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Chemotherapy is an important anti-tumor treatment in clinic to date, however, the

effectiveness of traditional chemotherapy is limited by its poor selectivity, high systemic

toxicity, and multidrug resistance. In recent years, mesoporous silica nanoparticles

(MSNs) have become exciting drug delivery systems (DDS) due to their unique

advantages, such as easy large-scale production, adjustable uniform pore size, large

surface area and pore volumes. While mesoporous silica-based DDS can improve

chemotherapy to a certain extent, when used in combination with other cancer therapies

MSN based chemotherapy exhibits a synergistic effect, greatly improving therapeutic

outcomes. In this review, we discuss the applications of MSN DDS for a diverse range

of chemotherapeutic combination anti-tumor therapies, including phototherapy, gene

therapy, immunotherapy and other less common modalities. Furthermore, we focus

on the characteristics of each nanomaterial and the synergistic advantages of the

combination therapies. Lastly, we examine the challenges and future prospects of MSN

based chemotherapeutic combination therapies.

Keywords: mesoporous silica nanoparticles (MSNs), drug delivery systems (DDS), chemotherapy, combined

cancer therapies, phototherapy, gene therapy

INTRODUCTION

Despite the rapid development of medicine, the incidence and mortality of cancers are consistently
rising and cancer remains one of the most terrible threats to human lives (Siegel et al., 2020).
Traditional chemotherapy is one of the most common cancer treatments and is the most effective
systemic treatment, playing an irreplaceable role in current treatment modality (Dai et al., 2016).
However, the clinical application of chemotherapy is limited by several deficiencies: First, most
chemotherapy drugs have poor aqueous solubility or short half-life in vivo, leading to low drug
utilization. Second, chemotherapeutic drugs show poor tumor selectivity (Akhtar et al., 2014),
resulting in the undifferentiated killing of both tumor and healthy cells. This non-targeted lethality
not only reduces the therapeutic effect against carcinomas but also causes severe side effects. Last, is
the multidrug resistance (MDR) induced by chemotherapy. MDR refers to the resistance of cancer
cells to a variety of drugs which are structurally and functionally unassociated (Kong et al., 2017).
This phenomenon is one of the primary causes of chemotherapy failure, leading to the recurrence
of tumors, patient relapse, or even death (Wang J. et al., 2017).
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Recent years have witnessed many efforts to overcome
the shortcomings of conventional chemotherapy. One of the
most promising is the development of nano drug delivery
systems (nano-DDS), which can increase the solubility and
bioavailability of drugs, prolong the circulation time of drugs,
increase the accumulation of drugs in tumor tissues, and improve
the pharmacokinetic behavior in vivo, improving the curative
effect of therapies while reducing the side effects (Mu et al.,
2020). Common nanocarriers include polymers (Alsehli, 2020),
liposomes (Allen and Cullis, 2013), dendrimers (Dias et al.,
2020), inorganic nanoparticles like gold nanoparticles (GNPs)
(Ajnai et al., 2014), and carbon nanomaterials (Chen D. et al.,
2015). Among these nano-DDS, mesoporous silica nanoparticles
(MSNs) are a class of materials that have garnered particular
focused by many researchers, due to their facile large-scale
production, adjustable uniform pore size (Bouchoucha et al.,
2016), and large surface area and pore volume (Farjadian
et al., 2019). These properties endow MSNs with good
drug encapsulation efficiency and delivery, with uncomplicated
preparation like the sol–gel “chimiedouce” methods in aqueous
solutions (Croissant et al., 2018). Since silica-based materials
have been considered safe by Food and Drug Administration,
dedicated efforts have been made to utilize MSNs to construct
nanoplatforms for drug delivery and cancer chemotherapy (Li T.
et al., 2019). MSNDDS design has been extremely versatile. Some
researchers have used active targeting groups to improve MSNs
tumor targeting and improve chemotherapy selectivity (Cheng
et al., 2015; Chen L. et al., 2016; Murugan et al., 2017), while
others rely on the characteristics of the tumormicroenvironment,
such as lower pH and higher glutathione (GSH) content than
normal cells. Many pH and/or redox responsive MSNs to release
chemotherapeutic drugs have been designed (Cheng et al., 2017;
Murugan et al., 2017; Cheng Y.-J. et al., 2019). Enzyme, thermal,
and ultrasound responsive MSN DDS have also been studied
(Chang et al., 2013; Li X. et al., 2018; Zhu et al., 2019). More
recently, dual therapeutic agents co-delivered by MSNs to exert
synergistic action and improve the effect of chemotherapy have
been investigated (Zhang Y. et al., 2015; Murugan et al., 2016;
Wang L. et al., 2018; Li X. et al., 2019; Xing et al., 2020) (Figure 1).

The mechanisms of cancer occurrence involves multiple
pathways (Xu et al., 2015; Qiu L. et al., 2018), therefore it is
unlikely that a single therapeutic mechanism will be sufficient
to completely eradicate cancer. In support of this supposition,
every therapy mode including chemotherapy, has demonstrated
drawbacks (Fan et al., 2017). Combining chemotherapy with
other treatment modalities is a good strategy to combat these
shortcomings and augment therapeutic efficacy. Furthermore,
chemotherapeutic combination therapies can reduce drug dosage
to patients, lightening side effects while enhancing efficacy (Yu
et al., 2018; Shrestha et al., 2019; Zhang et al., 2019). Combination
chemotherapy possesses great potential for cancer treatment
(Goldin, 1980).

In this review, we summarize the progress made on
MSN based chemo-combination therapies according to
the different combination treatment modalities (Figure 2).
We focus on the synergistic therapeutic effects achieved
by these combined systems, emphasizing the advantages of

combination therapy over monotherapy and highlighting how
a successful combination compensates for the shortcomings of
chemotherapy. Then, we conclude with the challenges faced
by MSN based combination chemotherapy systems and what
improvements are needed for these treatment systems to become
mainstays in cancer therapy.

CHEMOTHERAPY AND PHOTOTHERAPY

Phototherapy, including photodynamic therapy (PDT) and
photothermal therapy (PTT), is a non-invasive therapeutic
strategy commonly used as a supplement to chemotherapy in
order to overcome the deficits of the monotherapy (Qin et al.,
2018; Cheng et al., 2020). In the presence of light, photoactive
therapeutics (photosensitizers) of PDT or PTT are excited to
produce reactive oxygen species (ROS) or hyperthermia to
kill cancer cells (Robertson et al., 2009; Chen J. et al., 2019).
The high surface area, large pore size and pore volume of
MSNs make them ideal candidates for multi-drug loading and
therefore, a combined platform for photo-chemotherapy. In
the following section we summarize photoactive mesoporous
silica-based chemotherapeutic nanoplatforms according to the
modality of phototherapy used in the combination (Table 1).

Photodynamic-Chemotherapy
PDT is an emerging therapeutic procedure in cancer treatment
that has attracted significant attention due to its high selectivity,
non-invasive nature and minimal side effects, when compared
to conventional therapy (Liao et al., 2016). Photosensitizer (PS)
selection, tissue oxygen levels, and light wavelength are all key
factors of PDT. Briefly summarized, under a specific wavelength
of light, the PS transfers absorbed energy to oxygen, inducing a
transformation from its triplet ground state to its singlet excited
state and instigating cytotoxic effects (Leonidova et al., 2014).
Due to the limited tissue penetration depths of most wavelengths
used to activate PSs, PDT is non-viable for deep-seated tumors
or metastasis. However, since the ROS generation from PDT
has been reported to promote anti-cancer drug release (Chen
Y.-W. et al., 2016; Cheng K. et al., 2019; Wong et al., 2020), a
combination of PDT and chemotherapy could to enhance the
therapeutic outcomes of both treatments.

MSNs have attracted substantial attention as a potential
PDT partner in recent years, due to their structural merits.
Many PSs aggregate easily (reducing their efficacy) and have
a poor intracellular uptake, limiting their applicability in solid
tumors (Ding et al., 2018; Oh et al., 2019; Fu et al., 2020).
Integration with MSNs can prevent the aggregation of PSs as
well as improve the targeting ability and biocompatibility of
PSs, leading to reduced side-effects and stronger anticancer
efficacy (Zhao et al., 2010; Yao et al., 2015; Yang G. et al.,
2016). Several MSN vehicles have been reported to be able to
co-deliver anti carcinogens and PSs into cancer cells (Zhang
et al., 2016; Kankala et al., 2017; Chen et al., 2020; Fu et al.,
2020; Wang H. et al., 2020), and these studies showed several
advantages to these combination systems such as enhanced
biocompatibility, improved cellular uptake of the payloads, and
enhanced therapeutic efficiency (Yan et al., 2018). In one such
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FIGURE 1 | Versatile design of MSN DDS.

example, Fang et al. (2019) designed a hollowMSN nanoparticles
(HMSNs) based nanoplatform into which the chemotherapeutic
agent DOX and photosensitizer chlorine e6 (Ce6) were co-loaded
at 9.56 and 16.68% (w/w), respectively. The HMSNs-DOX-Ce6
were further modified with bovine serum albumin integrated
manganese dioxide nanoparticles (BSA-MnO2) to construct a
multifunctional therapeutic nanoplatform the authors named
BMHDC. In which, BSA is intended to improve biocompatibility
and tumor accumulation while MnO2 serves to elevate the
oxygen content within the hypoxic tumors. Combination index
(CI) analysis indicated a great synergy between PDT and
chemotherapy in BMHDC (CI = 0.21). In another study, Guo
et al. (2020) decorated MSNs with Au nanoparticles as PSs and
mPEG-SH as a GSH-triggered gatekeeper to create a reduction-
responsive MSN-Au-PEG nanoplatform. The spherical structure

of MSN-Au-PEG was maintained, with a particle size of
∼155 nm. The pore diameter of MSN-Au decreased from 3.37
to 2.67 nm after coating with mPEG-SH. The particles achieved
a drug loading content (DLC) and drug loading efficiency
(DLE) for DOX of 12.3 and 43.25%, respectively. Cytotoxicity
assays in Hela cells demonstrated that MSN-Au-PEG@DOX
with laser irradiation exhibited the lowest cell viability (30%)
compared with the non-illuminated group (40%) or the free DOX
group (35%). The above results indicated that the nanoplatform
displayed a significant enhancement to carcinoma inhibition due
to the synergistic effect of PDT-chemotherapy.

Photothermal-Chemotherapy
PTT employs a photothermal agent (PA) to convert light energy
into heat, as opposed to ROS in PDT, and induce the thermal
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FIGURE 2 | MSN nano-DDS in chemotherapeutic combination cancer

therapies.

ablation of cancer cells (Zhi et al., 2020). Similarly to PDT,
PTT is a non-invasive therapeutic modality with advantages of
simplicity, minimal side effects, and remote activation. However,
as with PDT limited light penetration and inevitable light
scattering make PTT alone insufficient to completely eliminate
tumors (Li Z. et al., 2018). Since the hyperthermia produced
by PTT can enhance cellular metabolism and cell membrane
permeability, the concept behind combination photothermal-
chemotherapy is to not only improve the uptake of chemotherapy
drugs but also prevent tumor recurrence (Zheng et al., 2013;
Wang X. et al., 2017). As tumors have a higher sensitivity to
many chemotherapeutics at elevated temperatures (Hauck et al.,
2008), the cytotoxicity of chemotherapy can be increased, thereby
the dosage of anticancer drugs can be reduced and systemic
side-effects minimized (Yang Y. et al., 2017).

In recent years, MSNs have emerged as powerful candidates
for DDSs and they have been widely used for the codelivery
of PA and chemotherapy drugs as a combination therapy (Shu
et al., 2018; Tian et al., 2018). Copper sulfide nanoparticles (CuS
NPs) (Chen F. et al., 2015; Zhang et al., 2015a,b; Zhang Y. et
al., 2015; Peng et al., 2017; Wang F. et al., 2018; Li et al., 2020),
polydopamine (PDA) (Zhang et al., 2018; Chen C. et al., 2019),
gold nanorods (AuNR) (Zhang et al., 2012; Liu et al., 2015;
Huang et al., 2017; Ramasamy et al., 2018; Sun X. et al., 2018;
Wang Y. et al., 2019), gold shells (Rahman et al., 2017), reduced
graphene oxide (rGO) (Liu et al., 2019), GO (Tang et al., 2015;
Tran et al., 2018) and carbon dots (CDs) (Singh et al., 2016;
Zhang et al., 2020b) are common PAs introduced in the PTT-
chemotherapy systems. Wang and coworkers (Wang et al., 2015)
developed a DOX-loaded amino-modified MSNs (DOX@MSN-
NH2) with the DOX loading content of 20.9 wt% and modified
with reduced graphene oxide (rGO) as a heating gatekeeper coat
to achieve a multifunctional DDS. rGO possess a strong NIR
absorption at 980 nm (a wavelength with good tissue penetration)
and acts as the PA in this work, converting NIR light energy
intothermal energy to kill cancer cells. This nanocomposite was
able to kill 68% of HEp-2 cells in synergistic therapy, compared
with 54% in PTT and 33% in chemotherapy alone. This in vitro

result illustrates that the combination of PTT and chemotherapy
enables a better therapeutic outcome than the monotherapies.
Another rGO and MSNs based nanoplatform (162 nm) loaded
with (S)-(+)-camptothecin (CPT) for PTT-chemotherapy was
also reported to have a great synergistic effect. While DOX killed
33.4% of cells, and PTT killed 52% of cells, their combination was
able to kill 68% of cells (Chen et al., 2014).

Black phosphorus (BP) is a new PTT agent featuring low
cytotoxicity, good biocompatibility, and efficient photothermal
performance (Qiu M. et al., 2018). In one study utilizing
this new PA, Ren et al. (2020) constructed a MSNs based
platform (150 nm) loaded with DOX and black phosphorus
quantum dots (BPQDs) together. The in vitro results showed
that the multimodal therapy of PTT and chemotherapy could
induce a higher cell death rate (73.5%) in tumors compared to
chemotherapy alone (64.78%).

Photodynamic-Photothermal-
Chemotherapy
Since both PDT and PTT are triggered by light irradiation,
integrating both methods with chemotherapy into a trimodal
nanosystem seems a viable approach. Indeed, this combination
has already proven to have superior therapeutic efficacy than any
mono or dual therapy (Yang D. et al., 2016) and there have been
numerous attempts to integrate both of the phototherapeutics
and chemotherapeutics into MSN-based single formulation
(Luo et al., 2016; Sun Q. et al., 2018; Yan et al., 2020).
Fang et al. (2017) synthesized mesoporous silica-coated gold
nanorods (100 nm) loaded with 5-fluorouracil (5-FU) and
conjugated to indocyanine green (ICG). With 5-FU, ICG, and
the gold nanorods (GNR) responsible for the chemotherapy,
the PDT and the PTT, respectively. The addition on an MSN
coating was able to improve both the photostability and the
loading capacity of the GNR. The as-synthesized GNR@SiO2-
5-FU-ICG realized a trimodal synergistic therapy of PDT,
PTT and chemotherapy under multimodal imaging guidance.
Quantitative tumor growth inhibition ratio in nude mice treated
by GNR@SiO2-5-FU-ICG under laser irradiation was 100%,
while those treated with GNR@SiO2-5-FU under laser and
GNR@SiO2-NH2 were 88.27 and 69.43%, respectively (saline
groups were regarded as 0%) (Figure 3). The nanoplatform
was able to completely eradicate tumor without recurrence,
demonstrating the superiority of the combination therapy. Wen
and coworkers (Xiao et al., 2019) also designed a trimodal
nanoplatform (250 nm) by introducing tellurium nanodots (Te
NDs) into MSNs through in situ formation and then loading
the system with paclitaxel (PTX). Here, the Te NDs work as
both PS and PA concurrently, producing ROS and heat under
NIR irradiation. When the concentration of PTX was 80µM,
MTT assay showed that HepG2 cells treated with MT@L-
PTX@FA under irradiation had the lowest cell viability (∼25%),
significantly out performing MT@L with irradiation (∼45%),
MT@L-PTX@FA without irradiation (∼40%), and free PTX
(∼45%). The results prove that this synergistic approach was able
to enhance therapeutic outcomes.
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TABLE 1 | MSN-based nanoplatforms for Chemotherapy-phototherapy and their synergistic effects.

MSN-based nanoplatform Combination therapy Therapy agent Chemotherapy drug Synergistic effect References

BMHDC PDT PS Ce6 DOX Combination index (CI) of 0.21 Fang et al., 2019

MSN-Au-PEG Au NPs Cell viability of MSN-Au-PEG group

ranged from 73.49 to 12.1%, lower

than that of the non-illuminated group

and even lower than that of free DOX

group.

Guo et al., 2020

DOX@MSN-NH2 PTT PS rGO Cell death rate: DOX@MSN@rGO-FA

with NIR (PTT + chemotherapy):

68%; MSN@rGO-FA with NIR

irradiation (PTT alone): 52%;

DOX@MSN@rGO-FA without NIR

(chemotherapy alone): 33.4%.

Wang et al., 2015

rGO@Porous Silica nanocookie CTP Cell death rate: Nanocookie-CPT with

NIR (PTT + chemotherapy): 90%;

CPT-free nanocookie with NIR (PTT

alone): 60%; nanocookie-CPT without

NIR (chemotherapy alone): 20%.

Chen et al., 2014

FMSN@BP-DOX-FA BPQDs DOX Cell death rate: FMSN@BP-DOX-FA

with NIR: 73.5%; FMSN@BP-DOX-FA

without NIR: 64.78%; FMSN@BP-FA

with NIR: 10%.

Qiu M. et al., 2018

GNR@SiO2-5-FU-ICG PDTandPTT PS ICG 5-FU Tumor growth inhibition ratio:

GNR@SiO2-5-FU-ICG under laser

(PTT + PDT + chemotherapy):

100%; GNR@SiO2-ICG under laser

(PTT + PDT): 88.27%;

GNR@SiO2-NH2 under laser (PTT

alone): 69.43%; ICG-NHS under laser

(PDT alone): 38.14%; 5-FU under

laser (chemotherapy alone): 15.90%.

Fang et al., 2017

PA GNR

MT@L-PTX@FA PS Te NDs PTX Cell viability: MT@L-PTX@FA with

irradiation: ∼25%; MT@L with

irradiation: ∼45%; MT@L-PTX@FA

without irradiation: ∼40%; free PTX:

∼45%.

Xiao et al., 2019

PA

CHEMOTHERAPY AND GENE THERAPY

Traditional cancer therapies focus on killing cancer cells directly,
which can achieve short-term effects but has little effect on
drug resistance or metastasis and so does little to prevent
tumor relapse. The occurrence of cancer is closely related
to gene structure and function changes, which provides us
with another strategy, gene therapy. With the sequencing of
human genome, gene therapy has made noteworthy progress
in the past few decades. In particular, the combination of
gene therapy and chemotherapy has been widely studied and
has been proven to enhance therapeutic efficiency and reduce
side effects, achieving a synergistic effect in cancer treatment
(Shen et al., 2014). While promising, a crucial step for this
combination therapy is the development of suitable carriers for
the precise delivery and controlled release of gene therapy agents
such as plasmids, DNA, small interfering RNA (siRNA), micro
RNA (miRNA), and short-hairpin RNA (shRNA). MSNs are
easily functionalized with positively charged polymers to enable

electrostatic interactions with nucleic acid and their cavities are
able to load chemotherapeutic drugs effectively. As such, they
are an extremely promising carrier for gene/drug codelivery
(Table 2).

p53 is a tumor suppressor gene, the disfunction of which
has been found to have the highest correlation with human
tumors, making it an ideal target for combination chemo-
gene therapy. Lin et al. (2017) conjugated chitosan with
poly (amidoamine) (PAMAM), which can absorb the p53
plasmid and then modified the chitosan derivatives onto the
surface of MSNs to be the gatekeeper of DOX loaded into
the pores (average diameter 2.3 nm) by a redox-responsive
disulfide bond. The size of the nanosystem was about 100 nm,
which is suitable for cell uptake. The nanocarrier proved
to have excellent DOX/p53 codelivery ability and showed
a satisfactory transfection efficiency (27.6%), very close to
PEI −25 k (29.8%) in vitro. Importantly, the drug/gene dual
delivery nanosystem showed a better inhibition for Hela cell
(36% cell viability) than the drug (51%) or gene (75%) used
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FIGURE 3 | (A) Infrared thermal images of A375 tumor-bearing mice with different treatments at different time points upon 808 nm laser irradiation 24 h post-injection.

(B) Temperature changes in the tumor region of the A375 tumor-bearing mice treated with saline, 5-FU, free ICG-NHS, GNR@SiO2-NH2, GNR@SiO2-ICG, and

GNR@SiO2-5-FU-ICG, which irradiated at 24 h post-injection (808 nm, 1.0W cm−2, 5min). (C) Tumor growth of mice received different treatments. (D) Tumor weights

of nude mice on day 21 after different treatments (Fang et al., 2017). Copyright 2017, Wiley. *p < 0.05; **p < 0.01; ***p < 0.001.

alone, exhibiting the synergistic effect of chemotherapy and
gene therapy. Zhang et al. (2017) also constructed a redox-
responsive silica-based nanosystem which enable codelivery
of DOX and p53. The primary difference being that the
disulfide bond was directly inserted into the silica backbone
and covalently linked to DOX by the one pot method, allowing
the nanosystem to achieve redox-responsiveness, controlled
release, and self-degradation. Recently, a smart drug/gene
nanocarrier was developed by Zhou et al. (2020), which
utilized UV crosslinked/pH de-crosslinked coumarin as the
gatekeeper of MSNs loaded with the chemotherapy drug 5-FU
and p53 carried by cationic poly(glycidylmethacrylate)-b-poly(2-
(dimethylamino)ethylmethacrylate) (PGMA-b-PDMAEMA). In
addition to achieving a synergistic effect of chemotherapy
and gene therapy (21.33% apoptosis rate of cancer cells,
compared to 14.32% for 5-Fu and 9.41% for p53 monotherapies),
coumarins can also emit blue fluorescence, enabling the
nanocarrier to function as a fluorescent probe to detect trace
drugs concentrations.

In addition to p53 which is associated with most cancers,
there are also genes associated with specific cancers.

Hepatocyte nuclear factor 4α (HNF4α) is an important
transcription protein that regulates the differentiation
of hepatocytes and maintains the biological function of
hepatocytes. Based on this, Tsai et al. (2019) investigated
an approach to deliver the gene encoding HNF4α and
the chemotherapeutic drug cisplatin to hepatocellular
carcinoma (HCC), via polyethyleneimine-modified MSNs
(PMSNs). After treatment with PMSN/HNF4α plasmid
DNA/cisplatin, HNF4α in Huh7 cells was over expressed
and resulted in the proportion of CD133 enriched cells
decreasing significantly.

Since Fire et al. (1998) first proposed RNA interference
(RNAi) technology its application in cancer therapy has grown
rapidly. RNAi molecules include siRNA, shRNA and miRNA,
of which siRNA have been studied most. siRNA is a type of
chemically synthesized double-stranded RNA. It is transported
into cells and then incorporated into the RNA-induced silencing
complex (RISC), a protein-RNA complex which separates the
strands of the RNA and discards the sense strand. The anti-
sense strand then guides RISC to cut the target messenger
RNA (mRNA), resulting in hindrance of the production of its
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TABLE 2 | MSN-based nanoplatforms for Chemotherapy-gene therapy and their synergistic effects.

MSN-based nanoplatform Gene Chemotherapy drug Synergistic effect References

MSN-SS-CP p53 DOX Treated with p53, DOX, p53/DOX, HELA cells

apoptosis rate: 15.5, 22.6, 42.1%

Lin et al., 2017

DS-DOX-PEGA Treated with p53, DOX, p53/DOX, relative tumor

volume: 6.0, 4.5, 1.9

Zhang et al., 2017

MSN-g-PCAAMC-b-PDMAEMA 5-FU Treated with p53, 5-FU, 5-FU/p53, MCF-7 cells

apoptosis rate: 9.41, 14.32, 21.33%

Zhou et al., 2020

PMSNs HNF4α-encoding plasmid Cisplatin Treated with HNF4α/cis, the growth of Huh7 cells

was about 6, 3-folds decreased than HNF4α, cis

singly

Tsai et al., 2019

DPSN Bcl-2 siRNA DOX Treated by siRNA, DOX, siRNA/DOX, HELA cells

viability: 33.5, 39.4, 16.6%

Lee et al., 2018

MSN-COOH@ZIF-8 Treated by DOX, siRNA/DOX, MCF-7/ADR cells

apoptosis: 36.3, 88.2%

Pan et al., 2018

MSNs-SS-siRNA@DOX Treated with DOX, siRNA/DOX, tumor growth

inhibition: 85.2, 96.4%

Zhao et al., 2017

MSNs-PPPFA Treated with DOX, siRNA/DOX, MDA-MB-231 cells

apoptotic rate: 22.51, 36.88%

Zhou et al., 2016

MSNs Survivin siRNA ETO/DOC+CAR Treated with DOC+CAR, IC50 in A549 cell: 1.66,

0.85

Dilnawaz and

Sahoo, 2018

MSN-FA MRP-1 siRNA Myricetin Treated with Myr/siRNA, tumor weight was about

1/4 of treated with Myr

Song et al., 2020

CP-MSNP@DOX/siRNA PKM2 siRNA DOX Compared to monotherapy, combination therapy

resulted in an almost 3-fold decrease in the tumor

weight

Shen et al., 2017

MSNs@MONs p-gp siRNA DOX Treated with DOX, H-MSNs-DOX,

H-MSNs-DOX/siRNA, inhibition rate of tumor

growth: 50.7, 76.8, 87%

Sun et al., 2017

MSNCs T-type Ca2+channel siRNA DOX Treated with pMSNC/siRNA, pMSNC/DOX,

pMSNC/DOX/siRNA, inhibition rate of tumor

growth: 47, 45.5, 76%

Wang S. et al.,

2019

MSN-SS-PEI shABCG2 DOX Treated with DOX, DOX/shRNA, CSC ratio: 1/2368,

1/57193

Chen Z. et al.,

2016

MCP P-gp shRNA DOC Treated with DOC/shNC, DOC/shRNA, HepG2/ADR

cells apoptotic rate: 28.05, 62.93%

Wu et al., 2018

Dm@TMSN miRNA-145 DOX Treated with DOX, miRNA, DOX/miRNA, tumor

weight: about 140, 100, 30mg

Liu et al., 2018

MSNPs miR211 TMZ Treated with TMZ, miRNA, TMZ/miRNA, T98G cells

apoptotic rate: 49.1, 36.88, 70.86%

Bertucci et al.,

2015

encoded protein (Deng et al., 2014). Researchers have used
mesoporous silica-based multifunctional carriers to deliver DOX
and Bcl-2 siRNA to treat a variety of cancers (Zhou et al.,
2016; Zhao et al., 2017; Lee et al., 2018; Pan et al., 2018). For
example, Pan et al. (2018) developed a smart nanoplatform
based on DOX loaded mesoporous silica as core and Bcl-2
siRNA loaded zeolitic imidazole framework-8 (ZIF-8) as its
shell, in which ZIF-8 acted as the gatekeeper of DOX with
its pH sensitivity controlling the release of DOX and siRNA.
Flow cytometry analysis demonstrated that the apoptosis rate
of MDR cells reached 88.2% after incubation with Dox-MSN-
COOH@ZIF-8/Bcl-2 siRNA but was only 36.3% without Bcl-
2 siRNA.

Survivin, which is highly expressed in many types of human
tumors, is a member of the inhibitor of apoptosis protein
(IAP) family. Dilnawaz and Sahoo (2018) demonstrated that

the combination of the chemotherapeutic drug (etoposide
or docetaxel) or the proteasome inhibitor carfilzomib with
survivin siRNA could induce a 12.4 or 14.6% increase in
apoptosis, respectively, in A549 cells. Considering that the
overexpression of multidrug resistance protein 1 (MRP1) is
significantly related to the clinical drug resistance of many
kinds of tumors, Song et al. (2020) loaded MRP-1 siRNA
and myricetin into MSNs and modified the nanoparticles with
folic acid to target lung cancer cells. In vitro experiments
showed that Myr-MRP-1/MSN-FA can significantly inhibit
the proliferation of cancer cells and in vivo experiments
further verified this therapeutic effect, in which the tumor
volume of mice treated with Myr-MRP-1/MSN-FA decreased
the most.

As precursors of siRNA, shRNA are often co-transported
by MSNs-based carriers along with chemotherapeutic drugs
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to enhance their therapeutic effects against cancer (Li et al.,
2016). Most notably, this approach is taken when reversing
MDR (Chen Z. et al., 2016; Wu et al., 2018). An interesting
nanovehicle was developed by Wu et al. (2018), in which they
loaded the DOX prodrug with nitrobenzyl into the pores of
MSNs, then covalently linked MSNs to cationic poly[2-(N,N-
dimethylaminoethyl)-methacrylate] (PDMAEMA) modified by
light sensitive coumarin. P-gp shRNA was then electrostatically
adsorbed unto the particle surface and could be released
upon activation by 405 nm light. After which, the release of
DOX could be triggered by exposure to 365 nm light. In this
study, the sequential release of gene agent and drug can be
activated in a controllable manner via external illumination and
this sequential release greatly increased the accumulation of
drugs in the tumor sites, reversed MDR and improved overall
therapeutic effect.

miRNA is a type of endogenous short RNA molecule,
which can be used to regulate the cleavage of target mRNA
post-transcriptionally or inhibit its translation (Bartel, 2004).
miRNA approaches and anti-miRNA approaches have been
applied in cancer therapies, the effectiveness of these methods
mostly associated with the efficacy of gene vectors. Liu et al.
(2018) developed a smart silica-based nanosystem with high
efficiency loading, stimulation responsivity, active targeting,
and biocompatibility. Their MSNs system (Figure 4) was
composed of PEI covalently linked inside the silica cavity
via disulfide bond, then electrostatically bound to miRNA-
145. Meanwhile acting as the gatekeeper of DOX a WL8-
PEG shell is coated on the outside of the MSNs, improving
the stability and targeting to SW480 cells of the combination
therapy. The nanosystem showed a remarkable antitumor effect
both in in vivo and in vitro experiments, with an especially
excellent antimetastatic effect in an orthotopic colorectal
tumor model. The expression of miR211 is upregulated in
many kinds of tumors, especially in gliomas; conversely, the
downregulation of miR211 can make glioma cells sensitive to
temozolomide (TMZ). Working off this, Bertucci et al. (2015)
used MSNs incorporated with Cy5 to transport TMZ and
anti-miR221/polyarginine-peptide nucleic acid (R8-PNA221)
complex to drug-resistant glioma cells. In accelerated survival
experiment, MSNs with TMZ and anti-miR211 synergistically
decreased the C6 glioma cells survival rate more than
the sum of the MSNs-TMZ and MSNs-PNA221. The same
trend was observed in their apoptosis experiment. Several
studies have indicated that anti-miRNA therapy combined with
chemotherapy is a potential strategy for reversing MDR. In order
to improve the sensitivity of glioma cells to TMZ, Nie et al.
(2020) used 93.5 ± 6.7 nm Mn-doped MSNs to deliver TMZ
and10–23 DNAzyme. In acidic and reductive environments the
Mn-MSNs decompose, enabling Mn2+ to assist 10–23 DNAzyme
in silencing the O6-methylguanine-DNA methyltransferase
(MGMT) gene. Western blot experiments demonstrated the
gene silencing effect of Mn-MSNs/TMZ/10-23 DNAzyme and a
significant decrease in IC50 (>3.8-fold) validated that the MDR
T98G cells became more sensitive to TMZ after chemo-gene
combination therapy.

CHEMOTHERAPY AND IMMUNOTHERAPY

Immunotherapy, utilizing the body’s natural immune system
to inhibit tumor, is also a potential treatment option for
combination with chemotherapy. The immune system has
the dual role of inhibiting and promoting tumor growth
(Schreiber et al., 2011) and immune checkpoint therapy has
become a research hotspot of cancer therapy in recent days
(Dyck and Mills, 2017). Compared to other treatment modes,
immunotherapy can more specifically target the primary tumor
and secondary tumor metastasis, it can also prolong anti-
tumor response through immune memory cells to inhibit tumor
recurrence (Luo et al., 2017). However, immunotherapy has
a low response rate, making it ineffective for some patients
(Zheng et al., 2020). Considering the limitations of chemotherapy
alone as well as immunotherapy alone mentioned above,
the idea of combining chemotherapy and immunotherapy
came into being naturally. Though chemotherapeutic agents
can induce immunogenic cells death (ICD) (Kroemer et al.,
2013), most chemotherapies would induce lymphopaenia, which
hampers the anticancer immune response (ACIR) (Lake and
Robinson, 2005), making the combination of chemotherapy and
immunotherapy difficult to realize. Zheng’s group has broken the
barrier between the two therapies by designing DOX@HIMSNs,
a DOX-loaded and MSN-based nanoplatform (Zheng et al.,
2016). The tumor volume in 4T1 tumor bearing Balb/c mice
of DOX@HIMSN group was five times smaller than that of
DOX group. And the fluorescent overlap between granzyme-B
and caspase-3 of DOX@HIMSN group had a Mander overlap
coefficient of 0.95, which was higher than the DOX group (0.88),
indicating the enhanced immunological cells killing ability of
DOX@HIMSN. These results showed that the highly integrated
MSNs can increase tumor cell cytotoxicity as well as stimulate
ACIR, indicating the potential of MSN-based nanosystems in
immunotherapy combined chemotherapy. There is increasing
efforts to combine the two modalities together into an MSN-
based nanoplatform to achieve an enhanced therapeutic effect
(Choi et al., 2019). Kong et al. (2017) developed a HMSN-
mediated nanosystem called A/D/I-dHMLB to co-delivery DOX,
all-trans retinoic acid (ATRA) and interleukin-2 (IL-2) for
chemo-immunotherapy. A/D/I-dHMLB had a higher tumor
inhibitory rate of 84.8 ± 13.0% compared to DOX group
of 17.1 ± 12.4%. After the treatment of A/D/I-dHMLB, the
number of myeloid-derived suppressor cells (MDSC), which
impede ICD, showed a 2.7-fold decrease, while the number
of mature DC and activated CD8+ T cell increased 14.3-fold
and 3.93-fold, respectively. Other cytokines like IL-12p70 and
TNF-α also increased while inhibitory cytokines like IL-10 and
TGF-β decreased. All the results indicated that the design of
A/D/I-dHMLB can effectively kill cancer cells and reach an
enhanced antitumor immunity. Dong et al. (2017) developed a
pathogen-mimicking nanocomplex (MSN-SP-LPS) with a mean
hydrodynamic diameter of 167.1 ± 3.9 nm by conjugating the
sodium phthalate salt of the parent LPS to MSN. The amount
of TNF-α detected in RAW 264.7 cells treated with MSN-
SP-LPS (∼5.5 × 103 pg/mL) or SP-LPS (∼5.6 × 103 pg/mL)
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FIGURE 4 | Schematic illustration of the preparation (top) and proposed mechanism (bottom) of the MSN-based DOX and miRNA-145 smart delivery system (Liu

et al., 2018). Copyright 2018, Wiley.

was higher than that released by MSN (∼0.3 × 103 pg/mL)
due to the presence of LPS, indicating a stronger activation of
macrophages. In addition, the high amount of INF-γ secretion
(900 pg/ml) provided the evidence of T cell activation, showing
a strong inflammation response by MSN-SP-LPS. When treated
with 1.25 µg SP-LPS/mL and 0.5 µg DOX/mL, the cell viability
of splenocytes treated with MSN-DOX-SP-LPS combination was
the lowest (∼72%), compared to∼74% forMSN-DOX and∼95%
for SP-LPS, indicating the superiority of the synergistic effect
of immuno-chemotherapy.

CHEMOTHERAPY AND SONODYNAMIC
THERAPY

Sonodynamic therapy (SDT), another non-invasive therapeutic
modality, has shown specific advantages in cancer therapy
when compared to its counterparts like PDT or PTT, since
SDT can reach deeper tumor sites due to the high tissue
penetrating nature of ultrasound (US) waves (Qian et al.,

2016). SDT can kill cancer cells by producing cytotoxic ROS
through the combination of US with a sonosensitizer, while
minimizing damage to the surrounding normal cells (Chen Y.-
W. et al., 2016). Sonosensitizers include organic materials such
as porphyrins (Hachimine et al., 2007; Yumita et al., 2010),
erythrosine B (EB) (Yumita et al., 2002) and Rose Bengal (RB)
(Sugita et al., 2015), as well as inorganic materials like titanium
dioxide (TiO2) (Harada et al., 2011) and silicon nanoparticles
(Osminkina et al., 2015). Interesting, MSNs have been shown to
have impressive SDT activity due to their high porosities, which
allow the free diffusion of molecules to generate ROS.

Since MSNs can simultaneously play the role of sonosensitizer
and drug carrier, there is exciting potential for a synergistic
nanoplatform integrating SDT and chemotherapy. While
promising, SDT monotherapy still has some limitations such
as lacking tumor-targeting ability, hypersensitivity to light
(Lafond et al., 2019), tumor hypoxia (Zhao et al., 2020) and
insufficient lethality to kill all cancer cells. The US used in SDT
promotes drug release in chemotherapy (Ding et al., 2017),
while the chemotherapy could compensate for the weaknesses
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of sonodynamic monotherapy, creating the ideal synergistic
environment. Ding et al. (2017) reported a 50 nm core-shell
MSN-based nanocomplex with DOX loading and targeting group
methacrylated hyaluronic acid (m-HA) gel functionalization to
realize a synergistic therapy combining chemotherapy and SDT.
The surviving percent of cells treated by DOX@MSN-HA under
US was only about 5% compared to that of DOX@MSN-HA
(35%) and MSN under US (70%), highlighting the synergistic
potential of SDT and chemotherapy.

CHEMOTHERAPY AND MAGNETIC
HYPERTHERMIA THERAPY

Recently, magnetic hyperthermia therapy has been proven
to be effective tool in the struggle against cancer. Magnetic
hyperthermia utilizes the heat from the energy dissipation of
magnetic particles to cause the irreversible necrosis of cancer
cells, while leaving normal tissues undamaged (Kobayashi, 2011;
Brollo et al., 2016). Additionally, magnetic hyperthermia has
been shown to accelerate the release of the anticancer drug
DOX from nanoplatforms, making it a potential partner to
improve the efficacy of chemotherapy (Tian et al., 2018). In
return, chemotherapy as a whole-body treatment can make up
the limitation of magnetic hyperthermia therapy as a treatment
only for local oncology. Therefore, combining chemotherapy
with magnetocaloric therapy is a promising method to inhibit
tumor growth and many MSN-based systems have been reported
to make this a reality.

Tian et al. (2018) developed poly(N-isopropylacrylamide-
co-methacrylic acid) [P(NIPAM-co-MAA)] coated magnetic
mesoporous silica nanoparticles (MMSNs) with particle size 255
± 28 nm and pore size 2.6 nm to achieve a combination chemo-
magnetic therapy. Under exposure to an alternating magnetic
field (AMF) at a frequency of 409 kHz and magnetic field
strength of 180 Gauss, the MMSNs generated enough heat to
raise the cell temperature to 64.2◦C within 15min, inducing
both hyperthermia and the controlled release of loaded DOX.
A CCK-8 assay showed that the cell viability of Hela cells
after treatment with the synthesized DOX-MMSN@P (NIPAM-
co-MAA) nanoparticles decreased to only 23%, which was
significantly lower than that of cells after treatment with DOX
(76%) or AMF (42%) alone. This shows the strong synergistic
therapeutic effect of chemo-magnetic hyperthermia therapy and
provides a promising platform for combined chemotherapy.

Iron nanomaterials are used as magnetic therapeutics in
many MSN-based synergistic systems due to their strong
response to AMFs (Zhu and Tao, 2015; Guisasola et al., 2018).
Cai et al. (2019) successfully synthesized CSiFePNs (220 nm)
by loading superparamagnetic ferroferric oxide and paclitaxel
(PTX) into MSNs coated with MDA-MB-231 cell membranes.
The combination system showed the highest anticancer ability
(IC50 value of 0.8 µgL−1) compared to CSiFeNs with AMF (IC50

value of 3.6 µgL−1) or CSiFePNs without AMF (>0.8 µgL−1),
further demonstrating that the combination of magnetotherapy
and chemotherapy possesses great potential for the treatment
of carcinomas.

CHEMOTHERAPY, CHEMODYNAMIC
THERAPY, AND STARVATION THERAPY

Chemodynamic therapy (CDT) is a novel modality to treat
tumors by using transition metals to convert local hydrogen
peroxide (H2O2) into highly toxic hydroxyl radicals (•OH) to
kill cancer cells (Huo et al., 2017). Because CDT responds
to the acidic and hydrogen peroxide rich microenvironment
of tumors, it is highly selective. However, there are still
challenges to face in CDT such as insufficient intratumor H2O2,
inadequate H+, as well as the unsatisfactory catalytic capacity
of chemodynamic agents (Cheng K. et al., 2020; Wang W.
et al., 2020). As a local treatment modal, CDT could be a
supplement to chemotherapy to enhance overall therapeutic
efficacy. Combinations of chemotherapy and CDT with MSNs as
the DDS have reported strong potential in anticancer treatment
(Kankala et al., 2017; Zhang et al., 2020a).

Another oncotherapy strategy, starvation therapy, also
responds to the tumor microenvironment, is a superb strategy
to treat cancer, and may address the shortcomings of CDT
(Hao et al., 2019). In contrast to normal cells, the glycolysis of
cancer cells is upregulated even in an oxygen-sufficient situation
(Warburg et al., 1927). Starvation therapy attempts to exploit
this by utilizing glucose oxidase (GOx) to cut off nutrients to
cancer cells, starving them to death. Several synergistic MSN-
based nanoplatforms integrating chemo and starvation therapy
have been reported (Cheng K. et al., 2019; Zhang et al., 2020b).
As discussed above, CDT is limited by the concentrations
of H2O2 and H+. Starvation therapy produces excess H2O2

and causes a decrease in pH, making it a perfect pair for
CDT. Furthermore, starvation therapy itself is not enough for
completely eliminate cancer cells, necessitating combination
with additional treatment modalities to achieve the desired
therapeutic effect (Fu et al., 2018). As both CDT and starvation
therapy have been successfully integrated with chemotherapy and
GOx-triggered starvation therapy can induce sequential CDT
and chemotherapy, it is possible to construct an all-in-one system
featuring tri-modal therapy.

In one such example, starvation therapy and chemodynamic
therapy were reported to combine with chemotherapy in a single
nanosystem designed by Cheng K. et al. (2020). Hypoxic prodrug
tirapazamine (TPZ) and high efficiency catalyst Fe3O4 were
loaded into MSNs and the MSNs surface functionalized with
GOx. The drug loading rate of TPZ and GOx achieved by the
authors were 14.9 and 5.8%, respectively and the hydrodynamic
diameter size of Fe3O4@MSN was 88 nm. When GOx consumes
the oxygen and glucose in the tumor microenvironment, it
causes increased endogenous H2O2, decreased acidity, and more
extreme hypoxia. Then, through the iron ion-mediated Fenton
reaction (Lafond et al., 2019) using the Fe3O4 catalyst, H2O2

is transformed into cytotoxic •OH and induces chemodynamic
therapy. The hypoxia then activates the hypoxia-responsive TPZ,
to kill cancer cells while avoiding healthy cells (Figure 5). Under
hypoxic conditions, MTT assays showed that the cell viability
of MCF-7 cells after treatment with TPZ/Fe3O4@MSN-GOX
was 8.6%, while that of the TPZ/Fe3O4@MSN group was 29.9%
and the TPZ group was 33.3%, indicating the as-synthesized
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FIGURE 5 | (A) Cell viability rates of different MSN concentrations at different oxygen concentrations. (B) L-02 cell viability rates of different TPZ dose-dependent

concentrations of different nanoparticles in 20% O2 concentration with glucose (1mg mL−1). (C) MCF-7 cell viability rates of different TPZ dose-dependent

concentrations of different nanoparticles in 5% O2 concentration. (D) MCF-7 cell viability rates of different TPZ dose-dependent concentrations of different

nanoparticles in 5% O2 concentration, which was treated by different nanoparticles calculated by the MTT assay (Cheng K. et al., 2020). Copyright 2020, RSC.

TPZ/Fe3O4@MSN-GOX displayed excellent tumor inhibition,
with the GOx-induced starvation therapy triggering synergistic
enhancements with chemodynamic and chemotherapy.

CROSS-MODAL CHEMO-COMBINATION
THERAPIES

The development of multifunctional nanocarriers has enabled
the development of chemotherapeutic combination therapies
that include more than one other synergistic modality. In
order to reverse multidrug resistance, Yang H. et al. (2017)
assembled sodium alginate/chitosan polyelectrolyte multilayers
onto Fe3O4/Au/MSNs loaded with DOX and photosensitizer
Ce6 to adsorb P-gp shRNA. After incubation with the
nanoparticles and laser irradiation, the survival rate of drug-
resistant cells MCF-7/ADR was inhibited by >60% compared

with any monotherapy. Demonstrating that chemo-gene-
photodynamic therapy had a synergistic anti-tumor effect and
the ability to reverse MDR. Additionally, Fe3O4/Au endowed the
nanoparticles with dual imaging modes of magnetic resonance
and CT imaging, enabling real-time guided therapy.

Gold nanotriangles are excellent radiation/PTT therapeutic
agents but possess high toxicity and poor drug loading
capacity (Bhattaraia et al., 2017). To overcome these limitations,
a kind of “Hedgehog like” Janus gold triangle-MSNs were
developed by Wang and co-works to deliver the hypoxia-
activated prodrug TPZ, with surface functionalized FA-PEG to
improve targeting and biocompatibility (Wang Z. et al., 2019).
In vivo and in vitro experimentation revealed that FA-GT-
MSNs@TPZ nanoplatforms showed superior anti-tumor effects
to monotherapies alone, demonstrating that hypoxia-activated
radio-chemo-photothermal therapy is a very promising strategy
for cancer treatment.
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Lu et al. (2020) prepared mesoporous silica nanorods of a
specific width (100 nm) and precisely controlled aspect ratio (AR:
length/width). They loaded DOX and GOx with AR6 into MSNs,
then coated the nanoparticles with an a polydopamine (PDA)
layer to absorb Siramesine, a drug that can damage lysosomes and
induce apoptosis. The multifunctional nanoplatform integrated
chemotherapy, PTT, CDT and ST, and targeted cancer cells with
FA, exhibit in a much higher lethality to cancer cells than any
single therapy. These studies highlight the potential for MSN
chemotherapy combinations to go beyond a two pronged assault
on cancer and incorporate a whole host of therapeutic modalities.

CONCLUSIONS AND OUTLOOK

As a standard therapy modality for cancer treatment,
chemotherapy urgently needs amore targeted drug accumulation
in tumor sites and strategies to overcome MDR in order
to improve its practical application in the clinic. Recently,
chemotherapy-based combination therapies have become an
irresistible trend due to the superiority in therapeutic efficacy
compared to monotherapies. MSNs with large pore sizes, diverse
functionality, ease of modification and good biocompatibility
are ideal materials to realize such synergistic nanoplatforms,
since they can not only serve as drug carriers but also function as
therapeutic agents in therapies complementary to chemotherapy.
In this review, we have discussed many MSN-based nanosystems
featuring the integration of chemotherapy with other therapy
modals namely immunotherapy, gene therapy, phototherapy,
magnetic hyperthermia therapy and sonodynamic therapy and
emphasized the effects of dual- or multi-modal therapy. As
expected, most of the reported cases demonstrate that MSN
mediated combination therapy achieved at least 1 + 1 > 1 effect
in cellular or animal level, providing experimental evidence for
further promising applications of these MSN-based delivery
systems. Naturally, there is no objectively best combination,
as each combination has its advantages and disadvantages.
However, the chemo-immuno combination therapy may have
the most promising future for further clinical translation

considering that immunotherapy using PD-1/PD-L1 antibodies,
CTAL-4 antibodies and CAR-T treatment has been recently
revealed as a powerful clinical strategy for treating cancer.

Though MSN-based combination chemotherapies have
shown preliminary success in in vitro and in vivo testing,
several challenges remain before these nanoparticles
can put into clinical use. As highlighted in this review,
nanocomposites serve as the multimodal therapy platforms,
necessitating long-term biosafety tests as well as more
detailed pharmacokinetic/pharmacodynamic analyses for
each participating component in the complexes. Additionally,
the optimal dosing ratio between chemotherapeutics and other
therapeutic agents must be investigated further. Furthermore, the
integration of combination therapies should be strategic, that is,
they should achieve interlocking effects and smart drug delivery
and release systems to maximize the synergistic benefits. Lastly,
developing simpler syntheses of MSN-based nanocomplexes is a
high priority, as is improving their cancer targeting capabilities.

The existing researches about MSN-based chemotherapy
combination therapies are immature, however, as our
understanding of materials and diseases deepens, potential
applications of MSN-based DDS broaden. It is sure that
chemotherapy-based nanosystems utilizing biocompatible
MSNs have a bright adaptable future and great potential for
clinical translation.
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