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ABSTRACT Uncertainty and interconnectedness in complex engineering and engineered systems such
as power-grids and telecommunication networks are sources of vulnerability compromising the resilience
of these systems. Conditions of uncertainty and interconnectedness change over time and depend on
emerging socio-technical contexts, thus conventional methods which can conduct normative, descriptive and
prescriptive assessment of complex engineering and engineered systems resilience are limited. This paper
brings together contributions of experts in complex engineering and engineered systems who have identified
six methods, three each for uncertainty and interconnectedness, which form the foundational methods for
knowing complex engineering and engineered systems resilience. The paper has reviewed how thesemethods
contribute to overcoming uncertainty or interconnectedness and how they are implemented using case studies
in order to illustrate essential approaches to enhancing resilience. It is hoped that this approach will allow
the subject to be quantified and best practice standards to develop.

INDEX TERMS Resilience, reliability, robustness, interconnectedness, quantification, case studies.

I. INTRODUCTION

New challenges to the resilience of complex engineering
and engineered systems (CEES) have been emerging due
to the development of highly interactive systems, such as
nuclear power plants, power-grids, spacecraft, telecommuni-
cation networks, health-care delivery, along with multi-level
supply chain systems. Conventional methods of probabilistic
modelling and quantification of well-recognised system fail-
ure scenarios fail to deal with unanticipated failure modes of
complex engineered systems and their recovery options.
CEES defines a holistic system, since an engineered sys-

tem requires an engineering system. An engineering system
includes the set of processes and resources that produce a
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technical result, whilst an engineered system is a collection
of components with specific characteristics which is the out-
come of an engineering activity [1]. Systems’ resilience is
achieved by the capability of the system to sustain system
functionality in different conditions and deal with uncertain-
ties caused by natural hazards or human interventions. It is
necessary to understand and assess uncertainty and intercon-
nectedness within CEES to provide optimal resilient design
and control solutions that can be trusted by society.

In the field of engineering resilience generally refers to the
system’s capability to bounce back from disruption, restoring
some degree of before-shock performance, and exceeding it
after recovery is desirable [2]. Most resilience definitions
centre on uncertainty quantification, risk management and
adaptation [3]. The scope of a resilient CEES is therefore
to be able to prepare itself for an emergent situation by:
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increasing system’s awareness, determining weak nodes and
components by monitoring them; predicting the possibility
of failure by monitoring key points; being robust; exploiting
redundancy; recovering functionality to fulfil system objec-
tive; and learning to improve future resilience.
Designing a resilient CEES is a significant challenge as

there is a high level of interconnectedness between systems,
as each belongs to a system of systems, constraining the
value of adopting a traditional approach of assessing a sys-
tem’s resilience in isolation. Isolated assessment means to
consider a restricted set of predetermined parameters and
conditions, which fails to take account of the system’s endless
need to respond to changing needs and related adaptation
and evolution processes over its entire life span. Coupled
interdependencies between system components and among
systems increase their complexity, and make resilience much
more difficult to assess. Therefore, the impact on resilience
of interdependencies, emergence, and other CEES charac-
teristics should be understood using a complexity science
framework which exposes the need for appropriate tools [1].
This supports the need to establish alternative methodologies
for assessing a system’s resilience, as traditional methods
cannot address these challenges. Resilience has attracted
significant attention in non-engineering academic domain
such as ecology, psychology, economics and organisational
science in recent years. Yet in complex engineering and
engineered systems, most methods are merely descriptive
statistics which are used after a disruptive event rather than
methods that address uncertainty and interconnectedness of
modern engineering solutions embedded in socio-technical
systems [4], [5].
A growing community of interdisciplinary scholars, under

the umbrella term of engineering systems research, are
striving to provide a rigorous set of tools and methods to
design and predict the behaviour of such large socio-technical
complex systems [5]. Driven by the tenets of systems and
complexity thinking, the engineering systems (ES) themes
of interest to scholars are aspects of system interconnect-
edness, structure or architecture [6] and the influence of
uncertainties [7], [8].
Addressing these issues of interconnectedness and uncer-

tainties are the topic of the emerging domain on ES resilience.
The construct of ES resilience is a measure of a system’s pre-
paredness toward known and unknown threats. Although ES
resilience is characterised as an essential functional require-
ment of commissioned systems, resilience as a concept is
still an evolving interdisciplinary domain that suffers from
a considerable degree of taxonomical and methodological
discrepancy. This is not least because the resilience of an ES
is dynamic and changes over its functional life span, being
influenced by a multitude of parallel, complex and dynamic
interactions, both with elements located within and outside
the system.
An apt ES resilience method should be able to provide a

theoretical and methodological basis to account for intercon-
nectedness and uncertainties that a system might experience

over its functional life time. This necessitates the use of
methodological pluralism to unpack the tensions in differ-
ent scenarios originating out of the coupling of embedded
and nested ES. Responding to these challenges and with an
intention to contribute to the emerging field of complex ES
resilience, a team of interdisciplinary experts joined efforts
for this paper to frame the scope, methods and future direc-
tions of this domain.

The purpose of this paper is to introduce a set of method-
ological alternatives available in literature for conducting a
normative, descriptive and prescriptive assessment of com-
plex ES resilience, addressing the two primary issues of
uncertainty and interconnectedness. This paper responds to
these issues by providing six methods organised as follows:
2. Methods for taking uncertainties into account; 2.1 The
Bayesian Network for quantifying uncertainty; 2.2 Robust
Bayesian modelling for severe uncertainty; 2.3 Multidisci-
plinary Design Optimisation under uncertainty; 3. Methods
for modelling complex interactions; 3.1 Resilience of net-
worked systems; 3.2 Convergent Cellular Automata: theory
and application to resilient systems; 3.3 Agent-Based Mod-
elling for complex interactions.

Each of the six methods is described in the context of
ES resilience, and provides at least one case study, with a
critical assessment of benefits and limitations. The authors
do not suggest that an exhaustive list of methods is presented.
Instead the objective of the paper is to introduce the readers
to the methodologies that can serve as a good starting point
to study ES resilience.

II. METHODS FOR TAKING UNCERTAINTIES

INTO ACCOUNT

Being embedded into system of systems, the modern engi-
neering system behaviours go beyond their unitary identity
into realm of complex and emergent behaviours that are
increasingly difficult to model or analyse. A set of tools,
categorized under uncertainty quantification use probability
driven methods to analyse individual component and system
behaviours originating from multiple interactions and system
wide complex interdependencies.

A. THE BAYESIAN NETWORK FOR QUANTIFYING

UNCERTAINTY

A Bayesian network (BN), also known as belief network, is a
directed acyclic graph G = (V ,E) which represents a set of
vertices (variables/nodes) showed by V = X1,X2, · · · ,Xn,
and a set of edges (casual relations) showed by E that aims to
represent conditional probabilities among variables of inter-
est. An outgoing edge from node Xi to Xj indicates a casual
relation between these two nodes in which the value of Xj is
dependent on the value of Xi. In fact, Xi is the parent node
of Xj and Xj is a child node of Xi. In general, three classes of
nodes exist in BN: (i) nodes without a child node are called
leaf nodes, (ii) nodes without a parent node are called root
nodes, and (iii) nodes with parent and child nodes are called
intermediate nodes.
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FIGURE 1. Bayesian Network representation with five variables.

The causal relationships among variables of a BN are mea-
sured by conditional probability distributions. A conditional
probability attached to node Xi conditioned on the set of all
parents of node Xi, pa(Xi), and is presented by P(Xi|pa(Xi)).

Moreover, the full joint probability of all the variables
specified in set V is given by,

P(X1, · · · ,Xn) = P(X1|X2,X3, · · · ,Xn)

×P(X2|X3,X4, · · · ,Xn)

× · · ·P(Xn − 1|Xn)P(Xn)

=
n

∏

i=1

P(Xi|Xi+1, · · · ,Xn). (1)

However, equation (1) can be further simplified with
knowledge of conditional interdependency as such, the joint
probability distribution of a BN can be written using parent
nodes of each node,

P(X1,X2, · · · ,Xn) =
n

∏

i=1

P(Xi|pa(Xi)). (2)

For example, the full joint probability distribution of the
BN for Figure 1 consisting of 5 variables X1, X2,· · · , X5 is
presented as

P(X1, · · · ,X5) = P(X1)P(X2|X1)P(X3|X1)
×P(X4|X2,X1)P(X5|X2,X3,X1) (3)

If we know that node X4 has exactly one parent, X2, then
the part of joint probability distribution P(X4|X2,X1) can be
replaced with P(X4|X2), as only X2 affects the occurrence of
X4. As such, the joint probability distribution of the BN can
be written using parent nodes of each node,

P(X1, · · · ,X5) = P(X1)P(X2|X1)P(X3|X1)
×P(X4|X2)P(X5|X2,X3). (4)

This is a key advantage of BN that it requires less parameter
than conventional methods and is capable of modeling joint
distributions in a compact and economical form.
BNs are constructed based on Bayes’ theorem and one of

its properties is belief propagation which enables a decision
maker to update probabilities of variables P(Xi) after observ-
ing the values of some variables. This observed information is
called evidence and is denoted by e. For instance in Figure 1,

the probability distribution of variable X3 given the value of
all variables except X3, (e = X1,X2,X4,X5) is calculated as

P(X3|e) = P(X1,X2,X3,X4,X5)
∑

X3
P(X1,X2,X4,X5)

. (5)

In real world applications of risk analysis, there are fre-
quently many unknown variables and many distinct pieces
of evidence, some of which may be linked [8]. BNs can
graphically represent such problems where uncertain vari-
ables are represented as nodes, with an edge representing the
causal relationship between two nodes. BNs are an excellent
tool for computing the posterior probability distribution of
unobserved variables conditioned on some variables that have
been observed, encoding both quantitative and qualitative
information in a conditional probability format.

The ability to model variables of several types (e.g., vari-
ables could be Boolean (yes/no), qualitative (low/medium/
high), or continuous, among others) is the main property of
BN that motivates us to employ it for quantifying of system
resilience [7]; [8]; [9]. Consider a large interconnected net-
work like power grids where the failure of a component could
possibly trigger the failure of successive components. BNs
can be used to quantify the resilience of such systems due to
their interconnected structure among their components.

BNs have been deployed in several applications of infras-
tructure system reliability [10]; [11]; [12]; [13]; [14], but their
use in modeling resilience is underdeveloped in the literature.
For example, [10] proposed a novel BNmodel using event log
data for analyzing the lateness probability in port logistics.
The proposed BN model is constructed by decomposition
of a dependency graph that generated from event log data
in port management systems. The proposed BN model can
then provide valid inference for activity lateness probabilities
and also beneficial recommendations to port managers for
improving existing activities.

1) CASE STUDY: THE RESILIENCE OF AN INLAND WATER

PORT, THE PORT OF CATOOSA

A case study of the Port of Catoosa, an inland waterway
port in the Mississippi River Navigation System located near
Tulsa, Oklahoma, is used to illustrate the measurement of
resilience using BNs [7]. These ports serve as hubs that con-
nect components of intermodal transportation systems [15].

A BN was employed to quantify the Port of Catoosa’s
resilience. Natural disasters (e.g., floods, tornados) and haz-
ardous material threats (e.g., fires, explosions, liquid spills)
are the primary disruption concerns of decision makers at
the Port of Catoosa. As such, natural disasters and hazardous
material threats are considered in the BN model as major
sources of vulnerability at the port [7]. The graphical model
of proposed BN is shown in Figure 2. Three types of vari-
ables were used to model the various elements of resilience
capacity, depending on how each are measured: (i) Boolean
variables that measure a dichotomous response (true/false,
yes/no, on/fail), (ii) qualitative (discrete) variables that
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FIGURE 2. The BN model of the inland waterway port system [7].

measure ordinal categories used for weights of factors con-
tributed to the absorptive, adaptive, and restorative resilience
capacities, and (iii) continuous variables that measure random
variables with a known probability distribution. Resilience
was modeled as the ratio of recoverability to vulnerability
and the resilience node is presented in Figure 2 (node 19,
see Table 1). In Figure 2 an outgoing edge from Xi to Xj
indicates a relationship that value of variable Xj is dependent
on the value of Xi variable. For example, the value of the
resilience improvements (node 24) is dependent on both the
resilience (node 19) and the desired resilience (node 25).
For example, if (desired resilience-actual resilience < A),
then the value of improved resilience will be computed.
Moreover, the reliability (node 8) is dependent on Time to
failure (node 12) and is a cause of the adaptive capacity
(node 10).
A useful feature of BNs is the ability to propagate the effect

of evidence through the network, referred to as ‘‘propagation
analysis’’ [16]. Forward propagation implies the propagation
of an observed variable and measures its impact on the target
variable. If enough evidence of an observation is available,
then the observation can be entered into the model, and the
probabilities of all unobserved variables can be updated [7].
In this case four decision variables were chosen such

that contributions were believed to be significant to the port
resilience: maintenance, backup utility system, quick evac-
uation, and restoration resource. Variables were chosen to
fall into each of absorptive (maintenance, backup utility sys-
tem), adaptive (quick evacuation), and restorative (restoration
resource) capacities and four scenarios were performed:

• The first scenario refers to the case when there observa-
tion is made that maintenance is not successful.

• The second scenario assumes two failure events of main-
tenance and restoration resource, leading to a reduction
in recovered capacity due to the reduction in restorative
capacity which eventually results in a reduction of the
port’s expected resilience.

• The third scenario simulates the impacts of failures of
backup utility system and quick evacuation, and results
indicate that the reduction in restorative capacity has a
larger adverse impact on resilience.

• The fourth scenario accounts for failure of all four
variables, dropping the expected resilience of the port
to 55%.

FIGURE 3. Y axis indicates the resilience, and X axis indicates the
probability. This figure shows the compression of the probability
distributions of the port resilience for different scenarios [7].

A comparison of the forward propagation analysis scenar-
ios 1, 3, and 4 using BN is illustrated in Figure 3. Figure 3
shows that the distribution of resilience is skewed to the left
when adaptive and restorative capacities are reduced, sug-
gesting that adaptive and restorative strategies are important
to building resilience.
Consequently, the BN’s results show that the resilience capac-
ity of an inland port is related to the three components of
absorptive capacity (a means to withstand a disruptive event,
or a reduction in vulnerability), adaptive capacity (a means to
temporarily adapt to maintain performance), and restorative
capacity (a means to restore performance in a long term
manner, whichwith adaptive capacity constitutes recoverabil-
ity). So, various pre-disaster and post-disaster strategies can
improve the three capacities to varying extents, all combining
to improve the resilience capacity of the port [7]; [17].

2) CONCLUSIONS AND LIMITATIONS

BNs have the ability to combine historical data and expert
knowledge, using calculation of prior and posterior condi-
tional probability. BNs provide a rigorous tool for handling
risks and decision making under uncertainty based on con-
figuration of a graphical framework. It is a powerful tool for
generating risk scenarios.
Many contributions to resilience are qualitative in nature

rather than quantitative. Quantifying and assessing resilience
from such qualitative variables are difficult when relying on
the result of a mathematical optimization model, though such
a task is relatively straightforward in a BN (when underlying
variables are effectively assessed). Although the BNs also
have been applied in a number of fields, their application to
quantifying resilience is still sparse.
Limitations: In spite of the remarkable power and potential

to address the dependency between the variables and their
conditional probabilities, there are some inherent limitations
to BNs:

• Conducting full Bayesian learning is computationally
very expensive. This even holds true when the network
structure is already given.
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TABLE 1. Nodes of purposed BN in Figure 2. Note that CH and CF stand for Cargo Handling, and Capacity Factor, respectively.

• BNs need data and perform poorly with very small data
sets.

• Three types of variables: discrete, continuous, and
hybrid which includes both discrete and continuous
variables can be used in BNs. Although, Dynamic
BNs (DBN)s are an extension of BNs that represent
temporal changes of variables and edges are used to
represent probabilistic dependencies between variables
across time (feedback loop).

When the size of data is small, selecting the proper distri-
bution model to describe the data has a notable effect on the
quality of the resulting network. Moreover, to remediate this
problem (small data set), one of the suggestions is to com-
bine the BN method with the Bayesian optimization method.
A Bayesian optimization method can be used to provide more
sampling data points from the system’s function to improve
the data sets used by the BN. Improving the learning process
can also reduce the computation time of BN.

B. ROBUST BAYESIAN MODELLING FOR

SEVERE UNCERTAINTY

In complex engineering systems, we may be interested in
resilience against rare events of which we have only few
observations, or we would like to study resilience in systems
for which we do not have accurate models, or where the
interactions are not yet completely understood. Consequently,
in the context of Bayesian analysis (see Section II-A), (i) we
may have insufficient data relative to the complexity of the
model, leaving a situation where the prior potentially drives a
large part of the analysis, (ii) due to lack of expert information
and/or lack of experience, it may be hard to identify the prior,
(iii) due to model complexity, the full impact of the prior on
the posterior may be hard to quantify.
To address problem (ii), non-informative priors have been

suggested (see for instance [18] and [19]). Such a prior deems
all possibilities equally likely. However, such a statement is
still very informative. Therefore, non-informative priors have
been strongly criticised by [20], [21], and many others. When
there is a lot of data, then the prior has little influence on
the posterior, and therefore the prior is not critical. However,
when there is little data, it has been argued that it may be
better to propagate a set of prior distributions, in order to
fully propagate the effects of prior ignorance on the inference.
This is called robust Bayesian analysis [22], and allows for

a proper treatment of prior ignorance. A problem with this
approach is the large computational effort required. How-
ever, in many cases, we can work with sets of distributions.
Workingwith sets of distributions also helps us understanding
how the prior drives the analysis when data are lacking,
particularly in situations where the models are also highly
complex (problems (i) and (iii) above).

A wide variety of models have been proposed for deal-
ing with uncertainty and resilience in reliability problems.
These include autoregressive time series models, Markov
chains [23], Bayesian networks [13], as well as dynamic
Bayesian networks [14].

A very powerful yet simple imprecise stochastic model
is discussed that allows us to relax stationarity and Markov
conditions for dealing with stochastic processes. Then a case
study is presented where the set of posterior distributions can
be analytically evaluated based on conjugate analysis, and
we show how the resulting bounds can be used to quantify
resilience of a power network under very weak assumptions
about failure and repair times.
Markov chains [24] are commonly used in reliability anal-

ysis to quantify resilience of complex engineering systems
against system failure, using a variety of risk indices [23].
Informally, a Markov chain is a family (Xt )t∈R of random
variables taking values in a state space S, satisfying:

• For all s < t and all δt > 0, Xt+δt is independent of Xs
conditional on Xt .

• There is a matrix Q (called rate matrix) such that for
small positive δt ≃ 0:

P(Xt+δt = j|Xt = i) ≃ P(Xt = j|Xt = i) + Qijδt (6)

The first condition is called the Markov condition. In the
above, infinitesimal notation for convenience was used. Also
note that P(Xt = j|Xt = i) is simply 1 if i = j and 0 otherwise.
Equation (6) says that the transition probabilities vary slowly,
and are independent of time, i.e. the process is stationary.
When using Markov chains to study resilience against sys-

tem failure, such as the network system that we will consider
further, typical issues are that both the Markov assumption
and the stationarity assumption are violated, and moreover
that only little data is available to estimate parameters. The
good news is that we can use probability bounding (i.e. impre-
cise probability) and robust Bayesian analysis to address all
these issues at once. Note that robust Bayesian analysis is by
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FIGURE 4. Continuous time Markov chain for a 2 component system with
common cause failure. Arrows denote possible transitions, and arrow
labels denote transition rates. The node AB represents a fully working
system, A a system where only A works, B a system where only B works,
and ∅ a system where neither component works.

no means restricted to Markov chains, and can be applied to
any statistical model, in theory. For example, credal networks
are an extension of Bayesian networks to sets of distribu-
tions, and have been widely studied and used. We chose
to demonstrate robust Bayesian analysis on Markov chains
here because they provide a very common model of system
reliability.
Imprecise Markov chains model the process (Xt )t∈R using

a set of stochastic processes, subject to the assumption that
there is a set Q of matrices, so that for all t and all histories
xs:s<t , there is a Q(t, xs:s<t ) ∈ Q such that:

P(Xt+δt = j|Xt = i,Xs:s<t = xs:s<t )

≃ P(Xt = j|Xt = i) + Qij(t, xs:s<t )δt (7)

The above definition is, for brevity, kept informal; a formal
mathematical definition can be found in [25]. Also, note that
our choice of rate matrix can fully depend on history and
time. Only the set Q cannot depend on history and time.
This model can address issues with stationarity and with
the Markov condition. It can also address issues with prior
information, as it allows us to use sets of distributions if
insufficient information is available.
Even though the processes in the set are far more com-

plex than Markov chains, it turns out that typical quantities
of interest can be calculated almost as easily as with stan-
dard Markov chains, through a generalisation of the matrix
exponential [25]. The next case study demonstrates how this
works.

1) CASE STUDY: POWER NETWORK RESILIENCE

The case study presented here is based on [26], [27], [28],
and [29]; also see [30] and [31].
Consider a power network consisting of two components

(say, transmission lines).When both components fail, the sys-
tem fails, and we want to quantify system resilience against
such failure. As model parameters, we have the common-
cause failure rate q2, the ‘single-cause’ failure rate per com-
ponent qA1 and qB1 , and the repair rates rA and rB. Figure 4
depicts theMarkov chain for this network. Usually, the failure
rates are not observed directly. Instead, we parameterize the

system using the alpha-factor model [32]:

q2 = α2

α1 + 2α2

(

qAt + qBt

)

,

qA1 = qAt − q2, qB1 = qBt − q2. (8)

This expresses our parameters in terms of observable quanti-
ties, namely α2 which is the fraction of faults due to common
cause (note that α1 = 1 − α2), and qAt and qBt , which are the
failure rates of the components seen separately.
As failure rates are not constant in time, but follow a

so-called bathtub curve, there is clear violation of stationar-
ity. Additionally, we have severe uncertainty about the rates
themselves, particularly for common cause events. More-
over, the Markov condition is normally violated as well,
as repair rates depend on system history, and repair times
are not exponentially distributed as predicted by the model.
Finally, we have missing covariates. For instance, repair rates
depend on operation of the entire power system. Under severe
weather, we may see many simultaneous failures, but the
number of repair crews may be limited.
Our data consists of nationwide statistics concerning α2

through observations of consumer disconnections which are
typically associated with common cause failures, and also
concerning qAt and qBt through from nationwide statistics
about constituents such as average failure rate per kilome-
ter of overhead line. However, regional dependencies are a
considerable concern. Therefore, we also use data from the
specific network under study, even if this data is only very
sparse. Through robust Bayesian analysis, we can use the
nationwide statistics to inform our set of prior distributions,
which we can then update with the data from the actual
network. For the specific data we have available, we find the
following posterior intervals on the failure rates (expressed in
failures per year):

qA1 ∈ [0.32, 0.37], qB1 ∈ [0.32, 0.37], q2 ∈ [0.19, 0.24].

(9)

The repair rates are elicited directly by expert judgment. For
instance, if we deem that mean repair times can vary between
6 and 12 hours, we get:

rA ∈ [730, 1460], rB ∈ [730, 1460]. (10)

The use of imprecise Markov chains means that we allow any
time-varying and history dependent repair rate between these
bounds.
We can easily construct a set Q of rate matrices that

is compatible with these bounds. We can then evaluate for
instance bounds on the limit behaviour:








9.985 × 10−1

2.623 × 10−4

2.623 × 10−4

6.513 × 10−5









≤ lim
t→∞









P(Xt = AB)
P(Xt = A)
P(Xt = B)
P(Xt = ∅)









≤









9.994 × 10−1

7.252 × 10−4

7.252 × 10−4

1.647 × 10−4









.

(11)

Similarly, the expected downtime is between 0.57 and
1.44 hours per year, and the expected number of downtime
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periods is between 0.19 and 0.24 per year. These bounds
on risk indices comprise a robust quantification of system
resilience under severe uncertainty about system behaviour.
This is valuable to decision makers who need to be careful
about the impact of model assumptions.

2) CONCLUSIONS AND LIMITATIONS

Authors have discussed how robust Bayesian methods can
help quantifying resilience of complex engineering system
under severe uncertainty, due to prior ignorance and/or due to
lack of data, by using sets of probability distributions. It has
been discussed how such sets propagate through models,
and imprecise Markov chains was highlighted as a specific
example of where such propagation can be done effectively.
Authors demonstrated these methods on resilience of a power
network.
Authors have concluded that novel mathematical tech-

niques such as imprecise Markov chains enable a much wider
class of statistical processes to be used in practice, reducing
model discrepancies and improving risk analysis for complex
engineering systems. They are useful especially when data is
lacking, or when the process itself might not satisfy strong
stationarity or Markovian assumptions due to the specific
hard to model features of the system itself.
Nevertheless, issues might arise, such as how to get proper

probability bounds from data in general, how to incor-
porate additional covariates if such data is available, and
how this analysis can be used in decision making [33], for
instance to quantify the trade-off between cost of redundancy
and resilience against common-cause failures. Additionally,
the utility or loss functions used in decision analysis might
be prone to imprecision themselves.
Further challenges arise in complex systems where the

likelihood is not from the exponential family, in which case
analytical evaluation is impossible, and simulation techniques
such as Markov chain Monte Carlo are needed. These tech-
niques are very expensive to run over large sets of priors,
especially when the parameter space is very large, and more
work is needed in this area.
Future work might focus on Monte Carlo methods for

probability bounding, including Markov chain Monte Carlo
so data can be adequately incorporated in complex models,
similar how to how this is done in modern Bayesian analysis.
In addition, elicitation methods for using expert information
could be extended to allow experts to express partial probabil-
ity statements to allow treatment of problems where experts
find it hard to express full prior probability distributions.

C. MULTIDISCIPLINARY DESIGN OPTIMISATION

UNDER UNCERTAINTY

TheMultidisciplinaryDesignOptimization (MDO) approach,
emerged as a new holistic design discipline providing a set of
methods and tools to help engineers in the design of system
for which the whole is greater than the sum of the parts.
Several MDO methods have been developed to handle the

flow of information among the involved disciplines and, then,

the complexity of the interactions. The MDO problem in its
most general form can be formulated as [34]:

min f0(x, y) +
N

∑

i=1

fi(x0, xi, yi)

w.r.t. x, ŷ, y, ȳ

s.t. c0(x, y) ≥ 0

ci(x0, xi, yi) ≥ 0 for i = 1, . . . , N

cci = ŷi − yi = 0 for i = 1, . . . , N

Ri(x0, xi, ŷj 6=i, yi, ȳi) = 0 for i = 1, . . . , N (12)

which is known as the ‘‘all-at-once’’ (AAO) problem. In this
formulation, N is the number of disciplines, xi are the dis-
cipline variables (x0 are variables shared by more than one
discipline), yi are the coupling variables (output from a single
discipline analysis), ȳi are the state variables (used only inside
one discipline analysis), x is the concatenation of all the
discipline variables, x = [xT0 , xT1 , . . . , xTN ]

T , y is the concate-
nation of all the coupling variables, y = [yT0 , yT1 , . . . , yTN ]

T ,
f0 is the global objective function, c0 are the global con-
straints, fi are the discipline objectives, ci are the discipline
constraints, cci are the consistency constraints, andRi are the
discipline analysis constraints. This form of the design opti-
mization problem includes all coupling variables, coupling
variable copies, state variables, consistency constraints, and
residuals of the governing equations directly in the problem
statement.

Uncertainty is an inherent component of complex systems
and cannot be avoided. For this reason, researchers have been
developing methods and tools to quantify uncertainty and to
optimize systems subject to it, by considering that different
levels of uncertainty can be present in different steps of the
design and can be directly or indirectly related to models,
interfaces, and operational conditions. Uncertainty is also
added into the process by the fact that several engineers from
many disciplines have to interact and exchange information.
Moreover, further uncertainty is introduced by the design
process itself, and during the design process, uncertainty also
changes with time, due to modifications of requirements.

The common formulation of MDO does not necessarily
mean that uncertainties are considered during the design
process. When this happens, that is better referred to as
MDO under Uncertainty (MDOU) [35], which includes
1) the reliability based multidisciplinary design optimisation
(RBMDO), 2) the robust multidisciplinary design optimisa-
tion (RMDO), or 3) a combination of both. While the aim
of RMDO is to optimise the expected performance of the
system and reduce at the same time the sensitivity of the
optimal result to the expected uncertainties, the RbMDO aims
to optimise the expected performance and at the same time
keep the violations of the design constraints under acceptable
probability thresholds. Clearly, a complete formulation of
the problem should consider both robustness and reliabil-
ity criteria, and then being a robust and reliability based
MDO (RRbMDO) problem.
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By using the general MDO formulation in (12), the for-
mulation of a generic RRbMDO can be written as in (13), as
shown at the bottom of this page, where, ui are the discipline
uncertainties (u0 are uncertainties shared by more than one
discipline), u is the concatenation of all the discipline uncer-
tainties, and u = [uT0 ,uT1 , . . . ,uTN ]

T . In this formulation,
each objective function fi is measured by 4i, which is a mea-
sure of either performance criteria or performance variation
criteria, for example, the standard deviation or the percentile
difference of the performance, and 3’s refer to measures of
uncertainty that can rely on probability theory, as well as on
evidence theory, possibility theory, interval theory and others.

Resilience can be seen as the ability of a system to adjust
its functioning prior to, during, or following changes and
disturbances, so that it can sustain required operations under
both expected and unexpected conditions. In mathematical
terms, this can be seen as the attribute of a dynamical system
(or any time dependent system) to be both robust and reliable
at the same time. The system resilience can be considered
and optimised through modelling of the failure modes and a
formulation of the MDOU problem that explicitly takes into
account the recovery time.

1) CASE STUDY: SPACE SYSTEMS RESILIENCE

There are different sources of uncertainty, which generally
can be divided into epistemic and aleatory. Epistemic uncer-
tainties are reducible uncertainties and are due to a lack of
knowledge. Aleatory uncertainties are non-reducible uncer-
tainties that depend on the very nature of the phenomenon
under investigation. They can generally be captured by well-
defined probability distributions as one can apply a fre-
quentist approach. E.g. measurement errors. In this case,
the concept of design for resilience in the context of space
systems engineering is introduced, and a method to account
for imprecision and epistemic uncertainty is proposed. The
quantification of robustness and reliability, essential elements
of the resilience, in the early stage of the design of a space
system is generally affected by uncertainty that is epistemic in
nature. As the design evolves from phase A down to phase E,
the level of epistemic uncertainty is expected to decrease but
still a level of variability can exist in the expected operational
conditions and system requirements.

The Evidence Network Models (ENM), a non-directed
network of interconnected nodes where each node represents

a subsystem with associated epistemic uncertainty on system
performance and failure probability, are used to introduce
time-dependencies reliability in the modeling of a complex
space system. Once the reliability and uncertainty on the per-
formance of the spacecraft are quantified, a design optimisa-
tion process is applied to improve resilience and performance.

Given that a generic engineering system is affected by
both design parameters d ∈ D and uncertain parameters
u ∈ U , the system can be represented as a network of nodes
that share information, where each node is a subsystem and
information is shared through the links between subsystems,
and the generic objective function can then be defined as:

F(d,u) =
N

∑

i=1

gi(d,ui,hi(d,ui,uij)), (14)

where N is the number of subsystems involved, hi(d,ui,uij)
is the vector of scalar functions hij(d,ui,uij) where j ∈ Ji and
Ji is the set of indexes of nodes connected to the i-th node;
ui are the uncertain variables of subsystem i not shared with
any other subsystem and uij are the uncertain variables shared
among subsystems i and j.

The test case function used to validate the proposed
approach describes the operations of a cube-sat in Low
Earth Orbit (LEO). The problem is affected by epistemic
uncertainty modelled with the use of Dempster-Shafer theory
(DST) [36], and in particular the ENM presented in [37],
[38] was used to evaluate the associated Belief and Plausi-
bility curves. The robustness of the solution is guaranteed
by the minmax algorithm described in [39]–[41]. Finally
the resilience of the system during its mission is optimised
considering three possible operational states.

The problem is to minimise the mass of the satellite and
maximise the amount of data sent back to the ground station.
These performance indices depend on design and uncertain
parameters. The spacecraft system is modelled as multi-state
with a finite number of possible states. The fully or partially
functional system can deteriorate or the partially functional
system can recover. Once a total failure of the system occurs
the system is not able to recover anymore and the satellite is
considered lost. The time dependent reliability of a satellite is
typically modelled by a Weibull distribution [42], [43]. This
work also adopted theWeibull distributions for modelling the
reliability, i.e. the transition between both functional states to
the failure state.

min 40[f0(x,u, y)] +
N

∑

i=1

4i[fi(x0, xi,u0,ui, yi)]

w.r.t. x, ŷ, y, ȳ

s.t. 3c,0[c0(x,u, y) ≥ 0] − 3Reqc,0 ≥ 0

3c,i[ci(x0, xi,u0,ui, yi) ≥ 0] − 3Rec,i ≥ 0 for i = 1, . . . , N

3cc,i[ŷi(u) − yi(u) = 0] − 3Reqcc,i ≥ 0 for i = 1, . . . , N

3R,i[Ri(x0, xi,u0,ui, ŷj 6=i, yi, ȳi) = 0 − 3ReqR,i ≥ 0 for i = 1, . . . , N (13)
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In this case, better and more extensively described in [44],
the sub-system responsible for the recovery from failure is not
explicitly modelled, but it would be just an additional element
of the multidisciplinary model.

2) CONCLUSIONS AND LIMITATIONS

As also emerged during the Defence Academic Pathways
Complex Systems Event, held on 4th April 2017, the holistic,
model based design management permitted by the MDOU
framework will be more and more crucial to design complex
systems that have to operate in complex and uncertain envi-
ronments/conditions, as well as to plan the deployment and
use of already designed complex systems.
The reasons why the application of MDOU approaches

is still at an initial level are linked to at least two kinds of
limitations and technical challenges [45]. One of the key
issues to have an efficient MDOU process is the further
development of efficient uncertainty propagation techniques
in a multidisciplinary environment, as several problems may
arise in the propagation of uncertainty among the disciplines.
On the other hand, especially at the early stages of the design,
the number of uncertainties may be very high and their range
can also be relatively broad. In this respect computationally
efficient uncertainty quantification techniques must be fur-
ther developed.
Depending on the nature of uncertainty the literature offers

different techniques to address the coupling dilemma [38],
[41], [44]. The main difficulty is to devise generally appli-
cable techniques that preserve the required accuracy of the
quantification. Model reduction, on the other hand, yields a
smaller size problem by identifying and working only with
the most important parameters. Another key solution to mit-
igate the computational complexity of MDOU is the use of
surrogate models to create a low cost representation of expen-
sive computational steps. However, building high dimen-
sional surrogates is a challenge in its own right, and again
decomposition is instrumental to allow managing complexity
and accuracy. In addition, the introduction of approximations,
like meta-modelling, brings a further degree of uncertainty
that needs to be quantified.
The other challenge inMDOU, often overlooked, is how to

correctly model uncertainty. Uncertainty comes in many dif-
ferent flavours. While many techniques exist to treat standard
aleatory uncertainty (completely known random processes),
the treatment of epistemic uncertainty (lack of knowledge)
in MDOU is still a matter of research. Epistemic uncertainty
is often not well understood and it has been demonstrated
that in many cases it is incorrectly modelled as an aleatory
uncertainty with some paradoxical results.
Finally, it is worth mentioning the cultural difficulty in

adopting MDOU in the private sector. Overcoming this diffi-
culty requires a considerable cultural shift both in the charac-
terisation of the input uncertainty and in the interpretation of
the results. A proper characterisation implies understanding
the nature of uncertainty, correctly treating data, understand-
ing the limitations of process and system models, managing

subjective probabilities and imprecision and finally under-
standing the meaning of design solutions. All these aspects
add a layer of complexity that is often rejected in favour
of simpler, though less meaningful, safety margins. The use
of safety margins is also supported by historical data while
MDOU often lacks a validation step as design solutions never
reach the implementation stage.

III. METHODS FOR MODELLING COMPLEX

INTERACTIONS

A. RESILIENCE OF NETWORKED SYSTEMS

The operations of many complex systems involve networking
together sub-systems and individual entities. The collective
system functionality depends on each component’s individual
functionality, as well as the coupling dynamics in between.
Many of our complex engineering systems exhibit networked
dimensions, including electric grids, transportation, telecom-
munications, water distribution, mail delivery and supply
chains. When these networks are large, complex network
analysis [46] is not sufficient due to the embedded non-linear
dynamics in these networks. To avoid exhaustive simulation
studies, it is worth considering complexity and statistical
physics methods to better understand networked dynamics
and its resilience.

Complexity science has had tremendous success in apply-
ing complex network analysis to natural systems. Its track
record goes back to the 1970s, where it was shown that a ran-
dom graph’s stability scales inversely proportional to the size
and average connectivity of the graph [47]. This demonstrated
the risk of growing and connecting systems without thought
to its stability. In the past decade, advances have beenmade to
solve challenges in ecology and biology, with examples such
as: understanding the stability [48], and robustness of food
webs under environmental stressors [49], [50], and universal
critical behaviour of biological regulatory networks. In all
these examples, topology of the networked interactions has
been deemed the dominant force behind behaviour. Unlike
their natural world counter parts, many complex engineer-
ing systems behave with higher order complexities (e.g. 2+
dimensions). To fully understand networked cascade effects
that lead to a loss of resilience, it is important to consider local
functional dynamics (e.g. behaviour of a transformer) and the
global topology (e.g. structure of the electricity grid) together,
and give attention to the sensitivity to demand conditions and
the need for tight control.
Definition of Resilience and Robustness in Networks:

Resilience is the ability to bounce back to a desirable stable
behaviour, often after a perturbation that leads it to temporar-
ily be in an undesirable regime. For a given performance
metric x at a component (node) i, xi; we can broadly define
a set of desirable and undesirable stable equilibrium points:
{xi = xi,d, dxi/dt = 0} and {xi = xi,u, dxi/dt = 0}
respectively. As these are stable equilibrium points, each node
cannot bounce back from xi,u to xi,d alone, but through the
network’s mutualistic coupling, it has the ability to bounce
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FIGURE 5. Resilience and Robustness in Networked Dynamical Systems: a) a dynamical sub-system, and b) overall networked system.

back (e.g. be resilient). A number of metrics can be con-
sidered, such as the time to recover from failure as well as
the area under the recovery profile (e.g. the resilience loss
triangle(RLT)) [2].
Robustness is the case when topology dominates dynamics,

as is the case in may natural and simple engineering sys-
tems, we can simply state that connected nodes will always
bounce back and unconnected nodes can never recover from
a failure [50]. As such, the binary nature of robustness can
be regarded as a special case of the resilience property and
more of interest to the macro-state of the network than each
node’s local functional dynamics. Checking for the robust-
ness of a networked system involves sequential node or edge
removal is performed to simulate node or coupling failure,
and secondary failures are nodes that become isolated. The
sequential node removal process can be random or targeted,
and as such, the role of the network topology plays a big part
in determining the robustness of the system.
In Figure 5, examples of resilience of a single sub-system

and robustness of a networked system (consisting of N sub-
systems) are illustrated. In Figure 5a-i, it is shown how a
single sub-system with control parameter β can move from
a desirable xd (blue) to an undesirable xu (red). In fact,
if this moves too far, it becomes unrecoverable (even if we
restore β). In Figure 5a-ii,a similar dynamic response, where
the performance drops to a recoverable undesirable state and
recovers later in time t = t1 is illustrated. Here, the loss
of performance over t1 − t0 is known commonly as the
RLT [2]. In Figure 5b-i, many aforementioned sub-systems
together are connected via a network and they mutually

affect each other. In many cases, they can exhibit a critical
behaviour, where unrecoverable functionality in many sub-
systems leads to overall collapse of the whole networked
system. This appears similar to the case of robustness where
one only considers topological failure (Figure 5b-ii), and
indeed in many simple dynamical systems, they exhibit sim-
ilar behaviours [51].
Mean Field Compression of High Dimensional Networked

Resilience Dynamics: When explicit functions are given for
each node and edge’s dynamical behaviour (e.g. ODEs or
PDEs), direct analysis and deeper insight is possible. For
example, the Markovian behaviour x of any given networked
node i can be written as [52]:

dxi
dt

= f (xi, β) +
N

∑

j=1

aijg(xi, xj), (15)

where f (·) is the self-dynamic of node i and g(·) is the
coupling dynamic between node i and node j. The con-
nectivity matrix aij describes the topology of the network.
When the dynamics are trivial, the topology dominates
overall behaviour and classical complex network analy-
sis applies. When the coupling dynamics are non-trivial,
we cannot ignore the high dimensionality of the network
(e.g. N -dimensions) and explicit analysis with insight of the
governing dynamics is ruled out.
In recent years, Gao et al. first proposed a homoge-

neous mean field approach to compresses the N -dimensional
dynamics into a 1-dimensional effective dynamic [52]:

ẋeff = f (xeff) + βeff × g(xeff, xeff), (16)
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where the effective dynamic of the whole system xeff is
governed by the original local functional behaviours, coupled
via a βeff parameter. This parameter represents the role of
topology in connecting local dynamics, which is often a
combination ofweighted degree centrality, but can potentially
take on other network centrality measures. This maps the
relative importance of self-dynamics f (·) and the role of
topology and coupling dynamics βeff × g(·). Whilst this is
the first explicit relationship between dynamics and complex
network topology, other approaches have also been used to
identify this coupling relationship later on [53].
Here, the collective networked components’ dynamics are

compressed into an effective average behaviour xeff, which
maybe misleading when there is significant heterogeneity in
the network. A further innovation byMoutsinas et al., showed
that sequential substitution of the homogeneous equilibrium
solution xeff back into the original dynamical equation
given by Eq.(15) can recover the node level resilience
dynamics [51].

1) CASE STUDIES: ELECTRICITY GRID CASCADE OUTAGE,

TELECOMMUNICATION LOAD BALANCING, RAIL

TRANSPORT RESILIENCE

a: ELECTRICITY GRID CASCADE OUTAGE

Modeling the dynamical state of electrical transmission net-
works requires at least 2-dimensional dynamics and a recent
framework [54] introduce a framework that takes into account
both the event-based nature of cascades and the essentials
of the network dynamics. It was found that transients in the
flows of a power grid play a crucial role in the emergence
of collective behaviors and propose a forecasting method to
identify critical lines and components in advance or during
operation. Here, the flow on the line (i, j) with coupling Kij is
given by:

Fij(t) = Kij sin (θj(t) − θi(t)), (17)

where θ is the phase angle as a fixed point solution to a
power flow analysis. Overload occurs when the flow exceeds
a capacity threshold, often set as a tunable threshold of the
flow:

|Fij(t)| > Cij = αKij, (18)

where F is the ‘‘power flow’’ (1/s2), K is coupling strength
in power flow (1/s2), and C is the capacity of the line (1/s2).

A critical behaviour in unsynchronized nodes can be
found as a function of α, demonstrating the importance
of tuning capacity in power lines. This has widespread
importance in understanding vulnerability power grids to
perturbations [55].

b: TELECOMMUNICATION LOAD BALANCING

Wireless traffic demand is highly stochastic across spatial and
temporal domains. Load is defined as the ratio between traffic
demand and capacity: L(t) = D(t)/C . An open challenge
is whether cascade offloading can cause unstable behaviour,

e.g. an endless cycle of offloading between a network of
nodes, ultimately degrading the entire network’s performance
with no benefit. In load balancing dynamics, the self-dynamic
of each node tends to wish to move load to a stable equilib-
rium of L(t) = 1, and the coupling offloading dynamic tends
to be governed by a difference equation [51]:

dLi
dt

= β(1 − Li) +
N

∑

j=1

aij(Lj − Li). (19)

The topology of the network can be accurately modeled using
Poisson Point Processes (PPP) and Poisson Cluster Processes
(PCP) [56], whereby points are base station nodes and edges
are load balancing relations predefined by the operator. The
resulting network has a high spatial embeddedness, but in this
particular case, is not important to its stability. In the load
balancing case of g(·) ∝ (Lj − Li), it can be shown that the
stability is governed by the eigenvalues of the Jacobian. In this
particular case of load balancing dynamics, the Gershgorin
circle theorem determines the location of eigenvalues of the
weighted in-degree Laplacian of the graph and it can be
shown that the system is always stable, irrespective of the
topology. There are a whole host of stability problems in
wireless and telecommunication networks, including power
control [57], antenna and sleep mode coordination [58].

c: RAIL TRANSPORT RESILIENCE

In many cases, explicit dynamics on the nodes and links are
not available, but data is available on the flows. In one particu-
lar case, the rail transport network’s resilience is examined as
a function of its multi-modal topology and the flow dynamics
along each link between station nodes. In a case study [59],
the morning commute journey flow for the Greater London
and surrounding counties were examined on all train and
overground rail services. For homogeneous linear stability,
one might equate resilience with equilibrium points and look
at the leading eigenvalue of the Jacobian matrix [47], e.g.
instability from leading eigenvalue scales with the size N
and average connectivity C of a random graph: ∼

√
NC .

Instability in any random graph is proportional to its leading
eigenvalue, which is∝

√
NC , whereN is the size of the graph

and C is the average connectivity (degree) of the graph. That
is to say, larger and more connected random networks are
less stable to perturbations. When linear stability is not suit-
able due to complex dynamics and flow data, many authors
have studied system resilience from different perspectives.
Some consider the dynamic response (e.g., time to recovery)
of the whole system after a specific disruption [7], whilst
others use random perturbations to numerically quantify sys-
tem response. However, such approaches depend strongly on
assumptions about the system, such as details of the dynamics
or the number of neighbours required for a node to function.
In this work we make use instead of recent advances in
ecological system analysis to study resilience and robustness,
which can be obtained directly from the adjacency matrix
(even for weighted and directed networks) and have been
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found to be good proxies for resilience in ecosystems [48].
The network is thus rearranged into a hierarchical graph,
where each trophic level represents its order in the energy
transfer of the network (e.g. the highest level takes in most
energy and gives out the least). Here, the trophic coherence
incoherence q is a proxy metric for the number of unstable
feedback loops in the network across different scales, defined
as:

q =
√

√

√

√

1

L

∑

ij

aijx
2
ij − 1, (20)

where aij is the adjacency matrix, xij = si − sj is the trophic
level difference between levels si and sj, and L is the number
of connections in the whole network. The conversion of real
data flows to a hierarchical network can be done using either
basal node enforcement or flow filtering and this is discussed
in [59]. For a network with no feedback, the incoherence
is zero; and for a random network, incoherence approaches
one.

It was found that the trophic incoherence was highly cor-
related with both the consumer dissatisfaction and the major
delays and cancellations statistics. This shows that incoher-
ent feedback loops cause cascade delays and cancellations
that lead to customer dissatisfaction. Compared to potential
confounding variables, trophic incoherence contributed more
than the size of the network, its robustness, and other oper-
ational and network science parameters. This highlights that
when explicit dynamics are not available, one can still infer
useful resilience metrics from the trophic structure of the
network. The researchers go on to identify paths where a
service can be increased or decreased to dramatically improve
the overall network coherence and hence resilience (details
can be found in the paper [59]).

2) CONCLUSION AND LIMITATIONS

In order to retain tractable understanding of the relation-
ship between dynamics and graph topology, the theoretical
challenge going forwards lie in considering more complex
dynamical functions. The high-dimensional space of the net-
work domain is not the greatest concern, but high-dimension
space of the functional domain, when coupled via a network,
is challenging. The major limitations of current Markovian
low-dimension space and low-order ODEs (decoupled) is that
they can only be applied to a limited set of engineering and
ecosystem dynamics, forcing data-driven proxy and statisti-
cal methods to play a large role than desired in many net-
worked dynamical systems analysis. Regarding the network
properties themselves, extreme variations in heterogeneity in
network structure (e.g. strong clustering coefficient in the
network) can also reduce the accuracy of mean field analysis.

This leads nicely for researchers to consider data informing
uncertainty in the parameters and inputs of the system, which
enables the quantification of noise [60], optimal sampling
theorems on dynamical graphs [61], and the development of
stochastic and data-driven control systems [62].

Further research will focus on topological heterogeneity,
non-Markovian dynamics, higher order dynamics, coupling
PDEs with ODEs. These are very challenging complexity and
non-linear dynamic questions which are essential to faithfully
modeling real world engineering systems. Effective model
linearisation using Koopman operators to compress nonlin-
ear models into polynomial linear component dynamics can
provide a pathway towards tractable complex analysis. And
data-driven embedding of appropriate dynamic features can
provide a pathway to finding resilience trends in the enriched
phase space in absence of tractable models.

B. CONVERGENT CELLULAR AUTOMATA:

THEORY AND APPLICATION

A major challenge in creating built-in fault resilience and
self-organising capability within complex platforms lies in
the merging between effective detection and mitigation via
triggered recovery mechanisms. Ideally this should be imple-
mented without incurring major resource overhead or com-
plex coupled-domain behavior. Relevant techniques for fault
resilience are summarised in Table 2, arranged broadly in
ascending order of complexity. A fault is defined as an
undesirable state that may lead to an error state and sub-
sequent malfunction. Fault-driven methods take two funda-
mental approaches to the problem: fault masking without
explicit detection; and fault detection, isolation and recovery
(FDIR). By way of example, successful fault masking in
electronic systems entails securing error-free operation while
the fault condition remains in place and until it either clears
naturally (transient) or remains until power off (persistent).

To address the need for design architectures that support
resilient design, one option is to utilitise dedicated recon-
figurable platforms, of which the FPGA1 remains a classic
platform in electronic systems [63], [64]. There are however
limitations as to what can be achieved using state of the
art COTS2 FPGA and specialised architectures. The neces-
sary target hardware resources, the expected fault scenar-
ios and the required degree of robustness are key factors.
When considering complex systems and their integrated sub-
systems, fault detection represent a complex design trade-
offs; the economic investment required for built-in resilience
becoming relatively high in comparison to the functional
resources due to design integration and hardware outlay. In
this situation, cellular arrays such as cellular automata (CA)
are eminently compatible with existing and future config-
urable platforms and are essentially built upon a compromise
between hardware-identical and information redundancies at
the fine-grained level. As will be discussed in the following
sections, by combining CA with re-configurable information
and technology platforms, new possibilities for resilience
design strategies, such as self-diagnosis, self-reconfiguration
and self-maintenance become available without the specific
need for fault detection.

1Field programmable gate array
2Commercial off-the-shelf
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TABLE 2. Concepts of resilience in order of ascending complexity.

Achieving Convergence With Cellular Automata: CA sys-
tems are dynamic systems in which space and time are dis-
crete. These tend to be highly distributed systems, composed
of large or infinite arrays of cells that use simple programs
or sets of rules to determine their next state (e.g. by selecting
a colour from a discrete set) according to the current state
of their neighbouring cells. The simple behaviour of the
local interactions between cells belies the often complicated,
chaotic or complex behaviour evident across the entire array.
The relationship between the simple behaviour of each cell
and resulting emergent properties of the larger array have
fascinatedmathematicians, computer scientists and biologists
since their conception in the 1940’s. CA are described by
the size and number of dimensions of the array of the cells,
the boundary conditions of the array, the set of states each cell
can be in, the initial state of each cell, the algorithm used by
each cell to determine its next state and the size and shape of
the ’neighbourhood’ of cells about each cell which form the
inputs to this algorithm.
Recent research has focused on whether local rules can be

devised such that the CA has desirable emergent properties
with practical applications. For instance, an electronic circuit
or computer system is an arrangement of individual compo-
nents. If the emergent behaviour of an automaton is defined
as a desired arrangement of components, the correct arrange-
ment will re-emerge in the event that it is corrupted by an
external event, leading to the Convergent cellular Automata
(CCA). However, achieving resilience properties that are
applicable to engineering systems is challenging. Barzel [71]
explored the use of adaptive euler-solvers, Eggenberger [72]
tested various unsupervised evolutionary algorithms to derive
local rules obeyed by each cell such that specific behaviour is
observed across the entire array. More recently, increasingly
advanced evolutionary algorithms ( [73]–[76] have enabled
further control.
The CCA is defined here as regular array of identical

cells, cx,y, each with a corresponding neighbourhood of cells
cx−1,y, cx+1,y, cx,y−1, cx,y+1. If we restrict the rules each cell
uses to determine its next state to be a sum-of-products func-
tion of the state of its neighbours, such that the next state of

FIGURE 6. Example CA convergence from null (a) and random (b) initial
conditions to Cd .

each cell is determined by the formula

cx,y,t+1 = u.cx−1,y + v.cx+1,y + w.cx,y−1

+ x.cx,y+1 + y.cx,y + z (21)

where u, v,w, x, y are constants common to each cell. Con-
verting the CA matrix to a row-major vector Ct , a transition
matrixA can be formed such that the next state of the entire
automata can be generated:

Ct+1 = A.Ct + D (22)

A and D are the structured arrays of variables u, v,w, x, y

and z. For instance, a 2 × 2 array of cells using the next-
state rule (21) would have a the following transition matrix
equation
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(23)

By the repeated application of this transition function,
the transition from Ct=0 to Ct=n (where n > 0) becomes

Ct=1 = A(AC0 + D) + D (24)
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FIGURE 7. Recovery of a 4 × 4 CCA from a combination of random state initialisaton and a transient fault event persisting
during iteration step 1. (a) Target pattern as viewed externally; (b) internal state representation; (c) Random initial state
of CCA; (d) location/value of faulty cell state whose state can be overridden by the CCA rule set; (e) internal state after
single refresh of cells and including state of faulty cell; (f-g) internal state ofter 4 and 9 iterative updates respectively;
(h) resulting CCA pattern after convergence, which matches that seen in (a). The active CCA region is contained within
region encircled by white box; boundary cells are denoted by white numbers.

Ct=2 = A(A(AC0 + D) + D) + D (25)

Ct=3 = A3C0 + A2D+ AD+ D (26)

This can be expanded to form

Ct=n = AnC0 + An−1D+ An−2D+ . . . + AD+ D (27)

Using the geometric series equation this can be simplified to
form

Ct=n = AnC0 + (
I − An

I − A
)D (28)

If the automata always converges to a single global pattern
regardless of its starting state, given sufficient iterations (dis-
crete time-steps of the CA) the final pattern must be indepen-
dent of the initial pattern. ThusAn, the coefficient ofC0, must
equal zero. For this to be so, referring to the coefficients of
the states of the cells above, below, left and right and of the
cell itself respectively, the following must hold: either u or v
must equal zero, either w or x must equal zero, z must equal
zero. That is, Amust be an upper-diagonal or lower-diagonal
matrix.
Given sufficiently large n and a transition matrix that meets

the above criteria, both An and An−1 of equation (28) will
equal zero, and thus C t=n = ( I

I−A
)D. After sufficient itera-

tions, the CA will converge to a final pattern Cd according
to:

(I − A)Cd − D = 0 (29)

Using the above approach it is possible to design CCA
such that a desired pattern will emerge from any initial con-
figuration and will continue to be refreshed in the event of

corruption occurring to the configuration. Solving equation
(29) for A,Cd given some desired final pattern Cd , the next-
state rule for each cell of the CA can be determined such
that the CA always converges to the pattern Cd . For instance,
Figure 8 shows an automata resiliently converging towards
a specified complex pattern by virtue of its 140 × 60 cells
obeying the derived rule set.
Convergence as a Resilience Property: Using the above

approach it is possible to design CCA such that a desired
pattern will emerge from a defined initial configuration that
will continue to be enforced in the event of corruptions.
Solving equation (29) for A,Cd given some desired final
pattern Cd , the next-state rule for each cell of the CA can be
determined such that the CA always converges to the pattern
Cd . For instance, figure 6 shows a trivial automata resiliently
converging towards a simple 2 × 2 checker flag. Although
the initial state shown is an array of zeros convergence is
guaranteed for any initial state. The next-state rule used for
this automata is cx,y,t+1 = 1 − cx−1.y.t − cx,y−1,t .

A more detailed illustration of the robustness of conver-
gence is depicted in figure 7. This shows the recovery of a
4 × 4 pattern after being subjected to a combination of both
state randomisation and temporary fault condition.

For both cases, the CCA reconstructs the correct pattern
within 9 iterations. The temporary fault takes the form of
an incorrect cell coding that is overridden by the CCA rule
and is hence restored to the correct state. Boundary cells
to the left and above the active area (i.e., outside the white
box) influence the coding of rules and states for the given
target pattern; boundary cells to the right and below the
active area are determined by the current state and, for the
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FIGURE 8. A 140 × 60 CA from null (left), and corrupt (right) initial conditions over 200 iterations.

FIGURE 9. Illustration of resilient logic implemented using a CCA coordination layer and functional logic layer. (a) arrangement of coordination and
function layers along with example component cell configurations; (b) Illustrative example configuration for combinatorial logic adder with simple
CCA coordination pattern.

example shown, should always display the combination seen
in figure 7h. These boundary cells can therefore given an
indication of the presence of fault conditions [77]. Figure 8
shows much larger automata converging towards a specified
complex pattern by virtue of its 140 × 60 cells obeying the
derived rule set.

1) CASE STUDY: PROTECTING DIGITAL LOGIC

In order to demonstrate how convergence can be captured
a resilience property in engineering systems, we consider
the case of electronic systems, whose modular, hierarchical
design structure appears a good match to the CCA architec-
ture. The convergent pattern must represent some functional
importance. For instance, a data set, logical configuration
or machine memory state. For cases in which the required
memory for storing CCA next-state rule is smaller than that
needed to store the emergent pattern, encoding the memory
within a CCA will add resilience to the design. This is most
obvious where the data pattern is highly repetitive such as in
the checkered flag pattern (figure 6); most complex patters
and therefore incur increasing rules and state storage over-
head.

For the particular case of protecting digital logic the CCA
can be utilised as a coordinating layer that directs configura-
tion functional logic, in turn organising the actual behvaiour
of the logic unit. This concept is illustrated in Figure 9a where
the (convergent) cell states are mapped to a set of logic func-
tions. The central idea is to protect logic by exploitingwithout
resorting to fault detection mechanism; instead this duty is
performed by virtue of each cell obeying the rule set and,
in turn, continually refreshing the correct logic configuration.
This offers the advantage of abstracting the resilience level
from the (typically) optimised functional logic layer such that
the hardware implementation may share either common or
distinct resources.

A more detailed breakdown of the approach is illustrated
in Figure 9b for a full adder.3 The 1-bit full-adder circuit is
assembled using three logic functions mapped to the states
1, 2, 3 within the CCA state map, resulting in a compact 4×4
CCA layout though finer-grained solutions are also possible.
The choice of granularity is an ongoing area of research and

3The full adder is considered a fundamental building block of common
logic cells used in arithmetic logic units.
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involves several trade-offs concerning efficiency of mapping
to the hardware platform and the expected nature of fault and
its coverage.4

To demonstrate the technique, the example configuration
of Figure 9b has been extended into a 4× 4 CCA design and
synthesised into a Xilinx Vertex 5 FPGA platform via VHDL.
Further details of the specific implementation and fault injec-
tion testing platform can be found in [77]. The test case
involved subjecting the CCA configuration to one or more
faults that result in the functional logic becoming invalid. This
included the extreme case of randomising all CCA cell states.
Ordinarily this scenario would require highly complex fault
detection logic or else would rely upon complete resetting of
the logic with associated down-time. By contrast, the CCA
implementation is able to reconfigure the correct logic in all
cases without intervention.

2) CONCLUSIONS AND LIMITATIONS

CCA present an alternative strategy to conventional fault
detection and mitigation mechanisms for increased resilience
in complex systems. The approach has been considered in the
electronics domain, for which there exists a number estab-
lished detect-mitigate strategies that have well-established
limitations. By encoding convergent behaviour directly into
the design fabric, threats appearing in the form of transient
upset fault conditions can be addressed without the need for
dedicated detection. Further, the core configuration becomes
protected by a distributed rule set shared among all cells.
The approach is extensible to much larger automata [78] than
the example described here, including 3-D automata [79] and
automata that converge towards a sequence of patterns [80].
Although this platform presents an attractive proposition

for protecting the configuration of reconfigurable platforms,
several challenges remain: i) Scalability is important and the
associated key factors governing this are choosing of design
granularity and the necessary rule/state set size. This is well-
understood for smaller CCA but is currently estimated for
larger designs. ii) Fault condition: the approach is most effec-
tive for transient fault conditions since permanent fault con-
ditions require repairing or replacing the affected resources.
This requires changing the configuration by triggering either
an alternative rule set or a new set of boundary cell values.
An additional challenge is that the underlying fabric must
support re-routing between affected and replacement cells.
iii) Resource reuse and scalability: for electronic platforms
a reasonably fine-grained implementation is possible via
FPGAs but high density implementations will require new
reconfigurable platforms optimised for CCA resources. Some
future directions for CCA are suggested below:

• Scalability: Success of the CCA method depends on
deriving efficient rule and state sets that scale favourably
for a given pattern size/complexity. The approach

4Fault coverage is discussed at length by Cheatham [64] Parris [63]; it is
broadly defined here as the expected region of logic that is typically affected
by a fault event. This may occur at the singular gate level or involve multiple
gates/cells.

adopted in [77] can be used as a model for further
investigation.

• Stuck-at fault detection: while the CCA is intrinsically
resilient to transitory error events, persistent stuck-at
faults may prohibit convergence to the correct state. One
potential solution is to exploit CCA cell state redun-
dancy together with observation of boundary cell state
values in order to pinpoint the location of the affected
cell [77].

• Stuck-at fault mitigation: this requires further research
into supporting hardware platforms that not only support
CCA architecture, but also allow for dynamic connectiv-
ity between the cellular fabric. This is closely related to
evolvable hardware platforms [68].

• Alternative applications: aside from protecting critical
cell states that represent patterns and data, the CCA
method may also be applied to self-assembling hard-
ware whose configuration is then protected in a similar
fashion. This requires further investigation of local CCA
neighbourhoods and their common boundary cells [80].

C. AGENT-BASED MODELLING FOR COMPLEX

INTERACTIONS

Unlike other complexity modelling methodologies described
within this paper, agent-based modelling (ABM) offers
explicit description of autonomous and heterogeneous facets
of a system of interest.Whereas CA demonstrates how spatial
proximity and interaction of cells yield models of systemic
robustness, ABM relaxes constraints on the representation of
entities, allowing for the individual representation of tech-
nical objects, subsystems, human decision-makers, and any
other relevant individual actors. These entities are individual
and autonomous ‘agents’ in ABMs and allow for the inte-
gration of distinct social and technical system components,
and therefore enable a more holistic simulation of system
resilience with particular relevance to complex engineered
and engineering systems (CEES) that accommodate a hetero-
geneous population of socio-technical components.

Complex systems are characterised by nonlinearity in the
relationship between individual actions and exhibited collec-
tive behaviour. Through the interdependencies and interac-
tions between components within a complex system, a variety
of common characteristics can be observed. Two important
forms of this behaviour are emergence – a system trait that
cannot be attributed to the actions of an individual component
– and self-organisation – the formation of collective structures
or behaviours based on cooperation or competition between
agents. These two characteristics are observed across a wide
variety of contexts, outlined in more detail below. But impor-
tantly, complex systems are dynamic in nature, meaning these
collective structures can form and dissolve over time, often on
the basis of very small perturbations in individual behaviour.
It is not unusual to observe phase transitions in complex
system behaviour as a result of changes in behaviour of
only a relative few components. Complex systems may also
be adaptive, meaning that modelled components can have
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memories, learn and adjust behaviour based on feedback,
some following rational rules and others acting stochastically.
Learning can potentially maintain or threaten a system held
in equilibrium. Finally complex systems can evolve which
means that through acquisition of new traits or through access
to different resources, parts of the system can mature their
capability and we recognise that the system has changed and
usually describe it.
Agent-based modelling has emerged as a core methodol-

ogy in the understanding and simulation of both technical
and social components of complex systems within a sin-
gle integrated simulation. Through representation of individ-
ual agents and their interactions with each other and with
CEES products and systems, ABMs replicate themicroscopic
behaviours that lead to emergence (e.g. congestion), self-
organisation (e.g. autonomous re-routing), evolution (novel
forms or topologies), and other properties of complex systems
(e.g. repeated patterns/waves). An ABM allows us to test the
conditions under which these properties arise and dissipate in
response to changes in internal or external conditions. Within
this context, ABM represents the ability of a system to resist
threats, absorb shocks and recover from events. Resilience
is described as an emergent property of complex systems
[81], [82], and for CEES we engage with both the technical
and compositional resilience of a product or engineered sys-
tem structure and the functional resilience associated with its
use, capabilities, and user behaviour.
ABM is defined through the specification of a simula-

tion environment, the agents, and their interactions. Within
these bounds a vast variety of configurations are possi-
ble, drawn from a variety of academic disciplines, meaning
ABM lacks a widely agreed methodology. Outlined below
are the key components of ABM, and approaches towards
their definition (for more details see Chapter 3 in [83]
and [84], [85]).
Environment: Prior to the specification of agents, the sim-

ulation environment must be defined to as a bound all indi-
vidual behaviour and interaction. There are three important
components to define:

• Extent (or boundary): Considering that everything can-
not be modelled within our simulation, we must limit
the model extents and define pathways for interaction
with external systems. For example, we may wish to
model specific households exposed to three types of
services contract (30). Thus, we define model extents
early on and take inputs from external models or data
where necessary.

HTot (t) =
3

∑

k=1

HK (t) (30)

1: A household population, subject to three exogenous
services [86].

• Space: Simulation space may be cellular (like CA),
abstract, topological, or geographic (associated with

GIS data). These definitions constrain the movement of
agents and placement of features.

• Time: ABMs are dynamic and progress through simu-
lation by a particular time step referred to as a ‘tick’.
At each tick, agent behaviours are executed, and all sim-
ulation data updated. In modelling a real-world system,
a tick must be tied to a real temporal unit, which then
governs agent movement speeds. A time limit, e.g. a day,
5 years, is usually placed on the simulation.

Agents: Agents are defined through their characteristics
and behaviours, which must be representative of the com-
ponent subset or population of interest. In defining agents,
one must balance simplicity and explainability with the level
of detail required to fully elucidate the context [87], [88].
Multiple types of agents can be defined within a single ABM.

• Characteristics: The characteristics of an agent allow
us to differentiate between agent types and integrate
heterogeneity within agent populations. Characteristics
can be assigned uniformly to subsets of agents, drawn
from a random distribution or populated from evidence.
Characteristics will influence decision-making, move-
ments, and interactions with other agents.

An agent, such as an organisation, when subjected to a
particular threat, may have four resilience character-
istics: Ability to resist, Ability to absorb, Ability to
recover, and Ability to adapt to harmful events. The
values of the variables representing these traits will
be different for different organisations, and so when a
specific organisation is subject to a simulated threat,
their characteristics will determine what decisions
they can make and how they can act.

• Decisions: Decisions can vary from very simple rules
(e.g. always travel on the same train) to sophisticated
decision-making frameworks (e.g. based on cognitive
frameworks, or reinforcement learning), and result in
a change of agent state. Agent decisions will be pro-
voked by time, interaction, or changes in internal or
external states, and will result in an action being taken.
Agent decision models should closely reflect, or provide
a reasonable representation of theoretical or observed
behaviour, else results cannot be relied upon.

• Actions: Actions are responses to agent decisions and
vary widely in nature, potentially including the failure
or death of an agent, the movement of the agent in
space (constrained by extent/boundary), interaction with
nearby agents, execution of additional decision rules,
consumption/depletion of available resources. The agent
state may change as a result of a decision, for example,
for hybrid electric vehicles, five states are possible: start,
normal, accelerate, cruise and brake. The change of
mode occurs as a response to a decision, such as to drive
faster or to stop. Charging is constrained to cruise mode
for the model in Fig. 10.

Interactions: Interactions between the agents and their
environment are essential in the production of emergent
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FIGURE 10. State chart for hybrid electric cars showing when charging
occurs [89].

properties of a system. Agent interactions may involve active
exchange or occur passively through proximity alone, but will
typically trigger agent decisions and actions.

• Proximity and Connectivity: In these cases, the presence
or absence of other agents provokes a change in the
state of an agent. Proximity is defined through spatial
representation, so may relate to adjacent grid cells, topo-
logical connections, or visual observations in geographic
space. Near proximity of agents may furthermore result
in an interaction of competing physical forces, whereby
agents are attracted or repulsed by the presence of other
agents.

• Communication: Given proximity or connectivity
between agents, communication may occur, whereby
an agent state is influenced or changed by another
agent. These communications may result in influencing
decisions and actions of the agents. Communication of
information between agents is a key component of agent
decision making.

• Resource Exchange: Interactions may equally result in
the exchange of resources, be that through cooperation
(e.g. sharing of storage capacity) or competition (e.g.
attempting to serve the same customers). The resulting
redistribution of resources may be unconstrained, mean-
ing a potential detriment to the wider system of interest.

The development of an ABM, and specification of the
model descriptions listed above, produces a large number
of parameters. Following specification of an initial model
structure therefore, a secondary stage of model calibration
and validation will be undertaken. This process (fully elabo-
rated in [85, p.262] involves a) calibrating parameter settings
against observed trends; and b) testing the relative effect of
minor adjustments to parameter settings on system behaviour
(sensitivity analysis). In general, this process will only be
conducted on a few, uncertain parameters in order to limit
the search space. A calibrated model should then be tested
against unseen data to validate its wider suitability.

Modelling Resilience With ABM:ABM excels in its ability
to represent the emergent behaviour of a system through its
ability to represent the interactions between social and techni-
cal components of an engineered system [5], and expose inter-
dependencies and fragility in their interaction [90]. ABMs
can indicate the capability of a system to be resilient to
threats (scenarios), the degree of failure (to provide services),
the time to recover and the degree of recovered services.
CEES are often too expensive or simply cannot be tested in
practice against a variety of threats, and so based on the rules
of behaviour and interactions between system components,
anABMcan simulate and quantify the resilience of a CEES in
response to attack or disruption, and the emergence of system
adaptation and absorption of change.

Previous models have captured the interdependency
between human and infrastructural systems in crises. As [4]
demonstrated, the effect of infrastructure failure results in
policy and behavioural changes that ultimately result in fail-
ures in the road and wireless phone networks. ABMs have
captured the economic and social disruption caused by power
and market network failure by explicitly mapping interde-
pendencies between systems [91], [92]. As described else-
where (Hasan and Foliente, 2015; Rinaldi et al., 2001), ABM
is broadly able to capture n-th order effects resulting from
infrastructure failure. Hasan and Foliente reference the exam-
ple of electric power failure, leading to gas, water, and oil
supply disruption and later effects on transportation networks
and the banking sector (Hasan and Foliente, 2015). Through
enabling the configuration of autonomous and heterogeneous
agents, be them infrastructural and human decision-makers,
ABM is able to replicate interactions between critical com-
ponents.

Agent-based modelling has also been applied in predicting
system-level changes and response, through the actions and
adaptation of its individual components. In Busch, the focus
of external change was on the implementation of district
heating networks, and how different intervention strategies
lead to the success or failure of the policy [93]. Others
have explored how ABM can realistically capture the inde-
pendence and coordination of components in earthmoving
operations [94], [95].

1) CASE STUDY: ELECTRICAL POWER SUPPLY SYSTEM

[96] highlight the importance being placed by academia,
corporations and governments on understanding system
resilience and identifying ways to enhance it, especially
for interdependent infrastructures on which our daily activ-
ities depend. They highlight limitations of past methods and
frameworks to comprehensively assess and analyse system
resilience. These limitations include tailoring to specific dis-
ruptive hazards/events, and inadequately dealingwith absorp-
tion, adaptation, and recovery. They design and implement
a hybrid ABM which incorporates an integrated metric to
quantify system resilience. The ABM is used to simulate a
specific electrical power supply system and then to quantify
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the improvement to resilience from alternative targeted
strategies.
The key components of ABM are implemented in this

model as follows:
• Environment - Extent (or boundary): Electric power
supply systems (EPSS) consists of three interdependent
subsystems: System Under Control (SUC) – the techni-
cal components; Operational Control System (OCS) –
the control mechanisms – specifically SCADA (Super-
visory Control andDataAcquisition) is used for this; and
human operator level system (HOL) – the non-technical
(i.e. people) parts responsible for monitoring/processing
generated alarms, switching off components at remote
substations and sending commands to remote substa-
tions. Environment - Space: The model is implemented
using data from the real Swiss high-voltage EPSS, which
consists of 219 transmission lines and 129 substations,
has experienced hazards such as earthquakes and winter
storms causing significant damage in at least 9 events
over the past 1000 years. Environment - Time: the total
power demand in a snapshot of the Swiss transmission
grid on a day in winter is used. It is assumed that the
disruptive event occurs at time 3 h. At t1/43 h, the dis-
connection of the 17 transmission lines in the selected
region is triggered.

• Agents – Characteristics: Each hardware device is mod-
eled as an agent, which maps the hardware status includ-
ing operational and failures modes. Multiple devices
and components exist in each layer, e.g. transmission
lines (SUC), field instrumentation devices (FIDs) (OCS
- SCADA), and emotion status (HOL) and each are
represented by agents or objects. They have charac-
teristics such as power flow (real number) and sta-
tus (boolean). Over 1,000 individual agents appear in
the model. Agents - Decisions: ABM approaches cap-
ture dynamic behaviors at the functional level. Specific
behavioral rules are assigned to each agent, including
both deterministic and stochastic time-dependent pro-
cesses, triggered by time or inputs from other agents.
E.g. a deterministic process is the power overload of a
transmission line, and a stochastic process is the trig-
gering of a component failure mode, e.g., the unplanned
outage of a generator. Agents - Actions: SUC - physical
and operational processes are modelled by means of DC
power ?ow calculations. HOL - the operator acknowl-
edges the alarm and issues the control command. HOL
subtasks are sent to the ‘‘behavior’’ component to deter-
mine possible error modes and causes during their
execution.

• Interactions - Proximity and Connectivity: The variables
that define the interactions among the three subsystems
act as coupling points among the three models. They
are either input or output from subsystem, e.g. Status of
transmission line (line connected, line disconnected) is
input to SUC and HOL and output from OCS (SCADA).
Interactions - Communication: The OCS (SCADA)

subsystem includes various objects such as commands,
alarms and monitors, whose aim is to transmit data
among agents. RTU (remote terminal unit) agents (SUC)
decide to whether or not to raise an alarm, and if so, it is
forwarded to the relevant MTU (master terminal unit)
agent. The operator (in HOL subsystem) interprets the
alarm and issues a command to the MTU for related cor-
rective actions. The MTU forwards the command to the
RTU which initiates corrective action in field devices,
e.g., to FCD agent to disconnect a transmission line.
Interactions - Resource Exchange: The variables that
define the interactions among the three subsystems act
as coupling points for exchange. Power flow, and Actual
load are examples of resource exchanges between agents
in the SUC sub-system.

• Self-organisation: the whole system is seen to self-
organise into new performance regimes with the intro-
duction of single or combined strategies (e.g. higher
RTU battery capacity improves absorptive capacity dur-
ing disruption phase). The effects of enhancing the
resilience of one system have a much more signifi-
cant impact on an interdependent system when physical
dependencies are present.

• Emergence: Resilience capabilities (i.e. absorptive,
adaptive and restorative capability) emerge in the model
as expected and are measured although we do not know
the actual form (time elapse and pattern of system per-
formance loss) at outset. Strategies, such as storage,
which delay dependency failures, are an important factor
for minimizing negative effects caused by interdepen-
dencies among systems.

2) CONCLUSIONS AND LIMITATIONS

ABMs like all models are simplifications of reality, albeit
ABMs are the most mature tool to represent the diversity of
reality including self-organisation and emergence. Represen-
tations used in models either focus on a sub-set of reality
which means some aspects are ignored (outside scope) e.g.
voltage magnitude is neglected in the case study; or reality
is sufficiently abstracted to keep much of it in scope. Sim-
plifications create uncertainty. The data collection need can
be great especially when a specific geographical area is to be
modelled. Data is needed for calibration as well as validation,
and whilst methods exist to generate test data, the proximity
to real world data is often uncertain. Uncertainty is usually
managed by running 1000s of iterations of an ABM varying
the value of variables, and usually for different scenarios
(possible futures). This allows us to create a reasonable
interpretation of a real system’s properties but increases the
computational burden. Efforts to clarify uncertainty and to
assess ABM results more robustly are needed.

Researchers using ABM methods have largely addressed
the need for standard frameworks to describe their models
however capturing and predicting human behaviour remains
challenging and relies on knowing population distributions of
likely practice (which are not always Gaussian) or knowing
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TABLE 3. Benefits arise from each method.

probabilities for types of actions and responses, which are not
always predictable. There is also an opportunity to hybridize
ABMs as in the case study with other models to represent
behaviour. More potential future directions for ABMs are
listed below:

• The integration of real-time data within ABMs, via
methods such as ‘data assimilation’, will enable the
updating of simulation entities (in terms of their state,
location, and behaviour) with new information. This step
will ensure that agents do not diverge on unrealistic
trajectories of behaviour to only be assessed as unsuc-
cessful during model evaluation.

• The combination of modelling methodologies can
improve the comprehensiveness of ABMs. This may
include the improved modelling of agents via advanced
machine learning (e.g. deep reinforcement learning),
and the integration of ABM and other simulation
methodologies to represent higher level or hierarchical
processes.

• Novel approaches are required for describing and
communicating uncertainty in ABM predictions. This
can be achieved through simultaneous implementation
of different modelling designs and assumptions via

‘ensemble modelling’. Where models agree, greater cer-
tainty in future outcomes can be presented.

IV. DISCUSSION AND CONCLUSION

Three methods for uncertainty analysis in complex engineer-
ing system resilience were reviewed.

Uncertainty in Bayesian Networks is dealt with by mea-
suring conditional probability distributions of the causal
relationships among variables. The ability to model vari-
ables of several types, e.g. Boolean (yes/no), qualitative
(low/medium/high), continuous, together with the ability
to deal with absent data typical in the real world, makes
Bayesian Networks a powerful tool for assessing engineering
resilience. This can further be expanded in different scenar-
ios, as the inland waterway port case study demonstrated.
Limitations of the Bayesian Networks method are its com-
putational cost and poor performance with very small data.

For robust Bayesian analysis of severe uncertainty, it is
necessary to have a proper treatment of prior ignorance by
propagating a set of prior distributions which will determine
accurate inference. Imprecise Markov Chains allow us to
quantify resilience of complex engineering system under
severe uncertainty. The method was demonstrated on a power
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network and showed how statistical processes to be used
in practice to reduce model discrepancies and improving
risk analysis for complex engineering systems. Limitations
include computational cost, and use for decision making
to quantify the trade-off between cost of redundancy and
resilience against common-cause failures.
Multidisciplinary Design Optimization (MDO) methods

consider systems holistically by handling the flow of infor-
mation among the involved disciplines and, then, the com-
plexity of the interactions. MDO under Uncertainty (MDOU)
includes reliability based multidisciplinary design optimisa-
tion (RBMDO), and robust multidisciplinary design optimi-
sation (RMDO).MDOU for resilience requires the dynamical
system to be both robust and reliable at the same time. A space
systems case study addresses imprecision and epistemic
uncertainty. A key issue is the need for efficient uncertainty
propagation techniques in a multidisciplinary environment
which deals with early stages of the design, when the number
of uncertainties may be very high and their range can also
be relatively broad. In this respect computationally efficient
uncertainty quantification techniques must be further devel-
oped.
Three methods dealing with interconnectedness in com-

plex engineering system resilience were reviewed.
Network science is able to fully understand cascade effects

that lead to loss of resilience, by considering local functional
dynamics (e.g. behaviour of a transformer) and the global
topology (e.g. structure of the electricity grid) together, and
give attention to the sensitivity to demand conditions and
the need for tight control. This requires more processing to
understand robustness and resilience than for non-engineered
systems. Electricity, telecommunications, and rail transport
cases are provided. Limitations focus on the relationships
between topology and dynamics, the ability to faithfully rep-
resent real engineering systems, and data informing uncer-
tainty in the parameters and inputs of the system.
By combining Cellular Automata with re-configurable

information and technology platforms, new possibilities for
resilience design strategies, such as self-diagnosis, self-
reconfiguration and self-maintenance become available with-
out the specific need for fault detection. Simple rules toward
convergent cellular automata underpin the design of engineer-
ing systems such that desired patterns emerge from any ini-
tial configuration. A case study in electronics is considered.
Limitations of convergent cellular automata include scalabil-
ity, fault conditions (most effective for transient faults) and
resource re-use.
Agent-based modelling (ABM) offers explicit description

of autonomous and heterogeneous facets covering both tech-
nical and social components of complex engineering systems
within a single integrated simulation. ABMs can quantify
ability to resist threats, absorb shocks and recover from
events, and models can be infinitely configurable. An electric
power system is reviewed in the case study, showing the
emergence of resilience capabilities (i.e. absorptive, adaptive
and restorative) through self-organisation, e.g. in response to

battery capacity. Limitations include the uncertainties created
by simplification and data collection, as well as accurately
predicting human behaviour.

Although methods contain limitations and areas for future
research, those selected in this paper provide a fundamental
diversity of sound approaches to assess engineering system
resilience. Comparison of methods is beyond the scope of
our paper, and future researchers are recommended to do this
comparison. Furthermore, the potential research methodolo-
gies or any integrated approaches (i.e., integrated BN and
Markov chain) that have not been used in the past but can
be used as an alternative approach in the future should be
considered. The case studies in this paper are only exemplars
and others case studies exist.

The distinct benefits of each method in the context of
resilience research study are presented in table [3]. The
summary highlights the range and diversity of the methods
to address uncertainty and interconnectedness in complex
engineered and engineering systems.
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