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ABSTRACT 

Quantification of residual stress gradients can provide great improvements in understanding the 

complex interactions between microstructure, mechanical state, mode(s) of failure and structural 

integrity. Highly focused local probe non-destructive techniques such as X-ray Diffraction 

(XRD), electron diffraction or Raman spectroscopy have an established track record in 

determining spatial variations of the relative changes in residual stress with respect to a reference 

state for many structural materials. However, the interpretation of these measurements in terms 

of absolute stress values requires a strain-free sample often difficult to obtain due to the 

influence of chemistry, microstructure or processing route. With the increasing availability of 

Focused Ion Beam (FIB) instruments, a new approach has been developed known as the micro-

scale ring-core Focused Ion Beam - Digital Image Correlation (FIB-DIC). This technique is 

becoming the principal tool for quantifying absolute in-plane residual stresses. It can be applied 

to a broad range of materials: crystalline and amorphous metallic alloys and ceramics, polymers, 

composites and biomaterials. The precise nanoscale positioning and well-defined gauge volume 
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of this experimental technique make it eminently suitable for spatially resolved analysis, i.e. 

residual stress profiling and mapping. Following a summary of micro-stress evaluation 

approaches, we focus our attention on FIB-DIC methods, and assess the application of micro-

scale ring-core methods for spatially resolved residual stress profiling. The sequential ring-core 

milling FIB-DIC method allows micro- to macro-scale mapping at the step of 10-1000 μm, 

whilst the parallel FIB-DIC approach exploits simultaneous milling operation to quantify stress 

profiles at the micron scale (1-10 μm). Cross-validation against XRD results confirms that these 

approaches represent accurate, reliable and effective residual stress mapping methods.  

 

a) Corresponding author.  Electronic mail:  alexander.korsunsky@eng.ox.ac.uk  

Phone: 01865 273043 
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INTRODUCTION 

Accurate and reliable residual stress evaluation is a critical pre-requisite step for 

understanding and predicting engineering component behaviour and failure. Quantification of the 

magnitude and orientation, and fine scale variation of locked-in internal forces has great utility 

for a wide range of applications, from the impact of ion radiation on thin films1 to the interaction 

between residual and applied stresses in the failure mode of high pressure components2.  

Residual stress analysis techniques can be classified into three main approaches: 

1. Non-destructive techniques. Physical analysis methods allow residual stress evaluation via 

the quantification of small variations in structural or physical parameters e.g. the evaluation 

of interplanar atomic lattice spacing by diffraction, or changes in molecular bond stiffness by 

spectroscopy. These methods have proven to be effective in determining the residual stress 

distributions at ultra-high resolution (down to tens of nm)3, 4. The physical basis of the 

approach is the interaction of particles or radiation (X-ray photons, neutrons or electrons) 

with the sample. The wide range of experimental methods includes high resolution optical 

techniques5-7 , Raman spectroscopy8-11, electron back scatter diffraction12-15, and a multitude 

of X-ray diffraction and spectroscopy techniques16-21. These have all been used to quantify 

the relative residual strains or stresses, i.e. in comparison with a reference. The accuracy of 

these measurement techniques is limited by the precision to which reliable reference values 

can be determined.  

2. Stress analysis by material removal (destructive). The introduction of traction-free surfaces 

by sample sectioning induces stress redistribution and strain relief in the surrounding 

material. Quantification of this strain change can be used in combination with numerical 

modelling to back-calculate the stresses originally present in the material. Experimental 
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techniques that rely upon this approach include the slitting and contour method22-24, with a 

typical resolution in the range of fractions of a millimetre being achievable.  

3. Semi-destructive stress analysis. The introduction of localised stress relief through hole-

drilling or core milling25-27 can be used to quantify the magnitude of stress at a particular 

location within a sample. Quantification of the strain change induced at the surface is 

typically performed either using strain gauges, or by Digital Image Correlation (DIC) 

analysis. These measurements can then be used as inputs to enable back calculation of the 

stresses originally present. Traditional semi-destructive techniques are capable of resolving 

stress at the resolution of ~1 mm laterally, and at a depth resolution of ~0.03 mm. 

The progressive refinement of these techniques has in the last few years provided methods 

for quantitative assessment of residual stress at resolutions down to a few microns. In the theory 

of solid continua, the complex tensor quantity of stress at a material point is defined using the 

components of internal material force acting across an imaginary sectional area, characterised by 

a certain orientation of its normal and size. This definition emphasises that stress is a scale-

dependent quantity. Dividing the internal force by the sectional area is equivalent to averaging, 

meaning that consistency with the definition requires that finer scale internal variation be ignored 

in the analysis at the particular chosen scale. Experimental stress evaluation techniques are 

inextricably linked to a certain length scale, the so-called gauge volume, within which the 

interaction between the probe and the solid material in question is played out.  Whenever 

reference is made to (residual) stress evaluation, we define the term micron-scale as referring to 

gauge volumes with dimensions less than 10 μm in at least two of the three spatial coordinates. 

In this context, depth profiling by chemical material removal (with steps down to a few microns) 

doesn’t qualify as micron-scale measurement.  
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Recent studies have demonstrated that localised stresses (at the micron scale or even smaller) 

are often critical in the understanding of the origins and mechanisms of component failure. 

Unlike extrinsic properties such as stiffness, intrinsic properties of strength and fatigue resistance 

are dependent on the local “weakest link”. This may be as small as a specific micron-sized 

region within a grain of material, at a grain boundary or junction. During service, it is the 

interaction between the residual stress and the applied load that determines the mechanical 

response and the likelihood of crack initiation. The interaction is played out over a wide range of 

different length scales, with the exact dominant dimension depending on the application. For 

example, it is customary to place principal emphasis on macro scale behaviour consideration in 

welding28, micron scale in aero engine assemblies29 and sub-micron scale in the case of nano-

composites30. 

I. AN OVERVIEW OF X-RAY DIFFRACTION METHODS FOR MICROSCALE 

RESIDUAL STRESS ANALYSIS 

Collimation of a parallel X-ray beam to define the illuminated region of the sample can be 

effective down to the spot size of approximately 10 × 10 μm2. Beam profiles smaller than this 

limit typically have insufficient flux to obtain diffraction profiles of the quality required for 

quantitative strain evaluation within a reasonable time period.  Therefore, in order to reduce 

exposure times, tighter beam definition requires the use of focusing to improve the X-ray flux 

into the gauge volume. This tight focusing can be accomplished using either transmission optical 

elements, such as compound refractive lenses (CRLs), Fresnel zone plates (FZPs), or reflective 

mirrors31. In recent years there has been growing interest in the development and use of optical 

elements such as CRL-based transfocators32 for high energy X-rays, and the use of diamond for 

making kinoform lenses33.  
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Monochromatic micro-beam X-ray diffraction relies on obtaining a powder pattern from the 

gauge volume; therefore, the sample must have a fine-grained structure, with a sub-micron mean 

grain size. Debye-Scherrer patterns of coaxial scattering cones are typically collected on a 2D 

detector mounted either in the direct beam (transmission, Fig. 1), or on a side (reflection). 

Procedures and software can be used to reduce these 2D diffraction patterns to the more 

conventional one-dimensional profiles34 which in turn can be analysed full profile refinement 

packages, such as FullProf35, MAUD36,  or GSAS37. These patterns can be used to quantify the 

complete material strain state in the plane perpendicular to the incident beam38, or as a measure 

of texture, i.e. orientation distribution function (ODF) analysis39. Nano-crystalline human dental 

tissues (dentine and enamel) offer a prominent example of a natural material in which 

synchrotron diffraction characterisation has been applied to great effect 40-42.    

 
FIG. 1. Schematic representation of the synchrotron X-ray powder diffraction setup at beamline I15 (DLS, UK). X-ray 
diffraction patterns were collected by scanning the X-ray beam across the positions shown in the inset. 
 

In larger grained (< 20 − 30 μm) microstructures, micron-sized beams can be used to 

evaluate of intra-granular strains and stresses. Monochromatic analysis of this form presents a 

challenging need for precise rotational alignment between crystallographic orientation and the 

incident beam, as well as micron scale sample positioning. An alternative is offered by the use of 

white beam (polychromatic radiation), also known as Laue mode diffraction, that can also be 
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carried out in reflection43 or transmission geometry21. The analysis of 2D Laue diffraction 

images can be accomplished using automated software tools to determine grain orientation and 

deviatoric lattice strain44, 45. Pure hydrostatic expansion or contraction of a unit cell does not 

change the angles between lattice planes, meaning that the Laue pattern does not alter, although 

the energies corresponding to individual reflections are modified. This effect can be registered 

using an energy resolving detector, or by filtering the incident beam energy46. Recent 

development of particular relevance to strain analysis concerns careful evaluation of error 

sources47, and the quantification of small changes of Laue patterns due to lattice rotation and 

strain-induced distortion48. Recent Laue micro-diffraction studies include the evaluation of 

stresses promoting the growth of tin whiskers49 and multi-technique mapping of deformation of 

nickel polycrystals50 (Fig. 2).  

 

FIG. 2. Schematic of Laue diffraction during in-situ loading of a notched nickel superalloy single crystal 

 
A final note should be made regarding studies attempting to use atomic Pair Distribution 

Function (PDF) analysis to determine strain in non-crystalline materials. The paper by Poulsen et 

al.51 opened the way to the development of this approach, while a more recent publication by 

Huang et al.52 revealed the relationship between macroscopic strain and radial distribution peaks 

shifts obtained from PDF analysis. Small Angle X-ray Scattering (SAXS) may also be used to 

evaluate nano-scale strains, although quantitative interpretation requires careful consideration53. 
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II. AN OVERVIEW OF ELECTRON DIFFRACTION TECHNIQUES FOR 

MICROSCALE RESIDUAL STRESS ANALYSIS 

Electron diffraction provides another powerful route to determine lattice strains at resolutions 

ranging from the sub-micron scale in a back-scattered geometry, to a few nm in transmission.  

Electron Back-Scatter Diffraction (EBSD), originally discovered by Nishikawa and Kikuchi 

in 1928, has grown in popularity since the advent of commercial Scanning Electron Microscopes 

(SEM) in the 1960’s. Automatic pattern indexing using the Hough transform54 has since 

facilitated routine processing of large numbers of patterns. Grain orientation determination for 

microstructure mapping and micro-texture analysis are now popular EBSD applications of, along 

with the use of Kikuchi pattern quality assessment to visualise grain boundaries and plastically 

strained regions. 

 

FIG. 3. a) Schematic diagram showing the experimental set-up for EBSD. b) EBSD elastic strain measurements around an 
indent in a silicon single crystal12. 
 

The classical angular resolution of EBSD lies in the range of ~0.1° − 0.5°, and therefore the 

determination of lattice strain (typically required at a resolution ~10-4) appears to represent a 

significant challenge using this technique. Nevertheless, in the last decade ever increasing levels 

of EBSD sensitivity have been achieved through the improvement of interpretation procedures. 

Accurate intragranular lattice mis-orientation and quantitative residual stress analysis is now 

possible by using DIC to quantify small changes in Kikuchi patterns (HR-EBSD) 12, 55 (Fig. 3). 
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 High spatial resolution (~10 nm)56 EBSD mapping has recently been published using a 

transmission geometry on thin samples such as TEM lamella57. This approach is similar to the 

high resolution strain mapping performed using TEM transmission diffraction e.g. using 

convergent beam diffraction58. In both of these cases, care must be taken to account for stress 

relaxation during lamella preparation59. 

III. SPECTROSCOPIC METHODS FOR MICRON SCALE RESIDUAL STRESS 

PROFILING 

Spectroscopic techniques probe the atomic or molecular energetic characteristics of the 

sample in order to extract indirect information about residual stress state within the gauge 

volume. For example, peak shifts in Raman spectra can be related to the residual stress state 

within the volume illuminated by a monochromatic laser and confocal optics allow this beam to 

be focused to ~0.2 μm. Furthermore, due to the penetration of light through the surface material 

layers, such setups facilitate residual stress depth profiling of micron-sized material volumes60. 

Raman spectroscopy residual stress mapping has recently been used to study zirconia-based 

thermal barrier coatings (TBC)61 and the impact of etching on porous silicon62 (Fig. 4). An 

important recent development in this field is correlative Raman and SEM imaging achieved by 

combining the two microscopy modes within one instrument63.  

 

FIG. 4. Spatially resolved residual stress analysis in an etched surface of porous silicon62. The Raman peak shift detected at 
each location is shown in (a), and the corresponding residual stresses are shown in (b). 
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All the various modes of micron-scale stress evaluation described above, whilst benefiting 

from non-destructive nature, suffer from a number of limitations. Firstly, not all material types 

can be studied using these techniques: for example, diffraction only works with crystalline 

samples that contain grains of a size that can be approximated as either a powder or as a single 

crystal (relative to the beam size). Furthermore, diffraction of heavily deformed materials (e.g. 

metallic alloys) that contain significant lattice distortion, results in degraded diffraction patterns, 

making them impossible to interpret. 

Spectroscopic methods such as Raman can only be applied to materials that contain 

molecular bonds. Consequently, polymers and oxides can be analysed in this way, whilst 

metallic alloys cannot.  

Most importantly, all beam-based methods provide relative stress measurement, i.e. require a 

reference state for reliable interpretation. Providing reliable micron-sized reference volumes is 

known to formidably difficult in many samples of interest.  

In contrast, techniques for stress evaluation based on material removal (e.g. slitting, 

sectioning, drilling) do not suffer from the above limitations: they can be applied to both 

amorphous and crystalline materials, including after heavy plastic deformation. Furthermore, 

experimental studies3 and numerical simulation64 have demonstrated the micro ring-core method 

provides “on-board”, built-in reference. This approach not only provides a reference for 

quantitative interpretation of diffraction and spectroscopy data, but allows the determination of 

absolute residual stress state. 

IV. MICRO RING-CORE DRILLING AND RELATED TECHNIQUES FOR RESIDUAL 

STRESS PROFILING 
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The idea of obtaining a minimally destructive probe of local residual stress using a ring-core 

geometry is not new: it goes back to the pioneering work of Keil in the early 1990’s27. The surge 

of recent interest is based on work by Korsunsky et al.64,  in which micro-scale Focused Ion 

Beam (FIB) ring-core milling was used to quantify residual stress in a precisely defined gauge 

volume. This broadly applicable basis has facilitated the development of a range of similar 

related techniques65. These methods rely on the introduction of new traction-free surfaces with 

quantification of the resulting surface strain relief. SEM images of the surface are typically post-

processed using Digital Image Correlation (DIC) analysis software in order to quantify such 

changes. Comparison with Finite Element (FE) simulations is then used to relate this strain relief 

measurement to the pre-existing residual stress value. 

One of the main limitations on the resolution of these semi-destructive techniques is the 

residual stress locally induced by ion implantation66. The magnitude and region of this influence 

is dependent upon the milling geometry, ion energy and material of interest67. Typically this zone 

ranges from 10 − 100 𝑛𝑚 and therefore this acts as a limit to FIB based stress quantification.  

 Micro-scale versions of the traditional macroscopic semi-destructive analysis techniques 

have been shown to be effective for quantifying fine scale residual stress, e.g. using slot milling68 

and hole drilling25. FIB based micro-slitting was first published by Kang et al.69 in 2003 and has 

since become widely used to estimate residual stress in a direction perpendicular to the slit70-72. 

Recent improvements have provided estimates of residual stress variation with depth65 and along 

the length of the slit73. Micro-scale FIB hole drilling, on the other hand, has provided estimates 

of the 2D stress state in a number of applications74 including incremental depth resolved 

analysis75 and spatially resolved investigations76. The main limitation of these approaches is that 

they rely on the strain relief induced in relatively large surface regions (typically ≥10’s of 
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microns). This means that the exact region of the stress evaluation is often difficult to pinpoint, 

and the spatial resolution is consequently reduced. In turn, this somewhat limits their 

applicability for high resolution spatially resolved analysis i.e. marker interaction is guaranteed 

at very small length scales (< 10 𝜇𝑚). 

Novel FIB approaches based on the uplift or in-plane relief of surface material have recently 

been proposed to quantify the plane stress state; these include the micro cantilever77 and H bar78 

methods. The relatively long sample preparation times and limited measurement positions 

associated with these techniques means that they have limited relevance for stress mapping. 

The ring-core FIB-DIC methodology allows quantification of the complete in-plane residual 

stress state at the micro-to-nano scale64, 79-83. This technique relies on inducing and measuring the 

strain relief within a well-defined gauge volume: a micro-pillar which is FIB milled in the 

material surface down to a depth-to-diameter aspect ratio ~1. The high speed, ease of application, 

precision and nanometre placement accuracy of this approach has meant that it has since been 

applied to a wide range of materials and problems.  

The use of a small island defines a precise gauge volume, but limits the area over which DIC 

can be performed. Despite this restriction, repeated imaging of the island surface provides a more 

thorough record of the strain change as a function of milling depth. The strain relief profile is 

then fitted with a “master curve” based on the results of previous FE simulations of the milling 

process84. This approach means that FE analysis is not required, and quantitative results are 

obtained in minimal time.   

Recent advances in this technique have demonstrated that depth-wise spatially resolved 

analysis can be implemented using the FIB-DIC approach 85. Although the theoretical framework 

for this depth profiling is well-established and robust, experimental practicalities such as ion 
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implantation, surface roughness and degradation and material inhomogeneity86 impact the results 

of this approach. Therefore, attempts to declare residual stress depth profile measurements must 

be treated critically and by validation against the limited number of comparable techniques.  

Alongside the review of the available micro-scale residual stress measurement techniques, 

the present paper assess the robustness and validity of the FIB-DIC methods to quantify in plane 

spatially resolved residual stress through the ring-core approach. Two possibilities arise for 

attaining this objective, namely, sequential milling or parallel milling of features on the sample 

surface. A schematic of these two approaches is shown in Fig. 5; sequential milling involves the 

incremental determination of residual stress in islands placed at regular intervals (left of Fig. 5), 

whereas parallel milling requires simultaneous milling of multiple features in a contiguous array 

(right of Fig. 5) 

 

FIG. 5. A schematic of the sequential (left) and parallel (right) FIB-DIC milling approaches. 
 

V. FUNDAMENTALS: THE SEQUENTIAL SPATIALLY RESOLVED RING-CORE 

FIB-DIC RESIDUAL STRESS ANALYSIS TECHNIQUE 

Spatially resolved residual stress analysis offers obvious advantages over single point 

measurements, through their capacity to the reveal stress gradients. This lateral resolution is 

necessary to improve understanding of the interactions between microstructure, processing route 

and stress state in a range of materials and assemblies87-89. In order to ensure precise knowledge 

of the stress analysis location and to ensure a consistent gauge volume, a combination of 
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microscopy and measurement is necessary in spatially resolved techniques. For these reasons the 

micro-scale ring-core FIB-DIC technique has excellent potential for spatially resolved analysis. 

Direct comparison between the initial (undisturbed and residually stressed) and final (milled 

and strain relieved) states is needed for reliable semi-destructive stress analysis.  In order to 

enhance the robustness of this interpretation, an incremental strain relief curve is often used64, 78, 

90. The same approach can be implemented sequentially, provided successive measurements do 

not influence each other. This places a lower limit on the distance between successive milled 

features. The ring-core FIB-DIC technique introduces annular traction-free surfaces which 

induces stress (and therefore strain) relief in the surrounding region. Therefore, care must be 

taken to quantify the distance over which this variation becomes negligible. 

To obtain an estimate of this lower limit, calculations on the basis of the classical Lamé 

thick-walled cylinder solution can be used. Consider the outer surface of the trench 𝑟𝑇 as the 

inner surface of an infinitely thick cylinder in a state of equi-biaxial, uniform in-plane stress 𝜎𝑅. 

The radial stress (𝜎𝑟𝑟) and hoop stress (𝜎𝜃𝜃) distributions can be written in a general form as91 : 

𝜎𝑟𝑟 = 𝐶 − 𝐷𝑟2, (1) 

𝜎𝜃𝜃 = 𝐶 + 𝐷𝑟2, (2) 

where the variable 𝑟 represents the radial coordinate, and  𝐶 and 𝐷 are undetermined constants. 

The traction free surface at a radius 𝑟𝑇 and constant residual stress 𝜎𝑅 state at an infinite distance 

are used as boundary conditions to determine 𝐶 and 𝐷 such that: 

𝜎𝑟𝑟 = 𝜎𝑅 [1 − (𝑟𝑇𝑟 )2], (3) 

𝜎𝜃𝜃 = 𝜎𝑅 [1 + (𝑟𝑇𝑟 )2]. (4) 
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This simplified stress analysis provides sufficient insight to conclude that the residual stress 

variation surrounding an annular feature is inversely proportional to the square of the ratio 

between the radial coordinate and the outer radius of the feature. By comparing the full through 

depth relief in a thick walled cylinder and the limited milling depth (~𝑟𝑇) of the ring-core FIB-

DIC approach, it can be seen that this approximation is an overestimate of the actual stress relief. 

This means that at a radius equal to five times island diameter, the induced stress change is 

guaranteed to fall below 1%.  

VI. CASE STUDY: SEQUENTIAL SPATIALLY RESOLVED RESIDUAL STRESS 

ANALYSIS IN A SHOT PEENED AERO ENGINE COMPRESSOR BLADE 

In order to provide a quantitative illustration of the capabilities of the sequential ring-core 

approach, an example study has been selected: a material surface response to shot peening. The 

residual stress profile induced by shot peening has been well characterised by a wide range of 

previous studies92-95. The typical form of a shot peened residual stress profile is outlined in 

Section VI.D with the exact distribution depending on the shot peening parameters applied. 

The sample selected for the present study was cut from an aero engine compressor blade 

made from nickel superalloy IN718. Careful control of the processing route resulted in a 

microstructure of sub-micron precipitates of 𝛾′ phase Ni3(Al,Ti) within an intermetallic face-

centred-cubic austenitic phase 𝛾 matrix. Despite the highly anisotropic nature of grains within 

Ni-based superalloys, the microstructure was sufficiently refined to approximate the material as a 

polycrystalline under the scale of observation (~5 μm). The validity of this approximation was 

demonstrated by the similarity between the experimental strain relief profiles and the 

homogenous, isotropic, FE simulations (Fig. 6d)64.  
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FIG. 6. Steps required to quantify full depth strain relief in the ring-core approach. a) Incremental 
collection of SEM images during milling. b) DIC marker tracking on the central core region (markers 
shown in red). c) Gradients of the displacement against position plots provide strain estimates at each 
milling depth. d) Strain relief analysis is performed in three directions (0°, 45° and 90°). The error bars 
represent 95% confidence intervals and the fitting function is given in Equation 5. 
 
A. Sample Preparation 

To ensure a consistent interaction, shot peening was applied to the entire surface of the 

compressor blade in a direction perpendicular to the blade. The affected depth was known to be 

significantly less than 1 mm; beyond the resolution of traditional macro-scale techniques. The 

ring-core FIB-DIC approach was sequentially implemented to form a line of milled annular 

features extending from the blade surface to approximately 520 μm into the bulk. 

The sample was cut prior to analysis to expose a cross-section of the blade surface. In order 

to minimise any induced residual stress, a diamond saw (Buehler Isomet) was used to cut a 3 mm section of the blade and incremental grinding and polishing was used to further reduce the 

impact of any residual stresses induced by this process.  As a final sample preparation stage, the 

polished cross-section was etched with Kalling’s No. 1 reagent for 60 s. This revealed the 𝛾 and 𝛾′ distribution in the microstructure of underlying material and greatly increased the contrast of 
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the SEM images of the surface, both in terms of surface roughness and Z-contrast. This property 

is important in the DIC procedures associated with the ring-core FIB-DIC approach. 

B. The Sequential FIB-DIC Approach 

The ring-core FIB-DIC approach was performed in the Tescan Lyra 3XM FIB-SEM 

instrument at the Multi-Beam Laboratory for Engineering Microscopy (MBLEM), Oxford, UK. 

Optimisation of the SEM parameters was used to generate a spot size of 6.9 nm and an 

automated contrast and brightness routine was used to maximise the dynamic range of the 

captured images. An image size of 2001 × 2001 pixels was selected as a compromise between 

high resolution imaging and experiment duration (and the associated potential for sample drift). 

Optimisation of FIB parameters was then performed to generate an effective spot size of 7.5 nm 

at a beam current of 100pA which was selected to reduce ion irradiation in the core.  

An island diameter of 5 μm was chosen as a balance between milling time (longer for larger 

diameters) and the precision of stress evaluation (better for larger diameters). A trench width of 

1.5 μm was selected to minimise the impact of re-deposited material onto the island surface and a 

nominal milling step of 100 nm was then used as an input into the automated incremental FIB 

milling script. Between each increment, SEM imaging of the core region was performed at an 

oblique angle of 55°. Tilt correction was used to decrease the vertical scanning increment in the 

SEM by a factor equal to 1 cos 55°⁄ , to ensure that the vertical and horizontal imaging resolution 

was equal. Milling was performed to a nominal depth of 5.3 μm in order to ensure that complete 

stress relief was obtained in the central island. The entire process took approximately 45 minutes 

and generated a total of 54 images. 

Due to edge rounding, the first milling feature was placed approximately 20 μm from the 

edge. This process was then repeated 10 times along a line perpendicular to the surface in steps 
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of approximately 50 μm. This spacing was chosen to ensure negligible marker interaction, while 

providing sufficient resolution to resolve the impact of shot peening.  Difficulties in alignment 

and beam drift meant that some stress analysis points were unsuccessful. For this reason some 

features were placed closer together and others further apart (Fig. 7). The closest markers were 

placed 25 μm apart which corresponds to a maximum potential residual stress deviation of 2.5%.  

 

FIG. 7. Diagrammatic representation of the magnitude (arrow colour) and orientation (arrow rotation) of the principal stresses 
over an SEM image of the final milling positions. 
 

After SEM image collection, DIC was performed on the core central region (where constant 

strain variation is expected86) using a modified version of a freely available DIC script96 (Fig. 

6b). Bulk drift was initially removed by performing lower resolution DIC and correcting for the 

shifts observed. Following manual and automated outlier removal, the well-tracked markers were 

used for the next stage of analysis. 

Plots of displacement (∆𝑥) against position (𝑥) were then calculated for each image (Fig. 6c) 

and least squares fitting of a linear profile was used to quantify strain relief (as the gradient ∆𝜀 =∆𝑥 𝑥⁄ ) in the 0°, 45° and 90° directions. Estimates of the ∆𝜀 95% confidence intervals were 

simultaneously obtained from the covariance matrix of this fitting process. A typical output data 

set from the feature placed at 115 μm from the surface is shown in Fig. 6d  

The nominal “master curve” previously outlined by Korsunsky et al.64 was then used to 

perform least squares fitting of the resulting profiles. This fitting process provides an estimate for 
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the complete strain relief at an infinite milling depth (∆𝜀∞). However, to accommodate for minor 

variations in the milling rate and surface roughness, two further parameters were introduced. 

Parameter 𝜂 below represents the apparent milling depth per image. Setting it to a constant 

implies that the milling depth ℎ is directly proportional to the image number 𝐼. Parameter 𝛿 

accounts for a minor offset in the milling depth, e.g. due to surface roughness. The final form 

was therefore, 

𝑓(∆𝜀∞, 𝜂, 𝛿) = 1.12∆𝜀∞ × 𝑧(1 + 𝑧) [1 + 2(1 + 𝑧2)] ,       𝑧 = 𝜂𝐼0.42𝑑 + 𝛿,  (5) 

where 𝑑 is the diameter of the island (5 μm). The inverse of the standard deviation of the strain 

relief estimates were used as data point weightings in the least squares fitting approach. This 

enabled accurate estimates to be obtained for the 0°, 45° and 90° strain relief at infinite depths 

(∆𝜀∞0°, ∆𝜀∞45°  and ∆𝜀∞90° respectively), as well as the standard deviation of these values.  

Next, the principal strain relief orientations, magnitudes and standard deviations were 

determined (∆𝜀∞1  and ∆𝜀∞2 ) from the 0°, 45° and 90° strain relief values. The microstructural 

directionality induced by the shot peening and surface milling ensured that the principal 

directions were closely aligned to the directions parallel and perpendicular to the sample edge, 

with an average offset of less than 4° (Fig. 7).  

The principal strain relief values were then used to calculate the principal in-plane stress 

values (𝜎1 and 𝜎2) and standard deviations at each marker location. This calculation was based 

on the non-equi-biaxial stress state expression previously outlined by Korsunsky et al.64, 

𝜎1 = − 𝐸(1 − 𝜈2) [∆𝜀∞1 + 𝜈∆𝜀∞2 ] (6) 

𝜎2 = − 𝐸(1 − 𝜈2) [∆𝜀∞2 + 𝜈∆𝜀∞1 ] (7) 



 

20 
 

where 𝐸 and 𝜈 are the bulk Young’s modulus (205 GPa) and Poisson’s ratio (0.294) values for 

IN718, respectively. This calculation is based on the assumption that the material is both 

isotropic and homogenous. Careful examination of the microstructure of the region of interest 

suggests that this is a valid approximation. However, any local variations in anisotropy would 

alter the stress results obtained. The extent of this alteration is the subject of ongoing analysis by 

means of numerical simulation86. 

C. X-ray Powder Diffraction Experimental Procedure 

Following the sequential ring-core FIB-DIC residual stress analysis, X-ray Power Diffraction 

(XRPD) was performed at beamline I15 at Diamond light Source, UK using the experimental 

setup shown in Fig. 1. A 70 × 70 μm2 collimation assembly was used to define a pencil beam 

and a photon energy of 76 keV was selected to maximise the incident flux and diffraction signal 

from the sample.  

The sample was placed into a specially manufactured mount and an optical alignment system 

was used to align the beam with the FIB-DIC marker locations at micro-scale precision. A raster 

scan was then used to collect diffraction patterns in increments of 50 μm from the edge of the 

sample.  A Perkin Elmer flat panel 1621-EN detector (2048 × 2048 pixels, pixel size 0.2 ×0.2 mm2) was used to record the resulting diffraction patterns.  

It was found that the relatively large crystallites present within the specimen induced 

graininess in the diffraction patterns (Fig. 1) and for this reason, 30° azimuthal integration was 

used to improve the grain sampling statistics of the resulting 1D spectra. A critical examination 

of the Debye-Scherrer rings revealed that sample graininess had least impact on the γ phase 

<200> peak. Lattice parameter quantification was therefore performed for the scattering vectors 

parallel and perpendicular to the interface for this peak. 
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D. Experimental Results 

The variation in the principal stress magnitude and orientation determined by the sequential 

FIB-DIC approach is shown in Fig. 7. In general, compressive stresses in the range 100-500 MPa 

were observed near the sample edge.  An increase in the magnitude of compressive stress is then 

observed towards a maximum of ~800 MPa at ~200 μm from the sample edge. The magnitude of 

the compressive stress then reduces to ~100 MPa at a 520 μm from the sample surface.  

In order to aid in the visualisation of the stress distribution and provide comparison with the 

XRPD results, stresses in directions parallel and perpendicular to the interface were resolved 

(Fig. 8). The variation of these resolved components follows a very similar trend, with stresses in 

the perpendicular direction showing a marginally smaller magnitude. The interpretation of the 

results obtained using these two different techniques brings about with it the challenge of 

comparing conditions of plane strain (XRPD) and plane stress (surface FIB-DIC analysis). 

 
FIG. 8. FIB-DIC and X-ray diffraction residual stress estimates in directions parallel and perpendicular to the sample edge, 
against distance from the sample edge. The error bars indicate the 95% confidence intervals of each measurement. Least squares 
fitting of equation 12 has been used to highlight the average trends in the four profiles. 
 

The plane problem of elasticity arises when deformation can be fully described in two-

dimensional Cartesian coordinates.  Let us consider a state of plane stress, in which x3 is the 

direction of the surface normal. At the surface the out-of-plane stress components 13, 23 and33 

can be neglected. Strains due to the in-plane (residual) stresses can be written as 97: 
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𝜀12 = 2(1 + 𝜈)𝐸 𝜎12, 𝜀11 = 1𝐸 [𝜎11 − 𝜈𝜎22], 𝜀22 = 1𝐸 [𝜎22 − 𝜈𝜎11]. (8) 

The only non-zero out-of-plane strain is found to be 𝜀33 = − 𝜈𝐸 (𝜎11 + 𝜎22). 

Plane strain conditions arise if displacements everywhere in a solid body are perpendicular 

to the axis Ox3, and do not depend on coordinate x3. In this case the strain components 13, 23, 

33 vanish, 13 = 23 = 0, and 33 =(11+22).  The strains are then given by: 

𝜀12 = 2(1 + 𝜈)𝐸 𝜎12, 𝜀11 = (1 − 𝜈2)𝐸 [𝜎11 − 𝜈1 − 𝜈 𝜎22] ,
𝜀22 = (1 − 𝜈2)𝐸 [𝜎22 − 𝜈1 − 𝜈 𝜎11]. (9) 

Note that equations (8) can be put into the form equivalent to (9), provided ‘plane strain 

elastic constants’ are introduced:  

𝐸′ = 𝐸(1 − 𝜈2) , 𝜈′ = 𝜈1 − 𝜈. (10) 

Hence the term plane problem of elasticity can refer both to plane stress and plane strain.  

 For the purposes of our present analysis we adopt the approximation that cross section 

preparation results in the relief of the out-of-plane residual stress 33, but (to the first 

approximation) does not alter the residual elastic strains. This is consistent with the good 

agreement observed between the XRPD and FIB-DIC measurements.  

For a given miller index ℎ𝑘𝑙, the conversion between the XRPD lattice parameter variations 

(𝑑ℎ𝑘𝑙) to estimates of lattice strain (𝜀ℎ𝑘𝑙), is given by: 

𝜀ℎ𝑘𝑙 = 𝑑ℎ𝑘𝑙 − 𝑑ℎ𝑘𝑙0𝑑ℎ𝑘𝑙0  (11) 

where 𝑑ℎ𝑘𝑙0  is the unstrained lattice parameter. In order to provide reliable measures of the 

absolute residual stress variation, accurate quantification of 𝑑ℎ𝑘𝑙0  is essential. 
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In this study a direct comparison between the absolute residual stress values obtained by FIB-

DIC and relative values obtained by XRPD was used to find an optimal value for the unstrained 

lattice parameter of face centred cubic 𝛾 phase of IN718, 𝑎𝛾0 = 3.59756 Å. This value 

corresponded well to existing literature values of 𝑎𝛾0 98, 99. The least squares fitting approach was 

also used to quantify the relative offset between the two profiles as 3.3 μm. 

In order to facilitate effective comparison between the results, each profile was fitted with the 

shot peened residual stress profile originally proposed by Watanabe et al. 100: 𝜎𝑅 = 𝛼[𝛽 + 𝛾𝑧 + {1 + cos(𝜃𝑧 + 𝜏)}] (12) 

where 𝛼, 𝛽, 𝛾, 𝜃 and 𝜏 are constants and 𝑧 is the distance from the edge of the sample. This 

representation of the residual stress variation is valid up to the limiting depth of the plastic zone 

and the resulting profiles are shown in Fig. 8. An indication of the 95% confidence intervals for 

the resolved FIB-DIC results has also been included in Fig. 8. These estimates require careful 

propagation of error values through multiple stages of least squares fitting and numerical 

calculations, and the average error was approximately +/-10% of the stress magnitude. 

E. Discussion 

The residual stress profiles obtained from the FIB-DIC and XRPD approaches reveal very 

similar distributions within the blade. Due to the relative offset between the techniques and the 

scatter of the data, the fitted profiles facilitate easier and more reliable comparison of the data. In 

the case of the perpendicular stress fitted curves, close proximities between the range of stress 

(493 MPa and 486 MPa), maximum compressive stress (680 MPa and 673 MPa), and location 

of this maximum stress (179 µ𝑚 and 189 µ𝑚 from the interface) were observed for the XRPD 

and FIB-DIC results, respectively. Greater differences were observed between the parallel stress 

distributions, however the general trends observed are still somewhat similar.  
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Local grain-to-grain variations in stress can be identified by the scatter around the fitted 

profiles. This behavior is known to be highly influential in crack propagation and sample 

failure101 and previous ring-core FIB-DIC analysis has demonstrated that this technique is 

capable of capturing this intragranular variation83.  

In summary, the sequential spatially resolved ring-core FIB-DIC approach has been 

demonstrated to be an accurate, high resolution (micron-scale), in-plane residual stress analysis 

technique which has the potential to be applied to a wide range of problems. The main limitation 

of the sequential spatially resolved ring-core FIB-DIC residual stress analysis technique is the 

increment between subsequent strain measurements. An alternative approach, the parallel 

spatially resolved FIB-DIC approach, is introduced to overcome this limitation in Section VII. 

VII. FUNDAMENTALS: THE PARALLEL SPATIALLY RESOLVED FIB-DIC 

RESIDUAL STRESS ANALYSIS TECHNIQUE 

In order to increase the spatial resolution of the ring-core FIB-DIC approach, an alternative 

to the sequential approach, based on parallel milling of multiple cores, is proposed here. The 

parallel milling approach is based on simultaneously monitoring the strain relief in all cores.  

The central parameter of the ring-core FIB-DIC technique is the complete strain relief at the 

infinite milling depth (∆𝜀∞). This is the saturated value of the strain change induced in the 

surface of the milled island feature and is dependent only upon the residual stress state and the 

material parameters, and not on the milled feature geometry. Although the strain path between 

the undisturbed and fully relieved state depends on the milling process and the interactions 

between neighbouring features, the total strain change value ∆𝜀∞ is invariant to these process 

changes. Continuous imaging of the relief, effective DIC and the attainment of a sufficient 

milling depth are all used to obtain the most reliable estimate of  ∆𝜀∞. 
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FIG. 9. Poisson’s ratio determination at the micro-scale. a) DIC marker placement. b) Parallel vertical 
trench milling. c) Horizontal milling to leave a 3 μm fully relieved square island.90 
 

A recent paper by Sebastiani et al.90, aimed at quantifying Poisson’s ratio at the micro-scale, 

demonstrated the impact of alternative milling process routes on the surface relief in an equi-

biaxial-stressed thin film. Initially, two parallel vertical trenches were FIB milled in the surface 

(Fig. 9b). Following this, two further trenches were milled to leave a 3 μm square ‘island’ of 

relieved material (Fig. 9c). The strain relief variation in the vertical and horizontal directions was 

then used to estimate Poisson’s ratio. 

For the purposes of the present discussion we use the results of Sebastiani et al.90 to consider 

the strain relief profiles as a function of depth, as shown in Fig. 9. Although the strain relief 

profiles in the two directions differ, the strain values converge at large milling depths. This 

proves that ∆𝜀∞, is robust, i.e. will reach a magnitude that depends only on the undisturbed 

residual stress. It is known that the parallel milling approach will induce smaller variations in 

strain relief  than those demonstrated by Sebastiani et al., and that a reliable estimate of ∆𝜀∞, will 

therefore be obtained at large milling depths.  

This complete stress relief results in an equivalence between the ring-core and square-core 

approach i.e. they will both enable reliable quantification of ∆𝜀∞. Both techniques can therefore 

be used interchangeably depending on the specific user shape requirements. 
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In order to pursue parallel milling and imaging of multiple cores, a regular line of square 

features was implemented – the so-called “chocolate block” geometry (Fig. 10). This approach 

ensures that maximum lateral resolution of one marker width could be reached, with a regular 

step size between adjacent measurements, and is a much simpler milling regime than would be 

required to produce circular markers. Placing the markers close together also reduces the SEM 

field of view necessary to simultaneously capture all markers, thereby reducing the 

implementation time. The main limitation on the number of markers comes from the SEM 

imaging resolution achievable, i.e. the number of pixels that can be captured at the resolution 

necessary for accurate stress determination.  

 

FIG. 10. SEM image of the parallel FIB-DIC milling arrangement – the “chocolate block” geometry. 
Electron deposition of markers has been used to increase the surface contrast of the cores. The average 
residual stress in the 4 μm cores was determined at an increment of 5 μm. 
 

In order to guarantee reliable results the core centres must achieve a state of complete stress 

relief when milled in a regular arrangement, as proposed in this technique. Synchrotron XRPD 

mapping3 has recently been used to demonstrate that this is valid for depth-diameter ratios 

greater than ~0.25 and therefore all milling has been performed to depth-diameter aspect ratios 

greater than 1. 

In terms of the DIC analytical procedure, the parallel FIB-DIC approach is very similar to 

the sequential approach at each marker. The main difference is that the strain relief profile is no 

longer accurately described by the isolated ring-core feature due to the influence of neighbouring 

markers. Nevertheless, accurate estimates of ∆𝜺∞ can be obtained, provided that the island is 

milled to a depth sufficient to induce full relief. 
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VIII. CASE STUDY: PARALLEL SPATIALLY RESOLVED RESIDUAL STRESS 

ANALYSIS IN A CARBON CORE SILICON CARBIDE FIBRE  

Cross-validation between the results of a new experimental technique and a well-established 

method is a necessary step to assess result reliability. In this regard, a recent study of the residual 

strain distribution inside a carbon core silicon carbide (SiC) fibre was selected for comparison102.  

During this experiment XRPD was performed at beamline B16, at Diamond Light Source, 

Harwell, UK. High spatial resolution (400 nm) maps of lattice parameter variation were collected 

across the carbon core and silicon carbide regions of the uniaxially reinforced titanium alloy (Ti-

6Al-4V) composite. In order to convert this lattice variation into a measure of residual strain, 

accurate knowledge of the unstrained lattice parameter was required. Insurmountable difficulties 

arise in producing strain-free powder reference samples of these materials. Therefore, without 

the high spatial resolution (5 μm) analysis performed using the parallel FIB-DIC approach, only 

relative information on the strain variation could be obtained. 

As previously highlighted, the strain relief obtained during the parallel FIB-DIC approach is 

a measure of absolute relief in the material surface. Therefore, after performing the necessary 

XRPD strain value averaging, the unstrained lattice parameters of the SiC and graphite core were 

obtained by direct comparison between the XRPD and the FIB-DIC strain profiles. Not only did 

this serve to cross-validate the two experimental techniques, but it also provided the necessary 

insight to ensure that the nano-scale strain variation determined by XRPD was a measure of 

absolute strain variation; the critical parameter in understanding the failure modes of these fibres. 

At this point it is important to note that the back-calculation of the residual stress state must 

be performed with care due to the variations in amorphous content and associated anisotropy. 
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Nevertheless, the strain profiles obtained by XRPD and the FIB-DIC approach can be compared, 

and show consistent results as outlined in Section VIII.D. 

A. Sample Preparation 

The SiC and titanium alloy composite in this study was comprised of 35% by volume SCS-6 

SiC fibres aligned in a single direction. The fibre was composed of a 30 μm diameter graphite 

core which was surrounded by SiC with an outer diameter of 140 μm. Within this graphite core, 

a distinct untextured central 13.5 µm diameter region was observed. Two different lattice 

parameter values were therefore obtained for carbon, one for the inner and one for outer region.  

In order to minimise the residual stresses induced during preparation, sample sectioning was 

performed using a diamond saw (Buehler Isomet), this was followed by an incremental grinding 

and colloidal silica polishing process. A final thickness of ~500 μm was selected in order to 

maximise the diffracted beam intensity at the energies available at beamline B16.  

As part of the experimental process outlined in our previous paper102, tomographic 

reconstruction of the SiC was also performed. In order to facilitate full illumination of the sample 

by the X-ray beam, further sectioning was performed using a similar diamond saw and polishing 

process.  The final sample was a 1×0.5×0.5 mm3 cuboid as shown in the insert in Fig. 11. 

 

FIG. 11. Schematic of the XRPD setup showing the aligned sample and diffraction patterns from the 
SiC and graphite regions 102. 
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B. X-ray Powder Diffraction Experimental Procedure 

In order to record the highly spatially resolved variations of elastic strain, the KB nano-scale 

focusing capabilities available at B16 were exploited to produce a 400×500 nm2 beam. A 150 μm 

diameter pinhole was used to block the higher order reflections as shown in Fig. 11. The sample 

was placed on a translation and rotation stage and X-ray imaging was used to align the sample in 

a direction parallel to the incident beam. An incremental beam-alignment process was then 

implemented to determine the location of the beam on the sample surface to nano-scale accuracy, 

this is outlined in detail elsewhere102. 

Piezoelectric translation stages were used to raster the sample incrementally across the beam, 

and diffraction patterns were recorded at each location. Six line scans were implemented in order 

to map a representative region of the SiC and the carbon core.  

Azimuthal integration of the resulting diffraction patterns was performed, and the lattice 

parameter variation was determined for scattering vectors pointing in the radial and hoop 

directions. The lattice parameter variation in each of the different regions was determined: 𝑎 in 

the case of face centred cubic SiC and 𝑐, the larger unit cell dimension, for the hexagonal close 

packed graphite. As previously noted two different lattice constants were required in in the 

graphite; 𝑐0 in the case of the outer textured region and 𝑐𝑖  in the case of untextured the inner 

core region. The crystallographic texture associated with the SiC region limited the azimuthal 

angles over which a representative lattice constant could be quantified and therefore only the 

variation in the radial lattice constant was determined. 

C. The Parallel FIB-DIC approach 

Following XRPD, the sample was placed into the Tescan Lyra 3XM FIB-SEM instrument at 

MBLEM, Oxford. SEM parameter optimisation was performed to give a 5.7 nm spot size and an 
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image size of 4096×4096 pixels was selected in order to maximise the resolution of the captured 

images.  Careful focusing, line and image averaging, as well as automated contrast and 

brightness selection was used to maximise the dynamic range and reduce noise in the image.  

One of the advantages of the ring-core technique is that during milling the core approaches a 

state of approximately uniform strain relief86. Assuming good image stability, this area averaging 

minimises the impact of image distortion on the strain estimate. This means that ring-core can be 

reliably implemented at lower magnification,  e.g. compared to FIB-DIC techniques which rely 

upon the precise determination of displacement fields, such as hole drilling103 or slitting22. 

 

FIG. 12. SEM image of the parallel FIB-DIC technique in which the interfaces between the SiC 
region, the graphite core outer and the graphite core inner are highlighted. The core sizes are uniform in 
the direction of the global surface normal. However, slight variations in topology create the illusion of 
size variation. The Z-contrast induced by colloidal silica is also shown 102. 
 

The same FIB beam parameters were implemented as those outlined in Section VI.B. Both 

the SiC and carbon core were found to have similar FIB milling rates and therefore a single 

parallel milling process was implemented on both regions simultaneously. Six cores with 

dimensions of 4×4 μm2 were selected as a compromise between maximising the number of 

stress evaluation points on one hand, and the precision of these estimates, on the other. A trench 

width of 1 μm was chosen in order to minimise the increment between successive points and a 

depth-diameter ratio of 1.27 was selected to ensure complete relaxation in the core. The stress 
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analysis positions were located at radial distances between 2.5 μm and 27.5 μm from the fibre 

axial line, in increments of 5 μm, as shown in Fig 12. 

 In order to overcome the limitations of SEM imaging, a very small FIB milling increment of 

15 nm was selected. This minimises the strain change between successive measurements and 

increases the likelihood of effective DIC tracking. A small milling current of 100pA was selected 

to reduce the amount of material redeposition on the islands (and the associated image blurring 

in the DIC analysis) and to minimise the residual stress induced by gallium ion implantation.  

The optimised arrangement captured 340 images over a period of approximately 5 hours. 

Although this time period may seem long, the full 2D in plane stress state is characterised at 6 

different locations during this interval. Eighteen independent implementations of a 1D stress 

characterisation technique would be necessary to obtain comparable data, resulting in an 

equivalent time budget of 17 minutes per data point for the parallel FIB-DIC method. 

 DIC of the resulting images was performed using a modified version of the DIC script 

developed by Eberl96. It was found that the residual colloidal silica provided increased surface 

contrast thereby improving marker tracking effectiveness. Bulk drift was initially accounted for 

by performing lower resolution DIC and each core surface was tracked individually during six 

independent implementations of the script. Automated and manual outlier removal was used to 

retain only the well-tracked markers.  

In this study, strain relief profiles were obtained in the radial and hoop directions for each of 

the 6 cores. Although theoretically possible, the full in-plane strain tensor was not quantified. 

This is due to the fact that unknown mechanical property variations prevent the conversion of the 

strain relief results into stress. Therefore, it was decided that full tensor analysis would offer 

limited value for the present study.  
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FIG. 13. Normalised strain relief twenty point weighted average against image number for the six 
stress analysis locations, in the hoop (a) and radial (b) directions. 
 

Relatively high levels of noise (and the associated 95% confidence intervals) were observed 

in the profile of strain relief against the image number (i.e. milling depth). A weighted average of 

multiple (20) markers was therefore calculated based on the inverse of the standard deviation of 

each relief value. Following normalisation against the full depth strain relief values, the results of 

this averaging are shown in Fig. 13. The image number of each point was chosen as the central 

image number over which the strain relief values which had been averaged. 

The first conclusion drawn from Fig. 13 is that milling has been performed to a depth 

sufficient to induce full relief in the cores. This is demonstrated by plateaus in all of the strain 

relief profiles.  

The influence of neighbouring markers is also demonstrated in Fig. 13, through the slight 

differences observed in the strain relief profiles. Feature symmetry suggests that the profiles at 

2.5 μm and 27.5 μm, 7.5 μm and 22.5 μm, and 12.5 μm and 17.5 μm should be similar.  Careful 

examination of the profiles demonstrates a degree of similarity between these profiles. 

Despite minor variations the strain relief profiles, the general variation is very similar to the 

functional form of the isotropic, single ring-core FE model in Equation 5. Based on this insight, 

careful least-squares fitting of this function was performed on the data. It is believed that minor 
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variations in the near-surface relief profile should have a limited impact on the estimate of ∆𝜀∞ 

obtained from this process. This is increasingly true for profiles for which a large milling depth 

has been reached. To provide additional support for this assumption, FE modelling of the 

parallel FIB-DIC feature geometry could be used. However, the authors are confident of the 

reliability of the approach, both from the theoretical point of view, and experience. This 

conclusion is supported by the agreement observed between the XRPD parallel FIB-DIC results. 

D. Experimental Results 

In order to interpret the SiC and graphite XRPD lattice parameter variation in terms of strain, 

accurate quantification of the unstrained lattice parameters was required. A least squares 

optimisation approach was therefore implemented starting from literature values of the 

unstrained lattice parameters (𝑎0= 4.3596 Å104 for the face centred cubic SiC region and 𝑐0=6.720 Å105 for the larger unit cell dimension of the graphite region). For this analysis, 

averaging of the XRPD strain values over the relevant gauge volume was necessary to provide 

comparative values. For example, the FIB-DIC estimate at the 2.5 µm position represents a strain 

average between the radii of 0.5 µm and 4.5 µm. The optimised values were found to be 𝑎0 = 

4.3982 Å,  𝑐𝑜0 = 6.8353 Å and 𝑐𝑖0 = 6.9980 Å where the subscript 0 refers to the unstrained lattice 

parameters of the SiC (𝑎), graphite outer region (𝑐0) and the graphite inner region (𝑐𝑖) defined in 

Section VIII.D. 

The variations in the absolute residual strain obtained from the XRPD and FIB-DIC 

approach are plotted together in Fig. 14.  The SiC region can be seen to be in a state of 

compressive strain which decreases in magnitude at distances further from the core. The central 

carbon core region is in a state of approximate hydrostatic compressive strain of ~0.4%. The 
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outer carbon core, on the other hand, is in a state of dilatational strain; the radial component is 

tensile and the hoop strain is compressive. 

 

FIG. 14. Radial (a) and hoop (b) absolute strain distributions within the graphite and SiC regions of the 
core102. The results of both the XRPD and the parallel FIB-DIC are shown as well as the comparable 
average XRPD results. The 95% confidence intervals of the XRPD values are indicated by the error bars.  
 
E. Discussion 

To calculate the confidence intervals of the FIB-DIC strain relief values, careful error 

propagation was performed through the multiple stages of least squares fitting. The expected 

differences between the strain relief profiles (Fig. 13) and the functional fitting distribution 

implemented (Equation 5), ensured that relatively large 95% confidence intervals were obtained, 

with an average confidence interval of +/- 20%.  

Examination of the average XRPD data reveals that only three out of the eighteen data points 

fall outside the FIB-DIC 95% confidence bounds, and that the average percentile error is 13%. 

Taking into account the assumptions necessary to compare these two different techniques 

(Section VI.D), these two data sets show strong similarities in the distributions obtained. This 

suggests that the parallel spatially resolved FIB-DIC approach is a reliable method for in-plane 

absolute residual distributions of strain, and of stress in well-characterised materials.  

The benefits of the parallel FIB-DIC approach can be demonstrated by critical comparison of 

with recent high spatial resolution analysis of residual stress using slotting based methods73. This 
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approach employs a single slot to determine residual stress variation along the slot in a direction 

perpendicular to the slot. Although this is a marginally simpler experimental form, the 

requirement to repeatedly perform FE simulations and full displacement field characterisation 

ensures that processing time and complexity is higher than the parallel FIB-DIC approach. This 

full field characterisation also means that no strain averaging can be performed and therefore the 

impact of noise is larger. Further, the impact of edge effects at the end of the slot greatly reduces 

the precision of the slot based technique in these regions, especially when compared to the 

results shown in Fig. 14. Most importantly the ability to determine the full in plane stress tensor 

using the parallel FIB-DIC approach, rather than the 1D stress state, enables much greater 

insight into the likely failure modes or stress interaction in the region of interest. 

Despite the advantages of the parallel FIB-DIC technique its use is likely to be limited to 

specialised applications where micron-resolved residual stress analysis is crucial in improving 

current understanding. This restriction is primarily associated with the long milling times (~5 

hours) although dramatically shorter milling times would be possible is less precise 

measurements of residual stress are required (increased milling rates typically reduce DIC 

accuracy). Other restrictions on the technique include the minimum resolution and maximum 

region over which stress can be assessed, very high resolution analysis (< 1 𝜇𝑚) would likely 

begin to be influenced by the effects of ion implantation and reduced DIC areas, whereas 

limitations on maximum high resolution SEM image sizes and increased milling times place an 

upper boundary on the assessment region.  Finally, as highlighted in the carbon fiber example 

study, difficulties in obtaining precise and reliable stiffness tensor matrices at these resolutions 

may provide challenges in the conversion of the strain relief values to residual stress estimates.  



 

36 
 

The elastic strain distributions evaluated during this study were used as the basis for further 

FE simulation of the SiC and carbon core region102. The insights obtained provided improved 

understanding of the impact of the processing route on the resulting microstructure and strain 

distributions. Of particular interest was the relatively high tensile strains observed at the interface 

between the carbon outer and carbon inner regions inside this complex hierarchical structure. 

IX. CONCLUSIONS  

Two differing methodologies have been assessed which both provide spatially resolved in-

plane residual stress analysis based on the FIB-DIC principle. The well-defined gauge volume, 

the possibility of component-specific stress analysis as well as the potential to access two 

different spatial length scales, mean that these techniques present highly versatile techniques.  

The sequential spatially resolved ring-core FIB-DIC approach has been shown to allow 

quantification of the residual stress state at a spatial resolution from the millimetre down to tens 

of micrometres, with micro-scale averages obtained at each point. A comparison between XRPD 

and this approach has demonstrated this technique produces reliable and consistent results. The 

main limitation of this approach is the interference observed when subsequent stress 

measurements are placed close together. 

In order to overcome this limitation, the parallel FIB-DIC approach can be used. This 

technique involves simultaneous milling of multiple compact features (squares) in order to obtain 

residual stress estimates with a spatial resolution at the micro-scale, both in terms of the gauge 

volume and step. Cross-validation between the residual strain profiles obtained by high 

resolution XRPD and this approach suggests that, despite observing larger signal to noise ratios, 

this approach also offers a reliable and effective technique for spatially resolved residual stress.  
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In order to improve the reliability of these results further modelling of this technique could 

be performed, for example by performing FE simulations of the regions surrounding ring-core 

markers, or by quantifying the relief profiles expected at each of the feature positions in the 

parallel milling approach. Such insights may allow the markers to be placed closer together, or 

may improve the accuracy of strain profile fitting in the parallel approach.  

Overall, the two newly proposed techniques are fast, robust and reliable. They offer the 

potential to perform spatially resolved residual stress analysis from the millimetre down to 

micrometre scale with nano-scale precision. It is hoped that their application to spatially resolved 

residual stress problems will provide the insights required to understand material failure, the 

impact of processing or the influence of residual stress on mechanical properties.  
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