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Abstract

Microbiome research has grown rapidly over the past decade, with a proliferation of new methods that seek to make sense
of large, complex data sets. Here, we survey two of the primary types of methods for analyzing microbiome data: read clas-
sification and metagenomic assembly, and we review some of the challenges facing these methods. All of the methods rely
on public genome databases, and we also discuss the content of these databases and how their quality has a direct impact
on our ability to interpret a microbiome sample.
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Introduction

Microbiome research has been expanding rapidly as a conse-
quence of dramatic improvements in the efficiency of genome
sequencing. As the variety and complexity of experiments has
grown, so have the methods and databases used to analyze
these experiments. Ever-larger data sets present increasing
challenges for computational methods, which must minimize
processing and memory requirements to provide fast turn-
around and to avoid overwhelming the computational resources
available to most research laboratories. The rapid increase in the
number and variety of genomes also present many challenges,
rising in part from the effort required to fit traditional taxonomic
naming schemes onto a microbial world that we now know is
vastly richer and more complex than scientists realized when
they first created taxonomic naming schemes in the distant past.
Additional challenges arise from the rapid pace of ‘draft’ genome
sequencing, which has produced tens of thousands of new gen-
omes, many of which are highly fragmented and incomplete. As
we discuss below, the variable quality of these genomes can lead
to unexpected and erroneous results if the genomes are used
without careful vetting.

This review discusses the computational challenges of analyz-
ing metagenomics data, focusing on methods but also including a
discussion of microbial taxonomy and genome resources, which
are rarely discussed in benchmark studies and tool reviews des-
pite their critical importance. We begin with a review of termin-
ology and a comparison of marker gene sequencing, shotgun
metagenome sequencing and meta-transcriptome sequencing,
all of which are sometimes included in the term metagenomics.

Metataxonomics, metagenomics,
metatranscriptomics

The most widely used sequencing-based approaches for micro-
biome research are metataxonomics and metagenomics
(Table 1). Metataxonomics refers to the sequencing of marker
genes, usually regions of the ribosomal RNA (rRNA) gene that is
highly conserved across taxa. Note that there has been some
ambiguity in the use of these terms; in the past, marker gene
sequencing has also been referred to as metagenomics. In this
review, we follow the proposal of Marchesi and Ravel [1] on ter-
minology, and use the term ‘metataxonomics’ for marker gene
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sequencing. Because it only requires sequence from a single
gene, this strategy provides a cost-effective means to identify a
wide range of organisms. Metagenomics refers to the random
‘shotgun’ sequencing of microbial DNA, without selecting any
particular gene [2]. Both metataxonomics and metagenomics
can provide information on the species composition of a micro-
biome. Another strategy, metatranscriptomics, attempts to cap-
ture and sequence all of the RNA in a sample, which can help
create a profile of all genes that are actively being transcribed,
and may also provide a picture of the relative abundance of
those genes [3].

Complementary approaches that are becoming increasingly
popular in microbiome research, but are not further covered in
this review, include metaproteomics and metametabolomics
[4–6]. Metaproteomics uses mass spectrometry techniques, e.g.
liquid chromatography-coupled tandem mass spectrometry, to
generate profiles of protein expression and posttranslational
modifications of proteins [5]. Typically, genome sequences
are required for the mapping of generated mass spectra to pro-
teins, and thus, this field also depends on metagenomics.
Metametabolomics attempts to create profiles of metabolites,
usually also created using mass spectrometry [6]. Mass spec-
trometry is more expensive and experimentally challenging
than sequencing, although the field is making continual tech-
nical improvements [4]. Integrating the data of all these differ-
ent ‘meta-omics’ approaches is challenging, but it can yield
insights not found by looking at just one type of data [7].

Metataxonomics is an invaluable tool for microbial ecology.
rRNA gene sequences are the most widely used marker se-
quences; these include the 16S rRNA gene for bacteria, the 18S
rRNA gene for eukaryotes, and the internal transcribed spacer
(ITS) regions of the fungal ribosome for fungi [8, 9]. These
markers work well for phylogenetic profiling because they are
ubiquitously present in the population, they have hypervariable
regions that differentiate species and they are flanked by con-
served regions that can be targeted by ‘universal’ primers [8]. A
major advantage of rRNA analysis is that databases such as
Greengenes [10], RDP [11] and SILVA [12] contain genes from
millions of species, making them far more comprehensive than
genome databases, which contain tens of thousands of species.
The workflow for 16S analysis typically includes quality filter-
ing, error correction (sometimes called de-noising), removal of

chimeric sequences, clustering of reads into ‘Operational
Taxonomic Units’ (OTUs) based on sequence similarity and clas-
sification of the OTUs [13–20]. An alternative approach before
clustering of reads into OTUs is their direct classification using
metagenomics classifiers (see section on ‘metagenomics classi-
fication’ and Table 3), as recently compared in [21]. The rest of
this review will focus on metagenomics methods; for further
discussion of metataxonomic methods, see [22–25].

Marker gene sequencing does have some drawbacks, which
explains (in part) the rising popularity of metagenomics. First,
marker gene-based methodologies do not capture viruses,
which have no conserved genes analogous to 16S or 18S rRNA
genes. The use of the 16S rRNA gene itself is imperfect as well:
for the recently described Candidate Phyla Radiation, which
comprises up to 15% of the bacterial domain [26], it was esti-
mated that >50% of the organisms evaded detection with clas-
sical 16S amplicon sequencing [27]. The short reads produced
by next-generation sequencers further limit analysis at the spe-
cies level, although full-length 16S rRNA gene sequencing using
long-read sequencers from Pacific Biosciences or Oxford
Nanopore might help overcome this limitation [28]. The meth-
odology of an experiment and laboratory-specific factors can
also limit the effectiveness of marker gene sequencing
approaches, although the same caveat applies to metagenomics
[29–32].

Metagenomic analysis

Many strategies can be used for analysis of metagenomics shot-
gun data (Figure 1). A common first step is to run a variety of
computational tools for quality control, which identify and re-
move low-quality sequences and contaminants. These include
programs such as FastQC [33], Cutadapt [34], BBDuk [35] and
Trimmomatic [36] (Table 2). FastQ Screen [37] matches reads
against multiple reference genomes such as human, mouse,
Escherichia coli and yeast, and can provide a quick overview of
where the reads align. Diginorm [38], implemented in the khmer
package [39], can be used to reduce redundancy of reads in
high-depth areas by down-sampling reads, and thus normalize
coverage and make subsequent analyses computationally
cheaper. MultiQC [40] aggregates quality control reports from
multiple samples into a single report that can be viewed more

Table 1. Metataxonomics, metagenomics and meta-transcriptomics strategies

Technique Advantages and challenges Main applications

Metataxonomics
using amplicon
sequencing of the
16S or 18S rRNA
gene or ITS

þ Fast and cost-effective identification of a wide
variety of bacteria and eukaryotes

* Profiling of what is present

� Does not capture gene content other than the
targeted genes

* Microbial ecology

� Amplification bias * rRNA-based phylogeny
� Viruses cannot be captured

Metagenomics using
random shotgun
sequencing of
DNA or RNA

þ No amplification bias * Profiling of what is present across all domains
þ Detects bacteria, archaea, viruses and

eukaryotes
* Functional genome analyses

þ Enables de novo assembly of genomes * Phylogeny
� Requires high read count * Detection of pathogens
�Many reads may be from host
� Requires reference genomes for classification

Meta-transcriptom-
ics using sequenc-
ing of mRNA

þ Identifies active genes and pathways * Transcriptional profiling of what is active
�mRNA is unstable
�Multiple purification and amplification steps

can lead to more noise
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easily. If the microbiome comes from a host with a sequenced
genome, such as human, it is useful to identify and filter out
host reads before further analysis. Alternatively, some taxo-
nomic classifiers can include the host genome in their
databases.

After quality control, the reads can either be assembled into
longer contiguous sequences called contigs or passed directly to
taxonomic classifiers (Figure 1). Taxonomic classification of

every read is a form of binning because it groups reads into bins
corresponding to their taxon ID. Binning can also be done using
other properties such as composition and co-abundance pro-
files, although those methods typically require assembly of
reads into longer contigs, which provide better statistics for
profiling [41]. (See [42] for a review of binning methods.) When
the analysis only returns the estimated abundances of the dif-
ferent taxa (instead of a classification of each read), we call it

Figure 1. Common analysis procedures for metagenomics data. Note that the order of some of the analysis steps can be shuffled. For example, reads might be binned

before assembly or before taxonomic assignment, so that the downstream algorithms can work only with a subset of the data.

Table 2. A selection of quality control software tools for metagenomics data

Tool Synopsis Reference Web site

FastQC Quality control tool showing statics such as quality
values, sequence length distribution and GC con-
tent distribution

[33] http://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc/

FastQ Screen Screen a library against sequence databases to see if
composition of library matches expectations

[37] http://www.bioinformatics.babraham.ac.uk/pro
jects/fastq_screen

BBtools BBDuk trims and filters reads using k-mers and en-
tropy information. BBNorm normalizes coverage
by down-sampling reads (digital normalization)

[35] http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-
user-guide/

Trimmomatic Flexible read trimming tool for Illumina data [36] http://www.usadellab.org/cms/?page¼trimmomatic
Cutadapt Find and remove adapter sequences, primers, poly-

A tails and other types of unwanted sequence
[34] https://cutadapt.readthedocs.io

khmer/diginorm Tools for k-mer error trimming of reads and digital
normalization of samples

[38, 39] http://khmer.readthedocs.io

MultiQC Summarize results from different analysis (such as
FastQC) into one report

[40] http://multiqc.info

Note: Most of these tools can also be used for other types of genome sequence data, e.g. whole-genome or RNA-seq data.
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taxonomic profiling. The choice of assembly-based analyses
versus direct taxonomic classification of reads depends on the
research question.

Direct taxonomic classification is useful for quantitative
community profiling and identification of organisms with close
relatives in the database. Compared with marker gene-based
community profiling, metagenomic shotgun sequencing allevi-
ates biases from primer choice and enables the detection of or-
ganisms across all domains of life, assuming that DNA can be
extracted from the target environment. Researchers can quan-
tify the structure of microbial communities using ecological and
biogeographic measures such as species diversity, richness and
uniformity of the communities [22, 43]. In clinical microbiology,
the focus is often on the presence or absence of infectious
pathogens, which can be identified by matching reads against a
reference database [44–47]. Even though human-associated mi-
crobes are comparatively well studied with many completed
genomes in the reference database, some pathogens remain
unsequenced, and others have only recently been discovered
using metagenomics sequencing [48–52]. Insights into the func-
tional potential of a microbiome can be gained by matching the
reads against pathway or gene databases [53, 54]. Further dis-
cussion of functional analysis in metagenomics and metatran-
scriptomics can be found in [55].

When no close relative of a species is in the database, as often
happens with samples from unexplored ecological niches, as-
sembly and binning of the reads may be useful first steps in the
analysis. Analysis of the binned draft genomes allows for a more
qualitative understanding of the physiology of the uncultivated
microbes. By identifying single-copy and conserved genes in the
contig bins, taxonomy, genome completeness as well as contam-
ination can be assessed [41, 56]. Some recent findings from meta-
genomic (draft) assemblies include the identification of the
enzymes used for oil and paraffin degradation by Smithella spp.
[57–59] and insights into metabolic pathways and interactions be-
tween microbes in methanogenic bioreactors [60].

Metagenomic classification

Metagenomic classification tools match sequences—typically
reads or assembled contigs—against a database of microbial
genomes to identify the taxon of each sequence. In the early
days of metagenomics, the best strategy was to use BLAST [61]
to compare each read with all sequences in GenBank. As the ref-
erence databases and the size of sequencing data sets have
grown, alignment using BLAST has become computationally in-
feasible, leading to the development of metagenomics classi-
fiers that provide much faster results, although usually with
less sensitivity than BLAST. Some programs return an assign-
ment of every read, while others only provide the overall com-
position of the sample. A variety of strategies have been used
for the matching step: aligning reads, mapping k-mers, using
complete genomes, aligning marker genes only or translating
the DNA and aligning to protein sequences (Tables 3). Recent
studies have attempted to benchmark the performance of meta-
genomics classifiers based on both accuracy and speed [62, 63],
although these studies are limited by their (unavoidable) reli-
ance on simulated data.

Taxonomic profiling with marker gene-based and other
approaches

Marker gene approaches identify sets of clade-specific, single-
copy genes, so that the identification of one of these genes can

be used as evidence that a member of the associated clade is
present. This allows faster assignment because the database,
even with a million or more genes (as in MetaPhlAn [81]), is far
smaller than a database containing the full genomes for all spe-
cies. The assignment can then be made with fast, sensitive
aligners, such as Bowtie2 [85] used by MetaPhlAn and HMMER
[86] used by Phylosift [87] and mOTU [82]. GOTTCHA [76] gener-
ates a database with unique genome signatures based on
unique 24 base-pair fragments, which it indexes with bwa-mem
[88]. GOTTCHA can output either binary classification (pres-
ence/absence calls) or a taxonomic profile, which is based on
coverage of the genomic signatures, The use of single-copy
marker genes should in principle make abundance estimation
more precise, although it is impossible to know the copy num-
ber of a gene for a species with an incomplete genome. Because
marker gene methods identify only a few genes per genome,
most of the reads in a sample do not receive a classification at
all; instead, these algorithms provide the microbial compos-
ition, expressed in terms of relative abundance for all taxa that
they recognize in the sample.

An alternative approach for metagenomics profiling is using
the overlap of MinHash signatures [89] as implemented in Mash
[83] and sourmash [84]. MinHashes allow one to estimate the
similarity of data sets extremely efficiently, e.g. the overlap be-
tween all microbial genomes in GenBank and a metagenomics
data set. The MinHash search databases are small and fast to
build and search, allowing searches against the entire GenBank
database on a laptop.

Nucleotide taxonomic classification and quantification

Kraken [64] was the first method to provide fast identification of
all reads in a metagenomic sample. It accomplishes this using
an algorithm that relies on exact k-mer matches, replacing
alignment (which requires more computational work) with a
simple table lookup. Kraken constructs a database that stores,
with every k-mer in every genome, the species identifier (tax-
onomy ID) for that k-mer. When a k-mer is found in two or more
taxa, Kraken stores the lowest-common ancestor (LCA) of those
taxa with that k-mer. Database k-mers and their taxa are saved
in a compressed lookup table that can be rapidly queried for
exact matches to k-mers found in the reads (or contigs) of a
metagenomics data set. CLARK [65] uses a similar approach,
building databases of species- or genus-level specific k-mers,
and discarding any k-mers mapping to higher levels. Both
Kraken and CLARK set k¼ 31 by default, although the database
can be built with any length k-mer. The selection of k reflects an
important trade-off between sensitivity and specificity: exces-
sively long k-mers may fail to match because of sequencing
errors or genuine differences among species and strains, while
overly short k-mers will yield nonspecific (and false) matches to
many genomes. An alternative approach to using fixed k-mers
is spaced or adaptive (variable-length) seeds, which encode pat-
terns for which only a subset of the bases has to match perfectly
[90–92]. An extension of Kraken using spaced seeds shows
somewhat better accuracy for family and genus-level classifica-
tion, but lower precision at the species level [93]. A similar ex-
tension was developed for CLARK [66]. Note that Kraken maps
reads to the taxonomic tree, not to a specific level such as spe-
cies or genus. Bracken [94] is an extension of Kraken that esti-
mates species- or genus-level abundance based on a Bayesian
probability algorithm. The Livermore Metagenomics Analysis
Toolkit (LMAT) [77] is a k-mer-based classifier that uses a
smaller default k-mer size (k¼ 20) than Kraken and CLARK, but
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stores the list of source genomes with each k-mer instead of
their lowest common taxonomic ancestor. LMAT includes mi-
crobial draft genomes as well as eukaryotic microbes in its
‘Grand’ database, which requires 500 GB RAM and classifies
more reads than a database without draft genomes. LMAT-ML
(for Marker Library) [78] implements more stringent k-mer prun-
ing to retain only informative and nonoverlapping k-mers,
which reduces the memory requirements to just 16 GB.

K-mers can also be represented in de Bruijn graphs. Kallisto
[67, 95], which was originally developed for RNA-Seq analysis,
uses a colored de Bruijn graph [96] in which each edge (i.e. k-
mer) is assigned a set of ‘colors’, where a color encodes a gen-
ome in which the k-mer has been found. Given a sample read,
Kallisto finds approximately matching paths in the colored de
Bruijn graph, an approach the authors term ‘pseudo-alignment’.
After mapping, each read has a set of genomes associated with

Table 3. Metagenomic classifiers, aligners and profilers

Tool Synopsis Reference Web site

Kraken Fast taxonomic classifier using in-memory k-mer
search of metagenomics reads against a database
built from multiple genomes

[64] https://ccb.jhu.edu/software/kraken/

Kraken-HLL Extension of Kraken counting unique k-mers for
taxa and allowing multiple databases

https://github.com/fbreitwieser/kraken-hll

CLARK(-S) Fast taxonomic classifier using in-memory k-mer
search of metagenomics reads against a database
built from completed genomes. S extension uses
spaced k-mer seeds for better classification

[65, 66] http://clark.cs.ucr.edu

Kallisto Taxonomic profiler using pseudo-alignment with
k-mers using techniques based on transcript
(RNA-seq) quantification

[67] https://github.com/pachterlab/kallisto

k-SLAM Taxonomic classifier using database of nonoverlap-
ping k-mers in genomes. Reads are split into
k-mers, and overlaps found by lexicographical
ordering are pseudo-assembled

[68] https://github.com/aindj/k-SLAM

Kaiju Fast taxonomic classifier against protein sequences
using FM-index with reduced amino acid alphabet

[69] https://github.com/bioinformatics-centre/kaiju

DIAMOND Protein homology search using spaced seeds with a
reduced amino acid alphabet, 2000–20 000 times
faster than BLASTX

[70] https://github.com/bbuchfink/diamond

BLASTþ Highly sensitive nucleotide and translated-nucleo-
tide protein alignment

[61, 71] https://blast.ncbi.nlm.nih.gov

MEGAN6/CE Desktop and Web metagenomics analysis suite.
Uses BLAST or diamond to match sequences and
assigns LCA of matches

[72, 73] http://ab.inf.uni-tuebingen.de/software/megan6/

DUDes Top-down assignment of metagenomics reads [74] https://sourceforge.net/projects/dudes/
Taxonomer Web-based metagenomics classifier including bin-

ning and visualization
[75] http://taxonomer.iobio.io/

GOTTCHA Taxonomic profiler that maps reads against short
unique subsequences (‘signature’) at multiple
taxonomic ranks

[76] http://lanl-bioinformatics.github.io/GOTTCHA/

LMAT(-ML) K-mer-based taxonomic read classifier using exten-
sive database including draft genomes and eu-
karyotes. ML (Marker Library) extension reduces
RAM requirements by stringent pruning of non-in-
formative and overlapping k-mers

[77, 78] https://sourceforge.net/projects/lmat/

taxator-tk Uses BLAST or LAST output for binning and taxo-
nomic assignment via overlapping regions and
pairwise distance measures

[79] https://github.com/fungs/taxator-tk

Centrifuge Fast taxonomic classifier using database compressed
with FM-index, database and output format simi-
lar to Kraken

[80] http://ccb.jhu.edu/software/centrifuge/

MetaPhlAn 2 Marker gene-based taxonomic profiler [81] https://bitbucket.org/biobakery/metaphlan2
mOTU Taxonomic profiler based on a set of 40 prokaryotic

marker genes
[82] http://www.bork.embl.de/software/mOTU/

Mash MinHash-based taxonomic profiler enabling super-
fast overlap estimations

[83] http://mash.readthedocs.io

sourmash Alternative implementation of MinHash algorithm
using fast searches with sequence bloom trees for
taxonomic profiling

[84] https://github.com/dib-lab/sourmash

PanPhlAn Pan-genome-based phylogenomic analysis [2] http://segatalab.cibio.unitn.it/tools/panphlan/
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it. Kallisto then infers strain abundances using an expectation–
maximization (EM) algorithm [67]. k-SLAM [68] is a novel k-mer-
based approach that uses local sequence alignments and
pseudo-assembly, which generates contigs that can lead to
more specific assignments.

Centrifuge [80] is a fast and accurate metagenomics classifier
using the Burrows–Wheeler transform (BWT) and an FM-index
to store and index the genome database. This strategy uses only
about one-tenth the space of a Kraken index for the same data-
base. Centrifuge also implements a feature that combines
shared sequences from closely related genomes using MUMmer
[97]. This greatly reduces redundancy for species where dozens
of strains have been sequenced, further reducing the size of the
index data structure.

MEGAN6/MEGAN-CE [73] and taxator-tk [79] both use the
output of a local sequence aligner such as BLAST [61, 71],
DIAMOND [70] or LAST [91]. MEGAN uses the LCA of the align-
ment results as its taxonomic assignment. A Web-based inter-
face allows interactive exploration and functional analysis of its
results. Taxator-tk first merges overlapping regions from the
query (found by the local alignment) into larger subsequences.
The pairwise distances of the subsequences to reference gen-
omes are determined and used for binning and taxonomic
assignment.

DUDes [74] computes taxonomic abundances from output of
read aligners such as bwa-mem [88]. DUDes resolves ambigu-
ities in mapping using an iterative approach that analyzes the
read coverage of nodes in the taxonomic tree top-down, and
uses permutation tests to select significant tree nodes. The al-
gorithm can report multiple probable candidate strains or select
the best candidate, instead of reporting just their LCA.

Taxonomer [75] provides a Web-based interface that enables
fast classification of most reads. Taxonomer achieves fast clas-
sification by first binning reads into broad categories, and then
classifying human, bacterial and fungal rRNA, labeling other
reads as unknown. The visualization presents the results in
interactive sunburst diagrams and enables the download of
BIOM-formatted reports.

Fast amino acid database searches

Amino acid sequences are conserved at much greater evolution-
ary distances than DNA sequences, and this property can be ex-
ploited for more sensitive read classification, although the
alignment step is slower. Both DIAMOND [70] and Kaiju [69] take
this approach, comparing the six-frame translations of reads
against protein databases. DIAMOND uses double-indexing of
both a reference protein database and the translated sample
reads. Each index contains seed-location pairs, where each seed
is an amino acid fragment. After lexicographically ordering
each index, DIAMOND traverses both lists in parallel to find
matches between the database and the sample. For every
match, DIAMOND attempts to align the sequencing read against
the database protein and reports high-scoring matches. MEGAN
[72] calculates taxonomic composition of samples based on
BLAST or DIAMOND results using the LCA approach of multi-
matching sequences.

Kaiju indexes the reference protein database using a BWT
and saving each sequence in an FM-index table. This efficient
database structure, similar to the one used in centrifuge
(described above), allows metagenomic sequences to be
searched against a large protein database. Given a metagenomic
sample and the pre-built index, Kaiju first translates every read
in all six reading frames, splitting the read at stop codons. Kaiju

sorts all of the resulting protein fragments by length and com-
pares each against the protein database, longest to shortest,
finding and returning maximum exact matches.

Metagenomic assembly

Illumina sequencing technology, which is the most widely used
sequencing method for metagenomics experiments today, gen-
erates read lengths in the range of 100–250 bp, with a typical
sequencing run producing tens of millions of reads.
Metagenomics experiments might generate hundreds of mil-
lions or even billions of reads from a single sample. Depending
on number of reads and the complexity of the microbial species
in the sample, some genomes might be sequenced deeply,
allowing the experimenter to try to assemble the original gen-
ome sequence, or parts of it, from the short reads.

Genome assembly is a challenging problem, even for single
genomes [98]; assembly of a mixed sample with many species
in different abundances, as is necessary for a metagenomics
sample, is even more complicated, requiring special-purpose
assembly algorithms, reviewed and compared in [99, 100].
Perhaps, the biggest problem is the highly uneven sequencing
depth of different organisms in a metagenomics sample.
Standard assemblers assume that depth of coverage is approxi-
mately uniform across a genome; this assumption helps the al-
gorithm in resolving repeats as well as removes erroneous
reads. Relaxing this assumption means that any techniques
within the assembler that rely on depth of coverage will no lon-
ger work.

A second issue that makes metagenomics assembly harder
is the nonclonal nature of the organisms within a sample. For
bacterial assembly (and for some eukaryotic assemblies), the
source DNA can be grown up clonally, allowing the assembly al-
gorithm to impose strict requirements for the percent identity
between overlapping reads. In this context, lower sequence
identity between two reads implies that they came from two
slightly divergent copies of a repeat in the genome. In a metage-
nomics sample, between-strain differences can look exactly the
same as variation between repeats.

Third, the depth of coverage of a particular species is rarely
high, unless that species is present in high quantities in the
sample. Even with tens of millions of reads, a metagenomics
sample is not likely to contain deep coverage of more than one
or two species, unless the sample itself is simple, i.e. containing
only a few species. These and other issues mean that the results
of metagenomics assembly will never be as good as those from
assembly of a single, clonal organism.

Nonetheless, assembly and binning of a metagenomics sam-
ple often succeed in merging many of the reads, resulting in
contigs that are easier to align to a genome database or analyze
without alignment. Here, we list current assemblers and contig
binners that have been designed for metagenomics, also sum-
marized in Table 4. An overview of the techniques used in as-
sembly is given in [41, 98, 99]. For more discussion on contig
binning and curation and validation of reconstructed genome
bins, see [41].

Assembly of reads into longer contiguous sequences
(contigs)

MetaVelvet [106] and Ray Meta [104] are single k-mer de Bruijn
graph assemblers for metagenomics data. MetaVelvet is an ex-
tension of the Velvet assembler [124] that decomposes the sin-
gle de Bruijn graph into multiple subgraphs (ideally
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corresponding to different organisms) based on coverage infor-
mation and graph connectivity. MetaVelvet-SL [105] improves
the splitting of chimeric nodes—nodes that are shared between
subgraphs of closely related species—and thus generates longer
scaffolds than MetaVelvet. Ray Meta, conversely, constructs
contigs by a heuristics-guided graph traversal.

The choice of k is important for single k-mer de Bruijn graph
assemblers. Small k’s are more sensitive in making connections,
but fail to resolve repeats. Large k’s may miss connections and
are more sensitive to sequencing errors, but usually create lon-
ger contigs. Most current metagenomics assemblers thus gener-
ate contigs from iteratively constructed and refined de Bruijn
graphs using multiple k-mer lengths. The IDBA assembler

(Iterative De Bruijn Graph Assembler) [125] first implemented
this approach going from small k’s to large k’s, replacing reads
with preassembled contigs at each iteration. IDBA-UD [107] is a
version of the IDBA assembler modified to tolerate uneven
depth of coverage, as occurring in single-cell and metagenomics
sequencing experiments. IDBA-UD first generates a de Bruijn
graph from the reads using small k-mers (by default k¼ 20),
and—after error correction—extracts contigs that are used as
‘reads’ in the graph construction with the next-higher k-mer
size. IDBA-UD detects erroneous k-mers and k-mers from differ-
ent genomes by looking at deviations from the average multipli-
city of k-mers in a contig. This local thresholding allows IDBA-
UD to more accurately decompose the de Bruijn graph.

Table 4. Tools for whole-genome assembly and metagenomics assembly

Tool Synopsis Reference Web site

Megahit Co-assembly of metagenomic reads with variable k-mer
lengths and low memory usage

[101] https://github.com/voutcn/megahit

SPAdes DBG assembler using multiple k-mers, works also for simple
metagenomes

[102] http://cab.spbu.ru/software/spades

MetaSPAdes Extension of SPADES with better assemblies with different
abundances, conserved regions and strain mixtures

[103] http://cab.spbu.ru/software/spades/

Ray Meta DBG assembler with fixed k-mer size [104] http://denovoassembler.sourceforge.net/
MetaVelvet(-SL) DBG assembler using fixed k-mer size. SL extension identifies

and splits chimeric nodes
[105, 106] http://metavelvet.dna.bio.keio.ac.jp

IDBA-UD DBG assembler using multiple k-mer sizes, analyzes coverages
between paths to give better assemblies in complex metage-
nomes with uneven coverage

[107] http://i.cs.hku.hk/�alse/hkubrg/projects/
idba_ud/

MetAMOS Framework for metagenomic assembly, analysis and validation [108] http://metamos.readthedocs.io
MOCAT2 Pipeline for read filtering, taxonomic profiling, assembly, gene

prediction and functional analysis
[109] http://mocat.embl.de/

Anvi’o Analysis and visualization platform for metagenomics assem-
bly and binning

[110] http://merenlab.org/software/anvio/

Contig binning
MaxBin Efficient binning of metagenomic contigs based on EM algo-

rithm using nucleotide composition
[111] https://downloads.jbei.org/data/micro

bial_communities/MaxBin/MaxBin.
html

CONCOCT Bins contigs using nucleotide composition, coverage data in
multiple samples and paired-end read information

[112] https://github.com/BinPro/CONCOCT

COCACOLA Binning contigs in using read coverage, correlation, sequence
composition and paired-end read linkage

[113] https://github.com/younglululu/
COCACOLA

MetaBAT Metagenome binning with abundance and tetra-nucleotide
frequencies

[114] https://bitbucket.org/berkeleylab/metabat

VizBin Visualization of metagenomic data based on nonlinear dimen-
sion reduction

[115] http://claczny.github.io/VizBin/

AbundanceBin Binning method based on k-mer frequency in reads [116] http://omics.informatics.indiana.edu/
AbundanceBin/

GroopM Identifies population genomes using differential coverage of
contigs

[117] http://ecogenomics.github.io/GroopM/

MetaCluster Read and contig binning in two rounds for low- and high-abun-
dance organisms using various k-mer lengths

[118, 119] http://i.cs.hku.hk/�alse/MetaCluster/

PhyloPythiaS(þ) Assigns contigs to taxonomic bin using support vector machine
trained on reference sequences

[120, 121] https://github.com/algbioi/ppsp/wiki

Assembly and binning quality assessment
MetaQuast Evaluate and compare metagenomics assemblies based on

alignments with reference genomes
[122] http://quast.sourceforge.net/metaquast

BUSCO Assess genome assembly and gene set completeness based on
single-copy orthologs, also for eukaryotes

[123] http://busco.ezlab.org/

CheckM Tools for assessing quality of (meta)genomic assemblies pro-
viding genome completion and contamination estimates, es-
pecially for bacteria and viruses

[56] http://ecogenomics.github.io/CheckM/

Note: DBG, de Bruijn graph.
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MetaSPAdes [103] is an extension of the SPAdes assembler
[102], which was originally developed for bacterial genome and
single-cell sequencing assembly. SPAdes/MetaSPAdes use an
approach similar to IDBA with iterative de Bruijn graph refine-
ment, but keeping the complete read information together with
preassembled contigs at each step. MetaSPAdes implements
various heuristics for graph simplification, filtering and storage
to allow the assembly of large metagenomics data sets.
Importantly, MetaSPAdes uses ‘strain-contigs’ to inform the as-
sembly of high-quality consensus backbone sequences, which
are often longer than contigs from other assemblers [126].

Megahit [101] is a fast assembler that uses a range of k-mers
for iteratively improving the assembly. Megahit (which works
for both metagenomics and single-genome sequencing data)
uses a memory-efficient succinct de Bruijn graph representa-
tion [127] and can optionally run on CUDA-enabled graphics
processing units in the graph construction step. By default,
Megahit only keeps highly reliable k-mers that appear more
than once, but implements a strategy to recover low-depth
edges by taking additional k-mers from high-quality reads,
which increases the contiguity of low-depth regions (‘mercy
k-mers’).

The aforementioned assemblers are for the short, accurate
reads generated by Illumina sequencers. Long-read sequencing
technologies by Pacific Biosciences and Oxford Nanopore, with
read lengths sometimes exceeding 10 000 bp, have great prom-
ise for microbial whole-genome sequencing [128], and are now
being applied for metagenomics assembly in low-diversity com-
munities [129]. While their lower throughput may limit their
usefulness for complex metagenomes in the near future, they
are revolutionizing the assembly and structural variant analysis
of single genomes. As their throughput improves, these tech-
nologies have tremendous potential for metagenomic analysis
as well.

Binning of contigs from closely related organisms

Short read metagenome assemblies are often highly fragmented
because of low coverage and interstrain variation, as explained
above. Binning algorithms attempt to group contigs or scaffolds
from the same or closely related organisms [41, 130], and subse-
quent analysis, such as taxonomic assignment and functional
analysis, is then done on the bins instead of individual con-
tigs [41]. Binning has been shown to cluster contigs even from
rare species and can recover draft genomes from previously
uncultivated bacteria [131]. The bins are sometimes referred to
as ‘population genomes’, as the unsupervised binning usually
cannot distinguish the genetic content of closely related organ-
isms (strains) in complex microbial communities.

Binning algorithms can use taxonomic information from a
reference database (taxonomy-dependent or supervised binning),
or they can cluster sequences using statistical properties and/or
contig coverage (unsupervised binning). Many current methods
use a combination of these features. For supervised taxonomy-
dependent binning, some of the methods described in the previ-
ous section on metagenomics classification can be used. When
classifying contigs instead of reads, the search space is much
smaller, and slower alignment or phylogenetic methods can be
used. For example, taxator-tk [79] uses BLAST, PhyloSift [87]
searches for similarities to marker genes using Hidden Markov
model profiles with HMMER and PhyloPythiaS(þ) [120, 121] as-
signs reads to bins using a support vector machine model trained
on reference sequences.

Taxonomy-independent binning does not require prior
knowledge about the genomes in a sample, but relies on fea-
tures inherent to the sequence set. Composition-based binning
is based on the observation that overall genome composition in
terms of G/C content and di- and higher-order nucleotide fre-
quencies vary between organisms and are often characteristic
of taxonomic lineages [132]. Clustering then can be done on se-
quence composition ‘fingerprints’ of the contigs [133].
MetaCluster [118, 119] bins reads by first grouping them based
on long unique k-mers (k> 36) and merging groups based on
tetranucleotide or pentanucleotide frequency distribution.
MetaCluster 5.0 further uses 16-mer frequencies in a second
round to bin contigs from low-abundance species in complex
samples. VizBin [115] uses a dimensionality reduction mechan-
ism based on self-organizing maps to visualize as well as cluster
contigs into bins.

Composition-based binning methods usually require fairly
large contigs (> 1–2 kb) to generate robust statistics. It can be dif-
ficult to separate contigs from closely related microorganisms
whose nucleotide frequencies may be similar [134]. Some bin-
ning methods use coverage profiles across multiple samples,
e.g. MGS Canopy [135] generates abundance profiles of gene
calls and clusters them by co-abundance across samples.
GroopM [117] identifies population genomes using differential
coverage profiles of assembled contigs. CONCOCT [112] com-
bines both tetranucleotide frequencies and differential abun-
dances across multiple samples for binning. COCACOLA [113]
works similarly to CONCOCT but using different distance met-
rics and different clustering rules. MetaBAT [114] calculates
composite probabilistic distances incorporating models of in-
terspecies and intraspecies distances that were trained on
sequenced genomes. MaxBin 2.0 [111] estimates the number of
bins by counting single-copy marker genes and iteratively re-
fines binning using an EM algorithm with probabilistic
distances.

After binning, reads can be mapped back to the bins, and
each bin can reassembled, which has the potential to produce
longer contigs if the binning was successful. Because each bin
should contain only one taxonomic group, the reassembly can
be done using either a specialized metagenomics assembler,
such as those described above, or a single-genome assembler.
Validation of the assembly and binning is an important step in
metagenomic genome reconstruction. MetaQUAST [128] com-
putes genome statistics of metagenomics assemblies, and, by
aligning against reference genomes, can report the number of
misassemblies and mismatches. CheckM [60] and BUSCO [129]
estimate both the completeness as well as the contamination of
recovered genomes using lineage-specific single-copy marker
genes and single-copy orthologs, respectively. When marker
genes are missing, the genome is probably not complete, and if
marker genes are present multiple times, it suggests
contamination.

Assembly pipelines and analysis tool sets

Metagenomics assembly is a complicated process, involving
quality control, assembly, contig binning, mapping of reads
back to contigs, reassembly, gene annotation and visualization.
Several analysis pipelines and visualization tools have been de-
veloped to facilitate this process. MetAMOS [108] is a compre-
hensive pipeline for assembly and annotation of metagenomics
samples. It can run multiple assemblers to create contigs and
scaffolds. It then runs bacterial gene finders on the resulting
contigs, and finally searches the predicted genes against a
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protein database to assign names and functions wherever pos-
sible. Anvi’o [110] is another pipeline that combines assembly,
alignment, binning and classification results in an interactive
interface that allows one to refine the binning and assembly.
MOCAT2 [109] integrates read filtering, taxonomic profiling with
mOTU [82], assembly, gene prediction and annotation to output
taxonomic as well as functional profiles of metagenomics
samples.

Microbial taxonomy and genome resources
and their impact on classification

Almost all of the methods described here rely on a database of
genomes and on taxonomy of species. The accuracy and reli-
ability metagenomics analysis relies critically on these data re-
sources. Here, we discuss several issues about both the data
themselves—the genomes—and the taxonomy that we use to
name and group all living species.

The NCBI Taxonomy database [136] provides the standard
nomenclature and hierarchical taxon tree for GenBank, EMBL
and DDBJ (which mirror one another, and which together com-
prise the International Nucleotide Sequence Database
Collaboration, INSDC [137]), and thus for most metagenomic
classifiers. Metataxonomic classifiers, on the other hand, often
use the SILVA, RDP and Greengenes databases of ribosomal
genes which, somewhat confusingly, have their own taxono-
mies [138]. Every sequence deposited within an INSDC database
has a taxon identifier based on species information provided by
the depositor.

The hierarchical concept of the taxonomy is convenient for
benchmarking metagenomics classifiers, but several issues can
make evaluation difficult and even misleading. The taxonomy
concept was originally developed for multicellular eukaryotes,
primarily plants and animals, and a common definition of ‘spe-
cies’ is a group of organisms that can interbreed and produce
fertile offspring [139]. This definition clearly does not work for
prokaryotes, which reproduce asexually and have no distinction
between somatic and germ line cells. Making things more com-
plicated is the (relatively rare) process of horizontal gene trans-
fer, which in bacteria and archaea allows for the direct
exchange of DNA across species barriers.

Metagenomics classifiers may incorporate assumptions that
are violated by the taxonomy or by the genome data itself,
which will result in sequences being assigned to the wrong
taxonomic ID. Here, we discuss some examples of how this can
happen.

The same taxonomic level can contain different levels of se-
quence similarity. Although the set of species under a phylum
represents a much wider range of diversity than the species
within a genus, the level of similarity at a specific level of the
tree is highly variable. A comparison of bacterial genomes pre-
sent in GenBank (as of September 2014) showed that 6% of gen-
omes with different species assignments have an average
nucleotide identity (ANI) >93%, while 15% of genomes within
the same species have an ANI <93% [139]. For example, Yersinia
pseudotuberculosis and Yersinia pestis, which represent two dis-
tinct species, are over 98.5% identical, but Yersinia enterocolitica is
<86% identical to either of them. Mycobacterium tuberculosis and
Mycobacterium bovis have >99.6% identity, while the ANI of
Mycobacterium leprae with either of them is <85%. Notably, the
close Y. pestis and Y. pseudotuberculosis species are grouped
together in the ‘species group’ Y. pseudotuberculosis complex,
and M. tuberculosis and M. bovis are grouped in the species group

M. tuberculosis complex. A well-known example of historic mis-
placement is Shigella [140], a genus that clearly falls within the
E. coli species with ANIs above 97%—much higher than the ANIs
of, for example Escherichia fergusonii to E. coli of about 93%.

The consequence of this variability for computational classi-
fiers is that at the species or genus rank, different levels of se-
quence similarity in different parts of the taxonomic tree have a
different meaning, making it impossible, for some taxa, to de-
sign consistent rules assigning reads or contigs (even long ones)
to a species, and there is clearly no fixed percent-identity
threshold that can be used to group sequences into the same
species or genus.

The fungal taxonomy sometimes has two species and tax-
onomy IDs for the same organism. Fungi can have both teleo-
morphic (sexual reproductive stage) and anamorphic (asexual
reproductive stage) phases. Historically, different names were
given to the same fungi in the different stages. For example,
Fusarium solani is a filamentous fungus whose spores are found
in soil and plant debris, and which can cause keratitis [104].
This fungus is assigned to two different species in the NCBI tax-
onomy database: the anamorph is called F. solani and has tax-
onomy ID 169388, while the teleomorph is called Nectria
haematococca with taxonomy ID 140110. The taxons are both
listed as species in the genus Fusarium, and some sequences in
GenBank are assigned to one taxonomy ID, and others to the
other. (As of 28 May 2017, there were 6765 nucleotide sequences
for F. solani and 16 643 for N. haematococca in GenBank.) The rules
have been since updated to reflect a ‘one fungus, one name’ sys-
tem [141], but it may take a long time to resolve the current
multiplicity of names [142]. As a consequence, metagenomics
classifiers might assign sequences to either taxon—and both
would be correct, even though they appear to be different
species.

Historically, no official species names were given to uncul-
turable bacteria. Bacterial nomenclature is governed by the
International Code of Nomenclature of Bacteria. In 2001, it was
decided that the designation of a new microbial species would
require the identification of a type strain representing that spe-
cies, and that the type strain had to be deposited in at least two
different culture collections as pure (axenic) culture [143]. Most
bacteria and archaea, though, cannot be cultured with current
methods. All of these bacteria are given Candidatus names (i.e.
the name Candidatus is prepended to the putative genus and
species name) or are named only informally [144, 145], but are
not covered by the standard nomenclature [146]. The NCBI
taxon ‘unclassified Bacteria’, which contains several candidate
divisions, is placed directly under the ‘Bacteria’ taxon node (see
next paragraph). As of 28 May 2017, the NCBI taxonomy has
16 400 formal bacterial species and >280 000 informal ones.

Unclassified organism sequences and metagenomes are
close to the root of the taxonomy. The NCBI databases contain
sequences of bacteria, eukaryotes and viruses that thus far are
not placed into the taxonomic hierarchy. As of 21 August 2017,
NCBI had 2756 genomes for ‘unclassified bacteria’ (taxonomy ID
2323), 168 genomes for ‘unclassified viruses’ (taxonomy ID
12429) and 4 genomes for ‘unclassified viruses’ (taxonomy ID
12429). All these taxa are at high levels in the taxonomic tree,
just below their superkingdoms. Furthermore, GenBank and the
BLAST nr/nt database (https://www.ncbi.nlm.nih.gov/books/
NBK62345/) contain thousands of ‘unclassified’ sequences (tax-
onomy ID 12908), especially from metagenomes (e.g. ‘human
gut microbiome’, taxonomy ID 408170). Shared sequences of
such taxa and properly placed organisms can present a chal-
lenge for metagenomics methods that attempt to cluster
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together sequences or compute the lowest common ancestor.
Especially when using the BLAST nr/nt or nr databases, it may
be useful to filter unclassified sequences, or include only micro-
bial taxa, as is done by the kaiju classifier [69] when including
eukaryotes from nr.

Taxonomy changes. One solution to some of the problems
just listed is to rename or move the species in the microbial tax-
onomy. This does happen somewhat frequently, but the new
names do not automatically percolate outward to every re-
source that has downloaded the genomes from GenBank. As a
result, some benchmark genome sets used in metagenomics
comparisons [148] have become outdated because some of the
organisms have new names. This in turn can lead to mistaken
conclusions when later studies download and reuse the data
without going back to retrieve the original genomes from
GenBank. NCBI taxonomy does keep track of all previous names
of a taxon via synonyms; however, the taxonomy is not ver-
sioned, which makes it difficult to track or refer to a specific
version.

Viruses and viral taxonomy

Most of the comments about bacterial genomes and taxonomy
apply equally well to viruses, which thus far we have not dis-
cussed. Viruses do not have universally conserved genes such
as the 16S and 18S rRNA genes, making it far more difficult to
conduct systematic surveys of diversity. Nonetheless, it appears
that the number of diversity of viral species may far exceed
those of bacteria. A recent paper, for example, used metage-
nomic sequencing to discover >125 000 new DNA viruses [149],
most of which encode proteins that have no sequence similarity
to known isolates. Another study mined public databases to dis-
cover >12 000 new viral genomes linked to bacterial and arch-
aeal hosts [150]. Faced with this rapid growth in the variety of
viral species, a scientific consortium recently proposed a new
framework for incorporating viruses discovered through meta-
genomic sequencing into the official taxonomy of the
International Committee on Taxonomy of Viruses [151].

The relatively sparse sampling of the viral microbiome
means that most viral species cannot yet be recognized by
alignment of metagenomic samples to databases. Viruses also
mutate much more rapidly than bacteria, so even when a
known virus is present, alignment algorithms may need to per-
mit more mismatches to identify. These and other issues mean
that metagenomic methods for viruses sometimes require dif-
ferent methods from bacteria, which are beyond the scope of
this discussion; a recent review of such methods can be found
in [152].

Microbial genome resources

The most commonly used reference genome databases are the
complete and draft genomes at GenBank [153], which for more
than a quarter century has been the repository for genome se-
quence data from around the world. Sequence records in
GenBank are owned by the submitter, and only the submitter
can update that. In the vast majority of cases, DNA sequence re-
cords are never altered after their original submission.

GenBank relies on correct taxonomic identification and an-
notation provided by the submitter. Some genomes in GenBank
have an incorrect species name, presumably because of labeling
errors for bacterial samples. When such an error is discovered,
NCBI (the home of GenBank) can request the submitter to up-
date the record, but if the submitter does not respond, then

NCBI can only suppress or flag the entry [142]. To avoid such
errors, NCBI now performs a variety of quality checks when
genomes are submitted to make sure that submitted genomes
are not assigned to the wrong species [153].

An even bigger issue than incorrect species labels is contam-
ination. The vast majority of genomes in GenBank today are
‘draft’ genomes (Table 5). These are genomes for which an as-
sembly was generated from one or more sequencing data sets,
but where most chromosomes are fragmented into many
pieces. It is not uncommon for a draft genome to contain tens of
thousands of such contigs. In any draft genome, some of the
contigs might be contaminants, i.e. they might not belong to the
species that was presumably sequenced, even though every
contig is assigned to the same species. Common contaminants
include sequencing vectors and adaptors, nucleic acids that are
commonly present in laboratories such as from E. coli and
PhiX174 (a phage used as Illumina sequencing control) and of
course human DNA, which creeps into many sequencing pro-
jects by accident. If the laboratory that created the assembly did
not screen out these contaminants, they are submitted to
GenBank as part of the organism. GenBank itself runs a contam-
inant screen on all assemblies, and contigs that appear to be
contaminants are reported back to the submitter, who is
encouraged to remove them and resubmit. Despite the best ef-
forts of GenBank curators, though, thousands of contaminants
have already made their way into the draft genome data.

The result of these contaminants is that reads from a meta-
genomics project will match some draft genomes extremely
well because the metagenomics project has some of the same
contaminants (e.g. fragments of E. coli or human DNA). This in
turn leads to incorrect taxonomic classification, even though
the computational tools performed perfectly. For example, a
strain of Neisseria gonorrhoeae was found to be contaminated
with fragments of cow and sheep DNA [154], a problem that was
discovered after a metagenomics study of the cow microbiome
detected this particular N. gonorrhoeae strain and reported it to
the authors of the Kraken program, who in turn discovered that
the mistake was in the data, not the software.

RefSeq provides an alternative. The RefSeq project takes
GenBank sequences and passes them through additional auto-
mated filters to produce a more curated genome resource [155].
RefSeq records are owned by NCBI and can be updated as
needed to maintain annotation or to incorporate additional in-
formation. As shown in Table 5, �79 000 of �90 000 draft bacter-
ial genomes are in RefSeq (data as of 27 May 2017). There are

Table 5. Number of entries in commonly used reference databases

Domain Level Draft genomes Complete genomes1

GenBank RefSeq GenBank RefSeq

Archaea Entries 859 351 260 (20) 225 (12)
Species 695 204 209 (14) 178 (7)

Bacteria Entries 89 730 78 783 7314 (1346) 6973 (1066)
Species 19 078 11 217 2677 (542) 2586 (406)

Fungi Entries 1897 191 28 (414) 7 (38)
Species 997 190 17 (68) 7 (36)

Protists Entries 430 47 2 (49) 2 (27)
Species 226 47 2 (38) 2 (26)

Viruses Entries 3 3 0 (0) 7214 (22)
Species 1 3 0 (0) 7073 (22)

1Numbers in parentheses represent incomplete genome assemblies for which at

least one chromosome was assembled. Data as of 27 May 2017.
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various reasons why genomes may be excluded from RefSeq,
e.g. the assemblies are too highly fragmented. For bacteria, cur-
rently, the most common reason that a GenBank genome is not
included is that it is derived from a metagenome (about half of
the excluded genomes). Note that this is a current policy and in-
clusion criteria may change in the future. The rate of inclusion
into RefSeq has been much slower for eukaryotic microbes; cur-
rently, it contains only 191 of 1897 fungal genome assemblies.
RefSeq also includes the viral domain, for which it validates and
indexes one viral genome per species (and sometimes per sero-
type). As of May 2017, there are >7000 viral genomes in RefSeq.
In addition, the NCBI Viral Genomes Resource (https://www.
ncbi.nlm.nih.gov/genome/viruses/) [156] provides links to other
validated viral genomes that are ‘neighbors’ (i.e. strains) of viral
species in RefSeq.

Genomes are assigned to species or strains. Until 2014, every
new microbial genome submitted to NCBI was assigned a new
taxonomy ID, even if they were isolates of existing species.
Owing to the dramatic increase in the number of genome se-
quences, this policy was changed in 2014, and since then only
novel species and higher microbial orders get new taxonomy
IDs [147]. Previously assigned strain taxonomy IDs remain in
the database, which means that a single species may have gen-
omes both at species and strain levels. For E. coli, for example,
RefSeq contains 5596 genomes (as of 28 June 2017), of which
3292 have the taxonomy ID of E. coli, and the remainder have
one of 2223 distinct strain-level taxonomy IDs. Overall, �35% of
the bacterial genomes in RefSeq and GenBank have strain-level
IDs, and the remaining �65% have species-level IDs. This can be
challenging for algorithms that try to characterize metagenomic
samples at the strain level.

Conclusions

Next-generation sequencing provides a powerful tool to study
the microbes in, on, and around us. A great variety of computa-
tional tools have been developed to assist in the analysis of
metagenomics data sets, which are large and constantly chang-
ing as the technology of sequencing improves. Here, we re-
viewed methods for classification and assembly of
metagenomics data. Classification methods determine the mix-
ture of species in a sample, either by using marker genes to esti-
mate their abundance or by assigning a taxonomic identifier to
every read. Assembly methods take the raw read data and as-
semble reads from the same species into larger contigs, which
in turn can be assigned taxonomic labels. We also discussed
some of the challenges presented by inconsistencies in micro-
bial taxonomy itself, and by contamination in the draft gen-
omes that almost all methods rely on. Many of these problems
may be solved over time, but while the data are in a constant
state of flux, users need to remain aware of these issues, so that
they can avoid potential pitfalls when analyzing large, complex
metagenomics data sets.

Key Points

• Classification methods for metagenomic reads rely on
fast lookup algorithms to handle the enormous data
sets generated by next-generation sequencing.

• Metagenomic assembly methods can reconstruct large
sections of the genomes of some species in a microbial
community, if the sequencing depth is sufficient.

• Genome databases are growing rapidly, but many draft

genomes are contaminated with fragments of sequence
from other species, which presents challenges for meta-
genomic analysis.

• Microbial taxonomy is rapidly changing in the genome
era, with many species being renamed and grouped
into different clades.
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