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ABSTRACT Crowdsourcing using mobile devices, known as mobile crowdsourcing, is a powerful approach
incorporating human wisdom into mobile computations to solve problems while exploiting the advantages
of mobility and context-awareness. The problems that can be tackled include the use of geographically
distributed tasks, andmobile sensing using the collective wisdom of the crowd. However, the implementation
of mobile crowdsourcing applications has been found to be challenging to users due to the nature of dynamic
sensing, crowd engagement with data distribution, and a process of data verification. In this paper, we provide
an extensive survey of the literature on mobile crowdsourcing research, highlighting the aspects of particular
concerns in terms of implementation needs during the development, architectures, and key considerations
for their development. We present a taxonomy based on the key issues in mobile crowdsourcing and discuss
the different approaches applied to these issues. We also provide a critical analysis of some challenges and
suggest directions for future work. In particular, with the future Internet-of-Things in view, we generalize
the notion of mobile crowdsourcing to thing crowdsourcing, where crowdsourcing can be issued from smart
Internet-connected things that need to harness the human resources to solve problems.

INDEX TERMS System architecture, application, mobility, mobile crowdsourcing, Internet-of-Things,
smart things.

I. INTRODUCTION

In the past decade, crowdsourcing especially mobile

crowdsourcing has emerged to facilitate data processing and
problem solving. Mobile crowdsourcing refers to a group
of people who voluntarily collects and shares data using
widely available mobile devices [1]. This data is processed
and provided via a data-sharing infrastructure to third parties
who are interested in integrating this data. Typically, a mobile
crowdsourcing system consists of a platform residing on the
cloud and mobile smartphone. Along with the unique multi-
sensing capabilities of modern mobile devices, the smart-
phone can eventually unfold the potential of crowdsourcing.
Smartphones offer a great platform for extending either
web-based or distributed crowdsourcing applications to a
larger contributing crowd and makes contributing easier and
omnipresent. Moreover, smartphone users are able to provide
large amounts of opportunistic or participatory data that can
contribute to complex and novel problem solving. Therefore,
the ultimate goal of mobile crowdsourcing is to utilize mobile

sensing and humans to collect and analyze the information
of people and surrounding environments, and then provide
useful information and services to end users [2], [3]. Mobile
crowdsourcing platforms in the market such as Waze,1

Gigwalk2 and BeMyEye3 allow users to post tasks that are
completed by human workers who receive rewards or pay-
ment in return or do so voluntarily. For instance, BeMyEyes4

apps help blind people who wish to take a picture send a
question to volunteer helpers from around the world and then
receive an answer back from the crowd in seconds.

However, implementing mobile crowdsourcing appli-
cations is still challenging. First, program design with
human computation is profoundly different from tradi-
tional computer-based systems. It needs powerful new

1https://www.waze.com/
2http://www.gigwalk.com/
3https://www.bemyeye.com/
4https://www.bemyeyes.com/

304
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-1785-4646
https://orcid.org/0000-0002-5339-9305


J. Phuttharak, S. W. Loke: Review of Mobile Crowdsourcing Architectures and Challenges

programming metaphors and infrastructures that support the
design, implementation, and automated execution of human
computations. Second, since the systems rely on humans,
the process might take longer than before in order to find
responding workers and collect the completed tasks. There-
fore, recruitment and motivation techniques under a limited
budget are an essential component of developing crowdsourc-
ing systems. Third, the process of accumulating the crowds’
feedback needs to involve verification. Developing effective
algorithms to leverage decision making, average the guess of
a group of people, even to avoid a systemic bias about the
answer, are substantial challenges. Hence, developers have
to manage tradeoffs between speed, money, and reliability in
designing their algorithms.
In view of these challenges, this paper first reviews the

existing mobile crowdsourcing literature based on a sur-
vey of significant projects which integrate the ability of
mobile sensing to delegate work or computation to humans.
We review background knowledge on the mobile crowd-
sourcing paradigm, highlighting a range of representative
mobile platforms for crowdsourcing. We also provide a tax-
onomy of the issues found in this area and several dimen-
sions and approaches along which these issues have been
tackled, focusing on the characteristics of applications and
system architectures. We also outline a range of frameworks,
techniques, key aspects and challenges for developing mobile
crowdsourcing applications. Finally, we expand each dimen-
sion to highlight the unique set of challenges in terms of
implementation needs in order to be considered during the
development and evaluation of such collaborative systems.
We also then discuss future work in mobile crowdsourcing
and the generalisation from mobile crowdsourcing to thing
crowdsourcing.

II. KEY ASPECTS OF MOBILE CROWDSOURCING

APPLICATIONS

Mobile crowdsourcing can be utilized for different
applications for both scientific and business purposes.
In several previous studies, the applications of mobile
crowdsourcing have been focused and remarkably classi-
fied into the literature surveys. They have proposed the
typology of mobile crowdsourcing applications in differ-
ent aspects. Typical application areas include environment
monitoring [4], [5], disaster management [6]–[8], infrastruc-
ture monitoring [9], [10], community healthcare [11], [12],
transportation, ride sharing and urban sensing [13]–[16],
social issues [6], [8], [17] and others [18]–[20]. In the
earlier study, mobile crowdsourcing can be categorized as
participatory and opportunistic based on the involvement of
participants in sensing actions [21]. Later, many researchers
attempted to explore the applications of mobile crowdsourc-
ing/sensing based on different purposes and from various
aspects.
Among those, Ganti et al. [22], focusing on phenomenon

being measured and mapped, classify mobile crowdsourc-
ing applications into three categories (a) environmental,

(b) infrastructure, and (c) social. Feng et al. [23] identifies
mobile crowdsourcing applications based on the properties
of a crowdsourcing task and human assistance including
1) mobile crowd computing, 2) mobile crowdsensing, and
3) human-assisted crowdsourcing. In mobile crowd com-
puting, the applications can outsource a computing task to
mobile devices and then collect their computing results via
various networks. While in mobile crowdsensing, the appli-
cations utilize mobile devices as sensors to collect informa-
tion about environments, infrastructures, and mobile users,
human-assisted crowdsourcing aims to utilize human intelli-
gence to finish a certain task.

The study in [24] classified mobile crowdsensing appli-
cations into three categories namely group, community,
and urban sensing. According to the key characteristics of
mobile crowdsourcing as mentioned in [1], the applications
can be categorized as either people-centric or environment-
centric. People-centric applications collect data about the user
(e.g., physical effort, sport experiences etc.) whereas
environment-centric applications capture information about
the surroundings of the user (i.e., air quality, noise pollution,
road condition, damages, disasters etc.).

In this review, we explore mobile crowdsourcing appli-
cations with regards to four key aspects. Yufeng et al. [25]
and Wang et al. [26] study on the building blocks of mobile
crowdsourcing systems. As they mentioned, the crowd-
sourcing system needs to address a number of fundamen-
tal challenges including quality control, task management,
incentives, as well as security and privacy. Furthermore,
Geiger et al. [27] design four basic questions that are impor-
tant for building the crowdsourcing application: ‘‘What is
being done?’’, ‘‘Who is doing it?’’, ‘‘Why are they doing it?’’,
and ‘‘How is it being done?’’. From this point, we analyze
the mobile crowdsourcing applications along four dimen-
sions: 1) Tasks, 2) Participations, 3) Data Collection, and
4) Processing. Fig. 1 summarizes the four aspects of mobile
crowdsourcing applications we examine in this paper.

A. TASK

A task in mobile crowdsourcing applications typically refers
to a human intelligence required task (which could be aided
by machine computations) that employs mobiles and human
sensors to collect user data. we can classify the characteristics
of crowd tasks into many distinct dimensions as follows.

1) TASK TYPES

Tasks can be divided into two types that could be either
human-companion device tasks or human intelligence tasks.
The human-companion device tasks utilize mobile devices
as sensors to collect human observation and information
about environment and infrastructures. Such devices could be
smartphones, smart vehicles, wearable devices, and so on that
may own several electronic sensors by default (accelerom-
eters, camera, microphone or thermometer). These kinds of
tasks are widely applied in personal data collection [11], [12],
e.g., personal health data, sport experiences, and in
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FIGURE 1. Four key aspects of mobile crowdsourcing applications.

environment monitoring [4]–[6], [13], e.g., noise, weather
and pollution. On the other hand, human intelligence tasks
utilize human wisdom to perform tasks that are hard for
computers to do but trivial for humans. Examples of such
tasks [15], [16] are related to the areas of sentiment analysis,
natural language understanding, image recognition and cre-
ativity. The solutions on these tasks can be subjective due to
different understandings and experiences.

2) DATA CONTRIBUTION

The aim of mobile crowdsourcing systems is to extract crowd
intelligence from a large volume of user contributed data
generated by their mobile devices. Based on the value of intel-
ligence, we classify it into three main categories including
user, context, and social data.

• User data refers to the extraction of personal contexts
(e.g., location, physical activity), health vitals (e.g. heart
rate, blood pressure and sugar level) and behavioral
patterns (e.g., mobility patterns, daily life patterns).

• Context data regards to information about the surround-
ings of the users or their status (e.g., noise level of a
bus stop, traffic dynamics of a street) or the semantics
(the logical type) of a particular area. The area can be
small (e.g., a restaurant) or large (e.g., an urban area).

• Social data refers to user-generated data in mobile
social networks which bridge the gap between online
interaction and physical elements (e.g., check-in places).
The data collected from social network is able to provide

another way to understand urban dynamics. Moreover,
social data is about the contexts of a group or a commu-
nity, such as social activity type, interpersonal relations,
infer group activities and so on [28].

3) SCALES

The scale of crowds in which workers are involved can be
small or large, ranging from a person to a group/community
to city scale.

• Individual refers to the number of available individuals
to implement crowdsourcing (possibly in the context of
sharing economies) by conducting activities such as per-
forming a task or providing a service. Recently, there is
an emerging of a new paradigm called the sharing econ-
omy, referring to a highly flexible economic network
that allows people to share resources such as equipment,
services, and skills with one another. For example, via a
platform, after a task requester submits tasks with some
information (e.g., location, time) to the server, only a
potential worker is selected to complete the tasks and
send data to the server. One can consider UberEats5 as
a ride-sharing platform that aims to improve the food
delivery service. Users could request food delivery from
any restaurant on the service platform. The platformwill
then assign delivery tasks to nearby workers for picking
up food packages from relevant restaurants.

5https://www.ubereats.com
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• Group/Community occurs when the participants share
information gathered from personal sensing activities
with friends of a social group or community. The
participants come from a strongly bonded group or
community, with established social ties and trust among
members [24]. They also are connected intermit-
tently when they opportunistically contact each other
(e.g., spatially nearby phones). For example, GroupMe,
proposed in [29] is a giant stride in this direction to
help facilitate the discovery of groups within mobile
crowdsourcing systems.

• Urban could involve geographically broader ranged
crowdsourcing tasks, targeting participants at city
scale to collect multi-modal data streams from the
surrounding environment. The data contributed from a
large number of participants can be combined to create a
spatio-temporal view of the phenomenon of interest and
also to extract important community statistics [30]. Typ-
ical application areas include urban traffic [31], public
safety/security related data [6]–[8] and environmental
monitoring [4], [5].

B. PARTICIPATION

Geiger et al. [27] state that the nature of the participants in
a crowdsourcing system correlates with the characteristics
of the tasks performed. The role and nature of its crowd
participants can differ substantially. Mobile crowdsourcing
applications can be decomposed according to the capability
of the required participants in the following aspects.

1) USER INVOLVEMENT

Based on the involvement of participants in sensing actions,
mobile crowdsourcing can be categorized as: opportunistic
and participatory [22].

Opportunistic crowdsourcing is more autonomous, and
user involvement is minimal and the mobile device itself
makes decisions according to the sensed and stored data
e.g., continuous location sampling without the explicit
action of the user. A typical example of opportunis-
tic crowdsourcing is DeepEar [32], an application that
opportunistically captures the level of sound from smart-
phones in order to, through deep learning methods, clas-
sify sounds into ambient noise, speech or music. Moreover,
Panichpapiboon and Leakkaw [31] used the accelerometer
only to estimate the vehicle’s speed and traffic density, assum-
ing an inverse relationship between density and speed.

In participatory sensing, the active involvement of indi-
viduals to contribute sensor data (e.g., taking a picture,
reporting a road closure, sentiment analysis) is required.
Moreover, with the rapid development of mobile internet,
mobile social network services like Facebook and Twitter are
as another participatory sensing mode to form a collective
intelligence through analyzing and integrating the percep-
tion data from a large crowd. Consequently, participatory
sensing can leverage human intelligence by enabling users
to transparently contribute to complex and novel problem

solving. This type of mobile crowdsourcing applications,
such as Transafe [15], SenseCityVity [16], IncentMe [33],
CoSMiC [19] and CrowdFound [20], requires human abili-
ties, specializations, or skills of participants.

2) LOCATION-AWARENESS

With the ubiquity of interactive mobile devices providing
location awareness and network connectivity, every person
with a smartphone can act as a sensor collecting and sharing
various types of spatio-temporal data instantaneously. Crowd
workers exploit multi-mobile sensors such as accelerome-
ters, gyroscopes, GPS, cameras and microphones to publish
locations, photos, messages and voices via mobile crowd-
sourcing applications or social media sites. Typically, these
activities do not require the workers’ real-time location infor-
mation. They are able to publish their work offline at anytime.
Different from traditional mobile crowdsourcing, workers
are required to perform a set of tasks by physically trav-
elling to certain locations at particular times called spa-
tial crowdsourcing. This paradigm is exploited in numerous
industries, e.g. Uber,6 TaskRabbit,7 Waze, Gigwalk, etc.,
and has applications in numerous domains such as citizen
journalism, tourism, intelligence, disaster response and urban
planning.

3) KNOWLEDGE

Crowd participants are grouped depending on the complexity
and skills involved in the tasks. We can distinguish par-
ticipants as general and specific purpose as well. Mobile
crowdsourcing applications may require a non-expert or a
moderate education for participants to complete the tasks.
They also require expertise and substantial knowledge in a
particular domain to do the tasks. For example, an image-
tagging task or ranking products does not require much spe-
cialized expertise to perform, which means almost anyone
can do the task. On the other hand, the applications, such as
DocCHIRP [34], CrowdHelp [35], involve diagnosis of
unusual cases; hence, such crowd applications requires
specific abilities, specializations, or skills on the part of
participants.

C. DATA COLLECTION

Traditional methods of data management in crowdsourcing
generally considered only centralized or client-server com-
munication while mobile ad-hoc network communication
involves multi-hop transfers and decentralized processing.
A node disseminates tasks among crowd workers through
mobile peers in its range, obtains responses from such mobile
devices, and integrates the responses to obtain real-time
answers. We define the key techniques related to data col-
lection in mobile crowdsourcing applications which consist
of four distinct dimensions: routing protocol, transmission,
heterogenous networking, and incentive mechanism.

6https://www.uber.com/
7https://www.taskrabbit.com/
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1) ROUTING PROTOCOLS

Routing protocol refers to the propagation strategy to dissem-
inate crowd tasks among peers, then it becomes significant for
data transmission in mobile crowdsourcing systems. Mobile
users can easily interact with each other in a mobile network
fashion which can be regarded as an ad-hoc network support-
ing multi-hop routing, content forwarding, and distributed
decentralized processing. We categorize the task propagation
of crowdsourcing in opportunistic networks into two aspects:
point-to-point, multicast communication [36]. Firstly, point-
to-point connection refers to a communication between two
nodes or endpoints. Based on this connection, a node can only
communicate or transmit information to one node at a time.
In a mobile ad hoc network, the standard wireless link tech-
nology, such as Bluetooth, can also support point-to-point
communication which follows the master-slave relationship.
In contrast, the multicast connection is accomplished through
one-to-many concurrent connections. In mobile ad hoc net-
works, the standard wireless communication technology
such as traditional wifi infrastructure networks, wifi direct,
LTE direct also supports this kind of connections.

2) TRANSMISSION

Crowdsourced data from workers would be shipped to the
backend server. Data can be transmitted in real time (e.g., via
mobile networks) or with a delay (e.g., whenWLAN is avail-
able). In real time situations, data is collected locally from
workers then deliver and interpret it in real time e.g., real-
time traffic information, air quality at different places, etc.
In offline situations, delayed transmission may be essential to
meet quality and security requirements. In such a case, data
transmission would start manually when a connection to the
Internet is available (e.g., via WLAN).

3) HETEROGENEOUS NETWORKING

By leveraging ubiquitous and heterogeneous network capa-
bilities, mobile crowdsourcing has huge potential for growth
in business and industrial sectors. It is able to provide
transient network connections and effective collection of
mobile crowdsourcing data. Enhancement of current mobile
devices has been apparent with a provision of multiple
wireless communication interfaces and supported via differ-
ent wireless technologies. Examples include a smartphone
equipped with GSM/4G/5G, WiFi, and Bluetooth interfaces.
The GSM/4G/5G and WiFi interfaces facilitate network con-
nectivity with communication infrastructure that exists in the
areas (e.g., via cellular base stations in a city or WiFi access
points in a work building). Meanwhile, connections over rela-
tively large areas can be made possible through the tools such
as Bluetooth, ZigBee or WiFi Direct that provide short-range
connection among mobile devices themselves and form self-
organized opportunistic networks for data distributing and
sharing [37]. Therefore, interconnecting heterogeneous net-
work elements and exchange data efficiently raise important
research challenges and enriched opportunities for mobile
crowdsourcing applications.

However, the sensing environment of this platform
includes multiple sources and heterogeneous information
from mobile workers. While different mobile crowdsourcing
applications may have various connection architectures and
communication requirements. It can operate in two different
data processing methods. The centralized method transmits
all gathered data to a cloud server for processing, whereas the
decentralized method is where all computations and commu-
nications are performed locally by peers (mobile devices) in
an appropriate manner. Recently, cloud computing is widely
used for analyzing crowdsourced data especially for crowd-
sourcing IoT data [38], [39]. However, crowdsourcing data
are often analyzed in a cloud platform where latency will
be quite high. It is not suitable for real-time events such as
disaster and natural calamities management that require an
immediate action by the public safety authorities [40].

Nevertheless, one possible solution to such a lim-
itation is the exploitation of edge computing or fog
computing [41], [42]. By fog computing, the most time-
sensitive data at the network edge, close to where it is gener-
ated, can be analyzed. It also works on crowdsourced IoT data
for milliseconds response-time applications and delivers the
selected data to the cloud for historical analysis and longer-
term storage for future use [42], [43].

4) INCENTIVE MECHANISMS

The motivation or incentive is a critical factor to encour-
age participation in mobile crowdsourcing applications.
An incentive scheme is a crucial part of a recruitment strategy
which requires users to contribute to or perform crowd tasks
in mobile crowdsourcing systems [44].

Doan et al. [45] discussed crowdsourcing systems on the
Web from a variety of perspectives. They introduce the nature
of collaboration for crowd contribution in two aspects: explic-
itly allowing contributors to build artifacts that are beneficial
to the whole community and implicitly permitting contribu-
tors to solve a problem as a side effect of something else they
are doing. They also define the recruitment strategies in five
major aspects including using authority, paying users, asking
for volunteers, making contributions a requirement to use a
different service, and piggybacking on established systems.

Kaufmann et al. [46] explore the workers’ motivations
in crowdsourcing. According to their study, the motivating
factors are categorized into intrinsic (e.g., enjoyment and
community motivation) and extrinsic motivation (immediate
payoffs, delayed payoffs, social motivation). They found that
the extrinsic motivational categories have a strong effect
on the time spent on crowdsourcing platforms; also, intrin-
sic motivation aspects are important, especially the differ-
ent facets of enjoyment-based motivation. Similar to the
study of [45], [46], we simplified the incentive aspects of
mobile crowdsourcing into two dimensions: implicit and
explicit motivations. The explicit motivations relate to activ-
ities including payment, financial reward, and social obli-
gation which impact upon contributors to participate in the
tasks. On the other hand, the implicit motivations are based
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on the satisfaction associated with the activity itself such as
passion, enjoyment, community identification, or personal
achievement. The explicit examples are the financial rewards
of micro-tasks, such as MicroMobile [47], OpenStreetMap,8

Gigwalk or BeMyEye.9 In implicit purpose, the examples are
ESP game [48], reCAPTCHA,10 Waze, EyeSpy.11

D. PROCESSING

In general, mobile crowdsourcing applications exploit wire-
less sensing networks to sense, transmit, and process data and
crowdsourcing tasks. The data of these systems is processed
and provided via a data-sharing infrastructure to third parties
who are interested in integrating this data. Typically, a mobile
crowdsourcing system consists of a platform residing on the
cloud and mobile devices. We decompose the processing of
mobile crowdsourcing into three aspects: 1) worker selection,
2) workflow controls, and 3) analysis.

1) WORKER SELECTION

In mobile crowdsourcing, worker selection aims to allocate a
specific set of crowdsourced tasks to a set of crowd work-
ers who can potentially finish these tasks more accurately
and efficiently - one can also distinguished between active
and passive workers. In case of an active worker selected
tasks, the participant is actively involved in the process. With
the emerging spatial crowdsourcing paradigm, workers can
perform a set of spatial tasks (i.e., tasks related to a geo-
graphical location and time) posted by a requester. Therefore,
this platform needs available workers who can accept and
complete the tasks at particular places and times, as required.
For instance, Postmates,12 a company offering on demand
food and delivery, is available all around the US. In addition,
Uber, Grab13 and Lyft14 are success platforms of crowd-
sourced taxi services that match the tasks with the workers’
availabilities, and allocates workers to tasks considering the
spatio-temporal requirements.

In case of a passive participation, workers do not have to
become active. The data capturing application (with user per-
mission) can run on his/her mobile device in the background
which then collect and transmit data automatically.Moreover,
workers can passively wait for the platform to assign tasks.
The selected workers in passive mode is based on offline
statistics collection such as worker contexts and workers’
historical task completion performance [49].

2) WORKFLOW CONTROLS

Workflow control of mobile crowdsourcing refers to the
process of planning and executing the crowd tasks that
can be accurately solved by a pool of crowd workers.

8http://www.openstreetmap.org
9http://www.bemyeye.com
10http://www.google.com/recaptcha
11http://www.eyespy.com
12https://postmates.com/
13https://www.grab.com/
14https://www.lyft.com/

Such workflows may decompose larger tasks into smaller
subtasks, and later compose subtask solutions into an overall
work product. In the literature, they serve as basic building
blocks for crowdsourcing algorithms, which can be generally
classified into three main patterns as follows.

• Divide-and-Conquer algorithms for distributed human
computation consist of decomposing, solving and
recomposing [50]. It refers to the process of decom-
posing a problem into sub-problems and composing
solutions of sub-problems into a solution. For example,
Bernstein et al. [51] establish a workflow pattern for
proofreading and editing text into three stages called
Find-Fix-Verify. Rather than asking a single crowd
worker to read and edit an entire paragraph, which might
result in poor quality work, this procedure recruits a
group of workers to find candidate areas for improve-
ment, then revise a set of candidate improvements, and
finally filters out incorrect candidates. The Find-Fix-
Verify process divides a task in a manner that maintains
accuracy and reliability.

• Iterative Improvement is a workflow control that
improve the quality of results for refining tasks, such
as writing or collective brainstorming at using multi-
ple workers to build on and improve upon an existing
task. The iterative improvement design pattern was first
described by [52]. They introduced TurKit as a toolkit
for deploying iterative tasks to Mechanical Turk.

• Redundancy-based Quality Control is a workflow
control to ensure the quality of crowdsourcing results.
Consider the following example: a requester intends to
describe photos by tagging them with meaningful and
descriptive keywords in order to categorize these photos
in a library. Each photo is assigned to a worker with
the proper skills necessary to complete it. However,
by asking a sufficient number of workers to perform the
same task independently, we are able to gain the most
common responses as the solution and expect a high
quality of the correct (i.e., majority) answer.

Barowy et al. [53] optimize the majority voting
approach by introducing an algorithm to estimate the
confidence level of the responses that would be accept-
able by the requester. Liu et al. [54] studied improve-
ments using a quality control mechanism relying on
workers’ past performances. Given the probability dis-
tribution of workers’ performances, they apply the
Bayesian theorem to estimate the accuracy of each
result.

3) ANALYSIS

Analysis plays a vital role in providing feedback to the
requester in order to increase quality as well as in selecting the
best result from a large set of crowd solutions. In the existing
literature, we can identify two main techniques for analysis
data from crowd including basic and advanced approaches.
Along the general method, our work focuses on assigning
a task to multiple users who submit their individual results
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to cloud servers and then select the result that is most com-
monly returned. Other typical examples are majority vot-
ing for the product of interest, majority rating/decision and
integration aggregation. Schenk and Guittard [55] noted the
fundamental distinctions in aggregation processes for crowd-
sourcing, including integrative and selective methods. Inte-
grative crowdsourcing creates value by pooling potentially
large quantities of complementary input whereas selective
crowdsourcing generates value by asking the crowd to pro-
vide a set of options.
Conversely, the advanced analysis approach applies

various data processing techniques such as machine
learning, data mining and other sophisticated algorithms
(e.g., Expectation Maximization) to gain insights in crowd-
sourced data. Advanced data mining and machine-learning
algorithms enable automatic knowledge discovery and
event/society understanding. However, in order to maximize
the benefits of crowdsourced data, it must be taken to prepare
the data for processing and the right data mining approach
needs to be considered for the specific problem at hand [56].
Today, mobile crowdsourcing enables the collection of huge
amounts of data gathered by multiple sources. These sources
produce wide ranges of data both structured and unstructured,
from historical to real-time, coming from the most diverse
sources, e.g., sensors, machines, products, workers, and cus-
tomers. Hence, big data, playing a key role as an advanced
analysis technique is used to compare and interpolate data
collected from sensors with related information that is made
available on the cloud, so that more efficient and complete
solutions can be obtained [57]. Recently, many researchers
attempted to explore big data analysis techniques for mobile
crowdsourcing based on different purposes and from different
perspectives [57]–[59].

III. CROWDSOURCING ARCHITECTURES

In the past decade, numerous mobile crowdsourcing applica-
tions have shown potential for business and society. Fuchs-
Kittowski and Faust [1] reviewed related conceptual work in
the domain of mobile crowdsourcing systems and proposed a
general architecture for mobile crowdsourcing applications.
The proposed architecture is divided into two parts partic-
ipants/client and backend-system/server. On the client side,
mobile devices contribute to the geo-crowdsourcing cam-
paign by capturing and sharing geospatial data using their
own mobile devices. The client provides functions as data
capturing and a user interface. The backend system or server
performs data storage, processing, and visualization efforts as
well as recruit and interacts with well-suited participants.
Ren et al. [2] studied mobile crowdsourcing architectures

in existing applications. They described two kinds of mobile
crowdsourcing models. The first model is an Internet-based
scenario where mobile users can potentially be a service
provider in the Internet-based mobile crowdsourcing, while
the second model is a local-based scenario where mobile
users in the vicinity can provide cloud services in local-based
mobile crowdsourcing.

Moreover, there are a number of general architec-
tures proposed on mobile crowdsourcing applications like
Medusa [60], Vita [61], MoCoMapps [62], PRISM [63],
and AnonySense [64]. Those frameworks not only enhance
the general architectures to solve cost-efficient development
issues but also focus on generality, security, scalability and
privacy. Most mobile crowdsourcing applications have been
built on Web technologies, allowing online workers to com-
plete the task via themobile Internet. Thesemain components
are generally organized as client-server architectures.

While the above studies use general architectures focus-
ing either on more refined functions of certain subsystems
such as data capture, data processing, campaign manage-
ment or non-functional aspects such as privacy and security,
Zhao and Zhu [65] emphasized functional components with
the notion of the transformation process - a process or col-
lection of processes that transforms inputs into outputs.
There are three categories of components: assigners who
initiate and manage the task, providers who respond to
the task and attempt to submit their solutions as feedback,
and an intermediation platform which links assigners and
providers and serves as a crowdsourcing enabler. In addition,
Estrin [66] and Khorashadi et al. [67] present common archi-
tectural components with a particular focus on data capturing
and leveraged processing.

Hetmank [68] presents the typical components and func-
tions that may be implemented in crowdsourcing systems
with a special focus on campaign management. The author
derives four components: user management, task manage-
ment, contribution management, and workflow manage-
ment. The crowdsourcing theoretical framework presented by
Ponciano et al. [69] pays special attention to analyzing
strategies for designing and managing distributed applica-
tions through crowdsourcing platforms. Their framework is
designed to assist the analysis of the diverse processes related
to crowdsourcing applications. It is divided into three dimen-
sions: QoS requirements which are requesters’ effectiveness
measures, design and management strategies related to how
platforms manage application execution, and human aspects
which are worker characteristics.

Several architectures of applications emphasize task man-
agement, e.g. aggregating results obtained from different
crowd workers, the distribution of data capturing tasks to
participants. Luz et al. [70] study crowdsourcing platforms
with a focus on solving micro-tasks and complex tasks. They
group the crowd tasks into several subtasks such as partition
task, aggregation task, qualification task, and grading task.
By proposing a task-oriented crowdsourcing system, such
tasks connects the worker, the requester, and the systems
itself. They attempt to generalize the task flow process as
well as analyze the conceptual model through several exist-
ing crowdsourcing platforms. Difallah et al. [71] propose a
framework driven by crowd tasks. The tasks are done by the
most suitable worker. Based on push technology, workers
and tasks are automatically matched using an underlying
categorization structure that exploits entities extracted from
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the task descriptions as well as deploys the worker profiles
based on information available on social networks.
From our analysis of existing mobile crowdsourcing appli-

cations and architectures, we present a classification scheme
and general architectures with the typical roles, components
and functionalities ofmobile crowdsourcing systems from the
perspective of programmers and practitioners. The main goal
of this section is to provide a better understanding of typical
functionalities and design aspects during development and
evaluation of mobile crowdsourcing systems via generalised
architectures. Based on our analysis, we provide generalised
centralized and decentralized mobile crowdsourcing archi-
tectures. The centralized architecture refers to all gathered
data processing at the cloud server, whereas the decentralized
architecture is where all computations and communications
are performed locally by peers. We describe the details in the
following subsections.

A. A GENERALISED CENTRALIZED MOBILE

CROWDSOURCING ARCHITECTURE

Mobile crowdsourcing systems have been implemented typi-
cally using web-based and client-server communications that
are able to provide access via either conventional smart-
phones or workstations. This architecture is generally a
client-server model; that is, the server component provides
services, functions and resources to one or many clients that
initiate requests for such services. In this model, all com-
puting is done at a central location/server and computing
resources reside at the primary data center. The clients or ter-
minals only send requests to the center and then receive
the results from their server/cloud services. Fig. 2 illustrates
the architecture of a generalised centralized mobile crowd-
sourcing solution, divided into four layers: Mobile sensing
and gathering layer, Connectivity and network layer, Crowd
processing layer and End-user layer.

1) MOBILE SENSING AND GATHERING LAYER

The main role of this layer is to generate and forward the
crowd sensing data or crowdsourcing tasks to the main server
via wireless communication networks. It contains various
sensing devices based on the power of user devices including
mobile phones, wearable devices, smart vehicles and so on.
These ubiquitous devices allow participants to collect crowd
data/tasks from the surrounding environment, e.g. location,
movement, ambient context, and health monitoring data.
These sensing tasks can be both opportunistic and partic-
ipatory data [22]. For opportunistic sensing, the data can
be triggered automatically (either periodically or based on
events) by sensing devices. Participatory sensing can be used
to retrieve information about the environment, weather, urban
mobility, congestion as well as any other sensory information
that collectively forms knowledge [3], [72]. Therefore, fus-
ing machine (mobile devices) and human intelligence have
encouragedmore informed choices and better decisions using
crowd intelligence.

FIGURE 2. Architectural components and roles of centralized
crowdsourcing applications.

With involving multiple devices, heterogeneous data
sources and a large amount of data, mobile crowd-
sourcing applications have several challenges such as
data integration, interoperability, device detection and data
sharing [73], [74]. Some efforts in existing research pro-
pose semantic approaches to data integration and creating
the standards for metadata schema associated with the het-
erogeneity of data sources. In [75]–[77], they make integra-
tion of a formal ontology with an implicit one reflected in
a database schema or in a communication protocol speci-
fication to retrieve information from different data sources
and provide cross-domain crowdsourcing platforms. For such
heterogeneous data sources produced by both human and
devices, another solution is to have a middleware platform
for facilitating collaboration and information exchange. For
instance, the middleware is able to abstract the hardware
and provide an Application Programming Interface (API)
for communication, data management, computation, secu-
rity, and privacy [78]. Some examples proposing middleware
solutions available for mobile crowdsourcing platforms are
MobiIoT [79] and CUPUS [80].

VOLUME 7, 2019 311



J. Phuttharak, S. W. Loke: Review of Mobile Crowdsourcing Architectures and Challenges

2) CONNECTIVITY AND NETWORK LAYER

An essential role of this layer is to supply network con-
nectivity to mobile crowdsourcing systems. There are vari-
ous communication networks in mobile crowdsourcing such
as wireless sensor networks, cellular networks (3G/4G/5G),
local/public Wi-Fi, Bluetooth, and vehicular ad hoc networks
(VANETs). Data collected by mobile sensors is transferred to
the server/cloud using these technologies. The primary con-
cerns of this layer are to establish network links and to provide
the basic device discovery mechanisms required for context-
awareness. These activities could be costly because of service
charges (e.g. data plans, data services) and resource con-
sumption (e.g. battery, memory) [2], [37]. Although incentive
mechanisms are proposed to provide participants with agreed
rewards, it seems that these rewards may not be sufficient
if users are to be responsible for extra expenses on network
connectivity or have to use their own resources.
There are some research studies to explore techniques to

enhance throughput for mobile devices suffering from low
cellular data rates [81]–[83]. In [84]–[88], the solutions have
been proposed for mobile devices to cooperatively dissemi-
nate data. For example, in [84], [85] is proposed amiddleware
framework that allows mobile users with residue capacity in
their data plans to share their access with other nearby mobile
users for a small fee. In other examples in [86]–[88], nearby
mobile devices cooperate to stream over cellular networks
and relay the received data to other mobile phones over
Wi-Fi and peer-to-peer networks. Moreover, several chal-
lenging security and privacy concerns are raised in mobile
crowdsourcing networks [2], [23], [37], [89]. For example,
mechanisms are required to protect a users’ data when pass-
ing through untrusted nodes [84]. And some sensed data may
contain location information, which may implicitly reveal a
mobile user’s movement [90].

3) CROWD PROCESSING LAYER

This layer analyzes, processes, virtualizes and stores crowd
tasks and sensor data from the lower layer. Recently, cloud
computing has been widely recognized as the next genera-
tion computing infrastructure. With a naturally centralized
paradigm, cloud computing is currently used for analyzing
crowdsourced data and IoT platforms. Processing resources
and storage reside at the primary data center. All crowd-
sourced data collected by mobile devices is uploaded and
analyzed in a cloud platform through wireless networks.
Cloud computing offers great benefits for mobile crowd-
sourcing platforms by extending battery lifetime, improv-
ing data storage capacity, enhancing processing power, and
improving reliability [91]. Although it provides many advan-
tages, cloud computing still creates challenges for latency
sensitive mobile crowdsourcing applications such as real-
time processing and high degree of mobility. In recent years,
fog computing is a new platform extending the cloud comput-
ing paradigm to the edge of the networks. Fog computing aim
to solve this problem by keeping data at the network edgewith

FIGURE 3. The components of crowd processing layer.

local devices (e.g., smartphone, vehicles), rather than routing
everything through a central control center [40].

Focusing on the crowd processing layer in Fig. 3, we illus-
trate a generic crowd processing module which can be
adapted to the different mobile crowdsourcing architec-
tures in the literature. There are six components con-
nected to each other through a data transmission network:
1) task manager, 2) contribution manager, 3) data processing,
4) workflow management, 5) privacy and security manager
and 6) crowd context database. We proceed to detail each of
the components.

• Task Manager: This component handles the incoming
submissions of tasks from requesters and also orga-
nizes the distribution of sensing tasks from the service
requesters to the service providers.

On task design, this sub-component dynamically cre-
ates tasks as many as required from the requesters via
a graphical user interface. The quality of the results
highly depends on the task design [39], [89], so that the
key aspects of tasks such as, types of tasks, the process
of executing tasks, the correspondence of instructions
and constraints must be determined before assigning
tasks to the crowd. Apart from that, other components,
such as keywords, candidate answers, maximum
accepted answers, expected reward, distance to the tar-
get locations, submission time and latency should be
carefully defined. In the task assignment component,
the crowdsourcing system should be concerned with
assigning the right task to the right workers. For instant,
Peng et al. [92] proposes CrowdService, an approach
based on genetic algorithms, that can synthesize near-
optimal cost and time constraints for each crowd service
and select a near-optimal set of workers to execute crowd
tasks. Qiu et al. [93] proposed an approach for the task

312 VOLUME 7, 2019



J. Phuttharak, S. W. Loke: Review of Mobile Crowdsourcing Architectures and Challenges

assignment problem, which offers a theoretically proven
algorithm to assign workers to tasks in a cost efficient
manner while ensuring high accuracy of the overall
task. Moreover, the task would be routed based on the
task specification and the worker profile as mentioned
in [34] and [94]. Hetmank [68] mentions that the impor-
tant conditions when assigning the task to the crowd are
the sufficient worker’s knowledge and skills to complete
the task and the appropriate period of time when the
worker can and is willing to work.

• Contribution Manager: This component is involved in
the process of selecting and assembling the solutions
from the crowd, for quality assurance as well as for
computing appropriate rewards for the crowd. To select
the best feedback from a large group of people, several
methods such as majority voting, control group or expert
decisions have been used [95]–[98].
Furthermore, various data processing techniques,

such as data mining or machine learning algorithms,
may be applied to select and combine the results that
are often overwhelming and comprise redundant data.
For example, Mobasheri et al. [13] apply data mining
techniques to extract the geometry of sidewalk path seg-
ments and to construct sidewalk networks usingmultiple
GPS traces. As another example, the study in [6] exploits
Natural Language Processing and Computer Vision
techniques to extract hyper-resolution data (text mes-
sages from social media and photos from crowdsourcing
platforms) with a wide coverage to support urban flood-
ing events. However, to achieve high performance of
these techniques, data quality and reliability are needed
by crowd workers.
The next sub component is quality control pro-

cess that is one of the key aspects to ensure that
the quality of feedback from the workers. According
to [99], the authors classify the evaluation mecha-
nisms into three levels including no assessment, self-
assessment and external assessment. They also found
that online workers produce better results when they
self-assessed or received external feedback. Moreover,
this component deals with the monetary reward to the
crowd in the case of paid crowdsourcing platforms.
In this method, the system issues monetary rewards by
evaluating the quality of work. The approaches such
as majority agreement [100]–[102] and a set of known
answers to check for errors and to identify workers who
make many mistakes [71], [103]–[105] have been used
for this component.

• Data Processing: The data processing component
involves preparing captured data to storage, processing
stored data and then arranging data for presentation.
From Fig. 3, this component consists of three sub com-
ponents 1) data integration, 2) results processing, and
3) data provisioning. First of all, the data integration
component extracts and transforms captured data from
a large group of crowds into internal data structure.

For example, each vote is counted and stored in the
conventional database. Another example, audio files
are analyzed by extracting words for speech recogni-
tion or matching with original sounds.

Meanwhile, the results processing component oper-
ates the stored raw data to extract features of interest
and get insight into the observed phenomenon. There
could be several approaches for data processing such
as processing for numeric and statistical modelling,
image processing and sophisticated machine learning
algorithms [4], [106], [107], depending on the actual
application. In the last component, the presented data
can be visualizations of the raw data or the processed
data for end users. Furthermore, the results are usually
presented through web-based applications or on mobile
device apps.

• Workflow Management: This component manages a
workflow designed for complex tasks with requirements
and constraints. Workflow designs for crowdsourcing
refers to the process of planning and executing the com-
plex set of tasks that can be accurately solved by a pool
of crowd workers. The workflow can be decomposing
larger tasks into smaller subtasks, and composing sub-
task solutions into the best overall solution. To gain opti-
mal results, a workflow coordinates among the inputs
and the outputs of independent human or machine
functions [68].

Many sophisticated workflow algorithms such as
iterations for running recursive tasks are required
to improve the quality of results. Several research
projects explore crowdsourcing workflow designs.
Negri et al. [108] and Aoki and Morishima [109],
for example, applied the divide-and-conquer
approach to various crowdsourcing applications.
Little et al. [52], [110] introduced TurKit as a toolkit
for deploying iterative tasks to Mechanical Turk. Initial
findings state that iterative workflows improve the qual-
ity of results for refining tasks, such as writing or col-
lective brainstorming using multiple workers to build on
and improve upon an existing task.

• Privacy and Security Manager: This component is
concerned with participant privacy and rights, data
security, as well as access control and authentication.
Geiger et al. [111] proposed multiple levels of acces-
sibility of peer contributions: none, view, assess, and
modify. Each level reflects the degree of privacy that a
crowdsourcing application allows.

This component aims to provide some degree of pro-
tection for the participants’ rights when a crowdsourcing
platform makes use of participants’ data [112]. The
participants should be able to use the privacy controls
provided by the crowdsourcing system to either remove
data or manage how their data is used. However, mobile
crowdsourcing systems still face many challenges with
regards to security, privacy and trust [23], [38]. The
common privacy and security threats include: disclosing
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user identity, location and activity, combining crowd-
sourced data with other user data, lack of user privacy
awareness, vulnerability of mobile devices, relying on
information that may be inaccurate, and retaliation for
reporting sensitive information [26], [113], [114].

• Crowd Context Storage and Database: Data reposi-
tories such as crowd results, end-user/participant pro-
file and generic/specific knowledge base are kept in
the crowdsourcing system’s database. The crowd results
repository is a temporary data recording the results of
relevant crowd tasks. The knowledge base repository
stores long-term data which integrates either the conven-
tional data relevant to the tasks or inferred data which
is generated based on crowd input. The knowledge
base enables the inference process which is useful for
inference from past tasks or even learning about work-
ers [115]. Last, user/worker profile repository contains
details about the requests and performance of each of
the crowd workers. It is useful for the management of
workers, routing suitable tasks, rewarding workers and
task assignment.

4) END-USER LAYER

End users are requesters who purchase or rent crowdsourc-
ing services with a certain cost. An end user could be an
individual or organization or even car users/smart cars who
sends service requests to the crowdsourcing back-end plat-
form/server and receives final results from it. The service
providers allow requesters to create crowdsourcing tasks and
access their results through a User Interface (UI) on web-
based or mobile technologies. There are various tasks in
crowdsourcing tasks generated by requesters. They can range
from recording, acquiring and reporting real-time data to
giving feedback to products or services using a mobile phone
which is useful for companies in marketing research, product
development, promotion and advertising [116]. The specific
UI design is required for these kinds of tasks. According
to [117], the study reports that UI design acquires even greater
significance for crowdsourcing tasks because those tasks are
potentially performed by a large number of globally dispersed
people. The authors indicate that UI design choices have a
significant effect on crowdsourced worker performance and
the quality of results. Thies et al. [118] suggest that the user
interface and task instructions should be simplified and all
content contextualised (e.g., translated into local language)
in order to achieve a much higher rate of task completion by
workers.

B. A GENERALISED DECENTRALIZED MOBILE

CROWDSOURCING ARCHITECTURE

In contrast, in decentralized platforms, all computation and
communication is performed locally in each peer in an
appropriate manner. Each node/peer of the system is equally
responsible for contributing to the global result and could
be located at different places with the geographic location
being relevant to the computational process itself [119].

Thus, each node is able to process and distribute its infor-
mation without relying on any centralized authority through
mechanisms based on its interactions with the environ-
ment. In mobile crowdsourcing systems, they generally can
be considered as a distributed process of problem solving
through a flexible group of human contributors and mobile
devices. In decentralized methods, the systems propagate the
request/task among many contributors especially on mobile
devices, where all computing and communication is operated
on locals. Then, these devices are permitted to fully manip-
ulate and distribute the request to others via communication
channels [120].

Today, mobile devices such as smartphones and tablets
have been extended to incorporate multiple networking
interfaces beyond traditional cellular and WLAN capabili-
ties. Such communication interfaces including Wi-Fi direct/
Wi-Fi peer-to-peer and Bluetooth enable the devices to dis-
cover and connect with each other without relying on cel-
lular carrier networks, wireless access points, or traditional
network infrastructure. Moreover, with powerful multi-core
processors and several gigabytes of storage space, mobile
devices can bring considerable computational power and
communication between device-to-device mode with low
latency and high bandwidth. In recent years, several crowd-
sourcing applications based on decentralized approaches
emerge to deal with emergency and disaster scenarios such as
earthquake and missing people, and crowded scenarios such
as stadiums or shopping malls [85].

For example, the application of user-generated
replays [121] leverages mobile crowd networks formed by
nearby devices that it allows users to capture and share
videos in a crowded event e.g. during a sport stadium.
In [19] and [20], they propose the mobile crowdsourcing
methods that allow mobile users disseminating information
about missing people/items and then send notifications to
others who are close to where the people/items lost and
immediately after they are discovered, the locations will be
determined.

Phuttharak and Loke [36] investigated task propagation
models devised to support mobile crowdsourcing in intermit-
tently connected opportunistic networks. The study simulates
the distribution of crowd tasks in mobile crowdsourcing net-
works with limited communication ranges and explores the
factors that impact on crowd task propagation and the energy
usage for each node.

Another example is the work by Konstantinidis et al. [122]
who proposed a framework called SmartOpt for searching
objects (e.g., image, video, etc.) which are captured by the
user in a mobile social community. The main contribution of
SmartOpt is to use location data made available by the crowd
to optimize the search process with peer-to-peer systems.
This approach is able tominimize energy consumption during
searching, reduce the query response time when conducting
the search and also maximize the recall rate of the user query.

Constantinides et al. [123] extended the sensing capa-
bility of smartphones by allowing them to identify their
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FIGURE 4. Architecture of decentralized crowdsourcing applications.

geographically nearest neighboring nodes in real-time called
CrowdCast. This framework is beneficial to the crowdsourc-
ing paradigm since it provides full access to mobile work-
forces and adds the temporal dimension to location data in
order to exploit trajectory-related information.
After reviewing the decentralized approaches in crowd-

sourcing systems, our proposed generic architecture of
decentralized mobile crowdsourcing applications is shown
in Fig. 4. The mobile or other stationary devices are the
resource providers/workers, and performs, similarly to a
mobile peer-to-peer network. Each peer is able to commu-
nicate and exchange data with each other in the local vicinity
and also can be asked to contribute to identifying mobility
patterns or the popularity of a given trajectory. Moreover,
they are involved explicitly or implicitly (e.g., by allowing
the capturing of sensor data by their mobile devices in the
background) in the crowdsourcing process. The captured data
is stored and processed in the local database on the mobile
device.

C. CENTRALIZED VERSUS DECENTRALIZED MOBILE

CROWDSOURCING ARCHITECTURES

We have discussed both types of architectures, detailing their
primary components. The decentralized architecture is essen-
tially a distributed version of the centralized architecture
but include numerous elements for coordinating the peer-
to-peer worker selection, task selection, task propagation,
and task (and results) processing. Decentralized approaches
move functionality of the different layers into the network of
devices allowing peer-to-peer processing without all devices

connecting to a central controller reducing a bottleneck and
allowing in-situ processing, ad hoc organization and horizon-
tal scalability, but at the cost of more complex coordination,
no one party having total control over the whole process,
and requiring peers to cooperate in relaying tasks and results.
Hence, a hybrid approach that has the advantages of ad hoc
and distributed processing and the benefits of central coor-
dination and control for certain layers of functions could be
explored.

IV. KEY CONSIDERATIONS AND DIRECTIONS

IN MOBILE CROWDSOURCING

There are some key challenges and directions of work in the
context of mobile crowdsourcing systems - we discuss the
following.

A. INFERRING MOBILE CONTEXT AND SPATIAL

CROWDSOURCING

In fact, as mobile devices become very common in our daily
life style, these devices might carry important user context
data, enabling mobile applications to be user centric and
adaptive to user requirements. Mobile context-aware com-
puting involves awareness of the device and its environ-
ment [3], [38], [89], [124]. Examples of context include
geographical mode (e.g. whether the user is on a car bus
train or on foot within a circular area), temporal mode (e.g. in
given dates, during given hours), the kinetic mode of humans
(e.g. walking, standing, jogging, running), user profile
(e.g. age, gender), social mode (e.g. in a meeting, on a phone
call, watching movie), or occurrence of certain situations
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(e.g. crowded in the protest, potholes on the road) [3], [85],
[125]. As noted in [126]–[128], context is an important issue
and needs to be addressed in mobile crowdsourcing systems
and its applications. Afridi [129] states that context must pre-
cisely be specified on the task in order to deliver and execute
the right tasks to the right people in the right circumstances.
Several mobile crowdsourcing applications are location-

aware crowdsourcing platforms that share and solve tasks
based on either the requester’s or the worker’s location.
It is context dependent and dynamic (time and location) and
may have a number of relevant conditions. For example,
Tamilin et al. [130] discussed context-aware mobile crowd-
sourcing where the context should maximize conditions for
user participation by presenting only tasks relevant to the
user, with minimal user intervention and minimizing the
consumption of resources of mobile devices, especially the
battery. According to [131]–[134], context-aware applica-
tions are not used by individual users, but a group of users.
The authors propose a context-aware organization model
for mobile collaboration which manages groups in mobile
environments with solutions including a special weighted
majority voting algorithm. And based on their approximate
strategy, they are able to represent a way to make decisions
and recommendations in collaborative mobile environments.
In the past few years, a new paradigm of data collection

called spatial crowdsourcing (SC) has emerged. SC requires
workers to physically be at specific locations to complete the
tasks i.e., taking pictures or collecting air quality information
at specified locations of interest. Sometimes it is referred to as
location-aware or geo-crowdsourcing that enables people to
gather, analyze, and disseminate geographical and/or social
information in the physical world. For example, Microsoft
research [135] has a project exploring the use of spatial
context in crowdsourcing. They studies how to get people
to do simple tasks at specific locations. gMission [136]
is also another such platform which features a collection
of techniques including geographic sensing, worker detec-
tion, and task recommendation to address the needs of get-
ting information related to geographic location. A recent
survey [23], [137], [138] thoroughly discussed the core issues
of SC, including task assignment, incentive mechanism, pri-
vacy protection, the absence of real-world datasets, scalabil-
ity and quality of reported data. One of the major challenges
with SC is the task assignment. Tong et al. [138] catego-
rized task assignment in spatial crowdsourcing into static
(offline) and dynamic (online) scenarios. In static scenarios,
most efforts maximize the total number of valid assigned
pairs (tasks and workers) [139]–[144]. Meanwhile, online
scenarios aim to maximize the number of assigned worker-
task pairs under a budget constraint where workers appear
dynamically on platforms. Existing solutions often develop
two-sided onlinematching algorithms to adapt the subsequent
unknown arrival objects [145]–[148]. Privacy and trust issues
in SC are important to protect workers’ privacy and verify
the validation of the results provided by workers. Recently,
many related approaches have been proposed to cope with the

location privacy issue for this type of crowd wis-
dom [149]–[152]. These methods address privacy by mask-
ing the location information based on a differential privacy
approach [149], [153].

A key point to note here is that mobile context is crucial
in many mobile crowdsourcing applications, but comes often
with trading-off privacy, especially in centralized crowd-
sourcing approaches - e.g., in many applications assigning of
tasks to users require the central assigner knowing the context
of users/devices. Decentralized approaches where context is
used to perform tasks locally and not shared out has an
advantage - e.g., a task requirement can be forwarded among
peers for local evaluation of suitability to perform the task till
it reaches a peer with the right context for it, though a less
efficient approach compared to centralised task allocation.
Challenges include defining the right context information at
the right level of detail for a given crowdsourcing application
and obtaining such context information accurately.

B. ENERGY CONSIDERATIONS

Energy consumption of mobile devices, such as smartphones,
has increasingly become a concern from various sectors,
ranging from smartphone manufacturers, mobile developers,
to end users. The embedded sensors in the mobile devices are
major sources of power consumption. Even though battery
capacity has been increasing in the past few years, the battery
life of mobile devices is not catching up proportionally for a
large spectrum of current applications [154].

Work in [155]–[157] have studied the energy consumption
characteristics of mobile network technologies that are under
widespread use today. According to [155], they conducted
a measurement study to quantify the energy consumed by
data transfer across 3G, GSM, and WiFi. They found that
the transmission energy consumed by Wi-Fi is significantly
smaller than both 3G and GSM, especially for large transfer
sizes. Xiao et al. [157] measured the energy consumption
for Youtube video streaming applications in mobile phones
based on network access technology (WCDMA andWLAN).
The results show that network transmission using WCDMA
consumes more energy than when usingWLAN. These mean
that there are additional energy costs for mobile users which
can affect the adoption of mobile crowdsourcing.

In mobile crowdsourcing, its applications have deployed
mobile sensors to form interactive and participatory sensors
networks in order to enable public and professional users to
gather, analyze, or even share local knowledge. However, par-
ticipation in these systems can easily expose mobile users to a
significant drain on already limited mobile battery resources.
Energy is consumed in all aspects of applications ranging
from sensing, processing and data transmission in mobile
crowdsourcing. Energy consumption is one of key factors
affecting users’ willingness to participate in crowdsensing
tasks [22], [158]. Thus, there is a strong need for efficient
techniques to enhance energy optimization, which will help
mobile users retain the benefits of mobile crowdsourcing.
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There has been progress in energy optimization on mobile
sensing applications in recent years. Several studies try
to reduce overall energy consumption in mobile crowd-
sourcing systems with less collected and uploaded data
(i.e., reducing total sensing data collection consumption,
total local analytics consumption, and total sensing data
report consumption) [36], [128], [158]–[161]. For example,
Zhuang et al. [162] present an adaptive scheme for obtaining
phone location by switching between the accurate but energy-
expensive GPS probing to energy-efficient but less accurate
WiFi/cellular localization. Lane et al. [18] proposed a system
for collecting mobile sensor data from smartphones called
Piggyback Crowdsensing. They found that collecting mobile
sensor data from the smartphone can be performed properly
in a background process while a user is operating regular
activities such as placing phone calls or using applications.
So, the energy overhead of user participation is lowered and
the phone need no longer be woken from an idle sleep state.
Recently, Montori et al. [163] proposed a probabilistic

distributed algorithm (PDA) to save energy limiting over-
head and data redundancy. The algorithm exploits feedback
from the central authority to set probabilistic thresholds
for sensing decisions in each region of interest. Moreover,
there are many frameworks proposed in the task assignment
phase to keep the energy consumption of each mobile device
low [164], [165]. For instance, [164] and [165] proposed
approaches to select a minimum number of workers while
ensuring a predefined sensing quality. However, the diversity
of quality and energy consumption of the sensed data poses
an obstacle for improving the quality of data with low energy
consumption. Therefore, it is still a challenge to improve the
quality of data and minimize energy consumption.
A key point to note is that the use of GPS, data transfer

(whether relaying data in peer-to-peer decentralized crowd-
sourcing networks or sending to central controllers), screen
utilization when users perform tasks and even phone calls
(if an application requires it), are key energy-consuming
functions typically required in mobile crowdsourcing. Also,
battery life improvements on mobile devices have been sub-
stantial but certainly not at a rate where energy consumption
of applications can be ignored - hence, mobile crowdsourcing
applications will need to take into account energy consid-
erations, and the quality of crowdsourcing results and will-
ingness to participate can be impacted by energy limitations,
as noted above.

C. TASK ALLOCATION AND COMPUTATION

In mobile crowdsourcing, task allocation aims to allocate
a specific set of outsourced tasks to a set of mobile users
who can potentially finish these tasks more accurately and
efficiently. For example, if the task is to translate Japanese
language to English, the mobile users who know in Japanese
language or live in Japan might be preferred to be recruited
in the task.
There are many studies investigating task allocation [39],

[166]–[168]. An et al. [39] proposed a crowdsourcing

assignment model based on social relationships and com-
munity detection. The simulation results show that their
crowdsourcing assignment approach has better performance
in terms of correctness, effectiveness, and robustness in a
mobile-aware scenario. According to [166], they proposed
a budget-optimal task allocation algorithm for effectively
assigning the task for appropriate workers. The study pro-
vides a non-adaptive task allocation scheme and an infer-
ence algorithm based on low-rank matrix approximations and
belief propagation. Later, Ho et al. [167] explored the task
assignment problem by applying online primal-dual tech-
niques. They also proposed a near-optimal adaptive assign-
ment algorithm. The result shows that adaptively assigning
workers to tasks can lead to more accurate prediction and
lower cost when the available workers are diverse. Moreover,
Reddy et al. [168] claim geographic and temporal availabili-
ties of mobile users would highly impact the task delay, which
should be considered in participant selection.

With the dynamic conditions of the set of mobile devices,
local analytics performing certain primitive processing of the
raw data on the device are needed. The results are initially
computed before shipping the processed data back to the
server for further processing and consumption. For instance,
in inferring human activity applications [169], [170], local
analytics is done using phone classifiers that perform com-
plex data analysis such as feature extraction, decision tree
classifications and data stream mining before transmitting
it to the server. Ganti et al. [22] noted two benefits for
motivating localized computation. First, the overall process-
ing performed consumes less energy and bandwidth than
transmitting the raw data. Second, it is able to minimize the
amount of processing in the server.

Mobile devices are connected only intermittently when
they opportunistically contact each other, known as Delay
Tolerant Networks (DTNs). DTNs use a store-carry-forward
paradigm to allow communication when a path through the
network is not reliable due to frequent disconnections. With
the unreliability and dynamism of mobile networks, there
are several key issues for the development of crowdsourcing-
related mobile applications that need to be considered. Due to
the dynamic nature of moving hosts with may join and leave
from the platform at any time, a mobile network topology
is likely to change often. Also, communication range might
be limited when a mobile user goes outside of a given loca-
tion, causing unavailability of data (tasks or feedbacks from
crowd) in his mobile device at that location. A robust routing
protocol is needed when the data needs to be transmitted
between the two nodes. In [171] is a survey on opportunistic
routing for delay tolerant networks. They classified the rout-
ing techniques of opportunistic network and also evaluated
the performance of each method.

Recently, Socievole et al. [172] used social information
extracted from multiple social networks to improve message
delivery in opportunistic networks. The multiple social net-
works are based on a social metric which exploits social
information extracted from different network layers, in which
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a node forwards packets using a routing metric that com-
bines three measures: node centrality, tie strength and a tie
predictor. Meanwhile, Chaintreau et al. [173] used Online
Social Networks (OSN) to take advantage of node mobility in
an opportunistic manner. The models show that the induced
topology supports well a decentralized routing scheme
(i.e. greedy routing) and a spatial gossip mechanism when
nodes maintain connections with other nodes that they have
met in the past.
The issues of task allocation, worker selection, and worker

discovery in mobile crowdsourcing are complex, rang-
ing from centralised task allocation approaches to more
ad hoc decentralised approaches. Depending on the task,
whether requiring results in real-time or over longer periods,
the appropriate task allocation andworker selection algorithm
is required. Delay Tolerant and opportunistic types of task
dissemination and worker discovery may be appropriate in
situations of poor or intermittent connectivity, or where the
pool of potential workers in the vicinity might be varying for
a given task, but applicable only when results are not required
in a short time or in real time.
Also, task self-selection by workers versus task allocation

(and worker selection) by a central controller are two strate-
gies, each with its own advantages. In open environments,
there may be little prior knowledge of workers and difficul-
ties in tracking the behaviour and performance of workers
(and workers may have no prior reputation information).
In a given mobile crowdsourcing application, for tasks to

be matched with workers appropriately, how tasks need to be
described and workers need to be profiled are considerations.

D. PRESERVING USER PRIVACY

For widespread deployment and acceptance of mobile crowd-
sourcing, privacy considerations must involve both ser-
vice providers and mobile users/workers. For example,
the research reported in [174] found that 82% of active
Facebook users disclosed personal information such as their
birth date, cell phone number, personal address, political and
sexual orientation, and partner’s name. This vulnerability
permits legitimate applications to gather sensitive personal
information without the users’ full awareness. Moreover,
the recording of intimate discussions, taking photographs of
private scenes, or tracing users’ paths and monitoring the
locations they visited are possible. In mobile crowdsourcing,
the crowd tasks could expose the personal interests and aims
of service consumers. Likewise, the feedback from workers
generally tagged with spatio-temporal information discloses
abundant personal information on mobile users, such as loca-
tion, personal activities, and social relationships. As a result,
privacy preservation is of paramount importance in mobile
crowdsourcing.
In general, user information can be protected from the

intruder by using cryptography when transmitting and pro-
cessing data. Liu et al. [175] proposed a collaborative learn-
ing scheme for classification tasks, e.g., activity or context
recognition, in mobile sensing, which can ensure the

classification accuracy without compromising mobile users’
privacy, by utilizing feature perturbations and regression tech-
niques. Chon et al. [176] proposed a 24 hour time lapse during
which users can manually review and delete any data which
they deem too sensitive to share. Users also have the ability to
block the transmission of data in advance when anticipating
activities of a sensitive nature. Anonymity, as an effective
solution for privacy preservation, has also been adopted to
preserve mobile users’ privacy in mobile crowdsensing [2].
Cornelius et al. [64] proposed the AnonySense architecture
as a means of protecting user privacy when reporting context
sensitive information, as it offers protection across multiple
layers without manual intervention from the user. It allows
using anonymous nodes for delivery of tasks and submission
of reports. Ren et al. [2] suggested that anonymous tech-
niques should be carefully developed for information transfer
in local-based mobile crowdsourcing since local servers are
generally deployed for commercial purposes and not trusted
by mobile users.

We have noted earlier that the context privacy and utility
trade-off is a consideration when developing a mobile crowd-
sourcing application requiring user contexts. However, it is
not only the privacy of contexts used in determining who to
assign a task to, but the the privacy of data supplied when
users perform tasks, which depends on the task requirements -
e.g., if the task is to crowdsource what people eat in a large
shopping mall, requiring crowdsourcing pictures of what is
being eaten at a particular time and location, this may not be
comfortable with everyone.

E. HETEROGENEOUS DATA FORMATS AND MODALITIES

The range of mobile, wearable, and vehicle (e.g., bicycles,
cars and drones) sensors and devices continues to grow,
so that there is an increasing range of types and formats
of data that can be collected via such devices. The data
could be in different formats and collected via different user-
device interaction modalities. For example, suppose one is
crowdsourcing video feeds of a large tourist park area -
the video can be captured via smartphones, smartwatches
(with embedded cameras), on-car cameras, as well as portable
GoPro devices, with a need to meaningfully integrate such a
diverse range of video formats, resolution, time-frames, and
points-of-view.

Also, some of the data crowdsourced might be done
through different types of networks. For example, some data
might be collected via linkages in different types of social
networks (via 4G/5G Internet) and some collected via direct
peer-to-peer localised networks using Bluetooth or WiFi-
Direct based connectivity. While such a diversity of network-
ing capabilities exists, with a wider range of channels by
which workers can be reached, there is a need to ensure that
data collected can be collected and aggregated appropriately.
This also implies a design consideration of what types of
data formats, modalities and networks be best employed for
a given mobile crowdsourcing application.
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F. FROM MOBILE CROWDSOURCING TO THING

CROWDSOURCING

From an era of mobile computing, we are now well into
the era of the Internet-of-Things (IoT) [177]. Mobile crowd-
sourcing ideas can serve as a critical building block for the
emerging IoT, leading to a notion of thing crowdsouring, gen-
eralising from mobile crowdsourcing so that not just smart-
phones, but smart things (from phones, cameras, vehicles,
drones, to everyday objects with embedded computational
ability) can enlist workers to solve problems - e.g., a device
is not able to process a particular image and enlists human
workers to solve this problem, or it could enlist other things
with the resources to address the problem. Potentially, thing
crowdsourcing enables a new way for things to perceive the
world extending the services the IoT can offer. While things
can connect to Amazon’s Mechanical Turk or other micro-
tasking platforms via the Internet, things could utilise other
nearby edge devices, using direct interconnections among
things to things, and things to people, and perform compu-
tations locally [178].
In this regard, the potential of IoT can be enlarged through

this method of crowd-empowering things. Things can crowd-
source task to other things and people, but also be providers
of resources, or act as the means through which people
can perform micro-tasks. This is made more feasible today
and increasingly so in the future due to the rising Internet-
of-Things where things are increasingly connected to other
things via short-range networking technology or the emerging
wider-range 5G networks, and by AI embedded in things, i.e.
things are programmed with an intelligent problem-solving
strategy, e.g., to first attempt to solve problems initially
by themselves, but then will crowdsource tasks to other
things or even via a thing social network15 to get help in
solving problems, with the ability to combine crowdsourced
results (e.g., in a human-AI synergy mediated by things).
Considerations with machines crowdsourcing tasks to

other machines (or humans) are similar to that in humans
crowdsourcing tasks to others. Thing crowdsourcing will also
face technical challenges, such as data redundancy and qual-
ity of service, integrationmethodology, robustness of connec-
tions, scalability and flexibility, power and energy efficiency,
and security and privacy protection.

V. CONCLUSION

The emergence of the mobile crowdsourcing paradigm has
brought a dramatic change in the landscape for solving com-
plex problems. Mobile crowdsourcing refers to a powerful
approach utilizing mobile sensing and human intelligence to
address problems and finding relevant solutions. Recently,
crowdsourcing has steadily moved across many disciplines
in both scientific and industrial sectors. It has developed in
new contexts such as new business ideas and solutions to
social problems and consequently, there are new products
and services being launched that are leveraging the power of

15For example, see http://www.social-iot.org/

the crowd to find solutions to problems. The mobile crowd-
sourcing paradigm provides a new method for perceiving the
world, by involving anyone in the process of sensing, for
greatly extending the services of IoT and building a new
generation of intelligent networks that interconnect things-
to-things, things-to-people, and people-to-people.

We have given an extensive survey of current mobile
crowdsourcing research that is able to serve as a useful refer-
ence for future research in the area. We reviewed background
knowledge on mobile crowdsourcing and discussed a range
of frameworks, architectures, techniques, and directions for
developing mobile crowdsourcing applications. We also pre-
sented a taxonomy of the issues found in this area and four
aspects along which these issues have been tackled, focusing
on applicability, generalised architectures and the support for
mobility. Finally, we proposed a generalisation from mobile
crowdsourcing to thing crowdsourcing.

REFERENCES

[1] F. Fuchs-Kittowski and D. Faust, ‘‘Architecture of mobile crowdsourcing
systems,’’ in Collaboration and Technology (Lecture Notes in Computer
Science), N. Baloian, F. Burstein, H. Ogata, F. Santoro, and G. Zurita,
Eds. Cham, Switzerland: Springer, 2014, pp. 121–136.

[2] J. Ren, Y. Zhang, K. Zhang, and X. Shen, ‘‘Exploiting mobile crowd-
sourcing for pervasive cloud services: Challenges and solutions,’’ IEEE
Commun. Mag., vol. 53, no. 3, pp. 98–105, Mar. 2015.

[3] B. Guo et al., ‘‘Mobile crowd sensing and computing: The review of
an emerging human-powered sensing paradigm,’’ ACM Comput. Surv.,
vol. 48, no. 1, pp. 7:1–7:31, Aug. 2015. [Online]. Available: http://doi.
acm.org/10.1145/2794400

[4] J. Zhang, V. S. Sheng, T. Li, and X. Wu, ‘‘Improving crowdsourced label
quality using noise correction,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 5, pp. 1675–1688, May 2018.

[5] I. Mccallum et al., ‘‘Engaging citizens in environmental monitoring via
gaming,’’ Int. J. Spatial Data Infrastruct. Res., vol. 13, no. 1, pp. 15–23,
2018.

[6] R.-Q. Wang, H. Mao, Y. Wang, C. Rae, and W. Shaw, ‘‘Hyper-resolution
monitoring of urban flooding with social media and crowdsourcing data,’’
Comput. Geosci., vol. 111, pp. 139–147, Feb. 2018.

[7] R. Montella, S. Kosta, and I. Foster, ‘‘DYNAMO: Distributed leisure
yacht-carried sensor-network for atmosphere and marine data crowd-
sourcing applications,’’ in Proc. IEEE Int. Conf. Cloud Eng. (IC2E),
Apr. 2018, pp. 333–339.

[8] D. Eilander, P. Trambauer, J. Wagemaker, and A. van Loenen, ‘‘Harvest-
ing social media for generation of near real-time flood maps,’’ Procedia
Eng., vol. 154, pp. 176–183, Jan. 2016.

[9] P. Zhou, Y. Zheng, and M. Li, ‘‘How long to wait? Predicting bus arrival
timewithmobile phone based participatory sensing,’’ IEEE Trans.Mobile
Comput., vol. 13, no. 6, pp. 1228–1241, Jun. 2014.

[10] D. Boss, T. Nelson, M. Winters, and C. J. Ferster, ‘‘Using crowdsourced
data to monitor change in spatial patterns of bicycle ridership,’’ J. Transp.
Health, vol. 9, pp. 226–233, Mar. 2018.

[11] S. Reddy, A. Parker, J. Hyman, J. Burke, D. Estrin, and M. Hansen,
‘‘Image browsing, processing, and clustering for participatory sensing:
Lessons from a dietsense prototype,’’ in Proc. 4th Workshop Embed-

ded Netw. Sensors (EmNets), 2007, pp. 13–17. [Online]. Available:
http://doi.acm.org/10.1145/1278972.1278975

[12] R. Pryss, M. Reichert, B. Langguth, and W. Schlee, ‘‘Mobile crowd
sensing services for tinnitus assessment, therapy, and research,’’ in Proc.
IEEE Int. Conf. Mobile Services, Jun. 2015, pp. 352–359.

[13] A. Mobasheri, H. Huang, L. C. Degrossi, and A. Zipf, ‘‘Enrichment of
openstreetmap data completeness with sidewalk geometries using data
mining techniques,’’ Sensors, vol. 18, no. 2, p. 509, 2018, doi: 10.3390/
s18020509.

[14] N. Ta, G. Li, T. Zhao, J. Feng, H. Ma, and Z. Gong, ‘‘An efficient ride-
sharing framework for maximizing shared route,’’ IEEE Trans. Knowl.

Data Eng., vol. 30, no. 2, pp. 219–233, Feb. 2018.

VOLUME 7, 2019 319

http://dx.doi.org/10.3390/s18020509
http://dx.doi.org/10.3390/s18020509


J. Phuttharak, S. W. Loke: Review of Mobile Crowdsourcing Architectures and Challenges

[15] M. Hamilton, F. Salim, E. Cheng, and S. L. Choy, ‘‘Transafe: A crowd-
sourced mobile platform for crime and safety perception management,’’
in Proc. IEEE Int. Symp. Technol. Soc. (ISTAS), May 2011, pp. 1–6.

[16] S. Ruiz-Correa et al., ‘‘SenseCityVity: Mobile crowdsourcing, urban
awareness, and collective action in mexico,’’ IEEE Pervasive Comput.,
vol. 16, no. 2, pp. 44–53, Apr. 2017.

[17] S. Ruiz-Correa et al., UrBis: A Mobile Crowdsourcing Platform for

Sustainable Social and Urban Research in México. Cham, Switzerland:
Springer, 2018, pp. 19–37.

[18] N. D. Lane et al., ‘‘Piggyback CrowdSensing (PCS): Energy effi-
cient crowdsourcing of mobile sensor data by exploiting smartphone
app opportunities,’’ in Proc. 11th ACM Conf. Embedded Netw. Sen-

sor Syst. (SenSys), 2013, pp. 7:1–7:14. [Online]. Available: http://doi.
acm.org/10.1145/2517351.2517372

[19] H. Shin et al., ‘‘CoSMiC: Designing a mobile crowd-sourced collab-
orative application to find a missing child in situ,’’ in Proc. 16th Int.

Conf. Hum.-Comput. Interact. Mobile Devices Services (MobileHCI),
2014, pp. 389–398. [Online]. Available: http://doi.acm.org/10.1145/
2628363.2628400

[20] E. Harburg, Y. Kim, E. Gerber, and H. Zhang, ‘‘CrowdFound: A mobile
crowdsourcing system to find lost items on-the-go,’’ in Proc. 33rd Annu.
CHI Conf. Hum. Factors Comput. Syst. CHI Extended Abstr. Publication,
vol. 18, 2015, pp. 1537–1542.

[21] S. Jamil, A. Basalamah, A. Lbath, and M. Youssef, ‘‘Hybrid partic-
ipatory sensing for analyzing group dynamics in the largest annual
religious gathering,’’ in Proc. ACM Int. Joint Conf. Pervasive Ubiq-

uitous Comput. (UbiComp), 2015, pp. 547–558. [Online]. Available:
http://doi.acm.org/10.1145/2750858.2807548

[22] R. K. Ganti, F. Ye, and H. Lei, ‘‘Mobile crowdsensing: Current state
and future challenges,’’ IEEE Commun. Mag., vol. 49, no. 11, pp. 32–39,
Nov. 2011.

[23] W. Feng, Z. Yan, H. Zhang, K. Zeng, Y. Xiao, and Y. T. Hou, ‘‘A survey
on security, privacy and trust in mobile crowdsourcing,’’ IEEE Internet

Things J., vol. 5, no. 4, pp. 2971–2992, Aug. 2018.
[24] R. I. Ogie, ‘‘Adopting incentive mechanisms for large-scale participation

in mobile crowdsensing: From literature review to a conceptual frame-
work,’’ Hum.-Centric Comput. Inf. Sci., vol. 6, no. 1, p. 24, Dec. 2016,
doi: 10.1186/s13673-016-0080-3.

[25] W. Yufeng, J. Xueyu, J. Qun, and M. Jianhua, ‘‘Mobile crowdsourc-
ing: Framework, challenges, and solutions,’’ Concurrency Comput.,

Pract. Exper., vol. 29, no. 3, p. e3789, 2016. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3789

[26] Y. Wang, X. Jia, Q. Jin, and J. Ma, ‘‘Mobile crowdsourcing: Architecture,
applications, and challenges,’’ in Proc. IEEE 12th Int. Conf. Ubiquitous
Intell. Comput. IEEE 12th Int. Conf. Auton. Trusted Comput. IEEE 15th

Int. Conf. Scalable Comput. Commun. Assoc. Workshops (UIC-ATC-

ScalCom), Aug. 2015, pp. 1127–1132.
[27] D. Geiger, M. Rosemann, and E. Fielt, ‘‘Crowdsourcing information sys-

tems: A systems theory perspective,’’ in Proc. Australas. Conf. Inf. Syst.
(ACIS), Sydney, NSW, Australia, 2011, pp. 1–12. [Online]. Available:
https://eprints.qut.edu.au/47466/

[28] B. Guo, C. Chen, D. Zhang, A. Chin, and Z. Yu, ‘‘Mobile crowd
sensing and computing: When participatory sensing meets participa-
tory social media,’’ IEEE Commun. Mag., vol. 54, no. 2, pp. 131–137,
Feb. 2016.

[29] B. Guo, Z. Yu, X. Zhou, and D. Zhang, ‘‘From participatory sensing
to mobile crowd sensing,’’ in Proc. IEEE Int. Conf. Pervasive Comput.

Commun. Workshops (PERCOM Workshops), Mar. 2014, pp. 593–598.
[30] S. S. Kanhere, ‘‘Participatory sensing: Crowdsourcing data from mobile

smartphones in urban spaces,’’ in Proc. IEEE 12th Int. Conf. Mobile Data
Manage., vol. 2, Jun. 2011, pp. 3–6.

[31] S. Panichpapiboon and P. Leakkaw, ‘‘Traffic sensing through accelerom-
eters,’’ IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3559–3567,
May 2016.

[32] N. D. Lane, P. Georgiev, and L. Qendro, ‘‘DeepEar: Robust smart-
phone audio sensing in unconstrained acoustic environments using deep
learning,’’ in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Com-

put. (UbiComp), 2015, pp. 283–294. [Online]. Available: http://doi.acm.
org/10.1145/2750858.2804262

[33] F. Restuccia, P. Ferraro, S. Silvestri, S. K. Das, and G. L. Re. (2018).
‘‘IncentMe: Effective mechanism design to stimulate crowdsensing
participants with uncertain mobility.’’ [Online]. Available: http://arxiv.
org/abs/1804.11150

[34] M. H. Sims, M. Fagnano, J. S. Halterman, and M. W. Halterman,
‘‘Provider impressions of the use of a mobile crowdsourcing app in
medical practice,’’ Health Inform. J., vol. 22, no. 2, pp. 221–231, 2016,
doi: 10.1177/1460458214545896.

[35] L. I. Besaleva and A. C. Weaver, ‘‘CrowdHelp: A crowdsourcing applica-
tion for improving disaster management,’’ in Proc. IEEE Global Human-
itarian Technol. Conf. (GHTC), Oct. 2013, pp. 185–190.

[36] J. Phuttharak and S. W. Loke, ‘‘Mobile crowdsourcing in peer-to-peer
opportunistic networks: Energy usage and response analysis,’’ J. Netw.
Comput. Appl., vol. 66, pp. 137–150, May 2016.

[37] K. Yang, K. Zhang, J. Ren, and X. Shen, ‘‘Security and privacy in mobile
crowdsourcing networks: Challenges and opportunities,’’ IEEE Commun.
Mag., vol. 53, no. 8, pp. 75–81, Aug. 2015.

[38] A. Kamilaris and A. Pitsillides, ‘‘Mobile phone computing and the
Internet of Things: A survey,’’ IEEE Internet Things J., vol. 3, no. 6,
pp. 885–898, Dec. 2016.

[39] J. An, X. Gui, Z.Wang, J. Yang, andX. He, ‘‘A crowdsourcing assignment
model based on mobile crowd sensing in the Internet of Things,’’ IEEE
Internet Things J., vol. 2, no. 5, pp. 358–369, Oct. 2015.

[40] A. Rauniyar, P. Engelstad, B. Feng, and D. van Thanh, ‘‘Crowdsourcing-
based disaster management using fog computing in Internet of Things
paradigm,’’ in Proc. IEEE 2nd Int. Conf. Collaboration Internet Comput.
(CIC), Nov. 2016, pp. 490–494.

[41] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, ‘‘Fog com-
puting may help to save energy in cloud computing,’’ IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1728–1739, May 2016.

[42] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, ‘‘Fog computing: A plat-
form for Internet of Things and analytics,’’ in Big Data and Internet

of Things: A RoadMap for Smart Environments. Cham, Switzerland:
Springer, 2014, pp. 169–186.

[43] R. Mahmud, R. Kotagiri, and R. Buyya, ‘‘Fog computing: A taxon-
omy, survey and future directions,’’ in Internet of Everything. Singapore:
Springer, 2018, pp. 103–130.

[44] L. G. Jaimes, I. J. Vergara-Laurens, and A. Raij, ‘‘A survey of incentive
techniques for mobile crowd sensing,’’ IEEE Internet Things J., vol. 2,
no. 5, pp. 370–380, Oct. 2015.

[45] A. Doan, R. Ramakrishnan, and A. Y. Halevy, ‘‘Crowdsourcing sys-
tems on the world-wide Web,’’ Commun. ACM, vol. 54, no. 4,
pp. 86–96, Apr. 2011. [Online]. Available: http://doi.acm.org/10.1145/
1924421.1924442

[46] N. Kaufmann, T. Schulze, and D. Veit, ‘‘More than fun and money.
Worker motivation in crowdsourcing—A study on mechanical turk,’’ in
Proc. Amer. Conf. Inf. Syst., 2011, pp. 1–12.

[47] M. D. Corner and B. N. Levine, ‘‘MicroMobile: Leveragingmobile adver-
tising for large-scale experimentation,’’ in Proc. 16th Annu. Int. Conf.
Mobile Syst., Appl., Services (MobiSys), 2018, pp. 310–322. [Online].
Available: http://doi.acm.org/10.1145/3210240.3210326

[48] L. von Ahn and L. Dabbish, ‘‘Labeling images with a computer
game,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI),
2004, pp. 319–326. [Online]. Available: http://doi.acm.org/10.1145/
985692.985733

[49] Y. Gong, L. Wei, Y. Guo, C. Zhang, and Y. Fang, ‘‘Optimal task rec-
ommendation for mobile crowdsourcing with privacy control,’’ IEEE
Internet Things J., vol. 3, no. 5, pp. 745–756, Oct. 2016.

[50] E. J. Horvitz, ‘‘Problem-solving design: Reasoning about computational
value, tradeoffs, and resources,’’ in Proc. 2nd Annu. NASA Res. Forum,
1987, pp. 26–43.

[51] M. S. Bernstein et al., ‘‘Soylent: A word processor with a crowd
inside,’’ in Proc. 23nd Annu. ACM Symp. User Interface Softw. Tech-

nol. (UIST), 2010, pp. 313–322. [Online]. Available: http://doi.acm.org/
10.1145/1866029.1866078

[52] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, ‘‘TurKit: Human
computation algorithms on mechanical turk,’’ in Proc. 23nd Annu. ACM
Symp. User Interface Softw. Technol. (UIST), 2010, pp. 57–66. [Online].
Available: http://doi.acm.org/10.1145/1866029.1866040

[53] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor,
‘‘AutoMan: A platform for integrating human-based and digital compu-
tation,’’ in Proc. ACM Int. Conf. Object Oriented Program. Syst. Lang.

Appl. (OOPSLA), 2012, pp. 639–654. [Online]. Available: http://doi.
acm.org/10.1145/2384616.2384663

[54] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang, ‘‘CDAS:
A crowdsourcing data analytics system,’’ Proc. VLDB Endowment, vol. 5,
no. 10, pp. 1040–1051, Jun. 2012, doi: 10.14778/2336664.2336676.

320 VOLUME 7, 2019

http://dx.doi.org/10.1186/s13673-016-0080-3
http://dx.doi.org/10.1177/1460458214545896
http://dx.doi.org/10.14778/2336664.2336676


J. Phuttharak, S. W. Loke: Review of Mobile Crowdsourcing Architectures and Challenges

[55] E. Schenk and C. Guittard, ‘‘Towards a characterization of crowdsourc-
ing practices,’’ J. Innov. Econ. Manage., vol. 7, no. 1, pp. 93–107,
2011.

[56] G. Barbier, R. Zafarani, H. Gao, G. Fung, and H. Liu, ‘‘Maximizing
benefits from crowdsourced data,’’ Comput. Math. Org. Theory, vol. 18,
no. 3, pp. 257–279, Sep. 2012.

[57] V. Pilloni, ‘‘How data will transform industrial processes: Crowdsensing,
crowdsourcing and big data as pillars of industry 4.0,’’ Future Internet,
vol. 10, p. 24, Mar. 2018.

[58] D. Stojanovic, B. Predic, and N. Stojanovic, ‘‘Mobile crowd sensing for
smart urban mobility,’’ in Proc. Eur. Handbook Crowdsourced Geograph.
Inf., 2016, p. 371.

[59] S. De, Y. Zhou, I. L. Abad, and K. Moessner, ‘‘Cyber–physical–social
frameworks for urban big data systems: A survey,’’ Appl. Sci., vol. 7,
p. 1017, Oct. 2017.

[60] M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan, ‘‘Medusa: A program-
ming framework for crowd-sensing applications,’’ in Proc. 10th Int. Conf.
Mobile Syst., Appl., Services (MobiSys), 2012, pp. 337–350. [Online].
Available: http://doi.acm.org/10.1145/2307636.2307668

[61] X. Hu, T. H. S. Chu, H. C. B. Chan, and V. C. M. Leung, ‘‘Vita:
A crowdsensing-oriented mobile cyber-physical system,’’ IEEE Trans.

Emerg. Topics Comput., vol. 1, no. 1, pp. 148–165, Jun. 2013.
[62] S. Hupfer et al., ‘‘MoCoMapps: Mobile collaborative map-based appli-

cations,’’ in Proc. ACM Conf. Comput. Supported Cooperat. Work

Companion (CSCW), 2012, pp. 43–44. [Online]. Available: http://doi.
acm.org/10.1145/2141512.2141534

[63] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma,
‘‘PRISM: Platform for remote sensing using smartphones,’’ in Proc.

8th Int. Conf. Mobile Syst., Appl., Services (MobiSys), 2010, pp. 63–76.
[Online]. Available: http://doi.acm.org/10.1145/1814433.1814442

[64] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and
N. Triandopoulos, ‘‘AnonySense: Privacy-aware people-centric sens-
ing,’’ in Proc. 6th Int. Conf. Mobile Syst., Appl., Services (MobiSys),
2008, pp. 211–224. [Online]. Available: http://doi.acm.org/10.1145/
1378600.1378624

[65] Y. Zhao and Q. Zhu, ‘‘Evaluation on crowdsourcing research: Current sta-
tus and future direction,’’ Inf. Syst. Frontiers, vol. 16, no. 3, pp. 417–434,
Jul. 2014, doi: 10.1007/s10796-012-9350-4.

[66] D. Estrin et al., ‘‘Participatory sensing: Applications and architecture
[Internet predictions],’’ IEEE Internet Comput., vol. 14, no. 1, pp. 12–42,
Jan. 2010.

[67] B. Khorashadi, S. M. Das, and R. Gupta, ‘‘Flexible architecture for
location based crowdsourcing of contextual data,’’ U.S. Patent 8 472 980,
Jun. 25, 2013.

[68] L. Hetmank, ‘‘Components and functions of crowdsourcing systems—
A systematic literature review,’’ in Proc. 11th Int. Conf. Wirtschaftsinfor-
matik, 2013, pp. 55–69.

[69] L. Ponciano, F. Brasileiro, N. Andrade, and L. Sampaio, ‘‘Considering
human aspects on strategies for designing and managing distributed
human computation,’’ J. Internet Services Appl., vol. 5, no. 1, p. 10, 2014,
doi: 10.1186/s13174-014-0010-4.

[70] N. Luz, N. Silva, and P. Novais, ‘‘A survey of task-oriented crowdsourc-
ing,’’ Artif. Intell. Rev., vol. 44, no. 2, pp. 187–213, 2014, doi: 10.1007/
s10462-014-9423-5.

[71] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux, ‘‘Pick-a-crowd:
Tell me what you like, and i’ll tell you what to do,’’ in Proc. 22nd Int.
Conf. World Wide Web (WWW), 2013, pp. 367–374. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2488388.2488421

[72] N. Agarwal, S. Chauhan, A. K. Kar, and S. Goyal, ‘‘Role of human
behaviour attributes in mobile crowd sensing: A systematic litera-
ture review,’’ Digit. Policy, Regulation Governance, vol. 19, no. 2,
pp. 168–185, 2017, doi: 10.1108/DPRG-05-2016-0023.

[73] R. Tinati, A. Madaan, and W. Hall, ‘‘The role of crowdsourcing
in the emerging Internet-of-Things,’’ in Proc. 26th Int. Conf. World

Wide Web Companion (WWW), 2017, pp. 1669–1672, doi: 10.1145/
3041021.3051693.

[74] C. Luo et al., ‘‘How to validate mobile crowdsourcing design? Leveraging
data integration in prototype testing,’’ in Proc. ACM Int. Joint Conf. Per-

vasive Ubiquitous Comput., Adjunct (UbiComp), 2016, pp. 1448–1453.
[Online]. Available: http://doi.acm.org/10.1145/2968219.2968586

[75] X. Hu and V. C. M. Leung, ‘‘Towards context-aware mobile crowdsens-
ing in vehicular social networks,’’ in Proc. 15th IEEE/ACM Int. Symp.

Cluster, Cloud Grid Comput., May 2015, pp. 749–752.

[76] A. Hassani, P. D. Haghighi, and P. P. Jayaraman, ‘‘Context-aware
recruitment scheme for opportunistic mobile crowdsensing,’’ in Proc.

IEEE IEEE 21st Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2015,
pp. 266–273.

[77] T. Zhou, Z. Cai, K. Wu, Y. Chen, and M. Xu, ‘‘FIDC: A frame-
work for improving data credibility in mobile crowdsensing,’’ Com-
put. Netw., vol. 120, pp. 157–169, Jun. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128617301445

[78] P. Sethi and S. R. Sarangi, ‘‘Internet of Things: Architectures, protocols,
and applications,’’ J. Elect. Comput. Eng., vol. 2017, p. 25, 2017, doi:
10.1155/2017/9324035.

[79] S. Hachem, A. Pathak, and V. Issarny, ‘‘Service-oriented middleware
for large-scale mobile participatory sensing,’’ Pervasive Mobile

Comput., vol. 10, pp. 66–82, Feb. 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S157411921300134X

[80] A. Antonić, M. Marjanović, K. Pripužić, and I. P. Žarko, ‘‘A mobile
crowd sensing ecosystem enabled by CUPUS: Cloud-based pub-
lish/subscribe middleware for the Internet of Things,’’ Future Gener.
Comput. Syst., vol. 56, pp. 607–622, Mar. 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X15002575

[81] H. Zhou, H. Wang, X. Li, and V. Leung, ‘‘A survey on mobile data
offloading technologies,’’ IEEE Access, vol. 6, pp. 5101–5111, Jan. 2018.

[82] C. M. Huang, M. S. Chiang, D. T. Dao, W. L. Su, S. Xu, and H. Zhou,
‘‘V2V data offloading for cellular network based on the software defined
network (SDN) inside mobile edge computing (MEC) architecture,’’
IEEE Access, vol. 6, pp. 17741–17755, 2018.

[83] M. Dighriri, G. M. Lee, and T. Baker, ‘‘Measurement and classification
of smart systems data traffic over 5G mobile networks,’’ in Technology
for Smart Futures. Cham, Switzerland: Springer, 2018, pp. 195–217.

[84] N. Do, C.-H. Hsu, and N. Venkatasubramanian, ‘‘CrowdMAC: A crowd-
sourcing system for mobile access,’’ in Proc. Middleware, P. Narasimhan
and P. Triantafillou, Eds. Berlin, Germany: Springer, 2012, pp. 1–20.

[85] J. Rodrigues, E. R. B. Marques, L. M. B. Lopes, and F. Silva, ‘‘Towards a
middleware for mobile edge-cloud applications,’’ in Proc. 2nd Workshop
Middleware EdgeClouds Cloudlets (MECC), 2017, pp. 1:1–1:6. [Online].
Available: http://doi.acm.org/10.1145/3152360.3152361

[86] L. Gao, M. Tang, H. Pang, J. Huang, and L. Sun, ‘‘Multi-user cooper-
ative mobile video streaming: Performance analysis and online mech-
anism design,’’ IEEE Trans. Mobile Comput., p. 1, May 2018, doi:
10.1109/TMC.2018.2834358.

[87] G. Feng, Y. Li, Q. Zhao, H. Wang, H. Lv, and J. Lin, ‘‘Optimizing broad-
cast duration for layered video streams in cellular networks,’’ Peer-Peer
Netw. Appl., vol. 10, no. 3, pp. 765–779, May 2017, doi: 10.1007/s12083-
016-0498-4.

[88] M. Tang, S. Wang, L. Gao, J. Huang, and L. Sun, ‘‘MOMD: A multi-
object multi-dimensional auction for crowdsourced mobile video stream-
ing,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM), May 2017,
pp. 1–9.

[89] W. Zamora, C. T. Calafate, J. Cano, and P. Manzoni, ‘‘A survey on
smartphone-based crowdsensing solutions,’’ Mobile Inf. Syst., vol. 2016,
p. 26, 2016, doi: 10.1155/2016/9681842.

[90] Y. Liu, X. Mao, Y. He, K. Liu, W. Gong, and J. Wang, ‘‘CitySee: Not
only a wireless sensor network,’’ IEEE Netw., vol. 27, no. 5, pp. 42–47,
Sep. 2013.

[91] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, ‘‘A survey of mobile
cloud computing: Architecture, applications, and approaches,’’ Wire-
less Commun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611,
Dec. 2013. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/wcm.1203

[92] X. Peng et al., ‘‘CrowdService: Optimizing mobile crowdsourcing
and service composition,’’ ACM Trans. Internet Technol., vol. 18,
no. 2, pp. 19:1–19:25, Jan. 2018. [Online]. Available: http://doi.acm.
org/10.1145/3108935

[93] C. Qiu, A. C. Squicciarini, B. Carminati, J. Caverlee, and D. R. Khare,
‘‘CrowdSelect: Increasing accuracy of crowdsourcing tasks through
behavior prediction and user selection,’’ in Proc. 25th ACM Int. Conf.

Inf. Knowl. Manage. (CIKM), 2016, pp. 539–548. [Online]. Available:
http://doi.acm.org/10.1145/2983323.2983830

[94] V. Vel, I. Park, and J. Liu, ‘‘The effect of enterprise crowdsourcing
systems on employees’ innovative behavior and job performance,’’ in
Proc. 51st Hawaii Int. Conf. Syst. Sci. (HICSS), Jan. 2018, pp. 1–10.

[95] M. Hirth, T. Hoßfeld, and P. Tran-Gia, ‘‘Analyzing costs and accuracy
of validation mechanisms for crowdsourcing platforms,’’ Math. Comput.
Model., vol. 57, nos. 11–12, pp. 2918–2932, 2013.

VOLUME 7, 2019 321

http://dx.doi.org/10.1007/s10796-012-9350-4
http://dx.doi.org/10.1186/s13174-014-0010-4
http://dx.doi.org/10.1007/s10462-014-9423-5
http://dx.doi.org/10.1007/s10462-014-9423-5
http://dx.doi.org/10.1108/DPRG-05-2016-0023
http://dx.doi.org/10.1145/3041021.3051693
http://dx.doi.org/10.1145/3041021.3051693
https://doi.org/10.1155/2017/9324035
https://doi.org/10.1109/TMC.2018.2834358
http://dx.doi.org/10.1007/s12083-016-0498-4
http://dx.doi.org/10.1007/s12083-016-0498-4
http://dx.doi.org/10.1155/2016/9681842


J. Phuttharak, S. W. Loke: Review of Mobile Crowdsourcing Architectures and Challenges

[96] J. Tu, P. Cheng, and L. Chen. (2018). ‘‘Quality-assured synchronized
task assignment in crowdsourcing.’’ [Online]. Available: https://arxiv.
org/abs/1806.00637

[97] J. Chamberlain, U. Kruschwitz, andM. Poesio, ‘‘Optimising crowdsourc-
ing efficiency: Amplifying human computation with validation,’’ Inf.
Technol., vol. 60, no. 1, pp. 41–49, 2018, doi: 10.1515/itit-2017-0020.

[98] Q. Li and P. K. Varshney. (2017). ‘‘Optimal crowdsourced classification
with a reject option in the presence of spammers.’’ [Online]. Available:
https://arxiv.org/abs/1710.09901

[99] S. Dow, A. Kulkarni, S. Klemmer, and B. Hartmann, ‘‘Shepherding
the crowd yields better work,’’ in Proc. ACM Conf. Comput. Supported

Cooperat. Work (CSCW), 2012, pp. 1013–1022. [Online]. Available:
http://doi.acm.org/10.1145/2145204.2145355

[100] D.W. Barowy, C. Curtsinger, E. D. Berger, and A.McGregor, ‘‘AutoMan:
A platform for integrating human-based and digital computation,’’ Com-
mun. ACM, vol. 59, no. 6, pp. 102–109, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2927928

[101] G. Foody et al., ‘‘Increasing the accuracy of crowdsourced information
on land cover via a voting procedure weighted by information inferred
from the contributed data,’’ ISPRS Int. J. Geo-Inf., vol. 7, no. 3, p. 80,
Feb. 2018. [Online]. Available: http://pure.iiasa.ac.at/id/eprint/15140/

[102] P. M. de Boer and A. Bernstein, ‘‘Efficiently identifying a
well-performing crowd process for a given problem,’’ in Proc.

ACM Conf. Comput. Supported Cooperat. Work Social Comput.

(CSCW), 2017, pp. 1688–1699. [Online]. Available: http://doi.acm.
org/10.1145/2998181.2998263

[103] G. Kazai, ‘‘In search of quality in crowdsourcing for search engine
evaluation,’’ in Advances in Information Retrieval, P. Clough et al., Eds.
Berlin, Germany: Springer, 2011, pp. 165–176.

[104] W. Lee et al., ‘‘Effective quality assurance for data labels through
crowdsourcing and domain expert collaboration,’’ in Proc. EDBT, 2018,
pp. 1–4.

[105] K. G. Dizaji, Y. Yang, and H. Huang, ‘‘Joint generative-discriminative
aggregation model for multi-option crowd labels,’’ in Proc. 11th ACM Int.

Conf. Web Search Data Mining (WSDM), 2018, pp. 144–152. [Online].
Available: http://doi.acm.org/10.1145/3159652.3159672

[106] H.-C. Yang and C.-H. Lee, ‘‘Toward crowdsourcing data mining,’’ in
Proc. 3rd Int. Workshop Intell. Data Anal. Manage., L. Uden, L. S. Wang,
T.-P. Hong, H.-C. Yang, and I.-H. Ting, Eds. Dordrecht, The Netherlands:
Springer, 2013, pp. 107–110.

[107] C. Sun, N. Rampalli, F. Yang, and A. Doan, ‘‘Chimera: Large-
scale classification using machine learning, rules, and crowdsourcing,’’
Proc. VLDB Endowment, vol. 7, no. 13, pp. 1529–1540, Aug. 2014,
doi: 10.14778/2733004.2733024.

[108] M. Negri, L. Bentivogli, Y. Mehdad, D. Giampiccolo, and A. Marchetti,
‘‘Divide and conquer: Crowdsourcing the creation of cross-lingual tex-
tual entailment corpora,’’ in Proc. Conf. Empirical Methods Natural

Lang. Process. (EMNLP), 2011, pp. 670–679. [Online]. Available: http://
dl.acm.org/citation.cfm?id=2145432.2145510

[109] H. Aoki and A. Morishima, ‘‘A divide-and-conquer approach for crowd-
sourced data enumeration,’’ in Social Informatics (Lecture Notes in Com-
puter Science), A. Jatowt et al., Eds. Cham, Switzerland: Springer, 2013,
pp. 60–74.

[110] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, ‘‘Exploring itera-
tive and parallel human computation processes,’’ in Proc. ACM SIGKDD

Workshop Hum. Comput. (HCOMP), 2010, pp. 68–76. [Online]. Avail-
able: http://doi.acm.org/10.1145/1837885.1837907

[111] D. Geiger, S. Seedorf, T. Schulze, R. Nickerson, and M. Schader, ‘‘Man-
aging the crowd: Towards a taxonomy of crowdsourcing processes,’’
in Proc. 17th Amer. Conf. Inf. Syst., Detroit, MI, USA, Aug. 2011,
pp. 1–12.

[112] L. Schmidt, ‘‘Crowdsourcing for human subjects research,’’ in Proc.

CrowdConf, San Francisco, CA, USA, Oct. 2010, pp. 1–7.
[113] M. A. Alsheikh, Y. Jiao, D. Niyato, P. Wang, D. Leong, and Z. Han,

‘‘The accuracy-privacy trade-off of mobile crowdsensing,’’ IEEE Com-

mun. Mag., vol. 55, no. 6, pp. 132–139, Jun. 2017.
[114] B. Zhang et al., ‘‘Privacy-preserving QoI-aware participant coordina-

tion for mobile crowdsourcing,’’ Comput. Netw., vol. 101, pp. 29–41,
Jun. 2016.

[115] Y. Amsterdamer, S. B. Davidson, A. Kukliansky, T. Milo, S. Novgorodov,
and A. Somech, ‘‘Managing general and individual knowledge in crowd
mining applications,’’ in Proc. 7th Biennial Conf. Innov. Data Syst. Res.
(CIDR), Pacific Grove, CA, USA, Jan. 2015, pp. 1–6.

[116] B. Rahmanian and J. G. Davis, ‘‘User interface design for
crowdsourcing systems,’’ in Proc. Int. Work. Conf. Adv. Vis.

Interfaces (AVI), 2014, pp. 405–408. [Online]. Available: http://doi.acm.
org/10.1145/2598153.2602248

[117] Y. Hao, W. Chong, K. L. Man, O. Liu, and X. Shi, ‘‘Key factors affecting
user experience of mobile crowdsourcing applications,’’ in Proc. Int.

MultiConf. Eng. Comput. Sci., 2016, pp. 1–6.
[118] W. Thies, A. Ratan, and J. Davis, ‘‘Paid crowdsourcing as a vehicle for

global development,’’ in Proc. ACMCHIWorkshop Crowdsourcing Hum.

Comput., 2011, pp. 1–4.
[119] M. Duckham,Decentralized Spatial Computing: Foundations of Geosen-

sor Networks. Berlin, Germany: Springer, 2013, doi: 10.1007/978-3-642-
30853-6.

[120] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-
Yazti, ‘‘Crowdsourcing with smartphones,’’ IEEE Internet Comput.,
vol. 16, no. 5, pp. 36–44, Sep. 2012.

[121] P. M. P. Silva, J. Rodrigues, J. Silva, R. Martins, L. Lopes, and F. Silva,
‘‘Using edge-clouds to reduce load on traditional wifi infrastructures and
improve quality of experience,’’ in Proc. IEEE 1st Int. Conf. Fog Edge

Comput. (ICFEC), May 2017, pp. 61–67.
[122] A. Konstantinidis, D. Zeinalipour-Yazti, P. Andreou, and G. Samaras,

‘‘Multi-objective query optimization in smartphone social networks,’’
in Proc. 12th IEEE Int. Conf. Mobile Data Manage. (MDM), Lullea,
Sweden, vol. 1, Jun. 2011, pp. 27–32.

[123] M. Constantinides, G. Constantinou, A. Panteli, T. Phokas, G. Chatzim-
ilioudis, and D. Zeinalipour-Yazti, ‘‘Proximity interactions with crowd-
cast,’’ in Proc. 11th Hellenic Data Manage. Symp. (HDMS), Cha-
nia, Greece, 2012, pp. 1–3. [Online]. Available: http://www.cs.ucy.
ac.cy/~dzeina/papers/hdms12-proximity-demo.pdf

[124] G. Chen and D. Kotz, ‘‘A survey of context-aware mobile computing
research,’’ Dept. Comput. Sci., Dartmouth College, Hanover, NH, USA,
Tech. Rep. TR2000-381, 2000.

[125] G. W. Musumba and H. O. Nyongesa, ‘‘Context awareness in mobile
computing: A review,’’ Int. J. Mach. Learn. Appl., vol. 2, no. 1, pp. 1–11,
2013.

[126] F. Mahmud and H. Aris, ‘‘State of mobile crowdsourcing applications:
A review,’’ in Proc. 4th Int. Conf. Softw. Eng. Comput. Syst. (ICSECS),
Aug. 2015, pp. 27–32.

[127] Z. Xu et al., ‘‘Mobile crowd sensing of human-like intelligence
using social sensors: A survey,’’ Neurocomputing, vol. 279, pp. 3–10,
Mar. 2018.

[128] J. Liu, H. Shen, and X. Zhang, ‘‘A survey of mobile crowdsensing
techniques: A critical component for the Internet of Things,’’ in Proc.
25th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2016, pp. 1–6.

[129] A. H. Afridi, ‘‘Crowdsourcing in mobile: A three stage context based pro-
cess,’’ in Proc. IEEE 9th Int. Conf. Dependable, Auton. Secure Comput.
(DASC), Sydney, NSW, Australia, Dec. 2011, pp. 242–245.

[130] A. Tamilin, I. Carreras, E. Ssebaggala, A. Opira, and N. Conci,
‘‘Context-aware mobile crowdsourcing,’’ in Proc. ACM Conf. Ubiq-

uitous Comput. (UbiComp), 2012, pp. 717–720. [Online]. Available:
http://doi.acm.org/10.1145/2370216.2370373

[131] B. Guo, Z. Yu, L. Chen, X. Zhou, and X. Ma, ‘‘MobiGroup: Enabling
lifecycle support to social activity organization and suggestion with
mobile crowd sensing,’’ IEEE Trans. Human-Mach. Syst., vol. 46, no. 3,
pp. 390–402, Jun. 2016.

[132] H. Du, Z. Yu, F. Yi, Z. Wang, Q. Han, and B. Guo, ‘‘Recognition of group
mobility level and group structure with mobile devices,’’ IEEE Trans.

Mobile Comput., vol. 17, no. 4, pp. 884–897, Apr. 2018.
[133] L. Atzori, R. Girau, S. Martis, V. Pilloni, and M. Uras, ‘‘A SIoT-aware

approach to the resource management issue in mobile crowdsensing,’’
in Proc. 20th Conf. Innov. Clouds, Internet Netw. (ICIN), Mar. 2017,
pp. 232–237.

[134] X. Hu, X. Li, E. Ngai, V. C. M. Leung, and P. Kruchten, ‘‘Multidimen-
sional context-aware social network architecture for mobile crowdsens-
ing,’’ IEEE Commun. Mag., vol. 52, no. 6, pp. 78–87, Jun. 2014.

[135] E. Horvitz and J. Krumm. (2014). Spatial Crowdsourcing. [Online].
Available: https://www.microsoft.com/en-us/research/project/spatial-
crowdsourcing/

[136] Z. Chen et al., ‘‘gMission: A general spatial crowdsourcing platform,’’
Proc. VLDB Endowment, vol. 7, no. 13, pp. 1629–1632, 2014.

[137] Y. Zhao and Q. Han, ‘‘Spatial crowdsourcing: Current state and future
directions,’’ IEEE Commun. Mag., vol. 54, no. 7, pp. 102–107, Jul. 2016.

322 VOLUME 7, 2019

http://dx.doi.org/10.1515/itit-2017-0020
http://dx.doi.org/10.14778/2733004.2733024
http://dx.doi.org/10.1007/978-3-642-30853-6
http://dx.doi.org/10.1007/978-3-642-30853-6


J. Phuttharak, S. W. Loke: Review of Mobile Crowdsourcing Architectures and Challenges

[138] Y. Tong, L. Chen, and C. Shahabi, ‘‘Spatial crowdsourcing: Chal-
lenges, techniques, and applications,’’ Proc. VLDB Endowment, vol. 10,
pp. 1988–1991, Aug. 2017.

[139] H. To, ‘‘Task assignment in spatial crowdsourcing: Challenges
and approaches,’’ in Proc. 3rd ACM SIGSPATIAL PhD Symp.

(SIGSPATIAL), 2016, pp. 1:1–1:4. [Online]. Available: http://doi.acm.
org/10.1145/3003819.3003820

[140] P. Yang, N. Zhang, S. Zhang, K. Yang, L. Yu, and X. Shen, ‘‘Identifying
the most valuable workers in fog-assisted spatial crowdsourcing,’’ IEEE
Internet Things J., vol. 4, no. 5, pp. 1193–1203, Oct. 2017.

[141] L. Kazemi and C. Shahabi, ‘‘GeoCrowd: Enabling query answer-
ing with spatial crowdsourcing,’’ in Proc. 20th Int. Conf. Adv. Geo-

graph. Inf. Syst. (SIGSPATIAL), 2012, pp. 189–198. [Online]. Available:
http://doi.acm.org/10.1145/2424321.2424346

[142] D. Deng, C. Shahabi, U. Demiryurek, and L. Zhu, ‘‘Task selection in spa-
tial crowdsourcing from worker’s perspective,’’ GeoInformatica, vol. 20,
no. 3, pp. 529–568, Jul. 2016, doi: 10.1007/s10707-016-0251-4.

[143] L. Kazemi, C. Shahabi, and L. Chen, ‘‘GeoTruCrowd: Trustworthy query
answering with spatial crowdsourcing,’’ in Proc. 21st ACM SIGSPATIAL

Int. Conf. Adv. Geograph. Inf. Syst. (SIGSPATIAL), 2013, pp. 314–323.
[Online]. Available: http://doi.acm.org/10.1145/2525314.2525346

[144] H. To, C. Shahabi, and L. Kazemi, ‘‘A server-assigned spatial crowd-
sourcing framework,’’ ACM Trans. Spatial Algorithms Syst., vol. 1,
no. 1, pp. 2:1–2:28, Jul. 2015. [Online]. Available: http://doi.acm.
org/10.1145/2729713

[145] J.-X. Liu, Y. Ji, W. Lv, and K. Xu, ‘‘Budget-aware dynamic incentive
mechanism in spatial crowdsourcing,’’ J. Comput. Sci. Technol., vol. 32,
pp. 890–904, Sep. 2017.

[146] L. Tran, H. To, L. Fan, and C. Shahabi, ‘‘A real-time framework for task
assignment in hyperlocal spatial crowdsourcing,’’ACMTrans. Intell. Syst.

Technol., vol. 9, no. 3, pp. 37:1–37:26, Jan. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3078853

[147] Y. Tong et al., ‘‘Flexible online task assignment in real-time spatial data,’’
Proc. VLDB Endowment, vol. 10, no. 11, pp. 1334–1345, Aug. 2017, doi:
10.14778/3137628.3137643.

[148] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, ‘‘Online min-
imum matching in real-time spatial data: Experiments and analysis,’’
Proc. VLDB Endowment, vol. 9, no. 12, pp. 1053–1064, Aug. 2016,
doi: 10.14778/2994509.2994523.

[149] C. Huang, R. Lu, and H. Zhu, ‘‘Privacy-friendly spatial crowdsourcing
in vehicular networks,’’ J. Commun. Inf. Netw., vol. 2, no. 2, pp. 59–74,
Jun. 2017, doi: 10.1007/s41650-017-0017-7.

[150] Y. Shen, L. Huang, L. Li, X. Lu, S. Wang, and W. Yang, ‘‘Towards
preserving worker location privacy in spatial crowdsourcing,’’ in
Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015,
pp. 1–6.

[151] H. To and C. Shahabi. (2017). ‘‘Location privacy in spatial crowdsourc-
ing.’’ [Online]. Available: http://arxiv.org/abs/1704.06860

[152] B. Liu, L. Chen, X. Zhu, Y. Zhang, C. Zhang, and W. Qiu, ‘‘Protecting
location privacy in spatial crowdsourcing using encrypted data,’’ in Proc.
EDBT, 2017, pp. 1–4.

[153] H. To, G. Ghinita, and C. Shahabi, ‘‘A framework for protecting worker
location privacy in spatial crowdsourcing,’’ Proc. VLDB Endowment,
vol. 7, no. 10, pp. 919–930, Jun. 2014, doi: 10.14778/2732951.2732966.

[154] J. Bornholt, T. Mytkowicz, and K. S. McKinley, ‘‘The model is not
enough: Understanding energy consumption in mobile devices,’’ in Proc.
IEEE Hot Chips 24 Symp. (HCS), Aug. 2012, pp. 1–3.

[155] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
‘‘Energy consumption inmobile phones: Ameasurement study and impli-
cations for network applications,’’ in Proc. 9th ACM SIGCOMM Conf.

Internet Meas. Conf. (IMC), 2009, pp. 280–293. [Online]. Available:
http://doi.acm.org/10.1145/1644893.1644927

[156] A. Gupta and P. Mohapatra, ‘‘Energy consumption and conservation
in WiFi based phones: A measurement-based study,’’ in Proc. 4th

Annu. IEEE Commun. Soc. Conf. Sensor, Mesh Ad Hoc Commun. Netw.

(SECON), San Diego, CA, USA, Jun. 2007, pp. 122–131.
[157] Y. Xiao, R. Kalyanaraman, and A. Yla-Jaaski, ‘‘Energy consumption

of mobile Youtube: Quantitative measurement and analysis,’’ in Proc.

2nd Int. Conf. Next Gener. Mobile Appl., Services Technol. (NGMAST),
Cardiff, U.K., Sep. 2008, pp. 61–69.

[158] J. Wang, Y. Wang, D. Zhang, and S. Helal, ‘‘Energy saving techniques
in mobile crowd sensing: Current state and future opportunities,’’ IEEE
Commun. Mag., vol. 56, no. 5, pp. 164–169, May 2018.

[159] L. Wang, D. Zhang, and H. Xiong, ‘‘effSense: Energy-efficient and
cost-effective data uploading in mobile crowdsensing,’’ in Proc.

ACM Conf. Pervasive Ubiquitous Comput. Adjunct Publication

(UbiComp), 2013, pp. 1075–1086. [Online]. Available: http://doi.
acm.org/10.1145/2494091.2499575

[160] A. Capponi, C. Fiandrino, D. Kliazovich, and P. Bouvry, ‘‘Energy effi-
cient data collection in opportunistic mobile crowdsensing architectures
for smart cities,’’ in Proc. IEEE Conf. Comput. Commun. Workshops

(INFOCOM WKSHPS), May 2017, pp. 307–312.
[161] M. Tomasoni, A. Capponi, C. Fiandrino, D. Kliazovich, F. Granelli, and

P. Bouvry, ‘‘Profiling energy efficiency of mobile crowdsensing data
collection frameworks for smart city applications,’’ in Proc. 6th IEEE Int.
Conf. Mobile Cloud Comput., Services, Eng. (MobileCloud), Mar. 2018,
pp. 1–8.

[162] Z. Zhuang, K.-H. Kim, and J. P. Singh, ‘‘Improving energy efficiency
of location sensing on smartphones,’’ in Proc. 8th Int. Conf. Mobile

Syst., Appl., Services (MobiSys), 2010, pp. 315–330. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814464

[163] F. Montori, L. Bedogni, and L. Bononi, ‘‘Distributed data collection con-
trol in opportunistic mobile crowdsensing,’’ in Proc. 3rd Workshop Exper.
Design Implement. Smart Objects (SMARTOBJECTS), 2017, pp. 19–24.
[Online]. Available: http://doi.acm.org/10.1145/3127502.3127509

[164] D. Zhang, H. Xiong, L. Wang, and G. Chen, ‘‘CrowdRecruiter: Select-
ing participants for piggyback crowdsensing under probabilistic cov-
erage constraint,’’ in Proc. ACM Int. Joint Conf. Pervasive Ubiq-

uitous Comput. (UbiComp), 2014, pp. 703–714. [Online]. Available:
http://doi.acm.org/10.1145/2632048.2632059

[165] H. Xiong, D. Zhang, G. Chen, L. Wang, V. Gauthier, and L. E. Barnes,
‘‘iCrowd: Near-optimal task allocation for piggyback crowdsensing,’’
IEEE Trans. Mobile Comput., vol. 15, no. 8, pp. 2010–2022, Aug. 2016.

[166] D. R. Karger, S. Oh, and D. Shah, ‘‘Budget-optimal task allocation for
reliable crowdsourcing systems,’’ Oper. Res., vol. 62, no. 1, pp. 1–24,
2014.

[167] C.-J. Ho, S. Jabbari, and J. W. Vaughan, ‘‘Adaptive task assignment
for crowdsourced classification,’’ in Proc. 30th Int. Conf. Mach. Learn.
(ICML), Atlanta, GA, USA, Jun. 2013, pp. 534–542.

[168] S. Reddy, D. Estrin, and M. Srivastava, ‘‘Recruitment framework for
participatory sensing data collections,’’ in Pervasive Computing (Lecture
Notes in Computer Science), P. Floréen, A. Krüger, and M. Spasojevic,
Eds. Berlin, Germany: Springer, 2010, pp. 138–155.

[169] E. Miluzzo et al., ‘‘Sensing meets mobile social networks: The design,
implementation and evaluation of the cenceme application,’’ in Proc. 6th
ACM Conf. Embedded Netw. Sensor Syst. (SenSys), 2008, pp. 337–350.
[Online]. Available: http://doi.acm.org/10.1145/1460412.1460445

[170] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Campbell, ‘‘Sound-
Sense: Scalable sound sensing for people-centric applications on mobile
phones,’’ in Proc. 7th Int. Conf. Mobile Syst., Appl., Services (MobiSys),
2009, pp. 165–178.

[171] W. Moreira and P. Mendes, ‘‘Survey on opportunistic routing for
delay/disruption tolerant networks,’’ Dept. Inform. Syst. Technol., Univ.
Lusófona, Lisbon, Portugal, Tech. Rep. SITI-TR-11-02, Feb. 2011.

[172] A. Socievole, E. Yoneki, F. de Rango, and J. Crowcroft, ‘‘Opportunistic
message routing using multi-layer social networks,’’ in Proc. 2nd ACM
Workshop High Perform. Mobile Opportunistic Syst. (HP-MOSys),
2013, pp. 39–46. [Online]. Available: http://doi.acm.org/10.1145/
2507908.2507923

[173] A. Chaintreau, P. Fraigniaud, and E. Lebhar, ‘‘Opportunistic spa-
tial gossip over mobile social networks,’’ in Proc. 1st Workshop

Online Social Netw. (WOSN), 2008, pp. 73–78. [Online]. Available:
http://doi.acm.org/10.1145/1397735.1397752

[174] A. L. Young and A. Quan-Haase, ‘‘Information revelation and Internet
privacy concerns on social network sites: A case study of facebook,’’ in
Proc. 4th Int. Conf. Communities Technol., 2009, pp. 265–274. [Online].
Available: http://doi.acm.org/10.1145/1556460.1556499

[175] B. Liu, Y. Jiang, F. Sha, and R. Govindan, ‘‘Cloud-enabled privacy-
preserving collaborative learning for mobile sensing,’’ in Proc. 10th ACM
Conf. Embedded Netw. Sensor Syst. (SenSys), 2012, pp. 57–70. [Online].
Available: http://doi.acm.org/10.1145/2426656.2426663

[176] Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao, ‘‘Automatically charac-
terizing places with opportunistic crowdsensing using smartphones,’’ in
Proc. ACM Conf. Ubiquitous Comput. (UbiComp), 2012, pp. 481–490.
[Online]. Available: http://doi.acm.org/10.1145/2370216.2370288

VOLUME 7, 2019 323

http://dx.doi.org/10.1007/s10707-016-0251-4
http://dx.doi.org/10.14778/3137628.3137643
http://dx.doi.org/10.14778/2994509.2994523
http://dx.doi.org/10.1007/s41650-017-0017-7
http://dx.doi.org/10.14778/2732951.2732966


J. Phuttharak, S. W. Loke: Review of Mobile Crowdsourcing Architectures and Challenges

[177] Egham. (2017).Gartner Says 8.4 Billion Connected ‘Things’ Will Be in
Use in 2017, up 31 Percent From 2016. [Online]. Available: https://www.
gartner.com/newsroom/id/3598917

[178] D. S. Nunes, P. Zhang, and J. S. Silva, ‘‘A survey on human-in-the-loop
applications towards an Internet of all,’’ IEEE Commun. Surveys Tuts.,
vol. 17, no. 2, pp. 944–965, 2nd Quart., 2015.

JURAIRAT PHUTTHARAK received the B.Sc.
degree from the Prince of Songkla Univer-
sity, Thailand, the M.Sc. degree from the King
Mongkut Institute of Technology, Thailand, and
the Ph.D. degree from Latrobe University, Aus-
tralia. She is currently a Lecturer with the Prince of
Songkla University. Her research interests include
mobile crowdsourcing and the Internet-of-Things.

SENG W. LOKE was a Reader and also an Asso-
ciate Professor at the Department of Computer
Science and Information Technology, La Trobe
University. He is currently a Full Professor in com-
puter science with the School of Information Tech-
nology, Deakin University, where he co-directs
the IoT cluster. His research has mainly been
in pervasive (ubiquitous) computing and mobile
computing, the Internet-of-Things (IoT), focusing
on issues concerning systems and information,

with current emphases on complex cooperation among Things (including
smart vehicles viewed as smart things, i.e., Internet of Vehicles, Internet
of Drones, Internet of *), crowd-powered mobile computing, mobile Big
Data, mobile Big Systems, the social impact of mobile technology innova-
tion, mobile/physical Web/Cloud development, and how they might interact.
Some of his work can be categorized under mobile cyber-physical systems.

324 VOLUME 7, 2019


	INTRODUCTION
	KEY ASPECTS OF MOBILE CROWDSOURCING APPLICATIONS
	TASK
	TASK TYPES
	DATA CONTRIBUTION
	SCALES

	PARTICIPATION
	USER INVOLVEMENT
	LOCATION-AWARENESS
	KNOWLEDGE

	DATA COLLECTION
	ROUTING PROTOCOLS
	TRANSMISSION
	HETEROGENEOUS NETWORKING
	INCENTIVE MECHANISMS

	PROCESSING
	WORKER SELECTION
	WORKFLOW CONTROLS
	ANALYSIS


	CROWDSOURCING ARCHITECTURES
	A GENERALISED CENTRALIZED MOBILE CROWDSOURCING ARCHITECTURE
	MOBILE SENSING AND GATHERING LAYER
	CONNECTIVITY AND NETWORK LAYER
	CROWD PROCESSING LAYER
	END-USER LAYER

	A GENERALISED DECENTRALIZED MOBILE CROWDSOURCING ARCHITECTURE
	CENTRALIZED VERSUS DECENTRALIZED MOBILE CROWDSOURCING ARCHITECTURES

	KEY CONSIDERATIONS AND DIRECTIONS IN MOBILE CROWDSOURCING
	INFERRING MOBILE CONTEXT AND SPATIAL CROWDSOURCING
	ENERGY CONSIDERATIONS
	TASK ALLOCATION AND COMPUTATION
	PRESERVING USER PRIVACY
	HETEROGENEOUS DATA FORMATS AND MODALITIES
	FROM MOBILE CROWDSOURCING TO THING CROWDSOURCING

	CONCLUSION
	REFERENCES
	Biographies
	JURAIRAT PHUTTHARAK
	SENG W. LOKE


