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Abstract: 

Recent advances in manufacturing methods open the possibility for broader use of metal 

foams and metal matrix composites (MMCs) for heat exchangers, and these materials can 

have tailored material properties. Metal foams in particular combine a number of interesting 

properties from a heat exchanger’s point of view. In this paper, the material properties of 

metal foams and MMCs are surveyed, and the current state of the art is reviewed for heat 

exchanger applications. Four different applications are considered: liquid-liquid, liquid-gas 

and gas-gas heat exchangers and heat sinks. Manufacturing and implementation issues are 

identified and discussed, and it is concluded that these materials hold promise both for heat 

exchangers and heat sinks, but that some key issues still need to be solved before broad scale 
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application is possible. 
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Introduction 

Metals are commonly used in the construction of heat exchangers because they 

generally possess a high thermal conductivity and good mechanical properties (i.e. high 

ultimate tensile strength, yield strength, manufacturability, etc.). The most commonly used 

metals are copper, aluminum, and stainless steel. While aluminum and copper have a high 

thermal conductivity, they also have high coefficients of thermal expansion (CTE). Materials 

with low CTEs, such as copper/tungsten and copper/molybdenum, generally have thermal 

conductivities that are lower than that of aluminum. The best conductors are the "noble 

metals" which include gold, silver, and platinum. However, noble metals are very expensive, 

and for most applications, with possible exceptions in the aerospace industry, the noble metals 

are too expensive to be used for heat exchanger applications. Even the non-noble metals are 

relatively expensive as compared to polymers and certain non-metals. Based on the above 

consideration, materials with low densities are needed in weight-critical applications. As a 

result, metal foams and metal matrix composites (MMCs) which were developed for 

structural and thermal applications more than two decades ago are now being considered as 

solutions to many thermal management problems (Zweben [1]; Ozmat et al. [2]). Table 1 

provides an overview of several key thermo-physical properties of various metals and metal 

alloys used in heat exchanger construction. (In Table1, the ‘specific thermal conductivity’ 

(defined by Zweben [1]) is the ratio of the thermal conductivity and the specific gravity, and 

as such can be used as a figure of merit to indicate which metals are better for weight 

sensitive applications.) In this paper, these materials are reviewed for possible use in the 

construction of heat exchangers for use in Heating, Ventilation, Air Conditioning, and 
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Refrigeration (HVAC&R) systems and other similar applications. First, the material properties 

are surveyed after which the current state of the art of their application in HVAC&R and 

related heat-exchanger applications is reviewed. Some manufacturing and implementation 

issues are considered, and finally the future promise of using metal foams and MMCs in 

HVAC&R systems and components is discussed. 

 

Material properties of metal foams and metal matrix composites (MMCs)  

Metal foams 

Compared to ordinary metals, the notable feature of metal foams is the existence of 

many voids within the material. Metal foams with a cellular structure are known to have many 

interesting combinations of physical and mechanical properties (Liu and Liang [7]; Tang et 

al. [8]; Tuchinskiy [9]), including: 

1)  Low weight (composed of about 90% of air); 

2)  High to very high specific surface area (500 to over 10000 m
2
/m

3
);  

3)  High heat transfer potential (convection and radiation, for open-cell bodies);  

4)  High gas permeability combined with high thermal conductivity (for open-cell bodies); 

5)  Resistance to thermal shock, wear, high temperature, humidity, and thermal cycling; 

6)  High strength and toughness, suitable for high-pressure conditions;  

7)  Good impact energy absorption; 

8)  Easy control over material morphology (pore size and distribution);  

9) Machinability and weldability, allowing for the formation of complex parts; 

10) Excellent noise attenuation; 
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11) Thermally insulating characteristics (for closed-cell bodies); 

12) Excellent fluid mixing due to the tortuous flow path within the foam. 

Because of their interesting properties, open-cell metal foams are currently regarded as 

a highly promising material for constructing efficient compact heat exchangers (Ashby et 

al. [10]; Bastawros and Evans [11]; Kaviany [12]; Ruiz [13]; Boomsma and Poulikakos [14]; 

Zhao et al. [15]; Anthohe et al. [16]; Boomsma et al. [17]) as well as for high heat flux 

applications such a processor cooling. In addition, many new applications have been 

suggested for metal foams, such as structural elements for aerospace, automotive, and 

building systems, thermal management systems, filters and catalyst carriers, and others 

(Banhart et al. [18]). Indeed, metal foams have been used to produce filters (Koltsakis et 

al. [19]), catalyst supporters (Ismagilov et al. [20]), porous electrodes (Wilkinson and 

Paserin [21]), energy absorbers (Kim et al. [22]), pneumatic silencers (Kang et al. [23]), 

shock-absorbing buffers, electromagnetic shielding or compatible elements (Losito [24]), 

flame arresters, cellular scaffolds for tissue engineering (Spoerke et al. [25]), flow mixers 

(Azzi et al. [26]), etc. Furthermore, they can be used to produce composite materials or to 

serve as gaskets. Therefore, metal foams are a versatile engineering material (Liu et al. [27]).  

Metal foams (cellular metals) can be categorized according to their structure as either 

(i) open- or closed-cell, and (ii) stochastic or ordered/periodic. Open-cell foam consists of 

cells which all are interconnected (i.e. ‘without walls’) allowing a fluid to pass through it, 

while in a closed-cell foam the cells constitute individual enclosures within the material (see 

Fig. 1). Fig. 2 shows a few examples of periodic structures (Tian et al. [28]) used in cellular 

metals. These structures are very different from the stochastic orientation of the foams in Fig. 
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1 and clearly demonstrate the high specific surface area (i.e. surface area which is in contact 

with the fluid per unit volume). Examples of periodic structures include materials made from 

stacked metal textiles and microtruss concepts (Wadley [29]; Wadley [30]; Evans et al. [31]). 

The open-cell systems shown in Fig. 2 compare favorably to closed-cell honeycombs when 

used for the cores of sandwich panels. They are therefore attracting considerable attention as 

multi-functional structures (Tian et al.[28]). 

Cellular metals are often characterized by their relative density R=/s , where  is the 

density of the cellular metal and s is the density of the solid parent material (Ashby et 

al. [10]). Certain cellular material properties such as elastic stiffness, effective thermal 

conductivity, and effective yield strength can be directly related to the properties of the 

material comprising the cell walls through the relative density (Ashby et al. [10]; Lu et 

al. [32]). However, the effective thermal conductivity of metal foam is not only dependent on 

the relative density and the thermal conductivity of the base material from which the foam is 

made, but it is also dependent on the actual geometry of the foam due to the conductive 

pathways through the porous material which are limited to the ligaments of the material 

(Haack et al. [33]; Dai et al. [34]). Heat conduction in porous matrices has also been 

summarized in a number of extensive review articles and books (Kaviany [12]; Alazmi and 

Vafai [35]; Hsu et al. [36]). Ashby et al. [10] conducted an experimental study and found 

8.165.1
RkkRk seffs  , where ks is the base metal thermal conductivity, R is the foam 

relative density (as defined above), and keff is the effective foam thermal conductivity. Calmidi 

and Mahajan [37] and Boomsma and Poulikakos [14] independently developed analytical 

models specifically for metallic foams saturated with a fluid utilizing a geometrical estimate 
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for the calculation of the effective thermal conductivity. For high porosity metal foams, 

Calmidi and Mahajan [37] presented a one dimensional heat conduction model that 

considered the porous medium to be a two-dimensional array of hexagonal cells, whereas 

Boomsma and Poulikakos [14] proposed a three dimensional model that consisted of 

tetrakaidecahedron cells with cubic nodes at the intersection of two fibers. This widely used 

model by Boomsma and Poulikakos [14] was recently shown to be erroneous, corrected and 

extended by Dai et al. [34]. These models involve a geometric parameter that was evaluated 

using experimental data. Bhattacharya et al. [38] later extended the analysis of Calmidi and 

Mahajan [37] with a circular intersection, which results in a six-fold rotational symmetry. 

Singh and Kasana [39] presented a simple semi-empirical model for the keff of metal foams 

which showed good agreement with experimental data. Higher base metal thermal 

conductivity is usually associated with a higher material density, so a significant increase in 

foam density also results in an increased foam thermal conductivity. On the other hand, 

convective heat transfer to a metal foam is enhanced by thermal dispersion (i.e. intra-cell 

mixing), and these dispersive effects increase with the permeability of the foam (Hunt and 

Tien [40]). Thus, foam that possesses high relative density usually has a high thermal 

conductivity, but foam structures that are more “open” are more likely to perform better in 

convective heat transfer. This presents an interesting trade-off for designers. 

Currently, most manufactured metal foams vary in pore sizes from 5 to 60 pores per inch 

(ppi), in porosity from 0.85 to 0.97, and in relative density from 3 to 15%. The porosity is the 

fraction of void space in the material and thus is related to the relative density. The number of 

pores per inch (or ppi) is a standard metric used by manufactures to indicate how many pores 
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are present on average over a distance of one inch. Table 2 presents an overview of some 

thermo-physical properties of aluminum foam samples that have been previously studied. In 

Fig. 3, some examples are shown of Al metal foam with a constant relative density but 

varying ppi, providing a close up view of the internal structure of the material. The structure 

consists of ligaments which form a network of interconnected dodecahedral-like cells. The 

cells are randomly oriented and mostly homogenous in size and shape with triangular-shaped 

edges. Alloys and single-element metals are available for the ligaments. Common materials 

include copper, aluminum, stainless steel, and high temperature iron-based alloys (i.e. 

FeCrAlY). Some researchers (e.g. Ozmat et al. [2] and Boomsma et al. [17]) have compressed 

metal foams to increase the thermal conductivity. As a result, the appearance of the metal 

foam changes considerably (see Fig. 4). As seen in Table 2, a major limitation of metal foams 

arises due to the fact that they are porous structures of their parent materials. While metal 

foams have effective thermal conductivities that are larger than those of polymers, their 

conductivities are up to an order of magnitude lower than those of their parent material. 

Another critical limitation comes from the excessive pressure drop that a fluid experiences as 

it passes through the foam (as will be shown later). In the following sections, the application 

of metal foams to heat exchangers will be discussed. 

 

Metal matrix composites 

Metal matrix composites (MMCs) are metallic matrices reinforced with metallic or 

ceramic particles/fibers for increased tensile strength and stiffness, decreased CTE, improved 

high temperature properties, and wear resistance. Long-fiber reinforcement materials show 

the most significant property gains, but they are also the most expensive to produce. MMCs 



 9 

with discontinuous fillers (commonly ceramic particles) are attractive for their flexibility to be 

manufactured into various shapes. Layered composites in the form of a matrix-filler-matrix 

sandwich are useful for tailoring planar components. The filler sheets are often metal alloy 

sheets with low CTEs.  

In several reviews of packaging materials for electronic equipment, Zweben focused 

on the advances that have been made in composite materials with high thermal conductivity, 

low weight, and low coefficient of thermal expansion (Zweben [1]; Zweben [43]; 

Zweben [44], Zweben [45]; Zweben [46]). These composites have a very high thermal 

in-plane thermal conductivity (comparable to or even higher than copper), but in some cases a 

relatively low through-plane thermal conductivity. The through-plane values are measured in 

the direction perpendicular to the fiber or flake orientation, the in-plane values are measured 

parallel to the filler. The thermo-physical properties of some MMCs are listed in Tables 1 and 

3. Chung [3] also presented a review on materials with high thermal conductivity, including 

MMCs. Aluminum and copper are commonly used as metal matrices, due to their high 

thermal conductivity. An aluminum matrix is used for both structural and electronic 

applications. The thermal conductivity of aluminum matrix composites depends firstly on the 

nature of the filler material and its volume fraction, but also the alloy matrix heat treatment 

and the filler-matrix interface. Silicon carbide particle-reinforced aluminum (Al/SiC) is an 

MMC first used in microelectronic and optoelectronic packaging by GE in the early 1980s 

(Zweben [45]). Both carbon and SiC suffer from the formation of a galvanic couple, which 

results in the aluminum matrix (anode) being corroded. 

Because copper has a high density, the filler does not have to be lightweight. Thus, 
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metals with a low CTE but high density such as tungsten, molybdenum and Invar are often 

used as fillers. These metals (except Invar) have the advantage that they are quite conductive 

thermally and are available in both particle and sheet form. Another advantage of using 

metallic fillers is the improved wetting between the molten matrix metal and the metallic 

fillers compared to ceramic fillers, which improves the manufacturability. An advantage of 

copper over aluminum is its non-reactivity with carbon, making carbon highly suitable as 

filler for copper matrices. Carbon is light, and available both as particles and fibers. Graphitic 

carbon fillers have a very high thermal conductivity, which can result in a composite with a 

higher thermal conductivity than the matrix material (copper), as shown in Table 3.  

MMCs can withstand higher temperatures than polymer matrix composites (PMCs) 

but in general have a higher density. The main advantages of using metals as matrix material, 

compared to polymers, are their high tensile strength and shear modulus, high melting point, 

small CTE, resistance to moisture, dimensional stability, ease of joining, high ductility, and 

fracture toughness. Though not as widely used as PMCs, MMCs are finding increasing 

application in many areas. Further development of manufacturing and processing techniques 

is essential to reduce production costs and accelerate the introduction of MMCs.  

 

Applications 

Liquid-to-liquid heat exchangers 

Smeding et al. [47] and Haije et al. [48] studied a sandwich plate-mesh-plate structure 

for small-scale NH3-H2O/LiBr-H2O absorption chillers used in residential and small 

commercial applications and for waste heat recovery. The sandwich structure consisted of two 
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thin flat plates (0.35 m outer diameter, 5 mm pitch) with a wire mesh in between (see Fig. 5). 

The junctions of the wire mesh (1 mm thick) were vacuum brazed to both plates and tested 

under cyclic loads. The resulting construction was able to resist high pressure differences (20 

bar) from inside to outside due to the proportional distribution of the junctions. The heat 

transfer medium (water) flowed through the open space of the wire mesh, and heat transfer by 

convection occurred between the fluid and the elements of the mesh as well as the bounding 

plates. Especially for laminar flow conditions, good heat transfer was achieved through 

continuous mixing of the flow. The secondary side (outside) of the heat exchanger surface 

was intended to be in close contact with the H2O/salt. Thus, surface enlarging structures such 

as a wire mesh and metal foam can be applied to further increase the heat transfer 

performance on the secondary side. The detailed structure is shown in Fig. 6, where metal 

foam was brazed on the outside surface to enhance the conduction of heat to the H2O/salt. 

Tadrist et al. [49] made a liquid-to-liquid cross-flow heat exchanger, in which 

U-shaped aluminum plates equipped with a 40-ppi aluminum foam were stacked and brazed.  

The fluids were then circulated in rectangular cross-section channels (width: 5 or 10 cm, 

length: 6 or 11 cm, wall thickness: 0.3 mm). For a given heat exchanger, all the channels had 

the same geometric characteristics; however, no comparison with a conventional heat 

exchanger design was presented.  

Porous metals with high thermal conductivity are also used in the fabrication of heat 

exchangers with concentrated heat exchange (discrete type) in dilution refrigerators for 

obtaining super-low temperatures (Wheatley et al. [50]). The extended surface of a heat 

exchanger with a porous structure makes it possible to decrease the limiting Kapitza 
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resistance, a thermal resistance which gives rise to a temperature jump at the liquid-solid 

interface through which heat is transmitted. Such a heat exchanger consists of a block, 

containing two chambers, filled with a permeable material with high thermal conductivity and 

high specific surface area, according to Severijns [51]. Usually, both the porous matrix and 

the block are made of copper. 

Ferrouillat et al. [52] considered using a tube filled with metal foam as a heat 

exchanger reactor, a combination of a compact heat exchanger and a chemical reactor. The 

idea behind this device is to exploit the large available surface area for better temperature 

control (extracting heat from an exothermic reaction as it is formed) during the reaction and 

for improved selectivity of the reaction (due a more homogeneous mixture, better temperature 

control and shorter residence times). To this end, Ferrouillat et al. [52] experimentally studied 

the micro-mixing behavior in a channel with 3 types of metal foam (20 ppi aluminum, 20 ppi 

copper, and 40 ppi copper). When comparing the results to those determined for a channel 

without inserts and one with different types of offset strip fins, Ferrouillat et al. [52] 

concluded that metal foams offer the best micro-mixing level for any given residence time. By 

using inserts in the channel the required size of the reactor can be significantly reduced, at the 

expense of more pressure drop. Ferrouillat et al. [52] also noted that these surfaces could be 

used as catalytic surfaces for a further benefit of integrating the heat exchanger and the 

reactor.  

Boomsma et al. [14] used compressed Al foams to manufacture heat sinks. The foams 

were brazed onto a heat spreader plate, and water was pumped through them. The heat sinks 

filled the entire channel. They studied the impact of the compression on the resulting 
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thermo-hydraulics and found that increasing the compression rate resulted in both a larger 

pressure drop and heat transfer. In order to evaluate the heat exchanger performance, they 

compared the required pumping power to the thermal resistance. They found that using the 

metal foam heat exchangers results in a reduction of the thermal resistance Rth by up to 50% 

for the same conditions. Boomsma et al. [17] also found that, although compressing the metal 

foams increases heat transfer rate, compressing them too much will worsen the overall 

performance due to the very sharp increase in pressure drop. 

Kang et al. [23] used an aluminum open-cell foam to construct an electric water heater. 

They reported the temperature rise of the water at various set points but the results were not 

compared to other types of heat exchangers.  

 

Liquid-to-gas heat exchangers 

Klein and Whiteside [53] studied cross-flow glycol/water-air heat exchangers, as 

shown in Fig. 7. The liquid was circulated through flat multiport tubes, and the air was passed 

through a one inch thick layer of compressed aluminum foam, which was brazed between the 

tubes. They stated that these metal foam heat exchangers offer the potential to be lighter, 

smaller, more easily integrated into existing avionics components and less expensive than a 

conventional redesign of existing systems in aircrafts. Tadrist et al. [49] studied 

glycol/water-air cross-flow heat exchangers consisting of flat tubes with aluminum foam 

brazed in between. Three types of foam (10, 20, and 40 ppi) were used in these exchanger 

prototypes. The tubes were also spaced at two different distances (2.5 mm and 5.3 mm) in 

order to study the efficiency of the exchange surfaces. They reported no noticeable differences 
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between the various surfaces in the Colburn j-factors, even though their graph suggests the 40 

ppi foam results in a lower Colburn j-factor. Further technical details for the heat exchangers 

and uncertainty analysis may allow a better evaluation of the data.   

In order to face increasing challenges in thermal management, efforts are underway to 

improve heat pipe technology. One performance limitation in heat pipes is the so-called 

“capillary limit,” which is determined by the liquid-pumping capacity of the wicking structure. 

A recently developed open-cell copper foam ([54]) has been claimed to raise the capillary 

limit of heat pipes, and it was proposed for applications in vapor chambers, and cylindrical, 

flat, and loop heat pipes. Current technology uses sintered metal powders as wick material. 

This technology allows for manufacturing porous structures in complex shapes with precisely 

controlled porosity. Sintering provides structural strength and good thermal conduction paths. 

In order to understand the structure of powder metal wicks, imagine a container containing 

nearly uniform spheres which are then pressed together. The space between the spheres forms 

an interconnected pore structure, a flow path determined by the size and uniformity of the 

powder metal grains. The advantages of the copper foam compared to sintered metal powders 

may be due to the small-diameter windows (as low as 40 μm) in the foam microstructure 

which enhance capillary forces; and due to the higher porosity (between 0.60 and 0.75), which 

leads to high permeability increasing capillary pumping. In preliminary experiments on 

copper-water heat pipes, the evaporator was heated while the other end of the heat pipe was 

cooled by natural convection. Heating power was limited by a maximum evaporator 

temperature of 100ºC. The prototype using foam transferred 11 W while a particular 

commercial screen mesh heat pipe transferred 6 W. A proof of concept of the vapor chamber 
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using this copper foam was found to have a thermal resistance of 0.07°C/W (at 200 W) with 

no dry-out appearing below 200 W and a uniform temperature profile. On top of the vapor 

chamber, a heat sink was mounted with fins which were cooled using forced convection. The 

large surface to volume ratio of metal foams  promotes nucleate boiling, an important 

advantage for heat pipes. Metafoam® [54] reports a value > 20.000 m²/m³ for their copper 

form; however, these results were preliminary. Queheillalt et al. [55] studied a multifunctional 

heat pipe sandwich structure, combining the mechanical properties of the classic honeycomb 

structure with the thermal benefits of an internal heat pipe (made using Ni foam) such as 

thermal spreading.  

Li and van der Meer [56] numerically studied the heat transfer from a wall covered with 

Ni and Al foam (porosity varying from 0.89 to 0.94) to air (low velocity). A constant wall 

temperature boundary condition was used at the wall, thus the studied element can be seen as 

part of a liquid-to-gas heat exchanger. They concluded that the flow was fully three 

dimensional with stagnant and recirculation zones behind the filaments. The pressure drop of 

a channel filled with metal foam is much higher than that of an empty channel. The heat 

transfer process is dominated by the heat transfer from the foam to the fluid which is 10 times 

larger than that of the wall to the fluid. This is due to the very thin boundary layer forming on 

the filaments as well as the strong mixing in the flow. The flow within the foam is fully 

developed after a few cells in the mean flow direction. Similar findings were reported by 

Calmidi and Mahajan [37]. Ejlali et al. [57] conducted a numerical study to investigate the 

fluid flow and heat transfer of an air-cooled metal foam heat exchanger under a high speed 

laminar jet confined by two parallel walls for which the range of the Reynolds number is 
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600–1000. They considered two different metal foam heat exchangers samples, intended for 

use in a geothermal power plant, and compared the results to a reference pin fin heat sink. As 

the jet velocity increased, the higher mass flow rate caused more air to enter the porous region 

which resulted in better heat transfer and mixing at the interface between clear fluid and the 

porous medium.  The results showed that metal foam heat exchangers are superior compared 

to conventional finned surfaces at no excess cost (material weight and/or pressure drop). In 

their simulations they considered thermal dispersion, local thermal non-equilibrium, and 

non-Darcy effects.  

Giani et al. [58] experimentally determined a heat transfer correlation for metal foams. 

They placed FeCr alloy foams in a channel to be used as a catalyst carrier (i.e. catalytic 

combustion) and used a transient method to determine the heat transfer coefficient. The results 

agreed well with an earlier work (Giani et al. [59]) in which they had determined mass 

transfer coefficients for these samples. This study showed that decreasing the pore size 

increased the mass (heat) transfer coefficient. They also found that at low fluid velocities the 

metal foam reactors performed much better than packed beds of spheres. A honeycomb 

structure performed even better than the metal foam, but when compactness was also 

considered, it was shown that the metal foams result in a smaller reactor than when 

honeycomb structures are used. Groppi et al. [60] further expanded the correlation to include 

ceramic foams (lower porosity values) and reported that, in agreement with earlier modeling 

work, the flow behavior is similar to the flow across a bundle of tubes. The Reynolds number 

was based on the strut diameter and the mean flow velocity in the minimal free area.  

Kim et al. [42] experimentally studied the heat transfer and pressure drop of a metal 
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foam placed between two flat tubes at constant temperature (representing a small section of a 

water-air heat exchanger). Six types of foam were considered with varying porosity (0.89 - 

0.96) and varying ppi (10 - 40). A standard louvered fin heat exchanger was used as a 

reference. The results indicated that the friction factor is much lower for the fins with a high 

ppi value (40), despite the lower permeability, due to relatively larger surface area. For a 

constant ppi value (20), increasing the porosity resulted in a higher friction factor. (Even 

though the dimensional pressure drop decreased, the friction factor increased due to the sharp 

drop in surface area for higher porosities). The louvered fin exhibited slightly higher friction 

factor values than that of the porous fins at low Reynolds numbers. When the Reynolds 

number was high, however, the porous fins showed much higher friction factors compared to 

the louvered fin. The modified j-factors (i.e. Colburn j-factor multiplied by the surface 

efficiency) of the porous fins decreased as the pore density increased or as the porosity 

decreased. It should be noted that these porous fins had a similar thermal performance 

compared to the conventional louvered fin; however, the louvered fin showed a little better 

performance in terms of pressure drop. This was demonstrated using the volume goodness 

approach (see Fig. 8). It was also found that porous fins with a high ppi value and low 

porosity are preferred for the compactness of plate-porous fin heat exchangers.  

Mancin et al. [61, 62] recently presented both heat transfer and pressure drop data 

for foam filled channels heated on one side by a uniform heat flux. This configuration mimics 

a liquid-to-gas heat exchanger. Different types of foam were studied with varying porosity 

and pore density (ppi) and only mechanical contact was present between the base wall and the 

foam.. They presented their results as heat transfer coefficients (related to the base surface 
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area on which the foam was mounted), indicating that for a constant ppi value a lower 

porosity results in a higher heat transfer coefficient, and that at higher air velocities a smaller 

foam height (2 cm vs. 4 cm) results in higher heat transfer coefficients[62]. The same setup 

was used for pressure drop measurements. They reported similar findings as Kim et al. [42] 

with regards to the impact of the porosity and ppi values, but further analyzed the foam 

properties using the inertia and form coefficient [61], and permeability. They compared their 

results with available correlations for the pressure drop and found no model was able to 

provide satisfactory agreement. A new model was thus proposed which provides good 

agreement (to within ±20%) with a considerable database of published data.  

Salimi Jazi et al. [63] reported on the pressure drop and heat transfer of air flowing 

through two heat exchangers made with 10 and 20 ppi Ni foam. These were manufactured by 

spray coating an Inconel 625 layer on top of the exposed foam. Results showed that the 20 ppi 

foam had a higher heat transfer coefficient and pressure drop. This manufacturing process 

allows the heat exchangers to resist higher temperatures. In addition, a thermal barrier coating 

was applied to allow for even higher temperatures (up to 1000°C), and this additional thermal 

resistance only had an impact at higher air velocities. Dukhan and Chen [64] presented heat 

transfer measurements inside rectangular blocks of commercially available aluminum foam 

subjected to a constant heat flux on one side, cooled by air. The temperature profile decayed 

exponentially as the distance from the heated base increased. This showed qualitative 

agreement with a 2D analytical model derived for heat transport through the foam block. 

T’Joen et al. [65] report on the heat transfer and pressure drop of a single row heat 

exchanger consisting of metal foam covered tubes. This idea was inspired by an earlier work 
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on carbon foams by Straatman et al. [66] who had found that air only penetrates the foam a 

few millimeters. In order to reduce the pressure drop, a metal foam sleeve was placed around 

the tube using epoxy as bonding. Different foam types were studied and the foam height and 

tube spacing were varied. Results showed that for metal foam covered tubes with a small tube 

spacing, small foam heights (2-4 mm) with a high specific surface area (i.e. thin struts) 

potentially offer stronger benefits (based on a volume goodness approach) as compared to 

helically finned tubes at higher air velocities (> 4 m/s). Boger and Heibel [67] experimentally 

studied the heat transfer between nitrogen gas (250-400 °C) flowing in a square-celled LCA 

(linear cellular alloy) and surrounding cooling water (see Fig. 9). They reported very high 

heat transfer coefficients up to 1000 W/m²K. The samples which were intended for use as 

catalytic supports had a size of 25 – 30 mm outer diameter with square channels having a 

hydraulic diameter between 0.9 mm and 1.6 mm..  

 

Gas-to-gas heat exchangers 

Zhao et al. [68] analyzed the heat transfer performance of metal-foam-filled 

tube-in-tube heat exchangers. Fig.10 shows examples of a single metal-foam-filled tube. The 

heat exchangers were made of copper, and air was used as the working fluid on both sides. 

Results showed that the use of metal foam can significantly improve the heat transfer 

performance, due to the increased surface area and excellent mixing of the fluid within the 

metal foam. For the same area density, the heat transfer capacity per unit length of the 

foam-filled annular tube was approximately three times higher than that of a longitudinally 

finned tube. Using spiral fins instead of longitudinal fins improved the performance of the 



 20 

conventional heat exchanger but the heat transfer rate was still much lower than that achieved 

with the metal-foam filled annular channel. Zhao et al. [68] also showed that the heat transfer 

capacity increases with decreasing porosity or increasing pore density. 

 

Heat sinks 

Over the past decades, the evolution of micro-chips has been driven towards further 

miniaturization, increased computational speed and more complex dedicated architectures, e.g. 

graphics processing units. This has resulted in an increase of the power density of microchips 

and associated with this increase, a rise in the power dissipation. So there is a clear need for 

more effective thermal management systems in order to maintain these electronic systems 

within allowable temperature ranges. In many cases, heat rejection is a limiting factor for 

increasing the computational speed and the reliability of components. Today, heat sinks are 

used to reject the heat generated by the electronic components. Although for some systems 

passive heat sinks based on natural cooling are still used, most heat sinks today are ‘active’ 

and have fans attached to them in order to increase the heat transfer rate. In some compact 

systems (e.g. laptops), thermal management is even more critical. In such compact 

environments, the required heat sinks can be too large to be attached to the components 

directly so loop heat pipes are needed to transport the heat from the chip to the heat sink. For 

such applications, using small and light heat sinks can provide significant benefits.  

Recently, metal-foam heat sinks have received considerable attention (Antohe et 

al. [16]; Camidi and Mahajan [37]; Hsieh et al. [69]; Kim et al. [70]; Lee et al. [71]) due to 

their interesting material properties. As stated earlier, metal foams not only possess desirable 
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properties of the bulk metal such as corrosion resistance, acceptance of coatings, and high 

electrical and thermal conductivity, but also qualities such as a low density, high 

strength-to-weight ratio, high porosity, and extremely large surface-area-to-volume ratios. 

Hsieh et al. [69] experimentally determined heat transfer correlations for six types of Al foam 

heat sinks (pore density: 10 - 40 ppi, porosity: 0.87 - 0.96) and found that increasing the 

porosity and pore density results in a higher Nusselt number. The studied configuration is 

shown in Fig. 11 and is similar to a processor cooling heat sink with a fan mounted on top 

blowing air through the sink. Shih et al. [72] further studied the impact of the height of the 

heat sink and found that an optimal height exist related to the foam porosity. By reducing the 

height of the heat sink, more air was allowed to reach the base surface resulting in a larger 

heat transfer rate; however, below a certain height, further reduction of the height removes 

exterior surface area and thus reduces the performance.  

 Kim et al. [70] investigated the thermal performance of aluminum-foam heat sinks 

for forced air-cooling of electronics. Test specimens of the aluminum-foam heat sink were 

made by brazing the aluminum foam block (porosity: 0.92, pore density: 10, 20, 40) to a base 

plate as illustrated in Fig. 12 (a). A thin base plate was adopted to reduce the influence of the 

conduction thermal resistance through the base plate on the overall thermal resistance. As a 

reference, a conventional heat sink with parallel plate fins (Fig. 12 (b)) was manufactured to 

have a base plate of the same thickness and height (i.e. half of the wind tunnel height). The 

heat sink was mounted in a wind tunnel allowing for flow bypass. The results showed that 

compared to the plate fin heat sinks, the aluminum foam heat sinks were able to reduce the 

thermal resistance by up to 28%. The pore density has a strong impact on the results as the 



 22 

heat sink with 10 ppi foam obtained Nu values that were 16-27% higher than those of the heat 

sink with 40 ppi foam. This is of course was due to the reduced flow resistance of the more 

open flow which reduced the bypass. It should also be noted that the weight of the Al foam 

heat sinks was only 25% of that of the plate fin heat sink, again stressing the advantage of 

these materials.  

Lee et al. [71] investigated metal foams as high performance air-cooled heat sinks in 

electronic packaging. In their experimental work, they demonstrated that aluminum foams 

could reject heat fluxes up to 100 W/cm². Ozmat et al. [2] presented heat transfer and pressure 

drop data for a heat sink made of compressed copper foam as well as the overall thermal 

resistance for different heat sinks (rejecting 500-800 W) with varying foam-fluid (air, water) 

combinations. The results again showed the low thermal resistance that can be obtained using 

metallic foams. Mahdi et al. [73] studied Al foam heat sinks for CPU cooling using natural 

convection. They found that the thermal resistance was reduced by more than 70% compared 

to finned heat sinks and reported that the thermal resistance was inversely proportional to the 

pore density.  

Dempsey et al. [74] experimentally compared the heat transfer performance of a 

stochastic cellular metal heat sink to a square-celled LCA heat sink (similar to the one shown 

in Fig. 9). The external dimensions of the heat sinks were 20 mm in height, 25 mm in length, 

and 25 mm in width. The inlet air velocity was 4 m/s. The results showed that the LCA 

provided comparable heat removal at half the pressure drop of the stochastic cellular metal 

heat sink. The ability of the square cell LCA heat sink to provide relatively high steady-state 

heat transfer rates at relatively low pressure drops via laminar flow is attractive in electronic 
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package cooling applications. Because they are extruded with closed exterior faces, LCA heat 

sinks can be designed with an internal bypass (selectively larger interior cells), offer low noise 

characteristics, and be operated with other higher conductivity working fluids to achieve 

enhanced heat transfer. It would be interesting to compare the relative performance of LCA 

heat sinks operated at higher air flow rates in the turbulent flow regime with that of metal 

foam heat sinks. 

Bhattacharya and Mahajan [75, 76] developed a new heat sink design, a finned metal 

foam heat exchanger. It consisted of a number of parallel plate fins with metal foam joined 

between as shown in Fig. 13. When used in natural convection mode, Bhattacharya and 

Mahajan [76] found that the finned metal foam heat sink provided an increase in heat transfer 

compared to an optimized plate fin heat sink. The 5 ppi foam resulted in an increase of the 

heat transfer coefficient ranging from 65% to 24% depending on the temperature difference 

between the base and the inlet air (10°C and 50°C, respectively). In forced convection [75], 

the finned metal foam heat sinks also outperformed the parallel plate heat sinks by a factor of 

1.5 to 2. Denser foams provided less benefit due to increased flow resistance in both natural 

and forced convection. The results also indicated that there exists an optimal number of fins 

depending on the application. It should be pointed out that these designs were not optimized, 

so further performance improvement could be expected, and more importantly, the metal 

foams were joined to the plate fin surface using epoxy glue and were not brazed. As shown by 

other researchers (e.g. Bastawros and Evans [11] and T’Joen et al. [65]), this bonding method 

can result in poor heat transfer of the foam configuration. 

Garrity et al. [77] compared aluminum and carbon foam heat sinks to a conventional 
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louvered fin design. To reduce the pressure drop of the carbon foam to the same level as that 

of the aluminum foam (due to the lower porosity) holes were drilled into the sample, parallel 

to the air stream. Three different criteria were considered: coefficient of performance (COP: 

ratio of heat removed to the fan power consumption), compactness (ratio of the removed heat 

to the total volume), and power density (ratio of the removed heat to the total mass). The 

results showed that the carbon foams provide a higher compactness, followed closely by the 

aluminum foams, but that the louvered fin is clearly dominant when COP and power density 

are considered, which is due to the large pressure drop of the foam compared to the fins, and 

the very light weight fin structure used. The high pressure drop is due to the long flow length 

through the foam (15.24 mm), reducing this could affect the results significantly. 

 

Manufacturing feasibility and implementation assessment of metal foams and 

MMCs for heat exchangers 

Manufacturing processes to produce and machine simple metals and metal alloys are 

well established and are widely used to construct conventional metallic heat exchangers. 

Therefore, our attention is focused on the methods specifically relevant to the novel forms of 

metals within the scope of this review. In the following paragraphs, a review of manufacturing 

feasibility is presented for periodic cellular structures, stochastic foams, and metal matrix 

composites. 

Hayes et al. [78] studied the mechanical properties of linear cellular alloys (LCAs) to 

be used as heat exchanger materials. They pointed out that LCAs hold promise because of the 

high thermal conductivity of the walls, high surface-area-to-volume ratio, and the ability to 
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tailor cell size and shape to optimize the performance (e.g. changing the cell size of a 

honeycomb structure can have a strong impact on the resulting performance, as shown 

numerically by Lu [79]). LCAs are produced in a two-step process: extrusion of metal oxide 

powders followed by a chemical reaction/sintering process to form near fully dense walls. 

Hayes et al. [78] argued that, for practical applications, the optimal topography of the cell 

structure (i.e. cross-sectional geometry) is non-uniform, because of the conflicting functional 

requirements, a trade-off exists between high structural rigidity and high thermal-hydraulic 

performance. Based on their suggestion, an ideal configuration for LCA should have graded 

cell structures that accommodate both stiffness and heat transfer depending on the relative 

importance of either functional requirement. For example, triangular cells can be used at the 

locations where structural integrity is critical, and hexagonal cells can be used where 

hydraulic performance is important. An example of combining both of these requirements was 

presented by Queheillalt et al. [55]. Currently, LCAs are used in a range of applications 

primarily for their good mechanical properties. Considering that in many of those applications 

heat transfer and/or thermal management are also important, the authors believe that 

integrating the two functionalities into one component will provide large benefits for 

applications such as cooled aircraft skins, high temperature engines, heat pipes, vapor 

chambers, etc.. However, further research is needed before the potential benefits of this 

concept are fully quantified and understood. 

It appears that, although mechanical contact may be “sufficient” in some applications, 

further improvement of thermal contact may be necessary, especially for porous metal foams. 

Howard and Korinko [80] examined various vacuum furnace brazing methods to bond a 
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reticulated open-cell copper form to a stainless-steel tube. They found that a high-temperature 

brazing (i.e. 980°C) with Au-Cu braze alloy resulted in excessive creep damage to the copper 

foam. Using a copper-tin braze alloy caused excessive braze erosion, and it was difficult to 

control the brazing process. Silver solid state diffusion bonding did not provide sufficient 

strength. The best result was obtained by using an Au-In braze alloy at moderate temperatures 

(i.e. 500-650°C). Here, thermal creep or expansion damage was minimized, a good wetting of 

the braze alloy on both copper and stainless steel was achieved, and no excessive braze 

erosion was observed. Salimi Jazi et al. [63] used a wire-arc spray coating process to deposit a 

layer of Inconel 625 on 10 and 20 ppi Ni foam. This resulted in a thin metal covering on top 

of the foam with maximum contact between the foam and the layer as it was formed in situ by 

the coalescence of molten metal particles on top of the barrier layer. Batawros and Evans [11] 

showed that using an epoxy bonding to connect metal foam to the carrier, even one with a 

high thermal conductivity results in decreased performance as compared to brazing the foam. 

Similar findings were reported by Sekulic et al. [81] who compared brazed and unbrazed 

metal foam heat exchanger samples and T’Joen et al. [65] who reported that at higher air 

velocities up to half of the total thermal resistance of the heat exchanger was due to the epoxy 

layer used to bond the foam to the tubes. Boger and Heibel [67] also reported that the contact 

resistance between the square-celled LCA and the surrounding tube had a strong impact on 

the overall performance. Boomsma et al. [17] stated that imperfect brazing can affect the flow 

and heat transfer behavior due to added flow resistance near the wall. Thus, it is clear that in 

order to fully exploit the benefits of these materials, more research is required into 

bonding-brazing technology and methods to assess the brazing performance. 
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Some researchers have described specific manufacturing processes to create cellular 

metal structures. Tian et al. [28] described a detailed procedure to produce a textile heat sink 

as shown in Fig. 14. The heat sinks consisted of laminated textile cores of plain woven copper 

wires which were fabricated using transient liquid phase bonding and brazing. Wadley [30] 

described a variety of manufacturing techniques for multifunctional cellular periodic metals 

such as honeycombs (through strip bonding or stacking of corrugated plates), lattice truss 

structures (through investment casting, folding of perforated sheets or by weaving-braiding of 

metallic wires) on a mass production scale. Using hollow tubes instead of solid wires for 

lattice truss structures has advantages of very low core density and increased buckling 

strength from a higher moment of inertia of the tubes. However, a more sophisticated 

fabrication technique is required, such as a precision drilling method used to fabricate hollow 

pyramidal lattices. Banhart [82] summarized the manufacturing processes for stochastic 

cellular metals and metal foams into four categories: producing the porous structure from (1) 

liquid metal, (2) solid metal in powdered form, (3) metal vapor or gaseous metallic 

compounds, and (4) metal ion solutions. Depending on the processes, the porous metal foam 

attains an open-cell or a closed-cell structure. For example, metal foams produced by a direct 

foaming method by gas or a blowing agent usually result in a closed-cell structure. Also, the 

solid-gas eutectic solidification method (known as “gasars”) produces a unique, 

heterogeneous, directional, closed-cell porous structure as shown in Fig. 15. Manufacturing 

methods that produce open-cell porous structures include investment casting and the 

electro-deposition technique. Angel et al. [83] described a new and promising method, Slip 

Reaction Foam Sintering (SRFS), which has proven to be advantageous in producing 
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open-cell metallic foams. It allows prescription of the density of the foam and the pore form 

through several process parameters, and foams based on various metals and alloys are 

producible. Moreover, these parameters lead to different structural and functional properties, 

and foam production at room temperature can be easily controlled. Thus, it is clear that for 

most cellular metals well established techniques are available even for mass production. 

Nevertheless, more research is required into the further improvement of existing techniques 

(reducing waste and energy consumption), and into the manufacturing of new types of LCAs 

(by varying the cellular element shape locally) and foams (particularly in combination with 

brazing techniques for heat sinks). 

Degischer [84] classified metal matrix composites into two types: (1) discontinuously 

reinforced and (2) continuous fiber reinforced metal matrices. Discontinuously reinforced 

MMCs are produced by embedding particulates, platelets, or short fibers of high aspect ratios 

within metal alloys, and conventional shaping methods like casting, forging, and extrusion 

can be applied. For continuous fiber reinforced MMCs, individual filament (i.e. 

mono-filaments) or bundled filaments (i.e. multi-filaments) are embedded within the matrix. 

These composites should be manufactured by a net shape technique to preserve the 

continuous fibers. Such methods must properly address two processing problems: (1) wetting 

of the fiber reinforcements by molten metal, and (2) preventing property degradation by 

chemical reactions between the matrix and the reinforcing phase. Ibrahim et al. [85] 

conducted a review of particulate reinforced metal matrix composites and identified three 

processing methods for MMCs: liquid phase, solid state, and two phase (solid-liquid) 

processes. In a liquid phase process, ceramic particulates can be mixed into the molten metal 
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and cast into MMCs. This method can present difficulties in particle dispersion, 

agglomeration, settling, and segregation. Alternatively, a melt infiltration method can be used 

in which a molten alloy is forced into a porous ceramic pre-form. This method can yield an 

undesirable structural non-uniformity and is limited to coarse grain sizes. In melt oxidation 

processes, a ceramic preform (which is formed into the final product shape by pressing, 

injection molding, or slip casting), is continuously infiltrated by a molten alloy. During this 

process, the metal alloy is oxidized by the surrounding air, and metal oxides appear at the 

ceramic-metal interfaces of the final product. In solid phase processes, solidified metal 

powders are rapidly mixed with the particulate reinforcements. The mixture is then pressed 

and degassed. The final consolidated product can be obtained by extrusion, forging, rolling, or 

other hot working methods. Two-phase processes for MMCs include the Osprey process and 

rheocasting. In the Osprey process, the reinforcement particulates are mixed with the molten 

alloy which is subsequently atomized by jets of inert gas. The sprayed mixture is then 

collected on a substrate in the form of a reinforced metal matrix billet. In rheocasting, ceramic 

particulates are added into a metallic alloy matrix at a temperature within the solid-liquid 

range of the alloy, followed by a vigorous agitation to form a low-viscosity slurry. This 

method prevents particulate agglomeration and settling, and thus helps produce a 

homogeneous composite. Although these composites are well established, further 

improvements can be achieved by modifying production processes or by altering the 

composition focused on modifying specific material properties. Recent advances in polymer 

composites (Jordan et al. [86], T’Joen et al. [87]) have shown the benefits of nano-scale 

composites (using clays or carbon nanotubes) which could also have a strong impact on MMC 
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technology.  

A potential issue that could arise for heat exchangers and heat sinks formed using 

metal foams or cellular metals is, of course, fouling. As these materials rely on tortuous flow 

paths and small pore sizes to provide the large specific surface area, one can assume that 

fouling with particulates can create blockages and subsequently result in decreased 

performance. Unfortunately, no information is available on the impact of fouling on these 

types of materials due to the lack of finalized heat exchanger designs. However, 

Haghighi-Khoshkhoo and McCluskey [88] reported some interesting results on the impact of 

particulate fouling on compact louvered fin heat exchangers. They studied the impact of the 

particulate size and distribution and reported that particles approaching a compact heat 

exchanger either pass through without hindrance, are blocked over a shallow depth at the front, 

rest on the outer surface while the air speed is non-zero, or rebound from the surface and drop 

to the wind tunnel floor. Those that penetrate into the sub-surface region are the most 

detrimental to exchanger performance. They found that a critical particle size exists, for which 

this penetration is maximal. This was found to be 0.6 times the diameter of the largest sphere 

that can be inscribed in the fin spacing. The penetration depth was found to be small—only 

about 3 or 4 mm. Interestingly, fouling did not affect the thermal performance in the 

considered circumstances. It can be assumed that similar findings would also hold for cellular 

metals.  

The presented overview of the available thermo-hydraulic data for the metal foam and 

metal matrix composites has highlighted some key issues. First, using these materials often 

creates a delicate balancing exercise. The metal foams have a very high specific surface area, 
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but also generate very high pressure drop. Thus, even if they result in a very compact heat 

exchanger, the fan power requirements for the heat transfer will be very high. Therefore, 

designs must seek ways to exploit the material benefits without incurring these high pressure 

drops, or more advanced material tailoring is required, whereby the foam structure itself is 

designed to result in a higher effectiveness (e.g. through pore size variation). Different 

strategies have already been presented to minimize the pressure drop: using finned structures 

or gaps within the foam matrix (see Leong et al. [89], Gallego and Klett [90] and Jamin and 

Mohamad [91], all using carbon foam), or using a thin layer of foam parallel to the flow (see 

Straatman et al. [66] for carbon foam, and T’Joen et al. [65] for metal foam covered tubes). 

This latter idea, provided that good bonding can be realized, seems to hold a lot of promise, as 

it would permit a significant increase in the heat transfer rate of flat hot surfaces without the 

need of complex heat exchangers. 

Second, despite considerable research in analytical and numerical modeling and 

experimental measurements of thermo-physical properties and thermal hydraulic performance of 

foam, considerable ambiguity exists in published performance of foam materials. This is in part 

due to the uncertainty of the measured specific surface area. Some authors combine a simplified 

model of the geometric structure (e.g. tetrakaidecahedron) with scan data of pore and strut 

diameter to estimate the specific surface area. This resulted in a number of different models 

(some are listed by Mahjoob and Vafai [92]). In a recent paper, Schmierer and Razani [93] 

used tomography to study a series of aluminum foam samples. They reported a large standard 

deviation (i.e. 28%) of the mean value for the strut diameter, which is due ligament thinning. 

Care should thus be taken when determining an ‘average’ value for the strut diameter based 
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on data from small samples via optical microscopy. To process the foam images taken by 

microscopy, various types of image processing software and algorithms are used which filter 

the grey scale images and define the object perimeter based on a ‘cut-off’ value. This can 

introduce significant uncertainty. When comparing their results with data published in the 

literature, Schmierer and Razani [93] found a considerable difference for the specific surface 

area, up to 40%. Based on a thorough error analysis, Schmierer and Razani [93] reported an 

uncertainty of 18% on their specific surface area values. Using these measured values for Aext 

would result in Nusselt numbers with a large uncertainty which have little value for 

comparison. Moffat et al. [94] also noted this and proposed to ‘‘simply keep the parameters 

(hext and Aext, exterior heat transfer coefficient and surface area, respectively) as one entity” to 

prevent misinterpretation when comparing data from different sources. This, if practiced 

consistently in future studies, can allow for a more useful comparison. 

 

Numerical modeling of flow and heat transfer in metal foams 

Over the past decades, extensive efforts have been put into the modeling of flow and 

heat transfer in porous media. Reviews have been presented by a number of researchers (e.g. 

Ashby et al. [10], Kaviany [12], Hsu [95] and Mahjoob and Vafai [92]). This section aims to 

briefly summarize some of the key findings, without providing an exhaustive review as has 

already been covered in the cited papers. As stated earlier, determining the geometric 

characteristics of metal foam (i.e. specific surface area, tortuosity, mean pore diameter, etc.) is 

a challenging task. Some authors therefore have developed correlations based on a simplified 

model of the foam geometry with these geometric parameters expressed as a function of e.g.  
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the porosity of the foam. Different models have been considered: cubic unit cell with slender 

cylinders, dodecahedron or a tetrakaidecahedron, interconnected hexagonal cells. Using such 

basic representations of the unit cell, a large number of studies have been published predicting 

the pressure drop (e.g. [2], [38], [96]), effective thermal conductivity (e.g. [2], [12], 

[14], [34]) , heat transfer rate (e.g. [32], [97]]) or mechanical properties (e.g. [98]) of the 

metal foam. These results are determined through purely analytical modeling with our without 

additional empirical information (e.g. modeling the extra metal mass at the interconnection of 

the struts [38]) or finite element solutions of the conservation equations. To determine the heat 

transfer rate, existing correlations are used to describe the heat transfer between the tubes 

(representing the struts) and the fluid. These models are able to predict trends (i.e. dependence 

on foam relative density, duct geometries, fluid velocity, etc.) which agree well with 

experimental findings. When applying these models, it is important to verify that the 

assumptions on which they are based such as local thermal equilibrium, negligible thermal 

dispersion are valid. Dispersion is a hydrodynamic phenomenon which becomes prominent at 

high Reynolds numbers, especially if the conductivity is small in magnitude. In essence, 

thermal dispersion distributes energy within the porous continuum such that higher 

temperature differences and thus higher interstitial exchange occurs. This was studied in detail 

by Calmidi and Mahajan [37] using the Zukauskas [99] correlation with a model for the 

effective thermal conductivity. They showed that if the thermal conductivity of the fluid is 

much smaller than that of the foam (e.g. aluminum foam-air), then the effect of dispersion is 

negligible; while if it is comparable (e.g. aluminum foam-water), the effect can be very 

pronounced and account for the bulk of the thermal transport. Their model for thermal 
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dispersion has been successfully applied to carbon foam as well (Straatman et al. [66]). 

Recently, Yang and Nakayama [100] provided a more in-depth study of the thermal 

dispersion phenomena in porous media. 

In extending these modeling attempts, CFD software has also recently been applied to 

study the flow and heat transfer through metal foam structures. Boomsma et al. [101] 

considered a representative volume consisting of eight cells (six tetrakaidekahedra and two 

dodecahedra), scaled to correspond to a pore density of 40 ppi with periodic boundary flow 

conditions. Their results indicated that the pressure drop was under-predicted by 25% as 

compared to experimentally measured values. Kopanidis et al. [102] performed a CFD study 

on flow and heat transfer through a 40 ppi foam with a larger domain than Boomsma et 

al. [101]. Comparison with experimental data showed good agreement for pressure drop and 

heat transfer. The influence of entrance effects was investigated and found to be significant. 

For applications where the foam depth in the flow direction is small due to pressure drop 

restrictions, nominal pressure drop values calculated from measurements using larger scale 

samples may therefore have to be adjusted. When heat transfer is considered, entrance effects, 

near wall effects and heat conduction through the solid ligaments lead to significant 

deviations from the usual assumption of constant ligament temperature.  

Although the simplified models have proven to be effective for trend analysis, it is 

clear that detailed modeling of the flow and heat transfer behavior within a realistic foam or 

LCA structure should lead to further improvement of both the heat transfer performance and 

the optimization of the geometry. 
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Conclusions 

The thermo-physical properties of cellular metals (i.e. foams and LCAs) and MMCs 

can offer advantages over conventional metals for heat exchanger construction. In particular, 

the thermal conductivity, coefficient of thermal expansion, surface-area-to-volume ratio, 

weight, convective heat transfer performance and structural integrity may be superior. There 

have been some successful applications of these materials as heat exchangers, showing 

promise in liquid-to-gas, gas-to-gas, liquid-to-liquid, and heat-sink applications. Some tested 

designs of heat exchangers with novel metallic materials have been demonstrated to exceed 

the performance of the current state of the art. Metallic foams seem to have a particularly 

bright future in heat sink applications due to their low thermal resistance and lightweight 

properties. A particular promise is the integration of different functions into a single 

component (for example, using LCAs not only for their improved structural support but also 

for improved thermal management). Metal foams could also be used as a catalyst carrier in a 

reactor while at the same time facilitating more effective heat transfer.  

However, several issues related to metal foams, LCAs, and MMCs remain which need 

to be resolved. Currently, there is no mass production available for metal foams. This makes 

the material currently very expensive to use in these applications, and thus only suited for 

high-end niche markets (e.g. racing cars). Reliable large scale production capacity is required 

to lower the prices of these materials. There is also insufficient information available in the 

open technical literatures to facilitate  the careful design and optimization of heat exchangers 

made from these materials. Further work to characterize the thermal-hydraulic behavior of 

these materials and full-scale testing of new designs and integrated systems is still needed, 
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bearing in mind the recommendations made by Moffat et al. [94] with regards to the data 

analysis. Manufacturing methods have evolved for the production of the needed materials, but 

more attention is needed to resolve the issues related to joining and construction. 

Experimental studies have shown that metallic contact (i.e. brazing) will be required to fully 

exploit the material properties, but no cost effective brazing process is currently known. Some 

bonding processes have been identified such as spray coating or brazing with expensive 

materials such as an Au-In alloy. This clearly is one of the key issues to be resolved to allow 

for further development of this technology. Another interesting manufacturing option would 

be to further tailor these materials towards their applications such as foams that have a 

varying porosity moving away from the wall to minimize the pressure drop.  
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Nomenclature 

Aext     = exterior heat transfer surface area (m
2
) 

CTE   = coefficients of thermal expansion  

LCA = linear cellular alloy 

MMCs = metal matrix composites 

R = the foam relative density 

hext = exterior heat transfer coefficient (w/m
2
·K) 

ks = the base metal thermal conductivity (W/m K) 

keff = the effective foam thermal conductivity(W/m K) 

ppi = pores per inch 

E  = friction power  

 hs  = the air-side performance of the porous fin for a unit volume 
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Table 1.  Thermo-physical properties of representative monolithic metals 

Material 

Density 

g/cm
3
 

Thermal 

Conductivity 

W/m-K 

CTE 

m/m/K 

Specific Thermal 

Conductivity 

W/m-K 

Source 

Aluminum 2.7 247 23 91.5 [3] 

Beryllium 2.1 210 13.9 10 [4] 

Copper 8.9 398 17 44.7 [3] 

Cu/I/Cu 8.4 164 8.4 19.5 [1] 

Cu/Mo/Cu 9.9 182 6.0 18 [1] 

Cu/Mo-Cu/Cu 9.4 245-280 6.0-10.0 26-30 [1] 

Gold 19.32 315 14 16.3 [3] 

Invar 8.05 10 1.6 1.2 [3] 

Kovar 8.36 17 5.1 2.0 [3] 

Lead 11 30 39 2.7 [3] 

Molybdenum 10.22 142 4.9 13.9 [3] 

Silver 10.49 429 18.9 40.9 [5] 

Stainless steel 8.1 15.1 17.3 1.9 [6] 

Titanium 4.4 7.2 9.5 1.6 [1] 

Tungsten 19.3 155 4.5 8.0 [3] 
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Table 2.  Thermo-physical properties of some Al foam samples  

Sample 

Bulk 

density 

(g/mL) 

Relative 

Density 

(%) 

Porosity Effective 

conductivity 

(W/m-K) 

Specific 

surface 

(m
2
/m

3
) 

Source 

10 ppi 0.217 8.1 0.9085 6.71 899 [2] 

20 ppi 0.165 6.1 0.92 5.97 1266 [2] 

30 ppi 0.145 5.4   1477 [2] 

10 ppi   0.91 4.1 820 [41] 

20 ppi   0.9 5.1 1700 [41] 

30 ppi   0.9 5.9 2800 [41] 

10 ppi   0.92 5.33 790 [42] 

20 ppi   0.92 5.56 1720 [42] 

40 ppi   0.92 6.01 2740 [42] 

20 ppi   0.89 6.77 2020 [42] 

20 ppi   0.94 4.27 1510 [42] 

20 ppi   0.96 2.82 1240 [42] 
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Table 3 Thermo-physical properties of MMCs 

Reinforcement 
Filler 

Matrix 
Density 

g/cm 

Thermal Conductivity 
W/mK 

CTE 

10
-6

m/m/℃ 

Specific Thermal 
Conductivity 

W/m
.
K Source 

In-Plane Thro-Plane  In-Plane  In-Plane Thro-Plane 

Copper Tungsten 15-17 157-190 157-190 5.7-8.3 9-13 9-13 [1]  

Copper Molybdenum 9.9-10.0 184-197 184-197 7.0-7.1 18-20 18-20 [1] 

Discontinuous 

Carbon Fibers 
Copper 6.8 300 200 6.5-9.5 44 29 [1] 

SiC Particles Copper 6.6 320 320 7.0-10.9 48 48 [1]  

Carbon Foam Copper 5.7 350 350 7.4 61 61 [1] 

Continuous Carbon Fibers Copper 5.3-8.2 400-420 200 0.5-16.0 49-79 25-38 [1] 

Diamond Particles Copper 5.9 600-1200 600-1200 5.8 102-203 102-203 [1] 

Diamond Particles Cobalt 4.12 >600 >600 3.0 >145 >145 [1]  

Diamond Particles Silver 5.8 400-600 400-600 5.8 69-103 69-103 [1] 

Diamond Particles Magnesium N/A 550 550 8 N/A N/A [1]  

Beryllia Particles Beryllium 2.6 240 N/A 6.1 92 N/A [46] 

Invar Silver 8.8 153 N/A 6.5 17 N/A [46] 

Beryllium Aluminum 2.1 210 N/A 13.9 100 N/A [46] 

Silicon Aluminum 2.5-2.6 126-160 N/A 6.5-17.0 49-63 N/A [46] 

Discontinuous Carbon Fibers Aluminum 2.5 190-230 120-150 3.0-9.5 76-92 48-60 [46] 

Continuous Carbon Fibers Aluminum 2.5 200-290 120-150 0-16 80-116 48-60 [46] 

Graphite Flake Aluminum 2.3 400-600 80-110 4.5-5.0 174-260 35-48 [1] 

Diamond Particles Aluminum 3.1 550-600 550-600 7.0-7.5 177-194 177-194 [1] 
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Fig. 1.  Structure of cellular metal foams: open foam (left) vs. closed foam (right). 
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Fig. 2.  Schematic representations of open- and close-celled periodic structures [28]. 
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(a) 

 

(b) 

 

(c) 

Fig. 3. Aluminum foams with a relative density of 8% [2]: (a) 10 ppi, (b) 20 ppi, (c) 30 ppi. 
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(a)    (b)    (c) 

Fig. 4. Compressed metal foam [2]: 30 ppi foam uni-axially compressed to 35% density (a) in 

plane and (b) out of plane (middle), and (c) 30 ppi bi-axially compressed to 35% density. 
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Fig. 5.  Drawing of a cross section of the sandwich plate structure. The heat exchanger consists 

of stacks of two plates with a wire mesh brazed in between [47]. 
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Fig. 6. (a) Plate-cross section of the sandwich plate and metal foam mesh, (b) detail of the flow 

manifold, and (c) brazed plates assembled [47]. 
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(a)                                 (b) 

Fig. 7. Compressed metal foam cross flow heat exchanger Klein and Whiteside [53]. 
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Fig. 8. Comparison of three Al metal foam fins (porosity 0.92; pore density 10, 20, 40 ppi) and a 

louvered fin based on the volume goodness approach [42]. 
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Fig. 9. Copper based monolith catalyst support: a square celled LCA, Boger and Heibel [67]. 
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Fig. 10.  Metal-foam filled tubes using co-sintering technique [68]. 
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Fig. 11. Metal foam heat sink setup as used by Hsieh et al. [69] and Shih et al. [72]. 
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(a)                                       (b) 

Fig. 12.  The aluminum-foam heat sink (a) and parallel-plate heat sink (b) used as reference 

case [70]. 

 

 

  



 67 

 

 

 

 

 

 

Fig. 13. Finned metal foam heat sink as developed by Bhattacharya and Mahajan [38], [76]. 
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(a)       (b) 

Fig. 14. Sandwich construction with textile technology [28]: (a) a transient liquid phase joins the 

wire-mesh screen laminated at all points of contact; (b) sheets are added to the textile core. 
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Fig. 15. Pore structure of a gasar, a stochastic cellular metal with closed cells [82]. 
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