.
This method demands experimentally obtained high reso-
lutions 3D structures which are hard to acquire for
aggregation-prone proteins. Hence, the sequence-based
technique is a feasible and widely used method. Generally,
the computational sequence-based prediction methods in-
vestigate the protein overexpression in E. coli at the nor-
mal growth temperature of 37°C [8].

The correlation of amino acid sequence and the tendency
to form inclusion body was shown for the first time by Wil-
kinson and Harrison [9]. Later, numerous methods based
on machine learning were proposed to predict the solubil-
ity of proteins merely from amino acid sequences [10].

Protein solubility prediction can be considered a bin-
ary classification task where a classifier should discrim-
inate between soluble proteins (positive samples) and
insoluble proteins (negative samples). There are several
classification methods (learning algorithm) namely, deci-
sion tree (DT) (e.g. C4.5 [11]), k-nearest-neighbour (KNN)
[12], neural network (NN) [13,14], support vector ma-
chine (SVM) [15], etc.

Table 2 Reported prediction performances of the models (in chronological order)

# Paper Accuracy Areaunder curve F-score Gain Mathew correlation coefficient Precision Recall Sensitivity Specificity
1 [7] 0.88 - - - 0.76 - - - -
2% [10] 0.68 0.78 0.67 - 042 0.56 0.85 - -
0.75 0.75 0.82 - 042 0.79 0.86 - -
3 [5] 0.84 091 - - 067 - - 0.82 0.85
4 [8] 0.84 - - - - - - -
5 [15] 0.90 - - - - - - 0.80 0.80
[§ [6] 0.75 - - 1.69 0.39 0.65 0.76 0.73
7 [22] 0.75 0.81 - - - - - - -
8 [23] - - - - - - - - -
9% [3] 0.71 - - - - 047 067 -
0.71 - - - - 0.85 0.74 - -
10 [24] - - - - - - - - -
11 [1] 083 0.89 0.75 - - 0.73 0.78 -
12 [20] 0.94 - - - - - - - -
13 (171 0.74 0.74 - 149 049 0.74 0.74 - -
14 [25] 0.80 - - - - - - - -
15 [19] 0.72 0.78 - 143 043 - 0.72 - -
16 [26] 0.79 0.76 - - - - - 0.68 0. 85
17 [27] 0.74 - - - - - - 0.57 0.81
18 [28] 0.72 - - - - - - - -
19 [29] - - - - - - - - -
20 [30] 0.76 - - - - - - -
21 [16] 0.63 - - - - - - - -
22 [31] 0.65 - - - - - - - -
23 18] - - - - - - - - -
24 [9] 0.88 - - - - - - - -

a. *Results for E. coli and wheat germ are shown respectively.
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Table 3 Features used to predict protein solubility

# Paper Features
1 [71 1. 2-level triangle CGR
2. Entropy of “2-level triangle CGR"
3. Dipeptide composition based on a different mode of pseudo amino acid composition (PseAAC)
4. Entropy of “dipeptide composition”
2 [10] Same as row 9 (Reference [3])
3 [5] 1. Counts of aromatic amino acids
2. Counts of buried amino acids
3. Counts of hydrogen bonds
4. Counts of leucine amino acid
5. Counts of arginine amino acid
6. Negative charge
7. Surface composition of amino acids in intracellular proteins of Mesophiles (percent)
8. Beta-strand indices for beta-proteins
9. Flexibility parameter for two rigid neighbours
10. Net charge
11. Counts of nitrogen atoms
12. Long range non-bonded energy per atom
13. Isometric point (pl)
14. Free energies of transfer of AcWI-X-LL peptides from bilayer interface to water
15. Ratio of negative charge amino acids
16. Ratio of net charge of protein
17. Dependence of partition coefficient on ionic strength
4 [8] Dipeptide composition (400 features)
[4] 1. Reduced features (39 features produced by pepstats):
a. Molecular weight, number of residues, average residue weight, charge and isoelectric point
b. For each type of amino acid: number, molar percent and DayhoffStat
¢. For each physicochemical class of amino acid: number, molar percent, molar extinction
coefficient (A280) and extinction coefficient at T mg/ml (A280)
2. Dimers (2400 features):
a. Dimers amino acid frequencies which are computed considering gaps of 1-5 amino acid
3. Complete set
a. Reduced features + Dimers
6 (6] 1. Amino acid frequencies (18 features): R, N, D, C, Q, E, G, H, |, K, M, F, P, S, T, W, Y, V
2. Dipeptide frequencies (13 features): AK, CV, EG, GN, GH, HE, IH, IW, MR, MQ, PR, TS, WD
7 [22] 1. Monomer, dimer and trimmers using 7 different alphabets (18 features)

2. Sequence-computed features:
a. Molecular weight
b. Sequence length
C. Isoelectric point
d. GRAVY index

3. Features used in Niwa et al. work [25]

N

. Combination of all the above features 1-3.
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Table 3 Features used to predict protein solubility (Continued)
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8 [23] 1. Coll
. Disorder

. Hydrophobicity

2

3

4. Hydrophilicity
5. B-turn

6

. a-helix

9 [3] 1. Nucleotide sequence information:
a. T-mer
b. Frequencies of 64 codons (3-mer)
c. GC-contents
2. Amin acid sequence information:
a. Polypeptide length
b. Frequencies of 20 single amino acids (1-mer)
c. Frequencies of 8 chemical property groups
d. Frequencies of 5 physical property groups
e. Repeat of amino acids
f. Repeat of 8 chemical property groups
g. Repeat of 5 physical property groups
3. Amino acid structural information:
a. Frequencies of single amino acids in surface area
b. Frequencies of 8 chemical property groups in surface area
. Frequencies of 5 physical property groups in surface area
d. Number of transmembrane regions
e. Disordered regions:
i. Number of occurrence
ii. Length
iii. Proportion
f. Secondary structures:
i. alpha-helix
ii. Beta-sheet
ii. Others

10 [24] 1497 features computed by Protein Feature Server (PROFEAT) [32]:
1. Group 1:
a. Amino acid composition
b. Dipeptide composition
2. Group 2: Autocorrelation 1
a. Normalized Moreau-Broto autocorrelation
3. Group 3: Autocorrelation 2
a. Moran autocorrelation
4. Group 4: Autocorrelation 3
a. Geary autocorrelation
5. Group 5:
a. Composition
b. Transition

c. Distribution
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Table 3 Features used to predict protein solubility (Continued)

6. Group 6: Sequence order 1
a. Sequence-order-coupling number
b. Quasi-sequence-order descriptors
7. Group 7: Sequence order 2

a. Pseudo amino acid descriptors

1 M 1. Nucleotide information:
a. 1-mer
b. 2-mer
c. 3-mer
d. Sequence length
e. GC content
2. Amino Acid information:
a. Features of Wilkinson and Harrison [9]
b. Features of Idicula-Thomas et al. [27]
¢. Isoelectric point
d. Peptide statistics
3. Codon Adaptation Index
4. PTMs
12 [20] 1. Molecular weight

2. Cysteine fraction
3. Hydrophobicity-related parameters:
a. Fraction of total number of hydrophobic amino acids
b. Fraction of largest number of contiguous hydrophobic/hydrophilic amino acids
4. Aliphatic index
5. Secondary structure-related properties:
a. Proline fraction
b. Alpha-helix propensity
C. Beta-sheet Propensity
d. Turn-forming residue fraction
e. Alpha-helix propensity/b-sheet propensity
6. Protein—solvent interaction related parameters:
a. Hydrophilicity index
b. pl
. Approximate charge average

7. Fractions of: Alanine, Arginine, Asparagine, Aspartate, Glutamate, Glutamine, Glycine, Histidine, Isoleucine,
Leucine, Lysine, Methionine, Phenylalanine, Serine, Threonine, Tyrosine, Tryptophan and Valine

13 [17] 1. Frequencies of amino acid monomers, dimers and trimmers using 7 different alphabets:
a. Monomer frequencies

i. [Natural-20:M]

i. [ClustEM-17:M]

iii. [ClustEM-14:M]

iv. [PhysChem-7:M]

v. [BlosumSM-8:M]

vi. [ConfSimi-7:M]

vii. [Hydropho-5:M]
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Table 3 Features used to predict protein solubility (Continued)

b. Dimer frequencies
i. [PhysChem-7:D]
ii. [ClustEM-14:D]
iii. [ClustEM-17:D]
iv. [BlosumSM-8:D]
v. [Natural-20:D]
vi. [ConfSimi-7:D]
c. Trimmer frequencies
i. [ClustEM-17:T]
ii. [Hydropho-5:T]
iii. [ConfSimi-7:T]
iv. [ClustEM-14:T]
v. [Natural-20:T]
2. Features computed directly:
a. Sequence length
b. Turn-forming residues fraction
¢. Absolute charge per residue
d. Molecular weight
e. GRAVY index
f. Aliphatic index
3. Predicted features using the SCRATCH suite of predictors:
a. Beta residues fraction (Predicted by SSpro)
b. Alpha residues fraction (Predicted by SSpro)
c. Number of domains (Predicted by DOMpro)

d. Exposed residues fraction (Predicted by ACCpro, using a 25% relative solvent accessibility cut-off)

14 [25] 1. Molecular weight

2. Isometric point (pl)

3. Ratios of each amino acid content
15 [19] 4. For mono-domain proteins:

a. Word size 1:
S IL M, F,DE, A CGR
b. Word size 2:

R+R R+C R+ER+T, N+Q N+H N+L C+S,Q+A Q+G Q+I,E+A E+G E+K E+P,
E+V,G+P, H+M L+Y, K+G K+KM+G, S+S, T+, Y+C Y+I

c. Word size 3:
ST+ST+ST,ST+ST+N, ST+DQE+AH, ST+C+ST,G+M+R G+K+G, G+P+G,
G+P+N, M+AH+AH M+C+Y, DQE+G+R, DQE + R+ DQE, DQE +M + ST,
DQE+Y+N, DQE+AH+ 1V, K+ R+ IV, K+ K+ ST, P+ DQE + DQE, P+ DQE+C,
V+G+IV, L+IV+DQE N+FW+DQE N+ C+P, AH+ ST+ ST, AH+K+L, C+FW+Y, C+K+C
5. For multi-domain proteins:

a. Word size 1:
RD CEGLKMSW

b. Word size 2:
A+Y,A+V,R+N,R+ER+S R+Y,N+AD+MC+T,Q+A Q+EE+D E+GE+T G+],
G+FG+SH+CH+MH+P L+G L+S K+D K+G K+L K+F,P+L T+L T+Y, V+R
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Table 3 Features used to predict protein solubility (Continued)

c. Word size 3:
ST+ST+ST, ST+P+DQE, ST+ IV+K R+ DQE +FW, R+ DQE + IV, R+ IV + FW,
FW + DQE + FW, M + ST + DQE, M+ G + AH, M + FW + DQE, DQE + ST + ST,
DQE+ST+G, DQE+G+K DQE+IV+R, DQE+IV+L P+G+ST, IV+ST+P,
L+K+FW, AH+ST+IV, AH+G+ IV, AH+AH+ M
. Aliphatic index

o
N
o5

2. Frequency of occurrence of residues Cysteine (Cys), Glutanic acid (Glu), Asparagine (Asn) and Tyrosine (Tyr)
3. Reduced class of conformational similarity [CMQLEKRA]

4. Reduced classes of hydrophobicity [CFILMVW] and [NQSTY]

5. Reduced classes of BLOSUMS50 substitution matrix [CILMV]

6

. The 18 dipeptide composition: [VC], [AE], [VE], [WF], [YF], [AG], [FGI, WG], [HH], [MI], [HK], [KN], [KP],
[ER], [YS], [RV], [KY], [TY]

. Physicochemical properties (6 features):

~
~
~

a. Length of protein
b. Hydropathy index (GRAVY)
¢. Aliphatic index
d. Instability index
e. Instability index of N-terminus
f. Net charge

2. Mono-peptide frequencies (20 features)

3. Dipeptide frequencies (400 features)

4. Reduced alphabet set (20 features)

18 [28] 1. Aliphatic index (Al)

2. Instability index of the N terminus
3. Frequency of occurrence of Asn, Thr, and Tyr
4

. Tri-peptide score

19 [29] 1. Signal peptide
. GRAVY

. Transmembrane helices

. Anchor peptide

2
3
4. Number of Cysteines
5
6. Prokaryotic membrane lipoprotein lipid attachment site
7

. PDB identity

20 [30] 1. General sequence composition
2. Clusters of orthologous groups (COG) assignment
3. Length of hydrophobic stretches
4. Number of low-complexity regions
5

. Number of interaction partners

21 [1e] 1. Single residue composition: I, T, Y
. Combined amino acid compositions: KR, DE, DENQ
. Predicted secondary structure composition: a and coil

. Presence of signal sequence

. Number of amino acids in both short and long low complexity regions (over sequence length)

2

3

4

5. Amino acid sequence length

6

7. Normalized low complexity value for both short and long regions (over sequence length)
8

. Minimum GES hydrophobicity score calculated over all amino acids in a 20 residue sequence window
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Table 3 Features used to predict protein solubility (Continued)

22 [31] 1. Hydrophobe

2. Cplx: a measure of a short complexity region based on the SEG program.

3. GIn composition
4. Asp + Glu composition
5. lle-composition

6. Phe + Tyr + Trp composition

7. Gly + Ala + Val + Leu + lle composition

8. His + Lys + Arg composition

9. Trp composition

10. Alpha-helical secondary structure composition

23 [18] Same as row 24 (Reference [9])

24 [l

1. Charge average approximation (Asp, Glu, Lys and Arg)

2. Turn-forming residue fraction (Asn, Gly, Pro and Ser)

3. Cysteine fractions
4. Proline fractions

5. Hydrophilicity

6. Molecular weight (Total number of residues)

The learning algorithm (i.e. the classification method)
is selected based on numerous factors, such as the num-
ber of existing examples in the dataset, the data type to
be classified (e.g. symbolic or numeric), and the number
of examples probable to be inaccurate or noisy. The level
of preferred interpretability of the outcomes is another
issue to be considered [16].

The majority of current methods use SVM to build
the model of solubility [4]. Appropriate SVM models
can often achieve better performance in classification of
biological sequence compared to other machine learning-
based approaches [1]. Each study employs a different set
of features. Considering the model performance, different
results are obtained, but 70% is a common accuracy in
many studies [4].

To date, all of the prediction approaches examined a
single system of protein expression, such as the A. niger
or the E. coli system. The works of Hirose et al. [3,10]
are exceptions that explored two different systems (E.
coli and wheat germ).

Some of the suggested methods of prediction offer
their work as widely accessible web servers [3,10,17-20].

In spite of more than two decades of research on the
subject, there has been only one report, reviewing seven
solubility prediction tools [21]. In their valuable review,
the authors have compared seven existing prediction
tools based-on the following factors: prediction accuracy,
usability, utility, and prediction tool development and
validation methodologies. Our aim is to evaluate and in-
vestigate all published methods to predict protein solu-
bility, so as to offer a detailed as well as a general
understanding for the researchers.

The organization of the paper is as follows. The major
protein solubility prediction studies are reviewed in sec-
tion 2, with emphasis on their datasets, features, feature
selection methods, predictor models and performance
results. Section 3 presents a discussion on the models
details, the best models and the data challenge for solu-
bility prediction task. Lastly, section 4 concludes the
paper and proposes some future research directions.

Review

The methods to predict solubility of protein based on
the machine learning are summarized in Table 1 in a
chronological order, descending from the most recent.
Due to space limitation, the reported performance of the
works and the features used in each work are shown in
Table 2 and Table 3 respectively. More detailed descrip-
tions of the works are presented in “Additional file 1”.

In the following tables, for an entry which does not
have the corresponding column value, symbol “” is
used. For an entry which we could not find its value, but
may exist, symbol “N/A” is used (N/A: Not applicable,
not available or no answer).”

In order to comprehend the details of the works which
are presented in Table 1, Table 2 and Table 3, datasets
used, feature selection methods and performance mea-
sures are described in greater details in Table 4, Table 5
and Table 6 respectively.

It should be mentioned that in some works several
modeling techniques are examined and then one or
more are selected as the final model(s). In the “Modeling
Technique(s)” column of Table 1, only the final models
are shown. It is same true for the “Feature Selection



Table 4 Databases/datasets used to predict protein solubility (in chronological order)

# Name Reference Size Description URL
Total Soluble Insoluble
1 Sd957 [8] 957 285 672 It is made from 3 previous datasets: Idicula-Thomas http://iclab.life.nctu.edu.tw/SCM/downloads.php
et al. [28], Diaz et al. [20] and Chan et al. [1].
2 PROSO I [6] 82,000 41,000 41,000 It is made from pepcDB and PDB and has been the largest  http://mips.helmholtz-muenchen.de/prosoll/img/
dataset ever. It is balanced. Suppl_fileszip
3 HGPD [33] 17,821 N/A N/A Human full-length cDNA. http//www.HGPD.jp
(As of June 9th, 2011)
4 eSol [25] 30,173 N/A N/A A database on the solubility of entire ensemble of E. coli http://www.tanpaku.org/tp-esol/index.php?lang=en
proteins based on ASKA library.
5 Solpro (SOLP) [17] 17,408 8704 8704  Itis collected from 4 different sources: PDB, SwissProt, http://download.igb.uci.edu/SOLP fa
TargetDB and dataset of “Idicula-Thomas, 2006". The
sequence redundancy is removed with 25% sequence
similarity. It is balanced.
6 PROSO [19] 14,000 7000 7000 It is collected by merging 4 datasets: TargetDB, PDB and -
datasets of “Idicula-Thomas 2005” and “Idicula-Thomas 2006".
7 pepcDB [34] N/A N/A N/A It stored target and protocol information contributed by http://pepcdb.resb.org
Protein Structure Initiative centres as well as targets
imported from the TargetDB database. Now it has been
replaced by TargetTrack.
8 lIdicula-Thomas [27] 192 62 139 It is collected from the literature. -
2006
9 Idicula-Thomas [28] 174 41 133 It is collected from the literature. -
2005
10 PDB [35] 91,359 N/A N/A It is a repository of information about the 3D structures http//www.rcsb.org/pdb/
(As of 11 June 2013) of large biological molecules, including proteins and
nucleic acids.
11 SPINE [16] N/A N/A N/A N/A http://spine.nesg.org/user_login.cgi?url=http://spine.nesg.
org/front_page.cgi?
12 TargetDB [36] 295,041 N/A N/A It provided status information on target sequences http://targetdb.rcsb.org
(As of 29 March 2013) and tracks their progress through the various stages of
protein production and structure determination.
Now it has been replaced by TargetTrack.
13 TargetTrack - 316424 N/A N/A It is a target registration database which provides http://sbkb.org/tt

(As of 14 June 2013)

information on the experimental progress and status of
targets selected for structural determination by the
Protein Structure Initiative and other worldwide
high-throughput structural biology projects.
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Table 5 Description of feature selection methods used in machine learning [37]

Method Description Examples
Filter Filter methods evaluate the relatedness of features by looking at the Student's t-test [N/A]
inherent properties of the data. Usually a feature relevance score is Inf i in 38]
computed, and the features with low scores are discarded. nrormation gain
Gain ratio [38]
Chi squared [N/A]
Symmetrical uncertainty [39]
Unbalanced correlation score [40]
Mann-Whitney test [41]
Linear correlation coefficient [N/A]
Wrapper In wrapper methods various subsets of features are evaluated by Sequential forward selection [42]
training and testing a specific classification model, so a search algorithm s tial backward elimination [42]
is ‘wrapped’ around the classification model. This approach adapted equential backward elimination
to a specific classification algorithm. Beam search [43]
ReliefF [44]
Embedded Embedded methods, build the search for an optimal subset of Random forest [45]

features into the classifier construction, so they are specific to

a given learning algorithm.

SVM recursive feature elimination (SvmRfe) [46]

One attribute rule [47]

Method(s)” column. In addition, in most of the works,
first an initial feature set is considered, and then using
feature selection methods, a smaller sub-set is obtained
and employed in the modeling. Table 3 presents the final
sets used in the modelings.

With respect to the data used in each study, some of
the authors created a dataset harvested from the litera-
ture, some employed public datasets, while others per-
formed experiments to generate their own dataset.

Discussion

This section investigates the works in more depth. In
the following paragraph, the most used dataset, features,
feature selection methods and learning techniques are
presented. Afterwards, the best models based on the ob-
tained accuracies are introduced. Then, the most con-
venient to use models are mentioned. Lastly, some data-
related challenges are discussed.

In terms of data, eSol is the most widely used dataset
in the field. Considering input features, the following
features are the most common ones computed from the
protein sequence: aliphatic index, amino acid sequence
length, charge, amino acid compositions, instability, iso-
electric point (pI), hydrophilicity, molecular weight, and
predicted secondary structure. Filter methods (described
in Table 5) are used more than the other feature selection
techniques. Regarding the machine learning method, sup-
port vector machine is the most common technique to
make prediction; random forest, decision tree and logistic
regression are the next most common ones, respectively.

Based on the results, the method reported by Diaz
et al. [20] obtained the best prediction accuracy (94%)
on their generated dataset. Similar prediction accuracy

was also reported by Samak et al. [4] with an accuracy of
90% on the eSol dataset, followed by the works of
Xiaohui et al. [7], and Wilkinson and Harrison [9] with a
prediction accuracies of 88% based on their generated
datasets.

Comparing the different models in terms of conveni-
ence and ease of use, the ones with publicly accessible
web servers can be considered the most convenient to
use and evaluate. They are ProS [5], PROSOII [6], SCM
[8], ESPRESSO [10], SOLpro [17], PROSO [19] and the
model of Diaz et al. [20].

It seems that by using an appropriate dataset, as well
as suitable machine learning techniques, reasonable pre-
diction performance is attainable. In addition, feature se-
lection methods can reveal, to some extent, influential
factors on solubility and the sequence characteristics
that could be modified in optimization.

Poor generalization ability is one of the limitations of
sequence-based methods founded on a small dataset
[35]. In general, extracting a reliable dataset, in terms of
experimental conditions and expression system is chal-
lenging as the majority of databases that deliver the in-
formation on the solubility of proteins often do not
provide comprehensive information about the experi-
mental particulars of solubility assessment. Furthermore,
researchers generally handle imbalanced (i.e. unequal
number of soluble and insoluble samples) data when col-
lecting protein solubility records. Consequently, numer-
ous research teams used different methods to collect
consistent datasets that divide proteins into insoluble
and soluble categories [24,27].

It is worth mentioning that the datasets employed to
build SOLpro [17] and PROSOII [6] were gathered by
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Table 6 Performance measures used to evaluate protein solubility prediction (in alphabetical order)

# Name Abbr. Formula Description
1 Accuracy ACC (TP +TN)/(TP + TN + FP + FN) The number of correctly classified instances divided by the
total number of instances [6].
2 Area under ROC curve  AUC - It measures the discriminating ability of the model and
it takes values between 0.5 for random drawing and
1.0 for perfect classifier [6].
3 Enrichment Factor EF [CS/(CS + WS)I/IS/(S + )] EF is especially suitable for the unbalanced datasets [27].
CS: Number of correctly classified soluble proteins.
WS: Number of soluble proteins wrongly
classified as insoluble.
S: total number of soluble proteins.
I: total number of insoluble proteins.
4 False Negative FN - The number of incorrectly predicted negatives [10].
5 False Positive FP - The number of incorrectly predicted positives [10].
6 F-Score FS 2 x Precision x Recall/(Precision + Recall) The harmonic mean of recall and precision [10].
7 Gain GAIN Precision/proportion of the given class in the It is an important performance measure that quantifies
full data set. how much better the decision is in comparison with
random drawing of instances [6].
8  Matthew's Correlation  MCC (TP X TN — FP x FN)/((TP + FP)(TP + FN)(TN + FP) It indicates the correlation between the classifier
Coefficient (TN + FN)) assignments and the actual class in the two-class case. It is
a good measure of classifier performance even when classes
are unbalanced [6]. The MCC ranges between —1 and 1,
and a large positive value indicates a better prediction [10].
9  Precision (Selectivity) PRC TP/(TP + FP) Or TN/(TN + FN) The ratio of the number of correctly classified positive or
negative instances to the number of all instances classified
as positive or negative, for positive and negative class
respectively [6].
10 ROC Curve ROC Plotting the “FP-rate” against the “TP- rate”, The receiver-operator characteristic curve, showing the
while the probability is increased from 0 to trade-off between the ratio of false positives and false
1.0 with 0.01 increments. negatives in testing a classifier [48]. A larger area value
indicates a more robust prediction method [10].
1" Recall REC TP/(TP + FN) The ratio of the number of correctly classified positive
(Sensitivity) instances to the number of all instances from the
ENsItvity positive class [6].
(True positive rate)
(TP- rate)
12 Specificity SPC TN/(TN + FP) The ratio of the number of correctly classified negative
) instances to the sum of all negative instances [6].
(True Negative Rate)
(TN-rate)
13 True Positive TP - The number of correctly predicted positives [10].
14 True Negative TN - The number of correctly predicted negatives [10].
a. “TP” = True Positive; “TN” = True Negative; “FP” = False Positive; “FN” = False Negative; “+” = Add, “-” = Subtract; “x” = Multiply; “/" = Division.

integrating different search results of TargetDB, Protein
Data Bank (PDB), and Swiss-Prot database. Then, the
proteins were categorized into insoluble and soluble
samples according to the proteins’ annotations. Although
these methods were best working when an appropriate
experimental dataset did not exist, they might not be re-
liable completely. A soluble protein without appropriate
annotation, for example, may be incorrectly categorized
as an insoluble protein and vice versa. Furthermore, an-
notations from diverse databases may not be consistent.
Clearly, it is desirable to have a large protein set with

solubility determined based on experiment by a single
reliable protocol [5].

Conclusions
In this paper, the works to predict protein solubility pre-
diction are reviewed in details. They are assessed and
classified with regards to the datasets used, features
used, feature selection methods, machine learning algo-
rithms and performance results.

Since the early work of Wilkinson and Harrison [9],
models later proposed became more complex in terms
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of dataset size, number and types of features employed,
feature evaluation techniques and machine learning
methods to make prediction. In general, the perfor-
mances of the models have improved greatly as well.

Some of the models provide acceptable prediction per-
formance (e.g. in terms of accuracy). Especially the ones
with convenient user interfaces (e.g. web applications),
can be considered valuable tools to anticipate recombin-
ant protein overexpression results before performing real
laboratory experiments. This capability will lead to sig-
nificant reduction of labour, time and cost.

Generating larger and more accurate datasets, working
on organisms other than E. coli and discovering other
influential features, are some considerations for future
directions in the protein solubility prediction field.
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