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Abstract: Corona Virus Disease 2019 (COVID-19) is a disease caused by the novel coronavirus, and due to its 
rapid spread, the World Health Organization has declared it a worldwide outbreak. Since the first case was detected 
in December 2019, the fight against this deadly disease has begun. Numerous studies have been done on the 
COVID-19 outbreak’s model of dissemination and epidemic patterns. It mainly focuses on the selection of methods, 
the determination of parameters, and the evaluation of prevention and control measures. Taking the spread of the 
COVID-19 epidemic as the research object, combined with the current development of the COVID-19 epidemic, this 
paper sorts out the relevant mathematical models for the study of the spread of COVID-19, among which the models 
based on Susceptible-Infected-Recovered (SIR) model and Susceptible-Exposed-Infectious-Removed (SEIR) model 
and the mathematical models combined with these two models are mainly selected. Finally, the importance of 
reasonable and effective control of parameters and multi-model combined modeling is pointed out in the future.
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1. Introduction
In early December 2019, there was a rapid global spread of Corona Virus Disease 2019 (COVID-19), a highly

contagious respiratory infection with typical symptoms including fever, cough, and dyspnea, which in severe cases 
can lead to pneumonia, acute respiratory syndrome, renal failure, and death [1-2]. The outbreak of COVID-19 has 
had a huge impact on countries around the world, with countless lives and properties lost, and is still raging in many 
countries and regions today. According to the latest data, as of June 6, 2022, there were 53.89 million confirmed cases 
and 6.29 million deaths worldwide, of which more than 880,000 cases had been reported in the United States. The 
epidemic’s prevention and control are facing a serious situation of complexity, enormity, and recurrence. In addition to 
the biomedical and health care disciplines and industries that directly serve epidemic control, researchers from other 
disciplines are also actively participating in this global epidemic control sniper war with their expertise.

Prevention, detection, and control are the main methods to reduce the spread of viruses. Mathematical models and 
computer simulations, despite their limitations and shortcomings, are still one of the best methods to analyze the spread 
of viruses and control their prevalence. Modeling is very important in epidemiology because, in most cases, we cannot 
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perform biological experiments and there are no pharmaceutical solutions. Mathematical modeling must be used to 
develop and understand epidemiological phenomena in a relevant way as well as to quantitatively simulate the possible 
effects of different intervention strategies [3]. Therefore, it is very important to use suitable mathematical models to 
simulate, analyze, and predict the COVID-19 epidemic and make recommendations for prevention and control during 
the virus transmission stage.

This paper tries to make a brief summary of the mathematical models in the study of the law of the epidemic of 
COVID-19, focusing on reviewing the modeling methods of the transmission mechanism and the basic data sources. 
For the combination of the two models, it mainly introduces the specific methods and steps of prediction. These reviews 
provide important reference value for us to analyze the epidemic situation of novel coronavirus pneumonia scientifically, 
take effective prevention and control measures, and establish an early warning mechanism for infectious diseases in the 
future.

The transmission models of COVID-19 generally include the mathematical model based on SIR and SEIR, the 
discrete stochastic model, the multi-stage dynamic time-delay model, the micro-scale model of coinfection of SARS-
CoV-2 and bacteria, the system dynamics model, the model based on space-time attention mechanisms, as well as the 
dual model combined with the SEIR model and the time series prediction model. The SIR Model can describe the trend 
of epidemic development and the general law of disease transmission as a whole, but it ignores some details, the most 
important of which is that it does not consider the incubation period. The SEIR model, which takes the incubation 
period into account, is also the most widely used in this COVID-19 outbreak. Therefore, most of the mathematical 
models summarized in this paper are based on SEIR. In the process of epidemic development, many external factors 
will affect the SEIR model, and the model cannot self-regulate. Therefore, some researchers combine the SEIR model 
and time series prediction so as to predict the development trend of the epidemic more accurately and provide reliable 
suggestions for epidemic prevention and control. Finally, we conclude with a conclusion and a vision for the future.

2. COVID-19 infectious disease model
2.1 SIR model

SIR is a classical mathematical model of infectious diseases, whose basic idea is to divide people in the outbreak 
population into a susceptible population (S), infected population (I ), and removed population (R). The differential 
equations describing the classical SIR model are as follows:
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Zhang L et al. [4] assumed that the total population will not be infected twice in the epidemic cycle, and that the 
total population will be N. S(t), I(t) and R(t) denote the number of susceptible, infected and removed populations at time t, 
respectively, β denotes the probability of infected people infecting others, and γ denotes the probability of infected 
people recovering.

Based on the above model, they conducted a simulation using Matlab R2018b based on the data published by 
Harbin City and relevant parameters in the article by Yang Y et al. [5]. According to the population density of Harbin 
City and the intensity of epidemic prevention, the development of the epidemic situation was analyzed, and the turning 
point and development trend of the epidemic were predicted.

Zhang Y et al. [6] added a COVID-19 death population and improved the classical SIR model by dividing the 
population into four categories: uninfected S, infected I, cured R, and dead D, but without considering birth and natural 
death factors, and their improved SIR model is as follows:

(1)
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where λ represents the daily exposure rate of patients, that is, the average number of effective contacts per patient per 
day; μ represents the daily cure rate; and m represents the infectious disease mortality rate. According to the improved 
SIR model, the COVID-19 epidemic data released on the official website of the National Health Commission on January 
23, 2020, was taken as the initial value, and the Runge-Kutta method was used to simulate the spread of the epidemic 
numerically. The number of infected patients at three time points (t = 10, 20, and 30 d) was calculated by simulating 
different daily contact rates λ (taken as 0.30, 0.20, 0.15, 0.10, and 0.05, respectively) and compared with the actual data, 
thus verifying that the isolation method can effectively reduce the daily contact rate.

Yin N [7] carried out simulations in R data analysis software based on the SIR model in three major aspects: cross 
infection, contact infection, and average number of infected persons. Through the simulation results, he predicted the 
state of the spread of COVID-19 in a limited area and found out the methods to prevent and control the occurrence or 
spread of the epidemic.

In order to study the combined impact of different epidemiological factors (such as the shortage of medical 
resources and the possibility of reinfection) on the outbreak of COVID-19, Salman AM et al. [8] constructed the SIRS 
model as follows:
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where N is the total population, η is the birth rate, v is the death rate, δ is the spread rate, and ψ is the population 
recovery rate, ε is the rate of reinfection, ρ indicates the unit of time to provide medical resources, Φ is half full and 
constant.

Salman AM et al. investigated the transmission dynamics of COVID-19 according to the daily confirmed case 
data released by the Ministry of Health of Malaysia. Based on the above model, neural network technology was used 
for parameter estimation, and MATLAB ode15s was used to simulate the development trend of COVID-19. The results 
showed that the model could well reflect the infection trajectory trend of the COVID-19 pandemic in Malaysia, and the 
transmission dynamics may be affected by reinfection and limited medical resources. Therefore, the use of mathematical 
modeling methods to understand the interactions between different epidemiological factors may help support the 
authorities in making informed decisions to effectively control the spread of the epidemic.

2.2 SEIR model and its improvement

Since the susceptible population generally has an incubation period and does not immediately show symptoms, it 
becomes a carrier of the pathogen and has a certain probability of infection. This transmission mode is more consistent 
with the spread of COVID-19. Therefore, the SEIR model is formed by introducing the lurker on the basis of the SIR 
model.

The SEIR model is currently the most representative mathematical model for studying the dynamics of infectious 
diseases in fixed populations. The general SEIR model classifies the study population into four types: susceptible, latent, 
infected, and emigrated states. However, at the beginning of the epidemic, Wan S et al. [9] found that SARS-CoV-2 
was infectious during the incubation period, and the classical SEIR model could not simulate the transmission trend of 
COVID-19 well.

(2)

(3)
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2.2.1 Introduction of a SEIR model with latent infection factors

Since COVID-19 is different from severe acute respiratory syndrome in 2013, latent patients are also infectious. 
Therefore, Chen L et al. [10] added the latent infectiousness factor to the standard SEIR model and constructed the 
following mathematical model:
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where βI is the transmission rate of the infected state I , i.e., the probability that a susceptible individual is infected by 
the infected state and enters the latent phase; βE is the transmission rate of the latent state E, i.e. the probability that a 
susceptible individual is infected by the latent state and enters the latent phase; α is the probability that the latent state 
E is converted to the infected state I; and γ is the removal rate of the infected state I, i.e., the sum of the recovery and 
mortality rates.

Source: Extracted from [10]

Figure 1. Comparison of SEIR simulations and real confirmed cases

The authors compared the SEIR model simulation with real COVID-19 data collected from the official website 
of the Shanxi Provincial Health Commission. The data of confirmed cases before February 10, 2020, were obtained by 
simulation, and the data of confirmed cases simulated by the model after February 10 were obtained under the same 
virus transmission speed and control effect (see Figure 1). Before February 10, the graph trend of simulated data was 
consistent with that of real data due to the fitting parameters of real data in the same period, but after February 10, there 
was a big difference between them. The real confirmed case data reached its peak on February 10 (96 cases), while the 
simulated data would reach its peak on March 2 (2091 cases). The simulated peak was 21 times higher than the real 
peak, indicating that the original transmission chain of the epidemic was gradually cut off under the strict epidemic 
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prevention and control measures of the whole society, and the gradual decline of the confirmed cases in Shanxi Province 
also showed the remarkable effect of strengthening the prevention and control measures.

2.2.2 SEIR model with logistic curve (LSEIR)

Due to the lack of timely and effective prevention and control measures in the early stages of the epidemic, the 
daily number of new infections increased rapidly. Later, with the implementation of intervention measures such as 
requiring the wearing of masks and closing the community, the daily number of new infections gradually decreased, 
which mainly affected the effective contact rate of the population. Shi C et al. [11] introduced a logistic curve to 
simulate a time-varying effective contact rate on the basis of the SEIR model and also considered the influence of 
imported cases to establish an improved Logistic-SEIR (LSEIR) model. Contact between quarantined individuals and 
susceptible individuals is not permitted under isolation measures. Assuming that the inflow and flow travel values of 
susceptible individuals do not change much, the following discrete dynamic model is established:
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where Ein(t) and Iin(t) represent the number of imported latent cases and imported cases on day t, parameter d represents 
the time at the inflection point of the logistic curve, parameter 1/σ represents the average incubation period (days), and 
parameter 1/γ represents the time from onset to isolation or recovery (days).

Based on the individual data of Guangzhou, the above model was used to simulate the spread of COVID-19 
under different interventions so as to quantitatively analyze the effects of different prevention and control measures, 
provide guidance for epidemic prevention and control, and also provide a methodological reference for research in other 
regions. However, there are still some limitations in the model, which is only based on the study of one city in the time 
dimension. If the specific geographic information of the infected person or the data of multiple cities can be obtained 
and the analysis can be carried out in the space-time dimension, the feasibility of the method can be further verified, and 
targeted prevention and control can be provided for different regions.

2.3 SEIR model for introducing prevention and control measures
2.3.1 SEIR model with different control measures and their intensities

COVID-19 has a long incubation period and is highly contagious. In order to curb the spread of COVID-19 in a 
timely manner, a number of national and local policies have been introduced, such as extending holidays, traffic control, 
community prevention and control, delaying the start of school and work, urging people to wear masks, and going out 
less [12]. Therefore, Cai J et al. [13] established the SEIR model to analyze the impact of different control start times 
and different control intensities on the COVID-19 epidemic situation (Wuhan as an example). The differential equation 
of infectious disease dynamics of the specific SEIR model is as follows:
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where S is the number of susceptible cases. Since all people are generally susceptible to COVID-19, S is the total 
number of cases. α = 0.1 is the probability of the latent person turning into the infected person, β1, β2 respectively 
represent the probability of the infected person and the latent person transmitting to the susceptible group, and β1 = β2 
≈ 0.048 is calculated according to the data published by the National Health Commission. γ1, γ2 are the number of cases 
where the infected person and the latent person contact the susceptible person. Because the government implements 
relatively strict control and quarantine at home, so γ1 = γ2 = 3, that is, only 3 cases were contacted at most; γ means the 
probability of recovery is 0.1.

Cai J et al. collected the official data of the COVID-19 epidemic in Wuhan from January 20 to February 18, 2020, 
built a SEIR model using MATLAB to simulate the development trend of the COVID-19 epidemic, and analyzed the 
correlation between the simulated COVID-19 epidemic in Wuhan and the actual epidemic using the Pearson correlation 
test. The influence of the prevention and control strategy on the development of COVID-19 in Wuhan was analyzed by 
adding different parameters, such as different durations of control (i.e., 10 days, 15 days, and 20 days after the lockdown 
of Wuhan on January 23) and different intensities of control (i.e., 10, 7, and 3 cases were exposed to susceptible persons, 
respectively).

The impact of different control start times on the COVID-19 outbreak in Wuhan is shown in Figure 2. The 
simulated peak number of COVID-19 infections was 40,850 cases, 74,734 cases, and 100,358 cases, respectively, after 
the control started on the 10th, 15th, and 20th day of Wuhan lockdown. Scenario 1 was 160.95% lower than Scenario 3, 
and scenario 1 was 98.67% lower than Scenario 2.

Source: Extracted from [13]

Figure 2. Comparison of the number of COVID-19 cases at different starting times of control

The influence of different control intensities on the epidemic situation of COVID-19 is shown in Figure 3. The 
results showed that the peak numbers of COVID-19 infections under different control intensities were 58,959, 53,279, 
and 39,485, respectively. The peak number of infection cases in intensity 3 was reduced by 49.21% compared with 
intensity 1, and the peak number of infection cases in intensity 3 was reduced by 34.8% compared with intensity 2.

According to the simulation results of the SEIR model above, local governments should take strict control 
measures more quickly to control the development of COVID-19. The earlier the control starts and the stronger the 
control intensity, the more effective the intervention will be. Governments at all levels should strictly control the spread 
of the epidemic and cut off the transmission route as soon as possible.
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Source: Extracted from [13]

Figure 3. Comparison of the number of COVID-19 cases with different control intensities

2.3.2 SEIR model considering tracking isolation interventions

Due to the existence of patients with an incubation period who are not easy to effectively isolate and have a 
strong virus transmission ability, it is still necessary for researchers to study the COVID-19 transmission law, which 
has important practical significance for the situation analysis and prevention and control guidance of the epidemic. 
Therefore, Cao S et al. [14] established a modified SEIR infectious disease dynamics model that considered the virus 
transmission ability of patients with a latent period and the effect of tracking and isolation interventions on the epidemic 
situation.

Based on the following assumptions: all individuals in the population have the probability of being infected, and 
when the infected individuals recover, they will produce antibodies; that is, the recovered population R will not be 
infected again. Considering the isolation measures to prevent and control infectious diseases, three groups of people 
were added to the population group in the classical model: isolated susceptible persons (Sq), isolated contacts (Eq), 
and isolated infected persons (Iq). In view of the fact that quarantined infected patients will be immediately sent to 
designated hospitals for isolation and treatment, all of these people are transformed into hospitalized patients H in this 
model. Thus, S, I and E in the revised model refer to susceptible, infected, and contacts who were missed by quarantine 
measures, respectively. Quarantined susceptible persons become susceptible again after release from quarantine, 
while infected persons and contacts have different degrees of infection ability to susceptible persons, so that they can 
transform into contacts. The transformation relationship of the crowd is shown in Figure 4.

The modified SEIR equation for COVID-19 was constructed as follows:

[ ](1 ) ( ) ,
(1 ) ( ) ,

= ( ) ,
(1 ) ( ) ,

( ) ,
( ) ,

,

q

I I

q q

q q q

I q q H

I H

S c cq S I E S
E c q S I E E
I E I
S cq S I E S
E c qS I E E
H I E H
R I H

ρ β ρ β θ λ
ρ β θ σ

σ δ α γ
ρ β θ λ
ρ β θ δ
δ δ α γ
γ γ

′ = − + − + +
 ′ = − + −
 ′ − + +


′ = − + −
 ′ = + −

′ = + − +
 ′ = +

where q is the isolation ratio, β is the probability of infection, c is the contact rate, ρ is the effective contact coefficient, 
and the reference value of the effective contact coefficient is set as 1, ρc is the effective contact rate. σ is the conversion 
rate of contacts to infected persons, and σ = 1/7, α is the case fatality rate, δ1 is the isolation rate of infected persons, and 
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γ1 is the recovery rate of infected persons. δq is the conversion rate from isolated contacts to isolated infected persons, 
and γH is the recovery rate of isolated infected persons.

Source: Extracted from [14]

Figure 4. Population transformation in the modified SEIR infectious disease dynamics model

Cao Shengli et al. developed a revised SEIR infectious disease dynamics model based on Hubei Province epidemic 
data from January 23 to February 24, 2020, and used the model to estimate the impact of prevention, control, isolation, 
centralized treatment, and other measures on the development of the epidemic. The results show that prevention, 
control, isolation, and medical tracking are important measures to effectively curb the spread of COVID-19. The home-
based quarantine measures initiated by the government have played an important role in curbing the spread of the 
epidemic. Strict medical tracking and the isolation of people who have been in contact with infected people have also 
effectively prevented the rapid growth of the epidemic. Important measures such as centralized reception and stratified 
treatment played a key role in the rapid decline of the peak number of infected people and had an important control 
effect on the development of the epidemic. The improvement of personal safety protection measures will greatly curb 
the development of the epidemic, and strict self-protection measures will play a role in curbing the rapid growth of the 
number of infected people.

The results confirm that the model is reliable in the situation analysis of infectious disease transmission, which 
can provide some theoretical support for the formulation of future epidemic intervention decisions. However, there will 
inevitably be some differences between the model and reality, which will lead to some deviations in the analysis and 
prediction results.

2.4 SEIR model of different population was introduced
2.4.1 Introduction of SEIR model of close contacts (SEIRC)

Considering the current epidemic management program in China, anyone who has close contact with a confirmed 
or asymptomatic infected person will be isolated and observed, so Su Z et al. [15] built the following model based 
on the classical SEIR model population group with the addition of close contacts (including close contacts of close 
contacts):
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where C is the number of people in close contact, the probability of infection is β, the probability of susceptible 
contact is ω, the effective exposure factor for latents is ρ and the exposure factor for close contacts is ρc, σ is the rate of 
transition from latents to infected, σc is the rate of transition from close contacts to infected, δ is the rate of transition 
from close contacts to latents, α is the mortality rate, and γ is the recovery rate.

Su Z et al. used the Python language environment for code writing and simulation analysis, as well as data from the 
Harbin Municipal Government released in 2021. By comparing the number of infections simulated by the SEIRC model 
with the actual number of infections, it can be found that the epidemic in Harbin in early 2021 was well controlled 
and there was no large-scale explosive infection. According to the simulation of the number of infected people by the 
proportion of vaccination, the vaccine is still the best method to control the epidemic at the present stage, and the spread 
of the epidemic can be effectively prevented and controlled after the population has reached a certain proportion of 
vaccination.

2.4.2 Introduction of the SEIR model for latent infections (SEIAR)

Because most mathematical models of COVID-19 transmission do not take into account the issue of latent 
transmission capacity, that is, people who carry the virus without being quarantined or under medical observation but 
can still transmit it to susceptible people. For this reason, Chen T et al. [16] planned to adopt the Susceptible-Exposed-
Infectious-Asymptomatic-Recovered (SEIAR) model for COVID-19 cases in Xiamen. The model makes relevant 
assumptions as follows: recessive infected person A is infectious, and its transmission ability is κ times that of dominant 
infected person I (0 ≤ κ ≤ 1); The proportion of latent infection was p, the latent and latent periods were 1/ω and 1/
ω', respectively. The time interval from onset to first diagnosis in case I was 1/γ. The case fatality rate was f , and the 
infectious period of recessive infection A was 1/γ'. Thus, a schematic diagram of SEIAR is obtained, as shown in Figure 5.

Source: Extracted from [16]

Figure 5. SEIAR model for COVID-19 fitting

Establish the corresponding differential equation as follows:
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The Berkeley Madonna 8.3.1 software was used to simulate the above model, and the fourth-order Runge-Kutta 
method was used to solve the differential equation. The judgment basis of the output of the model fitting data was 
the minimum root mean square, and the chi-square test was used to test the goodness of fit between the output of the 
optimal result and the actual data.

Chen T et al. collected data on COVID-19 cases in Xiamen up to March 7, 2022, established a database, and 
divided the epidemic data in Xiamen into imported cases and secondary cases for separate modeling. Imported cases 
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were used as the source of infection, and the model’s calculated secondary cases were fitted with actual secondary cases. 
The model fit the epidemic data well, and the goodness-of-fit results showed that the differences between the model and 
the actual data were not statistically significant. Overall, the SEIR model with the introduction of hidden transmitters 
was superior to the traditional SEIR model for studying the spread of the epidemic.

2.4.3 Introduction of the SEIR model for the dead population (SEIRD)

With the continuous deepening of research, scholars further introduced the death population to construct the 
SEIRD model. Ferjouchia H et al. [17] used the SEIRD model to provide a theoretical framework for the prediction of 
the continued epidemic of COVID-19 in Morocco, and the structure and parameters of the proposed model provided 
insights and ideas for the development of virus dynamics. Kliestik T et al. [18] used the SEIRD model to consider the 
measures taken by Azerbaijan to contain the epidemic and their effectiveness. Hu T et al. [19] used the Runge Kutta 
method to construct a prediction model based on improved SIR infectious disease infection and a SEIRD model based 
on causality, aiming at the transmission of infectious diseases in closed systems. The findings revealed that the number 
of infectious diseases infected was proportional to the daily population contact rate of latent individuals. After taking 
prevention and control measures, the infection rate and the number of infected people decreased. Viguerie A et al. [20] 
proposed a SEIRD mathematical model based on partial differential equations coupled with a non-uniform diffusion 
model, which describes the spatiotemporal spread of the COVID-19 pandemic, aims to capture dynamic data based 
on human habits and geographic features, and compares it with actual data in Lombardy, Italy. Strong consistency was 
found in the data, and simulations of scenarios exploring the relaxation of lockdown restrictions suggest that reopening 
lockdown restrictions should take into account the specific dynamics of local population density and contagion.

Based on the analysis of COVID-19 epidemic data and transmission mechanisms, Wang J et al. [21] divided 
infected people into asymptomatic infected persons (I0), mildly infected persons (I1), severely infected persons (I2) and 
critically ill infected persons (I3) based on the SEIRD model, and constructed a SEIiRD model more consistent with 
the spread of COVID-19. In this transmission model, the basic assumptions are as follows: the latent population is the 
infected person with no obvious symptoms during the latent period [22], so the latent population is assumed not to be 
infectious. Recovered people are immune and no longer infectious; Patients must undergo stage I1 when they reach stage 
I2 and stage I1, I2 when they reach stage I3, and only patients in stage I3 have a chance of dying.

The specific model diagram and dynamic model are shown in Figure 6.
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where a represents the rate of progression from stage E to I (where part f  progresses to asymptomatic infection and part 
1 − f to symptomatic infection), βi represents the rate of recovery and immunization at stage Ii, pi represents the rate of 
progression from stage Ii to stage Ii+1, μ represents the death rate at the most severe stage of the disease, all of which are 
in days.

Wang Jing used the coronavirus data in the United States from March to May 2020 provided on the official website 
of the coronavirus app, fitted the model parameters using the accumulated infection data collected, and simulated the 
epidemic trend under different transmission rates ( β0,1 = 0.2, 0.4, 0.6, 0.8; β2,3 = 0.02, 0.04, 0.06, 0.08, respectively), 
showing that the main transmission rate affecting the development of the epidemic was the single-day transmission rate 
of asymptomatic and mildly infected patients, while the single-day transmission rate of severely and critically infected 
patients had minimal effect on the development of the epidemic, holding other influencing factors constant. The effect 

(10)
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of single-day transmission rates on the development of the epidemic was negligible for severely and critically infected 
individuals. Based on the changes in the number of infections and deaths resulting from simulated manual interventions 
(including the degree and duration of interventions), the earlier the intervention is implemented, the more it reduces 
the negative impact of the epidemic, reduces the rate of infection and mortality, and to some extent slows down the 
development of the epidemic and reduces social fear.

Source: Extracted from [21]

Figure 6. The COVID-19 epidemic SEIiRD

2.5 Other infectious disease models
2.5.1 Discrete stochastic model

Source: Extracted from [23]

Figure 7. Schematic diagram of COVID-19 epidemic and prevention and control strategy model

Based on the transmission mechanism of the disease, the epidemiological status of individuals, and prevention 
and control measures, and considering the small number of imported cases in Shaanxi Province in the early years, a 
differential system with random inputs is more suitable to portray this situation than a deterministic model, and can well 
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describe the randomness of the population statistics. Thus, Tang S et al. [23] divided the total population into seven bins, 
including susceptible (S), exposed (E), infected (I), hospitalized (H ), cured (R), isolated susceptible (Sq) and isolated 
suspected (B), with the flow shown in Figure 7, and developed a new model as follows [24].

Prevention and control strategies include close follow-up and hospital isolation; grey areas indicate suspected cases 
and febrile outpatients.
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They used detailed data released by the Shaanxi Provincial Health Commission to find the infection chain of 
COVID-19 transmission in Shaanxi Province and calculate the average number of control regrowth under strict control 
strategies. The effective regeneration number was estimated using the inverse convolution method and the distribution 
of successive generations. The conclusion showed that the effective regeneration number had been declining since 
January 23, 2020, and was stable and almost zero until February 23, which was in good agreement with the number 
of no new confirmed cases or very few confirmed cases at that time. Secondly, in order to describe the relatively small 
number of cases (about half of the cases are imported) and the resulting randomness, they established a discrete system 
with random input. This model framework addresses the significant limitation that deterministic models cannot describe 
imported cases and randomness [25-26]. Finally, they used the data on population movement in Shaanxi Province and 
other cities to study the impact of population movement (return to work) on the second outbreak of the epidemic. The 
main results show that, with a small proportion of imported cases, intermittent population inflows are maintained, with 
a low risk of transmission despite small secondary outbreaks. The proposed stochastic discrete model and its analysis 
method can be used as an important model framework to study the development trend of the epidemic in Shaanxi 
Province or other similar provinces (the number of cases is small and the proportion of imported cases is large). 
However, one disadvantage of this type of model framework is that conducting a systematic theoretical study of the 
threshold theory is difficult.

2.5.2 Multi-stage dynamic time-delay dynamic model

At the beginning of the outbreak, people did not pay enough attention to the epidemic in foreign countries, and 
the diagnosis and testing were not timely, resulting in a big difference between the recorded data and the actual number 
of infected people, which is not conducive to the analysis of the epidemic. In view of this situation, Zhang L et al. 
[27] improved the classical epidemic dynamics model and established a discrete-time multi-stage dynamic time-delay 
dynamics model by comprehensively considering the development characteristics of the epidemic, the influence of 
intervention, medical conditions, experience transmission, and other factors, combined with the development process 
of the epidemic in China. Based on the classical SEIR model, this model divides the virus transmission cycle into six 
stages, and uses the instantaneous value at a certain moment to process each stage, so it can be used to analyze the 
epidemic situation in foreign countries. Assuming that the number of susceptible persons exposed to confirmed infected 
persons within a day is Q1(t), and the number of susceptible persons exposed to latently infected persons within a day is 
Q2(t), both of which are decreasing functions of time and have exponential form, the time segments of Q1(t) and Q2(t)are 
expressed as follows:

(11)
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among them, n1 and n'1 representing the first stage confirmed infections and latent infections every day come into contact 
with the number of susceptible people, n2 and n3 represent the second phase, the second phase in the late diagnosis of 
infection of susceptible people contacts every day. n'2 and n'3 respectively represent the minimum number of susceptible 
persons exposed to the infected persons in the second stage and the late stage of the second stage, κ1 and κ2 respectively 
represent the exponential decline rate of the confirmed persons in the second stage and the third stage, and κ'1, κ'2 
respectively represent the exponential decline rate of the infected persons in the second stage and the third stage.

The transmission status and policy implementation at different stages determine the effective contact rate of 
infected persons. According to the transmission characteristic parameters at different periods above, the following model 
is established:
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where α1i and α2m (i, m = 1, 2, 3) respectively refer to the daily contact number of susceptible persons with confirmed 
infected persons and latently infected persons, and β1j and β2n ( j, n = 1, 2, 3) respectively refer to the contact probability 
of susceptible persons with confirmed infected persons and latently infected persons in different periods.

The difference between equations (12) and (13) is that the corresponding coefficients α1i, α2m, β1j and β2n are 
different in different stages of epidemic prevention and control: the first stage is the initial stage of the outbreak, β11 
is the infection rate of the confirmed infected person, and α11 is the effective contact number. β21 is the infection rate 
of the infected person during the incubation period, α21 is the number of effective contacts. The second stage was the 
transmission period under the quarantine policy. Due to the effective implementation of the epidemic prevention policy, 
the probability of infection was reduced when the infected persons contacted healthy people, and the effective contact 
rates of latent and confirmed infected persons were β12 and β22, respectively. The third stage is the emergency prevention 
stage. Due to the implementation of the policy in the last stage, the isolation efforts are increased, and the contact rate 
of infected persons is reduced. The effective contact rate of latent infected persons and confirmed infected persons 
is β13 and β23, respectively. In the fourth stage, the intensity of isolation did not change, but with the transition of the 
incubation period, the number of infected people reached its peak, and the coefficient of infection remained unchanged. 
The fifth stage was the palliative period, in which medical resources were guaranteed to a certain extent. The decrease 
in the number of infected persons and the increase in the cure rate improved the situation of epidemic transmission, 
prevention, and control. At this time, the number of susceptible persons who had contact with confirmed infected 
persons and latent infected persons was α12 and α22 respectively. In the sixth stage, the number of infected people 
decreased rapidly, and all aspects showed the optimization of the palliative period. The numbers of susceptible people 
exposed to confirmed infected people and latently infected people were α13 and α23, respectively.

According to the epidemic data released by the World Health Organization, the above model adopts the discrete 
time method, improves the multi-time delay dynamic model, describes the transmission of the epidemic in different 

(12)

(13)

(14)
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stages of epidemic prevention and control, and is suitable for the simulation of the transmission process of COVID-19 
in various countries. However, this model does not consider the flow of people from abroad. After the epidemic enters 
the sixth stage or the end of one cycle, the next cycle may come, and the virus at this time will often mutate, such as the 
delta virus. Therefore, the model needs to be continuously optimized while considering external factors.

2.5.3 Introducing microscale mathematical models of bacteria

Studies have shown that the number of inflammatory monocytes and neutrophils increases in patients with 
COVID-19, while the number of lymphocytes decreases sharply [28-30]. This phenomenon can also be observed 
in transgenic mouse models [31-32]. These various available data point to a significant increase in morbidity and 
mortality if SARS-CoV-2 infected individuals become infected with a mix of bacterial pathogens. Understanding the 
mechanisms by which these pathogens interact with the immune system is key to developing effective treatments for 
COVID-19. However, macroscopic mathematical models can only be used to study the influence of crowd behavior on 
the development of epidemics, and it is difficult to penetrate into the pathogenesis of the disease. Meanwhile, existing 
clinical data show that patients infected with SARS-CoV-2 have the possibility of co-infection with bacteria.

In order to elucidate the mechanism of coinfection of SARS-CoV-2 and bacteria and to find the reason for the 
abnormal number of lymphocytes and neutrophils, Zhou Yu et al. [33] proposed a mathematical model and quantitative 
analysis to understand how lymphocytes and neutrophils affect the dynamics of coinfection.

Firstly, by analyzing the clinical data of patients who died in Wuhan University People’s Hospital and combining 
it with clinical data from other hospitals, they found that lymphocyte count and neutrophil count could be used as 
indicators of the severity of the patients’ disease. In order to describe the dynamic process of COVID-19, the sample 
data were transformed into time series data by interpolation. Secondly, bacteria were introduced into the model, with 
[LYM], [Neu], [Virus], and [Bac] representing the concentrations of lymphocytes, neutrophils, SARS-Cov-2, and 
bacteria, respectively. The corresponding mathematical models were based on the law of mass action, the Michaelis-
Menten equation, and the Hill equation, whereupon the following interaction diagrams and models were available for 
these four variables:
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In the first equation [Neu], the first term indicates that neutrophil production is linearly proportional to proliferation 
itself, and is activated by bacterial infection, which is described by a non-linear Hill function f1 based on process (e) 
in Figure 8. The second term indicates that neutrophil apoptosis is linearly proportional to neutrophil phagocytosis and 

(15)
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bacterial infection, but non-linearly proportional to viral infection, which is represented by a non-linear Hill function 
f5 based on process (f) in Figure 8, because neutrophils are weakened when viral infection is sufficiently severe. The 
derivation of the second equation [LYM] is almost identical to that of the first, with the two Hill functions f2 and f3 and 
the two processes (a) and (c), respectively, used to represent the two processes in Figure 8. The first term in the third 
equation [Virus] and the first term in the fourth equation [Bac] are the growth of viruses according to the Michaelis-
Menten function and the growth of bacteria according to the logistic growth function, respectively, which are often 
used to describe the growth of viruses and bacteria because viruses and bacteria are not exponential and cannot grow 
infinitely in the human body. In the second term of the third equation and the second term of the fourth equation, the 
processes (b) and (d) in Figure 8 are represented by the two Hill functions f4 and f5, respectively. The third term in the 
third equation is the degradation of the virus according to the law of mass action.

Source: Extracted from [33]

Figure 8. Illustration of a SARS-CoV-2 and bacterial co-infection system
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The model was further validated by theoretical analysis and the fitting of different clinical data. Finally, through 
branching analysis and numerical simulations, it was found that bacterial infection and immune-related parameters 
within a certain range lead to a shift in the system between three steady states, namely mild, severe, and death. 
Furthermore, they analyzed the impact of the time it takes for a patient to switch from a high-risk to a low-risk zone on 
the recovery time. The results suggest that co-infection with viruses and bacteria can explain changes in neutrophils and 
lymphocytes and that initial bacterial infection and immune-related parameters have a significant impact on the severity 
and mortality of patients with neocolonial pneumonia. The model and quantitative analysis suggest that prevention of 
bacterial infection and immune enhancement in the early stages of infection may be a potential therapeutic option for 
patients at high risk of COVID-19.

Source: Extracted from [41]

Figure 9. System dynamics flow diagram of COVID-19
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2.5.4 System dynamics models

Yang S et al. [34] established a system dynamics simulation model based on the characteristics of COVID-19 
infection, combined with different economic and social environments, and comprehensively considered the prevention 
and control effects and economic inhibition effects of three public response programs: ‘‘economic operation protection’’, 
‘‘public health protection’’, and ‘‘balanced consideration’’. Liu H et al. [35] constructed an analysis model of COVID-19 
patient change based on system dynamics to reasonably estimate and predict the number change of confirmed patients 
in Gansu Province. Wang Y et al. [36] established a comprehensive prediction model for epidemic transmission in Italy 
based on the analysis results of the transmission system dynamics model in the early stage of COVID-19 epidemic.

The system dynamics model of COVID-19 mainly involves decision variables such as cumulative number of 
confirmed cases, cumulative number of cured persons, cumulative number of cured persons, contact infection rate and 
admission rate of patients [37-40]. According to the transmission characteristics of novel coronavirus and the incidence 
process of novel coronavirus, Yi J [41] studied and analyzed the epidemic scale in Beijing since 2020-01-21 based on 
the data released by Beijing Municipal Health Commission, and built a novel coronavirus transmission system dynamics 
model based on the system dynamics theory. The model includes 12 variables, 4 constants, and 13 equations, In hospital 
treatment, the number of state variables, (the cumulative number of cure, accumulative total number of confirmed 
deaths, the number of the incubation period, the cumulative), rate variable (patients hospitalized rate and cure rate, 
mortality rate, infection rate, incidence of latent), auxiliary variables (cure efficiency, frequency of death), constant (cure 
factor, death factor, the incubation period, each contact transmission coefficient). The system dynamics flow diagram of 
COVID-19 is shown in Figure 9. 

The corresponding model equations and parameters are set as follows:

( ), 5 ,IP INTEG MR=

( ), 21 .IPR INTEG IR MR= −

In (17)-(18): IP is the cumulative number of confirmed cases; INTEG function is an integral function; MR is the 
incidence rate of patients; IPR is the number of latent cases; IR is the transmission rate.

The initial prediction date for this model was January 21, 2020, with a cumulative total of 5 confirmed cases and 
21 close contacts as of that date.

( ), 0 ,CP INTEG CR=

( ), 5 .HP INTEG HR DR CR= − −

In equations (19)-(20): CP is the cumulative number of cures; CR is the patient cure rate; 0 is the initial value of 
the cumulative number of cures at the initial time; HP is the number of patients in hospital; HR is the patient admission 
rate; DR is the mortality rate.

( ), 0 .DP INTEG DR=

In (21): DP is the cumulative number of deaths; 0 is the initial value of the cumulative number of deaths.

,HR MR=

1 * ,IR I IPR=

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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* ,CR Ce Cf=

* .DR Df df=

In equations (22)-(25): I1 is the transmission coefficient; Ce, Cf, Df, df is the cure efficiency, cure factor, death 
factor and death frequency respectively, where the cure factor = 1 - death factor, and the Beijing death factor is set at 0.02.

( , 6, 0),df DRLAY FIXED HR= ⋅

( , 16, 0),Ce DRLAY FIXED HR= ⋅

( , , 0).MR DRLAY FIXED IR IP= ⋅

Equations (26)-(28) are both delay functions, with 6 representing the period from diagnosis to death for deceased 
patients and 16 representing the period during which patients treated in hospital are discharged.

( )1 0.2 0.11, 20 .I STEP= −

Equation (29) is a step function, and the transmission coefficient of each contact was 0.2 at the early stage of the 
epidemic in Beijing and decreased to 0.09 after 20 days, so the coefficient of each contact in Beijing is a function of 
time change.

Table 1. Comparison between simulation results and actual values of the COVID-19 System Dynamics Model (Unit: person)

Date 2020-02-14 2020-02-15 2020-02-16 2020-02-17 2020-02-18 2020-02-19

Confirmed predicted value 337 351 365 377 387 396

Confirmed actual value 372 375 378 379 387 393

Source: Jingyu Yi (2022)

The results (see Table 1) showed that the system dynamics model of COVID-19 could well predict and fit the 
number of confirmed cases, cured cases, and deaths during the one-month epidemic’s development in Beijing. The one-
time test of the model reflects that the model has good consistency in predicting COVID-19 at a certain stage, and the 
model can play a good role in predicting the development trend of the epidemic.

2.5.5 A model based on spatio-temporal attention mechanisms

The transmission of infectious diseases is multi-dimensional. In addition to the distribution characteristics in time, 
another important aspect is the distribution characteristics in space. Therefore, through the application of spatial analysis 
theory and technology, the establishment of a spatio-temporal transmission model can more intuitively simulate and 
predict the spatio-temporal spread process of infectious diseases. Therefore, in view of the characteristics of complex 
regional association and strong temporal dependence during the spread of COVID-19 [42], Bao Xin et al. [43] proposed 
a spatio-temporal attention-driven autoencoder framework to capture the dynamic spatial correlation between infection 
sequences by introducing a spatial attention mechanism. Moreover, the temporal attention mechanism was used to mine 
the complex temporal dependence in the epidemic sequence so as to accurately predict the spread trend of SARS-CoV-2 
in different regions.

(28)

(29)

(27)

(26)

(24)

(25)
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The framework of the COVID-19 epidemic trend prediction method driven by spatio-temporal attention is shown 
in Figure 10. The overall architecture of the model adopts the structure of an autoencoder, and each codec contains 
an Long Short-Term Memory network (LSTM), which is used to extract the temporal characteristics of epidemic 
sequence data and predict the future epidemic trend, respectively. The model consists of two key parts, namely the 
spatial attention mechanism at the encoder and the temporal attention mechanism at the decoder. On the encoder side 
of the model, the spatial attention mechanism is first introduced to learn the association between the target region and 
the epidemic sequence in its related region. Then, based on the correlation information, the epidemic time series data 
of relevant regions were introduced and fused with the epidemic time series data of target regions. The enhanced time 
series features for predicting the epidemic situation in target regions were extracted by the LSTM network. At the 
decoder end of the model, the temporal attention mechanism and LSTM network are fused to effectively capture the 
dynamic temporal dependence in the epidemic time series, so as to predict the epidemic dynamics in the future period 
more accurately.

Source: Extracted from [43]

Figure 10. COVID-19 epidemic prediction framework based on spatio-temporal attention mechanism

A large number of experiments were conducted on the publicly available COVID-19 data sets, and the results 
verified the effectiveness of the model. The prediction error indices root mean squared error and mean absolute error 
on the European COVID-19 dataset were reduced by 21.7% and 24.5%, respectively, and root mean squared error and 
mean absolute error on the Chinese COVID-19 dataset were reduced by 22.6% and 26.7%, respectively.
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2.6 A mathematical model combining two models
2.6.1 LSTM combined with SEIR model (LS-Net)

With the continuous progress and development of deep learning in recent years, it stands out in many fields for its 
excellent experimental performance. In the temporal prediction problem, the most common recurrent neural network can 
learn the correlation information between the historical input and the current input, so as to make a temporal prediction. 
However, if the time series is too long, the traditional recurrent neural network is prone to the phenomenon of gradient 
disappearance and cannot deal with problems with long-term dependence. The later LSTM can solve this problem well. 
In the current COVID-19 outbreak, the change and development of the epidemic will be affected by various measures 
in the early stage, so the trend prediction of the epidemic can be regarded as a time-series prediction problem with long-
term dependence.

Therefore, Gan Yu et al. [44] made use of the advantages of the traditional mathematical method of the SEIR model 
and the artificial intelligence method in timing prediction and used the PyTorch deep learning framework and Python 
language to build a prediction model. Based on the parameters of the SEIR model and the characteristics of COVID-19 
transmission, this paper proposes a prediction method of virus infection rate based on LSTM and, combining it with 
the SEIR model, proposes a prediction model of the COVID-19 epidemic trend, the LSTM-SEIR Network (LS-Net). In 
addition, the epidemic data released by many provinces and cities in China from December 8, 2019 to March 28, 2020 
was collected for experiments.

Source: Extracted from [44]

Figure 11. LS-Net overall structure
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The overall structure of LS-Net is shown in Figure 11. The epidemic trend prediction module includes a SEIR 
model layer, which mainly realizes the prediction of the COVID-19 epidemic trend, while the virus infection rate 
prediction module includes an LSTM layer, a fully connected layer, and a nonlinear transformation layer, mainly to 
achieve the prediction of the COVID-19 infection rate.

LS-Net uses LSTM’s excellent time sequence information learning ability to predict the virus infection rate in real 
time. Finally, the real-time updated virus infection rate was applied to the SEIR model to realize the intelligent dynamic 
prediction of the epidemic development trend. The experimental results show that LS-Net can eliminate the tedious 
process of manually splitting time periods for dynamic calculation, and use a small amount of training data to predict 
the peak value of existing confirmed cases in the epidemic. Therefore, this model can provide a reference for people to 
predict the development trend of the epidemic under the current prevention and control measures to a certain extent.

2.6.2 A combined SEIR and ARIMA model (SEIR-ARIMA hybrid model)

The Autoregressive Integrated Moving Average (ARIMA) model is a time series prediction method that mainly 
captures the fluctuations of historical data and describes the relationship between current values and historical values. 
It is suitable for COVID-19 prediction with time series. Moreover, its own model is constructed with endogenous 
variables and is not affected by exogenous variables, so it can well solve the interference of external factors.

Although the SEIR model can predict the development of the epidemic situation well, the initial probability of 
infection is only estimated, and the probability of infection will be reduced under the implementation of epidemic 
prevention and control, so the SEIR model cannot self-adjust according to the historical fluctuation data. The advantages 
of the ARIMA model, which is determined by endogenous variables and not affected by external factors, can make 
up for this shortcoming. Therefore, Dong Z et al. [45] constructed the SEIR-ARIMA hybrid model, and established a 
special COVID-19 epidemic map by collecting and analyzing statistical data from the official website of the National 
Health Commission on COVID-19 in all provinces, so as to predict and analyze the COVID-19 epidemic in different 
time periods and locations.

The model is based on linear regression of the SEIR and ARIMA prediction results. The prediction steps are mainly 
divided into the following three points: First, the epidemic data is analyzed by the SEIR model, and the predicted value f 
is obtained by combining relevant research and parameter optimization; Secondly, ARIMA model prediction was carried 
out, and the historical epidemic data was used as the input value to test whether the time series data were stationary, and 
an augmented dickey-fuller was used to verify the hypothesis. If it is not stationary, the method of unary difference and 
binary difference is adopted until the data is stationary. The values of p and q were obtained by calculating ACF and 
PACF, and the ARIMA model was established. Training the sample set, optimizing the model, and getting the predicted 
value; Finally, the predicted values f and e of the above two models were taken as the input values, and the real data 
were taken as the target values. Linear regression modeling was used to calculate the predicted values of the SEIR-
ARIMA hybrid model.

The calculation results showed that the model was relatively reliable for the analysis of the development trend of 
COVID-19. In order to truly reflect the effectiveness of the experiment, Dong Zhanggong et al. also implemented the 
SEIR-Logistic mixed model and the SEIR-LSTM mixed model and compared them with SEIR-ARIMA, concluding 
that SEIR-ARIMA prediction has achieved better prediction results. Therefore, based on the mixture of SEIR-ARIMA, 
it is conducive to the scientific decision-making of the country in the face of the epidemic and has a good application 
value for the prevention of other types of infectious diseases in our country in the future.

3. Conclusion and future prospects
The spread of COVID-19 is a very complex process, and the interweaving of human and natural factors greatly 

increases the complexity of modeling and simulation prediction. Therefore, based on a comprehensive understanding 
of the characteristics and important influencing factors of disease transmission, we need to put forward reasonable 
hypotheses and construct scientific mathematical models and verification methods so as to effectively guide epidemic 
prevention and treatment.
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3.1 Conclusion

From the existing research results, most of the mathematical models of COVID-19 transmission are based on the 
SEIR model. The main research focuses on the prediction of inflection points and peaks, the dynamics of epidemic 
transmission, and the impact of epidemic prevention and control measures. Such models are easy to analyze and apply. 
If the underlying assumptions and parameter estimates are not very sound, there may be problems both early and late in 
the development of an infectious disease, and it does not reveal the impact of human individual interactions on disease 
transmission. At the same time, with the rapid development of computers today, it is more practical to make full use 
of computing and data capabilities, such as considering micro-scale models of bacteria. However, such models have 
extremely high requirements for data, and the calculation process is relatively complex. In addition, linking classical 
infectious disease dynamics models with artificial intelligence or statistical methods will make it easier for us to analyze 
and predict the epidemic.

3.2 Vision for the future

On the one hand, it is worthwhile to combine the actual epidemic data to better estimate the parameters of the 
transmission model. Only by fully exploring the inherent patterns of the epidemic development data and effectively 
controlling the identifiability and moderate sensitivity of the model parameters can we make scientific and reasonable 
epidemic development predictions to enable humans to better combat the disease.

On the other hand, due to the complexity of the spread of the epidemic, it is difficult to analyze every factor 
affecting the development of the new coronary pneumonia epidemic. In future research, it is necessary to make full 
use of the latest developments in computer science and intelligent technology to combine multiple models, combining 
classical mathematical models of infectious diseases with emerging models such as neural network dynamics, in order 
to improve the adaptive nature of the models and the scientific rationality of the simulation predictions.

We believe that by establishing accurate and reliable mathematical models, we can correctly explore the epidemic 
law of the disease so as to formulate scientific, accurate, and efficient prevention and control measures and clear the 
haze of the COVID-19 epidemic at an early date.
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