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.e large-scale structure systems in engineering are complex, high dimensional, and variety of physical mechanism couplings; it
will be difficult to analyze the dynamic behaviors of complex systems quickly and optimize system parameters. Model order
reduction (MOR) is an efficient way to address those problems and widely applied in the engineering areas. .is paper focuses on
the model order reduction of high-dimensional complex systems and reviews basic theories, well-posedness, and limitations of
common methods of the model order reduction using the following methods: center manifold, Lyapunov–Schmidt (L-S),
Galerkin, modal synthesis, and proper orthogonal decomposition (POD) methods. .e POD is a powerful and effective model
order reductionmethod, which aims at obtaining themost important components of a high-dimensional complex system by using
a few proper orthogonal modes, and it is widely studied and applied by a large number of researchers in the past few decades. In
this paper, the PODmethod is introduced in detail and the main characteristics and the existing problems of this method are also
discussed. POD is classified into two categories in terms of the sampling and the parameter robustness, and the research progresses
in the recent years are presented to the domestic researchers for the study and application. Finally, the outlooks of model order
reduction of high-dimensional complex systems are provided for future work.

1. Introduction

.e large and complex structures exist widely in engineering
field of aviation, aerospace, shipping, and so on which are
complex, high degrees-of-freedom (DOFs), and coupled
with a variety of physical mechanisms. Dynamical systems
are the basic framework for modeling and control of these
enormous varieties of complex structure systems [1]. Ex-
amples include fluid dynamics, design optimization, control,
chemically reacting flows, data-driven systems, and vibra-
tion suppression in large structure systems and other
complex underlying physical process..emechanismmodel
of any complex structure system can be established by classic
mechanics in theory. However, the model is usually a large-

scale partial differential system, an approximate simplified
high-dimensional ordinary system, a coupling system with
partial system, and ordinary system, which cannot be solved
by theory directly..e commonmethod for dealing with the
abovementioned large complex system in engineering is to
use the finite element, finite difference, finite volume, and
other methods for numerical simulation analysis [2].
However, the number of DOFs of the complex system
obtained by finite element methods may be tens of thou-
sands. If the system has strong fluid-solid coupling effects
[3], the number of DOFs may reach millions, even billions.
Numerical simulation of large-scale dynamical systems plays
a fundamental role in studying a wide range of complex
physical phenomena. Although the computer is more
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advanced in software and hardware, however, the inherent
large-scale nature of themodels often leads to unmanageable
demands on computational resources and a large amount of
calculation time to obtain the accurate solution, such as
several hours or even longer [3–6].

.eMORmethods were developed in the area of systems
and control theory. However, there are several definitions of
MOR, and it depends on the context in which one is pre-
ferred. A flow chart (Figure 1) for modeling complex
physical systems can be elaborated based on time domain,
frequency domain, time-frequency domain and optimiza-
tion techniques, and artificial intelligence as follows [7–12].

In time domain, Chebyshev-based approach for model
order reduction of linear systems is presented based on
Chebyshev rational functions [7]. Algorithms for the esti-
mation of the moments matching of linear and nonlinear
systems are proposed for model order reduction, and the
estimates are exploited to construct families of reduced-
order models [8]. Wavelet-based approach is proposed for
model order reduction of linear circuits in the time-fre-
quency domain [9]. Approaches for model order reduction
based on artificial neural network aims at obtaining a re-
duced-order model out of a relatively complex model,
generally obtained in a reasonable time and has accepted
error [10]. A low-cost fuzzy rule-based implementation of
Sammon’s method for structure preserving model order
reduction is presented [11]. Particle swarm optimization is
usually used to solve optimization problems when the
number of parameters is low, and also to find a good solution
typically involves multiple evaluations of the objective
function [12].

A series of model order reduction methods were pro-
posed to reduce the number of DOFs of the system to
improve the efficiency of calculation in the field of science
and engineering, for example, center manifold method,
Lyapunov–Schmidt (L-S) method, Galerkin method, non-
linear Galerkin method, mode synthesize method, Krylov
approximation method, balanced truncation method, and
POD method [3–24]. .us, the area of model reduction
contains a broad set of mathematical methods to yield and
evaluate the reduced models. .ese model order reduction
methods have been applied in various engineering fields and
become more mature, but each method has its adaptability
and limitations. Many order reduction methods may fail
when the complexity and DOF of the system increase, state
parameters vary, and nonlinear factors couple with each
other. .en, the order reduction model cannot reflect the
real dynamic characteristics of original systems. In this
paper, the mature model reduction method in high-di-
mensional systems will be reviewed, and basic principles,
adaptability, and limitations will be expounded.

.e POD method is an order reduction method suitable
to process large and complex structures quickly and effi-
ciently [2, 23, 24]. .e PODmethod has been widely studied
and applied by many scholars in recent years. .e method
can obtain the main structural components of complex
systems with few POD reduced-order modes. .e method
can reduce the DOFs number of complex systems greatly
and improve the computational efficiency significantly while

ensuring the accuracy of reduction..emethod is important
for dynamic analysis and optimized design of parameters in
large and complex systems.

.e motivation of this paper is to summarize the review
of the order reduction methods in large-scale structure
systems and provides the classification of POD. In Section 2,
the center manifold is introduced. .e L-S reduction and
Galerkin methods are discussed in Sections 3 and 4, re-
spectively. .e mode synthesis method is introduced in
Section 5. Several issues of the POD method which are
worthy to study in the future will be pointed out based on the
characteristics of each order reduction method in Section 6.
Finally, the conclusions and outlooks are drawn in Section 7.

2. Center Manifold Order Reduction Method

.e center manifold order reduction method is a local order
reduction method based on the center manifold theory
[13, 23–27]. .e method projects the high-dimensional
system onto low-dimensional central subspace, according to
the differential homeomorphic mapping between central
subspace and stable subspace near the equilibrium point,
and reserves all the topological properties of the high-di-
mensional system near the equilibrium point. So, the as-
ymptotic behavior in neighborhood of local bifurcation
point and central subspace of the original dynamic system is
equal in the high-dimensional nonlinear system [25]. .e
basic principle of the center manifold order reduction
method will be described briefly as follows.

.e dynamic equation of the high-dimensional complex
nonlinear system in state space is expressed as follows:

_x � f(x, a), x ∈ Rn, a ∈ Rm, (1)

where a is a system parameter, m and n are the number of
DOFs in the parameter space and state space, and
f ∈ Cr(r≥ 1), where Cris r order continuous differentiable
function space. Formula (1) is expanded linearly at the
equilibrium [23, 24].

_x � Ax + g(x), (2)

where A � Dxf(x, a)|(0,0) is the Jacobian matrix of f(x, a)
and g(x) is the nonlinear part. Assuming that the equilib-
rium point is nonhyperbolic, A has n0 eigenvalues with the
real part of 0. For ease of understanding, assuming that the
real part of the remaining eigenvalues is less than 0, formula
(2) can be expressed via the coordinate transformation of
eigen-space as follows [25]:

_u � Bu + μ(u, v), (3)

_v � Cv + υ(u, v), (4)

where u ∈ Rn0 , v ∈ Rn− n0 , B is a matrix of n0 × n0, and C is a
matrix of (n − n0) × (n − n0). Nonlinear function is at least
second-order differentiable, so according to center manifold
theory [13, 23–25], there is a differential homeomorphism
mapping in partial neighborhood of (u, v) � (0, 0) so that
formulas (3) and (4) can be expressed as follows:
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WC
� (u, v): v � h(u){ }. (5)

Substituting formula (5) into (3) and (4), we obtain the
following:

Duh(u)[Bu + μ(u, h(u))] − Ch(u) − υ(u, h(u)) � 0.

(6)
h(u) can be calculated through formula (6). However, it

is difficult to obtain the analytical expression directly
through formula (6) in the complex system [23, 24].

_u � Bu + μ(u, h(u)). (7)

Formula (7) in neighborhood of equilibrium point is
obtained by differential homeomorphismmapping. Formula
(7) and the original system have completely topological
equal dynamic behaviors.

.e theory of the center manifold order reduction
method is rigorous and complete, and the method has
simple steps to solve the order reduction model. So, the
method is applied widely in high-dimensional complex
nonlinear dynamic systems. Cao et al. [25] applied the center
manifold theory to study the reduction of Fold bifurcation in
three points electrical system voltage collapse. Yoursef and
Yoursef [26] and Zhang et al. [27] proposed general program
to calculate arbitrary high-dimensional systems by Mathe-
matica, and center manifold dimension is less than 6.

Boyaci et al. [28] established a perfectly balanced
symmetric rotor which is supported by two identical
floating ring bearings, and the analytical results obtained
from the center manifold reduction are compared with
numerical results by a continuation method. .e random
center manifold theory was established to lay the
foundation for the theory analysis of the high-dimen-
sional nonlinear random dynamic system in Ref. [29].
Liu et al. [30] used center manifold theory to reduce the
nonlinear aeroelastic system with 9 state variables to 2-
DOF at the equilibrium. Rendall [31] analyzed some
dynamic systems of the spatial isotropic universe model
by center manifold theory and obtained progressive
behavior of all solution of Einstein equation with
Bianchi-III formation.

Sinou et al. [32] applied center manifold theory to an-
alyze the effects of friction of the high-dimensional non-
linear braking model to system stability. Center manifold
theory was applied by Hupkees and Lunel [33] to analyze the
solution behavior of nonlinear autonomous mixed func-
tional differential equation near the equilibrium. In recent
years, Kano et al. [34] investigated the order reduction and
bifurcation analysis of a flexible rotor system supported by a
full circular journal bearing, and bifurcation phenomena at
around the instability point are investigated by applying the
center manifold theory and using the normal form theory.
Liu et al. [35] investigated the stability and bifurcation
behavior of a kind of active magnetic bearing rotor. It is
found that a Hopf bifurcation occurs in the system by using
center manifold and normal form. Liu et al. [36] established
a Jeffcott rotor model for the rotor system of the permanent
magnet synchronous motors in electric vehicles, and center
manifold theorem and Lyapunov method are used to de-
termine the stabilities of multiple equilibrium points.

.e center manifold order reduction method is applied
in many fields, but the theory belongs to local redaction
method. It is only established near the equilibrium and very
difficult to discuss the global behavior of high-dimensional
systems. At the same time, nonconvergence problems also
occur when using series solutions [23, 24]. In addition, the
DOF of the reduced-order system is determined by center
manifold. For a nonlinear system with higher DOF, the
center manifold dimensions may be still high and it is
difficult to handle the method. So, the center manifold order
reduction method has significant theoretical values for the
complex nonlinear system below a dozen DOF.

3. L-S Method

.e Lyapunov–Schmidt (L-S) method [3] is similar to the
center method, and it is also a local reduction method.

.e difference can be expressed as follows. Center
manifold theory reduces the high-dimensional complex
nonlinear system to a low-dimensional dynamic system
which can remain equivalent to the dynamics topology of the
original system. However, the L-S method can process static
bifurcation of stationary solution directly in the high-
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Figure 1: Flow chart of model order reduction.
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dimensional complex nonlinear system. From the implicit
function theorem, one set of equations has unique solution,
the equations are solved and the solution is substituted to the
other set of equations, and then the solution of the high-
dimensional static bifurcation issue can be reduced to a
solution of low-dimensional equations.

.e basic principle of the L-S method is to project high-
dimensional nonlinear algebra equations to the two mu-
tually orthogonal subspaces of its value space, and two sets of
equations can be obtained [13, 24]. .e basic principle of the
L-S method will be briefly described as follows.

Consider the static bifurcation of the stationary solution
of the high-dimensional nonlinear system; from the map-
ping f: X × Rm⟶ Y of equation (1), the high-dimensional
nonlinear algebraic equation can be expressed as follows:

f(x, a) � 0. (8)

X and Y are Banach space. .e static bifurcation point of
the original system can be changed to the coordinate origin
by coordinate translation transformation, that is, f(0, 0) � 0.
Assuming that A � Dxf(x, a)|(0,0) is Fredholm operator, the
zero space is η(A) and the value space is R(A). And the
dimension of the zero space is finite and greater than zero.
.en, through the spatial straight sum decomposition near
the coordinate origin, the following is obtained [37]:

X � η(A)⊕M,
Y � N⊕R(A).

(9)

Defining the mapping operator P: Y⟶ R(A) and the
complement operator I − P: Y⟶ N, I is identical oper-
ator. .e state variable x ∈ X � η(A)⊕M can be expressed
asx � υ + ω, υ ∈ η(A),ω ∈M based on equation (9).
Equation (8) is equivalent to equations (10) and (11) from
action of mapping operator and complement operator [23]:

Pf(υ + ω, a) � 0, (10)

(I − P)f(υ + ω, a) � 0. (11)

Because PA � PDxf(0, 0), if A is limited to M, then A is
reversible. It can be known from the implicit function theory
that the unique solution φ � φ(υ, a): η(A) × Rm⟶ R(A)
of equation (10) in the neighborhood of (υ,ω, a) � (0, 0, 0)
makes Pf(υ + φ(υ, a), a) � 0 and φ(0, 0) � 0. Submit the
solution of the above equation to equation (11), there is a
mapping g: η(A) × Rm⟶ N, so that

g(υ, a) �(I − P)f(υ + φ(υ, a), a) � 0. (12)

.e solution of equation (12) corresponds to the solution
of equation (8), thereby the static bifurcation issue near the
equilibrium in the high-dimensional complex system can be
equivalent to the solution of the low-dimensional nonlinear
algebraic equation for the reduction.

.e L-S method has strict theoretical basis, and it is used
widely to study the bifurcation theory in the high-dimen-
sional complex nonlinear system. Chicone [37] used Mel-
nikov integral and the L-S method to analyze the periodical
solution bifurcation issue of the autonomic differential

system with small parameters. .e L-S numerical iterative
method was proposed to solve the reduced-order bifurcation
equation and Hopf bifurcation issue in Ref. [38]. Zhang and
Stewart [39] applied the L-S method to discuss the existing of
the bounded solution of the nonautonomous parabolic
equation. Lukas [40] used the Wolfram symbol software
package of Mathematica to develop the L-S reduction al-
gorithm, and the algorithm can be applied to calculate the
three-dimensional vortex structure of the dispersed non-
linear Schrodinger equation. Sandfry andHall [41] applied
the L-S reduction to determine an analytic relationship
between parameters to recognize conditions for which a
jump phenomenon occurs. In recent year, Buica et al. [42]
applied the L-S method to analyze the periodical solution
bifurcation issue of the regular nondegenerate cluster in the
Lipschitz system. .e L-S method was applied by Chen and
Zheng [43] to study the solution aggregation behavior of the
fractional order nonlinear Schrodinger equation. Pogan
et al. [44] studied the O(2) Hopf bifurcation of the viscous
shock in tube, and they used L-S method to handle the quasi-
linear hyperbolic-parabolic system with hot viscoelastic is-
sue. Cao et al. [45] studied the dynamic property of the
damped harmonic oscillator with delayed feedback, and they
applied the L-S method to obtain the judging condition for
bifurcation of periodical solution and number of branches.
Li and Ma [46] promoted the L-S method to the fractional
differential system. Guo and Ma [47] analyzed the stability
and bifurcation behaviors of the reaction-diffusion equa-
tions with the Dirichlet boundary condition and applied the
L-S method to prove the existence of the partial nonuniform
solution.

.e L-S method is complete in theory, and the method
can process the bifurcation issue of the high-dimensional
nonlinear system effectively, but it is difficult for the method
to process the static bifurcation issue of the large and
complex nonlinear system. .e main reason is as follows. It
is difficult to solve the low-dimensional nonlinear algebraic
equations in the processing of the high-dimensional space
decomposing. .e dimension of the obtained low-dimen-
sional nonlinear algebraic equations is still very high after
the high-dimensional complex system is decomposed by the
L-S method. All the literature about the L-S method known
by the authors of this paper can process the DOF of the high-
dimensional system which is less than ten, so the L-S method
is suitable for studying the bifurcation of the high-dimen-
sional complex system with DOF less than twenty.

4. Galerkin Method

.e first two-order reduction methods are mainly used to
analyze few high-dimensional nonlinear systemmodels with
several DOFs theoretically, but the complex dynamic system
in engineering is usually continuous partial differential
system, simplified approximate high-dimensional ordinary
differential system, or coupling system with both partial and
ordinary differential. Galerkin mapping is a bridge from
partial differential to ordinary differential, and it is an ef-
fective order reduction method to handle this system
[2, 15–17]. .e final purpose of the Galerkin mapping is to
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obtain a low-dimensional dynamic system, which can reflect
the dynamic characteristics of the original system. .e basic
principle of the standard Galerkin method is to map the
original system to the mode space and make up the system
by intercepting low-order modes and ignoring the effects of
the high-order mode to achieve the purpose of reducing the
order [15, 17]. .e basic principle of the Galerkin method
will be described briefly as follows.

.e dispersed dynamic equations of the high-dimen-
sional complex system obtained via the finite element or
other method are

M€x + C _x + Kx � F(x, t). (13)

M, C, andK are total mass matrix, total damping matrix,
and total stiffness matrix, respectively, and F(x, t) is the
nonlinear force. .rough the mode coordinate translation,
x � ψu � ψmum + ψlul, where ψ � [ψm,ψl] is the system
mode matrix (ψm and ψl are the matrices constituted by the
first m and the remaining l eigenvectors, respectively) and
u � [um, ul] represents coordinates. Equations (14) and (15)
can be obtained by projecting equation (13) into mode space
as follows:

Mm €um + Cm _um + Kmum � Fm ψmum + ψlul, t( ), (14)

Ml €ul + Cl _ul + Klul � Fl ψmum + ψlul, t( ). (15)

.e standard Galerkin method directly ignores the ef-
fects of the high-order mode, so the original system can be
reduced to the following [15]:

Mm €um + Cm _um + Kmum � Fm ψmum, t( ). (16)

When the truncationmodem is taken to a certain extent,
the original system can be expressed approximately as fol-
lows: x � ψmum.

Because of neglecting the effects of the high-order mode,
the reduced model of complex nonlinear systems has large
errors. So, some scholars proposed the nonlinear Galerkin
method, which finds the approximate relationship between
the high and the low mode coordinate by constructing
inertial manifold [15–17, 24, 49] based on the inertial
manifold theory [48]. .e nonlinear Galerkin method can
improve the approximate accuracy, but the method needs
more calculation time [48] because each integral includes the
nonlinear factor of the approximate inertial manifold
method. Garcia-Archila [50, 51] proposed the posterior
Galerkin method to solve the problem, which can save the
calculation time [17]. For this method, it is not necessary to
calculate the approximate inertia manifold in each step of
the integration step and only need to consider the effects of
higher order modes in the output of each step.

After decades of the development and application, the
Galerkin method has become an important way to obtain the
numerical solution of large and complex systems rapidly,
and its related application literatures are endless. For ex-
ample, Wang and Cao [15, 16] proposed the predictive
correction Galerkin method, and they used the method to
reduce the order of the large rotor-bearing system. Ding and

Zhang [52] analyzed an isotropic flexible shaft acted by
nonlinear fluid-induced forces and reduced dimensions of
the rotor system by both the standard Galerkin method and
the nonlinear Galerkin method. An adaptive discontinuous
Galerkin method was proposed to obtain a high-resolution
numerical solution efficiently in Ref. [53]. Sembera and
Benes [54] applied the nonlinear Galerkin method to analyze
the reaction-diffusion system in bounded invariant domain
and proved the convergence of the method. Chatzisavvas
et al. [55] investigated the effect of hydrodynamic thrust
bearings on the nonlinear vibrations and the bifurcations
occurring in rotor-bearing systems by using a global
Galerkin approach. .e postprocessing Galerkin method
was used to reduce the mode order for nonlinear wind
turbines [56]. Boelens et al. [57] used the second-order
accurate discontinuous Galerkin finite element method to
discretize the governing equations on a hexahedral mesh.
Amabili et al. and Sarkar et al. [58, 59] applied Donnell
nonlinear cylindrical shell theory to deeply research the great
vibration for liquid filled cylindrical shell, and they obtained
the 16-DOF accurate response of the system on simple
hormonic excitation by using the Galerkin mode truncation
method. .e Galerkin and the partial POD methods were
combined to study two one-dimensional parabolic equations
[60]. Xie et al. and Xie et al. [61, 62] applied the Von Karman
large deflection plate theory, Galerkin method, and POD
method to study the wing aerodynamic flutter problem with
supersonic flow condition.

.e Galerkin method has been widely applied in engi-
neering, but the method is insufficient, for example, the
existence of inertial manifold in high-dimensional complex
system, structure issue of inertial manifold, the truncation
principle of modal order, and the convergence of the al-
gorithm [23, 24, 63].

5. Modal Synthesis Method

.e modal synthesis method is another effective order re-
duction method; it is essentially a classic Galerkin method,
so the method is applied widely to reduce the order of the
large and complex system [15–17, 64–78]. .e principle of
the modal synthesis method is dividing large and complex
system into substructures, ignoring the high-mode of sub-
structures, and then synthesizing the system composed of
low-order modalities of each substructure, thereby achieving
the purpose of reducing system DOF [17, 19, 70, 73].
According to the different connections of substructures, the
method can be divided into fixed-interface modal synthesis
method, free interface modal synthesis method, and mixed
interface modal synthesis method [73, 75]. .e basic
principle of the method will be introduced briefly as follows.

.e discrete dynamic equation of the large and complex
system is as follows:

M€x + C _x + Kx � F(x, t). (17)

In equation (17), M � Mi{ }n1, C � Ci{ }n1, K � Ki{ }n1,
x � xi{ }n1, and F � Fi{ }n1 are the mass, damping, stiffness
matrix, point displacement, and nonlinear force,
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respectively, which are composed of n substructure systems.
Mi, Ci, andKi are the mass, damping, and stiffness matrix of
the i-th substructure, respectively. Mi, Ci, Ki, andFi of
substructure are divided into internal coordinate xiI and
boundary coordinatexiB, and the dynamic equation of the
substructure can be written as follows:

Mi €xi + Ci _xi + Kixi � Fi xi, t( ), (18)

where xi �
xiI
xiB
[ ], Fi �

FiI
FiB
[ ], Mi �

MiII MiIB

MiBI MiBB
[ ],

Ci �
CiII CiIB
CiBI CiBB
[ ], and Ki �

KiII KiIB
KiBI KiBB
[ ].

To calculate constrained main mode ψik ∈ RnI×nk and
constrained mode ψic ∈ RnI×nB with boundary or interface
constraint, nI, nB, and nk are the number of coordinates of
the substructure internal nodes, the number of boundary
coordinates, and the number of retained constraint main
modes [1, 72]. ψik can be calculated by the constrained
boundary xiB � 0{ }, and then the translation relationship
between the physical coordinate (xiI, xiB)and the modal
coordinate (uik, uiB) can be obtained [1, 75].

xiI

xiB
[ ] � ψik ψic

0 IiB
[ ] uik

uiB
[ ] � P

uik

uiB
[ ]. (19)

.e structural dynamic reduction modal can be obtained
via substituting equation (19) to equation (18):

Mi €ui + Ci _ui +Kiui � Fi, (20)

where Mi � PTMiP, Ci � PTCiP, Ki � PTKiP, and
Fi � PTFi. .e total reduction modal of the high-dimen-
sional complex structural system can be obtained by inte-
grating the reduced modal of each substructure.

M€u + C _u +Ku � F, (21)

where u � ui{ }n1, M � Mi{ }n1, C � Ci{ }n1, K � Ki{ }n1, and
F � Fi{ }n1.

.e modal synthesis method has simple principles and
good robustness, and the method is easy to operate. So, the
method is widely used to reduce the order of the engineering
complex structure system. Yang [1] used finite element
software to establish discrete dynamic modal of five points
reverse rotation dual-rotor system, and they divided dual-
rotor into two substructures of inner and outer rotors. .ey
reduced the order of the system by the fixed-interface mode
synthesis method and researched the moment response in
processing of accelerating of five points reverse rotation
dual-rotor system, and then the calculation scale is reduced.
Glasgow [64] calculated the critical speed and the modal
shape of the dual-rotor-bearing system by using the sub-
structural modal synthesis method, and the calculation scale
is reduced greatly, and then they discussed the calculation
accuracy and the error of the method in detail. .e mode
synthesis method was used to reduce the linear part of the
rotor-bearing system modally, and as the boundary coor-
dinate, the nonlinear part together with the reduced modal
constitutes a reduced-order system [66]. Wang and Kir-
khope [67] improved the free interface mode synthesis

method and applied it to reduce the order of multirotor-
bearing system. Sundararajan and Noah [68] used the modal
synthesis method to reduce the order of the nonlinear rotor
system and analyzed the stability and the bifurcation of the
reduced modal. Iwatsubo et al. [69] proposed an effective
procedure using the component mode synthesis and the
method of multiple scales or the harmonic balance method
for the nonlinear vibration analysis of rotor systems. .e
mixed interface modal synthesis method was used to reduce
the order for the rotary symmetry impeller structure [71].
Shanmugam and Padmanabhan [72] proposed the mixed
interface modal synthesis method, which is more suitable to
the dynamic analysis of the two rotors system. In recent
years, Beck et al. [73] applied the modal synthesis method to
reduce the order of integrally bladed rotors and analyzed the
dynamic characteristics of the reduced modal. Zheng et al.
[74] proposed a generalized and efficient method for
parametric response analysis of large-scale asymmetric rotor
in order to avoid costly approach, and the fixed-interface
component mode synthesis is employed to form a reduced-
order model. Zhang [75] combined the Ansys software and
the mixed constraint modal synthesis method to study the
large civil structure with nonlinear part. Luo et al. [76] used
finite element software and the free interface modal syn-
thesis method to establish the dynamic modal of the high-
dimensional two rotors system with collision friction failure.
.e nonlinear factors of intermediate bearing and the
squeeze film damper are taken into account in the modal.
.ey used unit impulse response and the Duhamel integral
method to obtain the numerical solution of the equation,
and they studied the collision friction response character-
istics of the reverse rotary two rotors system..e assessment
method was studied by Kim et al. [77] to select the modal in
the synthesis method. Joannin et al. [78] combined the
complex mode and the modal synthesis method to solve the
steady state response in the unconservative system.

.e modal synthesis method is suitable for dealing with
the large and complex structure, but the method mainly
performs modal reduction for linear substructure and ig-
nores the effect of high-ordermode and system partial mode,
so the reduction modal may have great error. .e method is
not accurate [23, 24], and the effect of reducing the order is
not obvious for the large deformation and strong coupling
nonlinear structural system.

6. Proper Orthogonal Decomposition (POD)

In this section, the basic principles will be introduced in
Section 6.1. .e classification of POD is provided in
Sections 6.2 and 6.3 based on sampling and parameter
adaption. In Section 6.4, some improved POD methods
and related issues are discussed. .e POD method is the
specific recommendation method which will be widely
applied in actual engineering. .e POD method contains
sample, parameter adaptation problems, and other im-
proved methods, and the classifications are listed in
Table 1. .e POD methods based on sampling and pa-
rameter adaptation problems are introduced briefly as
follows.
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.e construction of reduced-order models (ROMs) plays
a key issue in POD methods. Different sampling signals can
yield different ROMs via POD, so many researchers have
focused on determining the sampling methods that will yield
the optimal ROMs. ROMs can be obtained from the fol-
lowing types of response signals: chaotic response signals,
random response signals, transient response signals, and
signals obtained through combined sampling methods.

.e responses of a complex dynamic system are closely
related to the system parameters and initial conditions. .e
ROMs obtained via POD usually lack robustness against
variations in the system parameters. In principle, new ROMs
should be constructed for new parameters; however, the
number of calculations required to calculate each possible
parameter response of a complex system to construct the
corresponding ROMs would be very large. To resolve the
problem ofmodel order reduction for a complex system over
a broad parametric domain and ensure the robustness of the
ROMs, many modified methods have been proposed by
researchers, including global POD methods, local POD
methods, and adaptive POD methods.

6.1. Basic Principles, Advantages, and Disadvantages. .e
proper orthogonal decomposition (POD) method is also a
powerful order reduction method to deal with the large and
complex system. Other names of the method are
Karhunen–Loève decomposition, principle component
analysis (PCA), singular value decomposition (SVD), and
Hotelling translation [79, 80]. In the middle of the twentieth
century, these methods were proposed, respectively, by
Kosambi [81], Karhunen [82], Lorenz [83], Pougachev [84],
and Hotelling [85].

.e POD method is a projection-based order reduction
method, which is similar as the projection/Galerkin method
which maps the high-dimensional system to a low-dimen-
sional subspace. .e difference between the two methods is
as follows. POD is a statistics method, and the POD re-
duction modal or the reduction basic function is obtained by
solving eigenvector of the autocorrelation matrix. .e au-
tocorrelation matrix is statistically significant 2nd center
moment [79]. .e basic principle of the POD method is that
the autocorrelation matrix is constructed from numerical
simulation snapshot signal or experimental data snapshot
signal in the original system. .e POD reduced modal or
reduced basic function is obtained by solving the eigenvector
of autocorrelation matrix and then the high-dimensional
system is projected onto the subspace of the reduced-order
modal corresponding to first maximum eigenvalues, thereby
achieving the purpose of reducing the order. .e basic
principle will be briefly described as follows.

For the state variables of the high-dimensional complex
system (nth dimension) y(x, t), the discrete time
seriesy(x, ti), i � 1, . . . , N can be obtained from numerical

simulation signal or experimental signal, and the time series
is projected onto the space opened by complete orthogonal
specification base ϕ � ϕk(x){ }nk�1, that is:

y x, ti( ) � ∑n
k�1

uk ti( )ϕk(x), i � 1, . . . , N. (22)

We hope to find a group of orthogonal specification base
that satisfies the minimum value constraint under the square
norm [23, 24]:

min〈 y x, ti( ) − Py 2〉, ‖ϕ‖2 � 1. (23)

In equation (23), 〈·〉 indicates the average operator
during the sampling period, Py � ((y,ϕ)/(ϕ, ϕ))ϕ denotes
mapping operator, (·, ·) represents the inner product on
Hilbert space, and ‖ · ‖2 is the L2 norm.

.e orthogonal specification base satisfying the above
conditions can be obtained by the Lagrange multiplier
method. .e objective function is defined as follows
[3, 23, 24]:

J[ϕ] �〈‖(y,ϕ)‖2〉 − λ ‖ϕ‖2 − 1( ). (24)

In equation (24), λ is the Lagrange operator..e extreme
value of formula (24) is found, and let δJ � 0, we can get the
following [79, 80, 86]:

∫
Ωx
〈y(x)y x′( )〉ϕ x′( )dx′ � λϕ(x). (25)

Formula (25) is second class Fredholm equation, and its
kernel function is autocorrelation: R(x, x′) � 〈y(x)y(x′)〉.
We can prove that the orthonormal basis ϕ � ϕk(x){ }nk�1
which is also called POD order reduction modes which are
the eigenvectors of the autocorrelation matrix
R � (1/N)[yTy]n×n based on equations (22) and (25) and
normal orthogonal condition.

.e high-dimensional state variables are projected onto
the subspace of first few POD modes (eigenvectors are
arranged in descending order of corresponding eigenvalues),
thereby the best square approximation of original system
state variables during the sampling period can be obtained
with the least reduced-order mode number m, that is:

y x, ti( ) ≈ ∑m
k�1

uk ti( )ϕk(x), i � 1, . . . , N,m � n. (26)

On the other hand, the signal matrix composed of
discrete time series y(x, ti), i � 1, . . . , N can be obtained by
the numerical simulation snapshot signal and the experi-
ment signal. .e signal matrix can be decomposed by sin-
gular value decomposition (SVD) theory [87].

[y]N×n �[U]N×n[S]n×n V
T[ ]
n×n
. (27)

In equation (27),U andVare orthogonal matrices, which
satisfy UTU � VTV � In×n, diagonal matrix S � diag[σ1,
σ2, . . . , σn] is a singular matrix of the sampling signal matrix,
and σ1 ≥ σ2 ≥ · · · ≥ σn > 0. Comparing equations (22), (26),
and (27), the matrix translation relationship can be obtained

Table 1: .e classification of the POD method.

POD method

Sampling Parameter adaptation Other improved POD methods

Shock and Vibration 7



between the eigenvalue of autocorrelation matrix and sin-
gular value decomposition of signal matrix.

P � ϕ1, ϕ2, . . . , ϕm[ ]n×m � VT[ ]
n×n
[S]n×m. (28)

.e coordinate translation relationship y � Pu can be
defined by formula (28). .e high-dimensional complex
system is projected onto subspaces of a few POD reduced-
order modes; P and u(t) � [u1(t), u2(t), . . . , um(t)]

T, re-
spectively, are reduced-order modal translation matrix and
the POD modal coordinate. Substitute equation (28) into
dynamic equation of the large and complex structure system
(17), and then simplifying the formula, we can obtain the
following [87]:

M̃€u + C̃ _u + K̃u � F̃. (29)

In equation (29), M̃ � PTMP, C̃ � PTCP, K̃ � PTKP,
and F̃ � PTF. A low-dimensional dynamic modal can be
obtained. .is is the traditional POD reduction method.

In many literatures [79, 87–89], the dimensional number
of the reduced-order m is determined by defining the sin-
gular values or energy percentage of autocorrelation matrix
eigenvalues.

ε �
∑mi�1 σi∑ni�1 σi

or ε �
∑mi�1 λi∑ni�1 λi,

(30)

where λi � σ2i is the eigenvalue of the autocorrelation matrix,
and the eigenvalue is determined ε≥ 95%, sometimes
ε≥ 99% [87, 89], for ensuring the reduced-order signal and
the original sampled signal matrixL2norm approximation.

‖y‖
2
�

���
yTy
√( )2 � VSTUTUSVT �∑n

i�1

σ2i ≈ ∑m
i�1

σ2i . (31)

.e DOF of the reduction modal obtained by the POD
method is very low, and DOF is the best square approxi-
mation of the original system, so the method has obvious
advantages in reducing DOF of the high-dimensional system
and improving computation efficiency. However, from the
basic theory of the method, the disadvantages of the method
can be obtained. .e advantages and disadvantages of the
method will be described as follows.

According to the basic theory of the POD method, the
method is easy to operate. .e most significant advantage is
as follows. .e most important components of the infinite
dimensional or high-dimensional complex system can be
obtained with very few POD reduced-order modes, and the
method has the optimal approximation under square norm.
.eDOF of the original system is greatly reduced [79, 80, 87]
by using the POD method. So, the POD method is widely
used in area of engineering, for example, fluid dynamics
[86, 90–95], signal and image processing [96–99], optimal
design [100–103], ocean engineering [104], and structural
dynamic mechanics [58, 59, 61–63, 105–109].

However, according to the basic theory of the POD
method, we can easily find that the POD modes come from

the eigenvectors of the autocorrelation matrix, which is
constructed by numerical simulation signal or experiment
signal. As a result, for different sampling data, the POD
modes are different with different sampling parameters,
method, or length, which significantly influence the reduced
modal. And the actual constructed modes just are the op-
timal approximation [110] for the original system under
recent sampling length, which is not the optimal approxi-
mation for the original system of all states, so the con-
structing of the POD reduced modes is key for the POD
method. In response to these problems, scholars have
proposed a number of improved PODmethods..rough the
author’s literature research, it is found that these methods
can be divided into two categories: one to solve the sampling
problem of the POD method and the other to solve the
parameter autocorrelation problems of the POD method.
.e two types of POD methods will be, respectively,
reviewed as follows.

6.2. Sampling Study of PODMethod. According to previous
description of the POD method, the most important part is
the construction of reduced-order mode. In view of the
sampling point, the different sampling signal can obtain
different POD reduced modes; therefore, what kind of
sampling signal and how to sample can obtain the optimal
reduced-order mode have become a research issue for
scholars. By reviewing the relative literature about POD
sampling, it is found that some scholars obtained POD
reduced modes from chaos response signal
[58, 59, 79, 87, 88, 111, 112], random response signal
[87, 113–115], moment response signal [116–125], different
sampling method [126–133], and constructing different
autocorrelation matrix [134].

Kerschen et al. [88] used the finite element method to
discretize fixed beam; they used two permanent magnets to
act a nonlinear constraint force on free ends of the beam, and
then they used the POD method to analyze the reduced
order of the discrete high-dimensional nonlinear system.
When the outer excitation frequency of this nonlinear
system is fixed, they change the excitation amplitude, and
then the periodic, almost periodic, and chaos movements
have appeared. .ey found that the POD reduced-order
mode obtained from the chaotic response signal is more
effective than other nonchaotic response signals in
reduction.

Amabili et al. [58, 59] used Donnell nonlinear cylindrical
shell theory to go further into the large vibration issue of the
simple supporting fluid filled cylindrical shell, and they used
the Galerkin modal truncation method to obtain the ac-
curate response of the original system with 16-DOF under
the periodic excitation condition. However, they combined
the POD method and Galerkin method and then found that
only 3-DOF can be used to approximate the periodic, almost
periodic response of a 16-DOF system, but extracting the
POD modal response must be noticed. .ey also found that
extracting POD reduced-ordermodal from chaosmovement
is more effective than from periodic and almost periodic
response. Meanwhile, they used the method to analyze the
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bifurcation, set the external excitation frequency near the
inherent fundamental frequency of the system, and selected
the excitation amplitude as the bifurcation parameter. .en,
it is found that when the external excitation amplitude varies
within a large range, even if the reduced-order mode is
extracted from the chaotic response, it cannot be guaranteed
that the reduced-order system is similar to the bifurcation
structure of the original system. .e results indicate that the
POD method is not robust in the wide-range parameter
domain.

Bizon et al. [111] applied the POD method to research
the reduced-order reaction dynamic modal of the one-di-
mensional tubular reactor with additional thermal cycling;
according to calculation maximum orbital entropy index,
they proved that the reduced modal fundamental function
constructed from chaos sampling is optimal. Xie et al.
[61, 62] applied Von Karman large deflection plate theory
and combined the POD method and Galerkin method to
study the wing aerodynamic vibration under the supersonic
flow. .ey found that POD reduced-order modes obtained
from chaotic response signal is more accurate than from
period response to approximate the original system.
Moreover, the reduced-order mode obtained from the
chaotic motion under a certain parameter can also be ap-
plied to reduce other parameters in a certain parameter
range. .e research by the above scholars shows that the
chaotic response signal in the complex system includes
abundant physical process and state information of the
original system, so we extract POD reduced-order modes
from chaotic response signal in recent [62, 88].

.e complex nonlinear system of actual engineering may
appear the chaos motion in some parameter domain, but the
complex movements are often avoided in design, processing,
and maintenance in these complex structural systems. So,
the chaos motion of the system is difficultly obtained in
actual engineering. When constructing the signal, the POD
reduced-order mode is sampled from the periodic signal of
the normal operation of the complex system. .e reduced-
order modes obtained by this waymay include less structural
information of the original system, so it is difficult that a few
reduced-order modes can obtain the optimal approximation
of the original system. Under the random excitation, the
system power spectrum is continuous, and the random
response is as same as chaos response which has abundant
physical processing and state information of the original
system, and it is easy to obtain the random excitation, so
some scholars [87, 113–115] researched that the POD re-
duced-order mode is constructed from the random response
signal.

Kumar [87, 113] analyzed two high-dimensional non-
linear systems: one is nonlinear fixed beam system [88] and
another is multiple spring-mass-damping chain system with
Duffing nonlinear factors. .ey found that under a random
excitation of certain bandwidth, the reduced-order modes
extracted from random response can obtain better order
reduction effect, but the frequency bandwidth of random
excitation must cover the main frequency domain, and the
extracted response contains many high-frequency compo-
nents and requires more POD modes to obtain accurate

reductions. .e random signals were used by Yu and
Chakravorty [114] to obtain a global optimal POD reduction
mode. Segala [115] used the POD method to process the
parameter modal reduction of the nonlinearly supported
beams; they also found that the reduced-order mode con-
structed by random excitation signal can contain the main
structural components of the original system with fewmodal
numbers, thus obtaining a lower-dimensional reduced-or-
der model. .erefore, when we do not know that chaotic
motion occurs under what parameters in the high-dimen-
sional system, the POD reduction mode can be obtained
from the random response.

Some scholars used the PODmethod to reduce the order
of high-dimensional complex systems and found that the
better order reduction effect also can be obtained when
sampling signal contains the transient response of the
original system. In 1998, when Park and Lee [116] studied
the flow optimization control issue for two-dimensional
viscous flow, they found that the POD reduced-order mode
sampled from the flow field displacement signal can only
simulate effectively the flow of the original system if it
contains the transient flow field signal of the original system.
Terragni and Valero [117–121] applied the POD method to
reduce the order of a class of continuous dissipative systems;
they compared and analyzed the complex bifurcation
characteristics of the original system in the parameter do-
main by the low-dimensional reduced-order system. .ey
found that the reduced-order mode extracted from the
snapshot containing the transient motion of the system has a
larger parameter applicable range than the reduced-order
mode extracted from the attractor.

Yang [121] applied the POD method to research the
model reduction and parameter identification of high-di-
mensional chaotic/linear systems; it is found that the POD
reduced-order mode constructed by unstable transient pe-
riod response signal can approximate to the chaotic motion
of the original system. Yu et al. and Lu et al. [122, 123]
applied the POD method to reduce the order of high-di-
mensional nonlinear rotor systems with loose, crack, rub-
bing, and other faults. .e system transient response, which
has more motion information, contains free and forced
vibrations under given initial conditions. .erefore, they
also found that the POD reduced-order mode extracted
from the transient motion signal can obtain better order
reduction effect. Lu et al. [124, 125] also obtained the POD
reduced-order sampled from the system transient response
and reduced the order of the multidisk rotor-bearing system.

.e above is the study about types of sampling signals of
the POD method. However, the snapshot signals of the
physical quantities of the original system obtained by nu-
merical simulation or experiment involve how to sample, so
some scholars have studied the sampling methods of POD
methods [126–135]. Standard sampling methods include
uniform sampling, random sampling, and hierarchical
sampling [133]. Uniform sampling, which samples the
motion state of each parameter in the system parameter
space, requires a large computational cost. Especially, when
the dimension of the parameter space is very high, uniform
sampling will lose the application value. Random sampling
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may not be able to obtain information on some important
areas of the parameter space [126]. It is difficult for the
standard sampling method to obtain the construction of
optimal reduced-order mode in high-dimensional param-
eter space, so scholars proposed some autocorrelation
sampling methods: model constraint (MC-POD) method
[126], greedy sampling (GS-POD) method [127–130],
confidence domain (TR-POD) method [131], optimal
component (OS-POD) method [132, 130], and some other
sampling methods [132–135]. .ese methods mainly opti-
mize snapshot signals by various sampling methods, which
allow more state information of the original system to be
included in different parameter domains or some important
parameter domains, thereby obtaining an optimal POD
reduced-order mode basis function.

For multifield, multiphysics coupled high-dimensional
complex systems, we can extract multiple sets of state vector
signals from the original system, such as velocity and dis-
placement of the flow field, temperature field, pressure field,
velocity, and displacement of the structure. It should be
considered that which state vector should be chosen to
construct the autocorrelationmatrix and how to construct it.
Kirby et al. [136] proposed putting together groups of state
variables of the coupled system to construct a total state
vector. By constructing the autocorrelation matrix by this
state vector, the POD reduced mode of the coupled system is
obtained and then this reduced-order mode was used to
reduce the governing equations of the coupled system. .is
method has been successfully applied to model reduction of
complexmultifield coupled systems [92, 137–139]. However,
the constructed total autocorrelation matrix contains the
coupling of the state vectors of each parts of the system..is
kind of coupling is generated by the total state vector in the
process of numerically calculating the autocorrelation ma-
trix, which is inconsistent with the coupling of the actual
system, and the problem of nonconvergence of the reduced-
order model often occurs. Brenner et al. [134] proposed that
the state vectors of the components of the coupled system
separately construct the autocorrelation matrix, and the
mutual coupling term between the components is set to zero.
.e reduced-order model obtained by the total autocorre-
lation matrix constructed by this method is more accurate
and convergent than the method proposed by Kirby et al.

In summary, the sampling issue of the POD method is
very important for constructing reduced-order modes. .e
signal that constructs the reduced-order mode should
contain more abundant and detailed physical processes and
state information of the original system, such as chaotic
signals, random signals, transient signals, and signals ob-
tained by various sampling methods. .e POD reduced-
order modes sampled from these signals can obtain high-
precision approximation to the original system with few
DOFs. Now, scholars generally extract POD reduced modes
from chaotic signals. When the system chaotic motion signal
cannot be obtained in advance, a random response signal of
a certain bandwidth or a transient motion signal can be used
to extract the reduced mode. .e above is a review of the
POD method in the sampling issue, and then we will
elaborate on another type of issue of the POD method.

6.3. Parameter Adaptation of PODMethod. .e response of
the complex dynamic system is related closely to system
parameters, initial conditions, and so on. .erefore, the
reduced-order mode obtained by the POD method usually
lacks robustness [140, 141] when the system parameters
change. In principle, the reduced-order mode under the new
parameters should be reconstructed. However, constructing
the POD reduced mode of the corresponding parameter by
constructing the response of each parameter in the complex
system is not allowed from the point of calculation cost. In
order to reduce the order of the complex system in pa-
rameter range and ensure the parameter robustness of POD
reduced-order mode, scholars have proposed many im-
proved POD methods: global POD method [142–145], local
POD method [60, 117, 146–149], adaptive POD method-
POD modal interpolation method [141, 152–156], subspace
angle interpolation method [157–162], Grassmann manifold
tangent space interpolation method [163–171], and other
adaptive POD methods.

.e global POD method aims to construct a global POD
reduced-order mode that covers the entire parameter do-
main by using a snapshot set composed of different pa-
rameter values in a certain parameter domain and then uses
the reduced-order mode to obtain the reduced-order modal
of system parameter domain..is method is very simple and
easy to implement. However, this method extracts snapshot
sets with different parameters and needs proper positioning
in the parameter domain while how to reasonably determine
the parameters of the snapshot signal is irregular. .ere may
be multiple solutions in the parameter domain of complex
strong nonlinear systems..is method requires a lot of POD
reduced-order modes to obtain a more accurate reduced-
order model of the original system. However, in practice, it
has been proved that in many cases, this method is not
reliable. Because there are numerous parameters affecting
the dynamics of high-dimensional complex systems, the
globally optimal POD reduction modes may not exist, which
causes the method to lose the best approximation
[161, 163–166].

.e local POD method is a local reduction method. .e
whole parameter domain is divided into multiple sub-
parameter domains. .e POD method is used to reduce the
system of each subparameter domain. .e POD reduced-
order mode is constructed by using the snapshot signals of
some local parameter domains obtained in advance, and
then the original system is projected onto the subspaces of
these local reduced-order modes to obtain the price re-
duction model. Rapún and Vega [60] combined the local
POD method with the Galerkin method to study the two
one-dimensional parabolic equations (nonautonomous
Fisher-like equations and complex Ginzburg–Landau
equations). .ey proved the effectiveness of the method and
its robustness in the numerical way in the range of local
parameters.

Terragni and Valero [117] also combined the local POD
method and the Galerkin method to study the two-di-
mensional roof-driven cavity flow issue. Compared with
commercial software solution, this method can significantly
reduce the calculation cost and be applied to reduce the
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order of different parameters within the range of system
adjustable parameters, which is convenient for checking
complex systems. Sahyoun and Djouadi [150] used the local
POD method based on clustering vector space to reduce the
order of high-dimensional nonlinear systems. Compared
with the global POD method, the local POD method further
reduces the system dimension and ensures the calculation
accuracy. However, the method is divided into multiple
subparameter domains, so the approximate solution is not
smooth, and the robustness of the method in the parameter
domain and the scope of its application are not yet rigor-
ously proved [117, 148].

.e adaptive PODmethod [150, 151] essentially achieves
the best approximation for each parameter of the original
system by updating the POD reduced-order mode within the
parameter range. .is method has better parameter ro-
bustness than the above two methods. In the literature about
the POD method, there are many methods called adaptive
POD methods, such as POD modal interpolation method
[141, 152–156], subspace angular interpolation method
[157–162], Grassmann manifold spatial interpolation
method [163–171], and other adaptive POD methods
[59, 118–120, 172].

.e POD modal interpolation method is to use some
interpolation methods (such as empirical discrete interpo-
lation and Lagrange interpolation) to construct reduced-
order modes of other parameters [141, 152–156] in the
parameter domain by obtaining the reduced order of other
parameters in the parameter domain. Xu and Lin [153]
combined the POD method and empirical discrete inter-
polation method through greedy sampling to obtain inter-
polation points and reduced order of nonlinear parameter
systems. Opmeer [154] combined the balanced-POD
method and rational interpolation method to reduce the
order of control systems.

Yao and Marques [155] used the POD method and the
empirical discrete interpolation method to obtain the op-
timal POD reduction mode under the new parameters by
training the radial basis function artificial neural network in
the parameter space. .ey used the radial basis function
artificial neural network of each interpolation point to re-
construct the flow field under the new parameters. .e POD
modal interpolation method is simple. However, the re-
duced-order mode is the orthogonal norm base vector, and
the reduced-order modes, which are obtained by some direct
interpolation methods under the new parameters, are no
longer orthogonal normative. .erefore, in many cases, the
accurate reduction model cannot be obtained by using the
reduced-order mode obtained by direct interpolation. For
example, when Lieu and Lesoinne [156] applied this method
to analyze the aerodynamic problems of the F16 machine,
accurate results were obtained at subsonic flight, but the
method did not obtain correct results at transonic and
supersonic speeds.

Generally, in the linear interpolation process of any two
base vectors, their angles are not guaranteed to be linear
interpolation. .e subspace angle interpolation method is
proposed based on the concepts of the main vector and the
protagonist of the two subspaces [157]. .e method can

guarantee that the angles of the two interpolation basis
vectors are also linear interpolation. By obtaining the POD
reduced-order modal vector of some two parameters in the
parameter domain in advance and then using the subspace
angle interpolation method to obtain the POD reduced-
order mode of other parameter values, the method has been
successfully applied to the F16 machine in different free-
doms by Lieu [158–161] for pneumatic analysis under the
Mach number and angle of attack parameters. However, the
subspace angle interpolation method is a low-order inter-
polation method, an accurate reduced-order model that
cannot be obtained when two parameter values are far apart
in the parameter space. .e computational efficiency will be
too low and lose the significance for order reduction when
the distance is too close [160, 161, 165, 166].

In recent years, Amsallem proposed a more robust
adaptive POD method, Grassmann manifold tangent spatial
interpolation method [163–171]. .e method is based on
some concepts and mathematical conclusions in differential
geometry, such as the Grassmann manifold, the calculation
of the tangent space on the manifold, and the geodesic path.
Amsallem [160, 161] used this method to study the aero-
dynamic problems of F16 and F18. Compared with POD
modal interpolation and subspace angle interpolation, this
method is not only suitable for subsonic and transonic
aerodynamic analysis but also for supersonic aerodynamic
analysis, which has good robustness. At the same time,
Amsallem and Farhat [165, 166] also proved that the two-
point interpolation of this method is equivalent to the
subspace angle interpolation method. Amsallem and Cortial
[167] also used this method to reduce the order of 24-DOF
spring-mass-damping system and continuous wing struc-
ture system. Comparing the reduced-order model with the
response of the original system, they proved its effectiveness
and also showed that themethod is universal and suitable for
the reduction of other complex structural systems. Paquay
[171] used this method to reduce the model of the nonlinear
magnetic dynamic system and compared it with the direct
POD model reduction and POD modal interpolation
method, showing the superiority of the method.

.e above are several major adaptive PODmethods, and
of course there are some other adaptive POD methods, such
as Terragni and Valero [118–120] proposed an adaptive POD
method in 2014 to analyze the distribution characteristics of
complex systems in certain parameters. Because it is very
difficult to analyze the bifurcation characteristics of complex
systems in the parameter domain by direct numerical cal-
culation, some scholars have considered the bifurcation
characteristics of the low-dimensional reduced-order model
to reflect the bifurcation characteristics of complex high-
dimensional systems. Amabili et al. [59] used the POD
method to analyze the bifurcation characteristics of complex
structural dynamic systems in the parameter domain in
2006. However, this method has robustness problems in the
parameter domain. .ey found that if the POD reduced-
order mode is extracted from the chaotic motion signal, the
method can be applied within a certain parameter range.
However, for a larger parameter range, even if the method is
sampled from chaotic signals, it is difficult to obtain an
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accurate reduced-order model, so they warned scholars not
to use this method blindly.

In literature [172], Amabili et al. also compared the POD
method with another reduced-order method of nonlinear
structural dynamic systems, i.e., the nonlinear modal
methods (NNMs). .e results show that the POD method
can obtain a more accurate reduced-order model than the
nonlinear mode method (NNMs). However, Amabili and
others used traditional POD methods, not adaptive POD
methods. Terragni and Valero [118–120] determined the
transient motion response of complex systems in advance
with different parameter values through the Galerkin
method, as a snapshot signal for updating the POD reduced-
order mode in the parameter domain; they used the trun-
cation error function to detect when the reduced-order
modes should be updated and how many reduced-order
modes need to be selected. .e strategy for updating the
POD reduced-order mode is to mix the modal vectors of the
old and new parameters with appropriate weights. .en,
they combined the PODmethod and the Galerkinmethod to
obtain a bifurcation diagram of the complex Ginz-
burg–Landau equation with periodic parameters, almost
periodic periods and chaotic motions on larger parameter
range. Compared with the original system bifurcation dia-
gram obtained by direct numerical calculation, it is proved
that the proposed method has better robustness in a larger
parameter range and can swiftly analyze the bifurcation
characteristics of complex systems in the parameter range.

6.4. Other Improved POD Methods and Related Issues.
.e above is the classification of various improved POD
methods. Of course, there are some other improved POD
methods, such as the POD-Galerkin method
[58–62, 117–120, 173], which regards the POD reduced-
order modal basis function as the orthogonal modal function
of the Galerkin method. .e POD method based on fre-
quency domain obtains the POD reduced-order modal basis
function in the frequency domain, balanced-POD method
(BPOD) [3, 154, 176–178]. .ese improved POD methods
are all proposed by combining traditional POD methods
with other methods. In this paper, various improved POD
methods are mainly divided into two categories related to
sampling and parameters. On the one hand, the POD
method is essentially a statistical analysis method, which
involves how to sample, which method should be used to
sample it, when to sample the signal, which part of the signal
should be extracted, and how long the signal should be
extracted. .ese are directly related to sampling. On the
other hand, from the basic theory of the POD method, the
original system is projected onto the subspace of the first few
reduced modes by the POD reduced mode of the snapshot
signal constructed by a certain parameter value of the
original system. .e resulting reduced-order model is only
the best approximation of the original system for this
particular parameter. Since the infinitesimal neighborhood
of the parameter point can be linearized, the method can also
obtain a better approximation for the system near the
specific parameter value [79, 179]. We hope that the POD

reduced-order mode obtained from a certain parameter can
also be applied to themodel reduction of other parameters in
the system so that the reduced-order model under other
parameters also has the optimal approximation character-
istics. However, such a conclusion is not given in the basic
theory of the POD method, so the POD method lacks ro-
bustness in the parameter domain.

Some POD methods for solving parameter robustness
have been proposed, but each has its own advantages and
disadvantages. At present, the adaptive PODmethod is more
mature in dealing with parameter robustness, but it still
needs to be continuously developed. For example, the
adaptive POD method, Grassmann manifold tangent space
interpolation method, proposed in recent years has achieved
good results in dealing with parameter robustness problems.
However, we know that manifold tangent spaces have local
properties, and the method still has limitations in large
parameter domain.

.e POD method projects a high-dimensional system
onto the space spanned by a few reduced-order modes,
which is essentially a projection reduction method. .e
adaptive POD method can solve the problem of parameter
robustness of the reduced-order system to certain extent.
However, the reduced-order model on the parameter do-
main is obtained by continuously updating the POD re-
duced-order mode or adjusting the number of modes,
resulting in the reduced-order model being some discrete
numerical equations, and there is no invariant reduced-
order mathematical model in the parameter domain. Even
the reduced-order model dimensions of different sub-
parameter domains are inconsistent. .erefore, a low-di-
mensional model that can approximately reflect the
dynamic characteristics of complex high-dimensional
systems cannot be obtained through the adaptive POD
method in the parameter domain so that it is difficult to
carry out in-depth theoretical analysis of high-dimensional
systems. How to use the POD method to obtain the in-
variant reduced-order model of the high-dimensional
system in the parameter domain? .e POD method is a
projection order reduction method, so it is impossible to
update the POD reduced-order mode in the parameter
domain, and only the reduced-order mode of the parameter
domain can be obtained by constructing a reduced-order
mode which is optimal in the entire parameter domain.
What conditions can the POD reduced-order modes re-
duce the parameter domain or is there an optimal POD
reduced-order mode for the entire parameter domain?
How many DOF can the invariant reduced-order model
reflect the dynamics of the original system over the entire
parameter domain? In what manner does the method in-
teract with uncertainty [180–184] for the high-dimensional
mechanical systems?

Computers nowadays can handle real-time calculations
using the finite element method. .e finite element model
and POD order reduction techniques will be applied to study
real-time computer modeling [185], e.g., surgical simula-
tions [186, 187] (for doctor training, sometimes in VR) and
hybrid simulation [188, 189] (HIL of mechanical systems
where mode superposition or other methods are applied to
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reduce the model order). In real-time simulations, high
computational effort to reduce the model is worth it even if
the real-time computations can be slightly minimized.

Machine learning can also be used for model order
reduction [190, 191]; manifold learning and manifold pro-
cesses for model order reduction should be discussed in
detail in our future work. Chaos features can improve the
efficiency of reduction models [192–194] and the combi-
nation method of uncertainty quantification [195, 196], and
model order reduction will be efficient to study the complex
dynamic systems. Another point is the systems with sub-
structures. .e way it works and method for choosing the
approximation order are elaborated by researchers
[197, 198]. As a commonly used method in model updating,
the quadratic inverse eigenvalue problem (QIEP) aims to
construct the mass, stiffness, and damping matrices and can
be employed to assist model order reduction for large-scale
engineering systems [199, 200].

.e above questions are all about the POD order re-
duction methods that deserve further study in the future.

7. Conclusions and Outlooks

.e model order reduction for the high-dimensional
complex nonlinear system is one of the important issues in
the field of engineering research, and it is one of the ad-
vanced issues in the area of nonlinear science research.Many
scholars from various countries have obtained some mature
order reduction methods for a long research process.
However, modern engineering structural systems are more
and more complex, operating conditions are complex and
variable, and various nonlinear factors are coupled to each
other. As a result, many model reduction methods are no
longer applicable. .is is a challenge to the study of dynamic
characteristics of high-dimensional complex systems and
system parameter optimization design. According to the
characteristics of each order reduction method, the worthy
problems of further study on the order reduction of high-
dimensional complex system models in the future are as
follows:

(1) Multiple order reduction methods are combined for
second-level order reduction on high-dimensional
complex systems. For example, the complex system
is divided into several substructures, and the modal
synthesis method is used to reduce the order, and
then the center manifold method or the L-S method
is used for further analysis. For another example,
the complex system is reduced by the Galerkin
method or the POD method, and then the center
manifold or the L-S method is used for the order
reduction study. .e center manifold and the L-S
method can reserve the topology properties of the
original system. .erefore, the reduced-order
model of the complex structural system can be
obtained by the Galerkin method, the modal syn-
thesis method, or the POD method, and then the
theoretical research is carried out by using the
center manifold and the L-S method.

(2) .e adaptive model order reduction method with
system parameter variation and various nonlinear
model reduction methods should be further studied.
For example, the adaptive order reduction method
based on Grassmann manifold tangent space in-
terpolation has local properties in manifold tangent
space, and it is worthy of further study to solve
robustness problem in large parameter domain.
Some new nonlinear model order reductionmethods
have been proposed based on neural networks, local
reduced-order bases, and manifold learning, but
each has its own advantages and disadvantages,
which still need further study.

(3) A low-dimensional model in the parameter domain
can approximately reflect the dynamic characteris-
tics of complex high-dimensional systems which
cannot be obtained by the adaptive POD method,
and it is difficult to carry out in-depth theoretical
analysis of high-dimensional systems. How to use the
PODmethod to obtain the invariant order reduction
model of the high-dimensional system in the pa-
rameter domain? .e POD method is a projection
reduction method, and the POD reduced-order
modes cannot be updated in the parameter domain.
.erefore, order reduction of the parameter domain
can be obtained only by constructing a reduced-
order mode which is optimal in the entire parameter
domain. Under what conditions can the POD re-
duced-order modes reduce the dimension of pa-
rameter domain or is there an optimal POD
reduction mode for the entire parameter domain?
How many DOF can the invariant order reduction
model reflect the dynamics of the original system
over the entire parameter domain? .e POD order
reduction method can be applied for further study
for these problems.

(4) Special attention should be taken to the model re-
duction of interconnected systems in order to pre-
serve the integrity and interconnection structure
among different subsystems. For example, the dual-
rotor system contains high pressure and low pressure
rotors, the system is complex and high dimensional,
and the nonlinearity is strong between the joints of
high and low pressure rotors. It will be a challenge to
apply the POD method in this kind of system.
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