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Abstract

Bayesian experimental design is a fast growing area of research with many real-world applications. As

computational power has increased over the years, so has the development of simulation-based design methods,

which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and

approximate Bayes methods, and which have enabled more complex design problems to be solved. This paper

provides an overview of the literature on Bayesian experimental design that uses a decision-theoretic approach.

The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties

regarding the statistical model with a utility function which describes the experimental aims. In this paper, we

provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing

some of the more commonly-used Bayesian utility functions and methods for their estimation, as well as a

number of algorithms that are used to search over the design space to find the optimal Bayesian design. We

also provide some examples from the literature of real-world applications and discuss future directions for

Bayesian experimental design.

KEYWORDS: Bayesian optimal design; Decision theory; Utility function; Stochastic optimisation; Posterior

distribution approximation.

1 Introduction

1.1 Background

Statistical experimental design provides rules for the allocation of resources in an information gathering exercise

in which there is variability that is not under control of the experimenter. Experimental design has very broad

applications across the natural, medical and social sciences, as well as engineering, business and finance. Experi-

mental design reflects the purpose of the experiment. Prior to the commencement of an experiment, experimental

design often requires choices to be made regarding which treatments to study and how these treatments will be
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defined or administered (e.g., amount, timing, frequency), and the proportion of observations to allocate to each

treatment. Experimental design can also require choices of blocking factors, randomisation methods and sample

size to be made. The experimental units must also be clearly defined prior to the commencement of the experi-

ment, along with the time period over which the experiment is to be performed. Due to costs, ethics and other

constraints on time, efficient use of resources is highly critical.

Experimental designs incorporate features into studies with the aim to control systematic error (bias), reduce

random variations, increase precision of parameter estimates (or some measure of interest), make predictions

about future observations, or discriminate between competing models. Essentially, non-optimal designs require

more resources to make inferences on the features of interest with the same level of reward that an optimal design

would. Experimental design problems are commonly viewed as optimisation problems, and optimal experimental

designs may be used to achieve the experimental goals more rapidly and hence reduce experimental costs.

Experimental design has been widely developed within the classical framework, in both theory and practice

(e.g., Atkinson and Donev [1992]). In the classical framework, optimal experimental designs are commonly

derived using optimality criteria that are based on the expected Fisher information matrix (e.g., Fedorov [1972],

Pukelsheim and Torsney [1991], Atkinson and Donev [1992]).

Classical experimental design is well suited to linear or linearised models. For nonlinear models, designs are

dependent on the values which are chosen for the model parameters. Often, the aim of experimental design is to

precisely estimate model parameters. Therefore, selection of the parameter values from which to construct the

design is highly important and use of unsuitable parameter values may result in sub-optimal designs. Only locally

optimal designs can be obtained in the classical framework for nonlinear models. Several studies have incorporated

probability distributions on the model parameters and averaged local design criteria over the distributions so

that the designs obtained may be robust to the initial choice of the parameter values (e.g., Pronzato and Walter

[1985], D’Argenio [1990]). These probability distributions are known as prior distributions and can incorporate

information from previous studies, expert elicited data or subjective beliefs of the experimenters. Similar methods

are also used for situations in which there is model uncertainty.

It is a common misconception in the experimental design literature that designs which have arisen from

averaging classical design criteria over prior distributions are termed “Bayesian designs”. We propose that to

qualify as a “fully Bayesian design”, one must obtain the design by using a design criterion that is a functional

of the posterior distribution. Designs which have arisen from averaging the classical design criteria over the

parameter space are termed “pseudo-Bayesian”, “on average” or “robust” designs (Pronzato and Walter [1985],

Federov and Hackl [1997]).

Bayesian methodologies for optimal experimental design have become more prominent in the literature (e.g.,

Müller [1999], Han and Chaloner [2004], Amzal et al. [2006], Müller et al. [2006], Cook et al. [2008], Huan and

2



Marzouk [2013]). One advantage of using a Bayesian design criterion is that a single design point can be used, and

the prior distribution is updated by the single observation. Lindley (1972) presents a decision theoretic approach

to experimental design, upon which Bayesian experimental design is based. Bayesian optimal design involves

defining a design criterion, or a utility function U(d,θ,y), that describes the worth (based on the experimental

aims) of choosing the design d from the design space D yielding data y, with model parameter values θ. A

probabilistic model, p(θ,y|d), is also required. This consists of a likelihood p(y|d,θ) for observing a new set of

measurements y at the design points d, given parameter values θ, and a prior distribution p(θ) for the parameters

θ. The prior distribution is usually assumed to be independent of the design d.

The Bayesian optimal design, d∗, maximises the expected utility function U(d) over the design space D with

respect to the future data y and model parameters θ:

d∗ = arg max
d∈D

E{U(d,θ,y)}

= arg max
d∈D

∫
Y

∫
Θ

U(d,θ,y)p(θ,y|d)dθdy

= arg max
d∈D

∫
Y

{∫
Θ

U(d,θ,y)p(θ|d,y)dθ

}
p(y|d)dy. (1)

Thus, the optimal design (given the observed data), maximises the posterior expected utility (defined in {} in

equation (1)). Unless the likelihood and prior are specifically chosen to enable analytic evaluation of the integra-

tion problem, equation (1) does not usually have a closed form solution. Therefore, numerical approximations or

stochastic solution methods are required to solve the maximisation and integration problem.

Due to the computational challenges of performing the integration and maximisation of equation (1), the

use of standard optimisation algorithms, such as the Newton-Raphson method, to find the optimal design is

inappropriate. A number of stochastic algorithms have been proposed in the literature to approximate the

maximisation and integration problem of equation (1). These include: prior simulation (Müller [1999]); smoothing

of Monte Carlo simulations (Müller [1999]); gridding methods which involve numerical quadrature or Laplace

approximations to perform backward induction (Brockwell and Kadane [2003]); Markov chain Monte Carlo

simulation in an augmented probability model (Müller [1999]); and sequential Monte Carlo methods (Kück et al.

[2006], Amzal et al. [2006]). These algorithms will be discussed further in Sections 5 and 6.

1.2 Brief History of the Bayesian Design Literature

A broad range of literature exists on optimal experimental design. This article aims to review those papers which

present solutions to fully Bayesian experimental design problems.

Early work on Bayesian decision-theory includes Lindley (1968, 1972), which notes that the design of an

experiment should depend on the experimental objectives (e.g., precise estimation of certain parameters, predic-
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tion of future responses). Other work includes Chaloner (1984), who further developed Bayesian optimal design

theory in a linear regression context and explicitly describes how the prior causes a difference between the classi-

cal and Bayesian optimal designs. DasGupta and Studden (1991) gave a structured formulation to demonstrate

the sensitivity of designs to the priors and presented designs that were robust to the prior specification. Other

notable works on Bayesian designs for linear regression models include Pilz (1991) and El-Krunz and Studden

(1991). Simulation-based design methods have frequently been used more recently (e.g., Clyde et al. [1996],

Bielza et al. [1999], Müller [1999], Stroud et al. [2001], Amzal et al. [2006], Müller et al. [2006], Cook et al.

[2008], Cavagnaro et al. [2010]) in which Markov chain Monte Carlo and sequential Monte Carlo algorithms are

utilised to solve complex optimal Bayesian design problems (e.g., designing for nonlinear models). Sequential,

or adaptive designs, have become increasingly popular in the Bayesian design literature as they provide flexible

and efficient designs. Rather than using the same design throughout the experimental process, as in static design

problems, the design which maximises the expected utility is chosen at each stage of experimentation, based on

the outcomes of previous experiments. Recent developments in static and sequential designs will be discussed

further in Sections 5 and 6.

There are already several notable review papers on Bayesian experimental design. DasGupta (1995) presents

a review of both classical and Bayesian experimental design, with a focus on designing for linear models. Atkinson

(1996) review classical and pseudo-Bayesian optimal design for linear and nonlinear models. Verdinelli (1992)

and Chaloner and Verdinelli (1995) present a comprehensive review on Bayesian experimental design, for both

linear and nonlinear models. Müller (1999) provides an overview of simulation-based methods in optimal design.

Clyde (2001) presents a broad review on several of the key concepts involved in Bayesian experimental design,

such as, choice of utility functions; prior elicitation; and methods for calculating the expected utility.

1.3 Contribution and Outline

There has been a lack in review papers on fully Bayesian experimental design since the early 2000s. These

earlier review papers have often been written from a rather mathematical view point, and have often focused on

defining Bayesian design criteria and their relationship to classical design criteria. In the past two decades there

has been a substantial increase in computational power and, along with it, the use of Bayesian methodologies for

optimal design. At the present time, we have been unable to find any recent review articles which discuss the

various algorithms that are used in the Bayesian design literature to solve optimal design problems. Designs for

complex models have also received little attention in Bayesian experimental design literature reviews. This article

is concerned with reviewing the computational methods that have been used to find fully Bayesian experimental

designs and aims to address the aspects of Bayesian experimental design which have received little or no emphasis

in previous review papers. This article is aimed at readers with some understanding of Bayesian methods, but
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not necessarily with knowledge of experimental design.

In Section 2 we describe how the prior distribution has been elicited in previous Bayesian experimental

design studies. Section 3 discusses methods for posterior distribution approximation for use in Bayesian utility

functions. In Section 4 we discuss some of the more commonly-used Bayesian utility functions, along with the

methods that have been used for their estimation. Sections 5 and 6 provide an overview of the optimisation

algorithms that have been used to search for static and sequential Bayesian experimental designs, respectively.

We provide some real-world examples of Bayesian experimental designs in Section 7, discuss future directions of

Bayesian experimental design in Section 8 and provide a conclusion in Section 9.

2 The Prior Distribution

The Bayesian design framework (as well as Bayesian analysis) requires the elicitation of a prior distribution for

the statistical model(s). The requirement of having to specify a prior distribution, upon which the conclusions

depend, has caused many practitioners to be reluctant to use Bayesian experimental design methods. It is very

important to check the sensitivity of the optimal design to the specification of the prior distribution (see, for

example, DasGupta and Studden [1991]).

A number of studies (e.g., Clyde et al. [1996], Stroud et al. [2001], Ryan et al. [2014a]) have used historical

data from previous experiments to construct a prior distribution for the design of future experiments. Toman and

Gastwirth (1994) suggest the use of results from a pilot study to specify the prior distribution. Tsai and Chaloner

(2002) used information from over 50 clinical experts to elicit prior distributions for their design problem. Kadane

(1996) discusses a number of the practical issues that occur in subjective elicitation for clinical trials.

Several studies have considered the problem where the prior used for the design phase is different from the

prior used for analysis (e.g., Etzione and Kadane [1993], Han and Chaloner [2004]). For example, a noninformative

prior may be used for analysis to mimic a classical analysis, but all available prior information may be used in

the design process so that an informative prior may be used.

3 Estimation of the Posterior Distribution

Bayesian utility functions are based on the posterior distribution and generally assume that a Bayesian analysis

will be performed on any data that are generated from the experimental design. In general, the posterior

distribution does not have a closed form expression, and numerical methods are required to sample from or

approximate the posterior distribution. Generally, thousands of posterior distributions need to be considered,

since each possible future data set that is drawn from the prior predictive distribution requires calculations of

the posterior distribution. For this to be computationally feasible, rapid methods for obtaining the posterior
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distributions for many datasets that are drawn from the same model and prior are required.

3.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) has often been used to approximate the posterior distribution for Bayesian

utility function calculations (e.g., Wakefield [1994], Palmer and Müller [1998], Han and Chaloner [2004]). Al-

though MCMC is often appropriate and useful for Bayesian data analysis, it can be too computationally intensive

to perform MCMC to approximate the posterior distribution for each of the thousands of iterations required in

the Bayesian experimental design algorithms.

3.2 Importance Sampling

Importance sampling is a popular method for approximating target distributions of interest, from which it may

be difficult to sample (Geweke [1989]). Importance sampling involves choosing an importance distribution g(·),

from which it is easy to sample, and then appropriately weighting the samples that have been drawn from the

importance distribution to account for the discrepancy between g(·) and the target distribution. In the Bayesian

design context, the target distribution is the posterior p(θ|d,y). Weighted samples {θk,Wk}
Np

k=1 are produced,

where Np is the number of particles used to approximate the posterior; w(θ) = p(y|d,θ)p(θ)
g(θ) are the importance

weights; and Wk ∝ w(θk), k = 1, ..., Np are the normalised importance weights,
∑Np

k=1Wk = 1. The target and

importance distributions should have the same support. To measure the efficiency of importance sampling, the

effective sample size (ESS) is used and can be approximated via

ESS =
1∑Np

k=1W
2
k

, 1 ≤ ESS ≤ Np.

Importance sampling is a very useful method for approximating the posterior distribution in Bayesian ex-

perimental design since the importance samples only need to be drawn once (unlike MCMC) and can then be

re-weighted in each iteration of the optimisation algorithm according to the current design and data. The ability

to re-use the importance samples offers substantial computational savings.

Importance sampling from the prior distribution has commonly been used in Bayesian experimental design to

approximate the posterior distribution (e.g., Cook et al. [2008], McGree et al. [2012c], Ryan et al. [2014a,c]). This

reduces the importance weights to the likelihood function. However, this is usually inefficient for large amounts

of data since the posterior distribution is very different from the prior (e.g., Bengtsson et al. [2008], Ryan et al.

[2014a,c]). Importance sampling from the prior may also not be useful for diffuse priors (Chopin [2002]) or when

the model parameter is high dimensional.

Ryan et al. (2014a) used Laplace approximations (to the posterior) to form the importance distribution for

importance sampling, and found that this approach corrects for some non-normality that is not accommodated
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by the Laplace approximation, and can also be used when large amounts of data are involved in the design

problem since fewer particles are required in the importance sampling to obtain a reasonable ESS.

The use of adaptive importance sampling (e.g., Kinas [1996], Pennanen and Koivu [2006]) is largely unexplored

for approximating the posterior distribution in Bayesian experimental design problems.

3.3 Deterministic Approximations

Laplace approximations (or Gaussian approximations) and numerical quadrature provide fast methods for obtain-

ing approximations to the posterior distribution in Bayesian design problems (e.g., Lewi et al. [2009], Cavagnaro

et al. [2010], Bornkamp et al. [2011], Long et al. [2013], Ryan et al. [2014a]). These methods are particularly

useful when large amounts of data are involved. However, their suitability depends on whether it is reasonable

to assume that the posterior distribution is well approximated by a multivariate normal distribution and they

also suffer from the curse of dimensionality. To overcome the issue of dimensionality, Long et al. (2013) use

polynomial-based sparse quadrature for the integration over the prior distribution.

Integrated nested Laplace approximation (INLA) is a relatively new method for rapidly approximating pos-

terior distributions (see Rue et al. [2009]). INLA generally is a significantly faster alternative to MCMC and

importance sampling for approximating the posterior. To date, INLA has mostly been used for approximate

posterior inference for models in which the posterior marginals are not available in closed form due to non-

Gaussian response variables, such as latent Gaussian Markov random field (GMRF) models (e.g., Rue et al.

[2009]) with non-Gaussian observations. INLA enables fast Bayesian inference by using accurate approximations

to the marginal posterior density for the hyperparameters and the posterior marginal densities for the latent

variables. The use of INLA in the context of Bayesian experimental design is currently unexplored.

Variational Bayesian (VB) methods facilitate approximate inference for intractable posteriors (or other target

densities) and provide an alternative to other approaches for approximate Bayesian inference such as MCMC

and Laplace approximations. VB can also be used to determine a lower bound for the evidence for use in model

selection problems. The VB approach is fast and deterministic, and involves approximating the intractable target

densities, e.g., p(θ|y), by a factored form q(θ) = q1(θ1) × .... × qr(θr), for which q(θ) is more tractable than

p(θ|y). The qj are found iteratively from Gibbs sampling like expectations (see, for example, Ormerod and

Wand [2010]). An issue is the factorization for the variational approximation q(·). Variational approximations

have commonly been used for Bayesian inference (e.g., Ormerod and Wand [2010]), but have not yet been used

in a Bayesian experimental design context. These methods could provide a fast alternative for approximating

the posterior for use in Bayesian utility function calculation. However, the error of the VB approximation is

generally unknown and can be substantial (e.g., Rue et al. [2009]).
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3.4 Approximate Bayesian Computation

Approximate Bayesian computation (ABC) is a likelihood-free method that is used to approximate the posterior

distribution in situations where the likelihood function is intractable, but simulation from the likelihood is

relatively straightforward. ABC has commonly been used to perform inference (e.g., Drovandi and Pettitt [2011],

Drovandi et al. [2011], Sisson and Fan [2011]). One of the most common ABC algorithms is ABC rejection (see

Beaumont et al. [2002]). ABC rejection prevents one from having to evaluate the likelihood by instead drawing

many parameter values from the prior, and simulating data from the model, conditional on those parameter

values. Only those parameters that generate simulated data that are close in some sense to the observed data

are kept. The efficiency of this method is dependent on how close the posterior distribution is to the prior.

Drovandi and Pettitt (2013) and Hainy et al. (2013) used ABC rejection in the Bayesian experimental design

context to approximate the posterior distributions (for Bayesian utility function calculation) for models with

computationally intractable likelihoods. The ABC posterior is given by:

p(θ|d,y, ε) =

∫
x

p(x|d,θ)p(θ)1(ρ(y,x) ≤ ε)dx,

where y represents the ‘observed data’ (that is generated from the model at each iteration of the optimisation

(e.g., MCMC) algorithm); x is simulated data; 1(·) is an indicator function; ρ(·, ·) is function that measures the

discrepancy between the observed and simulated data; and ε is a tolerance threshold that controls the error of the

approximation. The discrepancy function typically compares summary statistics of the observed and simulated

data. However, Drovandi and Pettitt (2013) only considered low dimensional designs and so they were able to

compare the observed and simulated data directly. ABC rejection is very useful since the ABC data, i.e., the x

values, as well as the model parameters θ, only need to be simulated once and can be re-used at each iteration

of the optimisation algorithm (much in the same spirit as importance sampling) for comparison to the observed

data, y. This offers substantial computational savings.

4 Bayesian Utility Functions and Methods for Their Estimation

It is highly important that the utility function incorporates the experimental aims and is specific to the application

of interest. For instance, designs which efficiently estimate the model parameters may not be useful for prediction

of future outcomes. Several approaches have been suggested in the literature to assist in the elicitation of the

utility function (see Spiegelhalter et al. [1996], Wolfson et al. [1996]). In practice, the utility function is often not

specified as a single function, due to the difficulty of combining competing goals, and instead a set of possible

utility functions is used. Christen et al. (2004) formally acknowledged the fact that the decision maker may

be unwilling or unable to specify a unique utility function by considering a set of possible utility functions.
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Sensitivity analyses to misspecifications in the utility function have been proposed (see Rios Insua and Ruggeri

[2000] for a review). In this section we will discuss some of the more commonly used Bayesian utility functions,

as well as methods for their estimation based on the approximation to the posterior. One of the most commonly

used and versatile Bayesian design criteria is the mutual information, which is based on entropy, and has been

used for designing for efficient parameter estimation (Bernardo [1979], Ryan [2003], Paninski [2005]), as well as

minimising prediction uncertainty (Liepe et al. [2013]), and model discrimination (Box and Hill [1967], Ng and

Chick [2004], Cavagnaro et al. [2010], Drovandi et al. [2014]). For discussion of other Bayesian utility functions,

see Chaloner and Verdinelli (1995).

For normal linear models, analytical expressions for equation (1) can be obtained for many Bayesian utilities,

provided the model dimension and decision space is small (e.g., Borth [1975], Chaloner and Verdinelli [1995], Ng

and Chick [2004]). For nonlinear design problems, one cannot usually obtain an analytical expression, and the

integrals in equation (1) can instead be approximated by Monte Carlo methods (e.g., Palmer and Müller [1998],

Cook et al. [2008], Ryan et al. [2014a]), Laplace approximations (e.g., Lewi et al. [2009], Ryan et al. [2014a]), or

numerical quadrature (e.g., Cavagnaro et al. [2010]).

4.1 Parameter Estimation Utility Functions

Precise parameter estimation is a common goal of experimental design and many different utility functions have

been used to achieve this purpose. Bayesian utility functions that design for precise parameter estimation are

discussed below.

4.1.1 Information-based Utilities

When interest lies in estimating some function of θ, say φ(θ), the mutual information between φ(θ) and the data

y, conditional on the design d, may be given by:

I(φ(θ); y|d) = U(d) =

∫
φ(θ)

∫
Y

p(φ(θ),y|d)

[
log p(φ(θ),y|d)− log p(y|d)− log p(φ(θ))

]
dydφ(θ). (2)

The optimal design that maximises the utility function is the one that yields the largest information gain, on

average, about φ(θ) upon observation of the data.

Another commonly-used Bayesian design criterion is the Kullback-Leibler divergence (KLD) (Kullback and

Leibler [1951]) between the prior and posterior distributions, which is given by:

U(d,y) = Eφ(θ)|d,y(log p(φ(θ)|d,y)− log p(φ(θ)))

=

∫
φ(θ)

p(φ(θ)|d,y) log p(y|d, φ(θ))dφ(θ)− log p(y|d). (3)
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Lindley (1956) suggested that this utility should be used if one is interested in maximising the expected in-

formation gain on the model parameters (or functions of) due to performing an experiment at design points

d. Mathematically, the mutual information is the KLD between the joint distribution p(θ,y|d) and product of

marginal distributions of θ and y (Borth [1975]). This criterion is equivalent to the classical D-optimal criterion

when designing for normal linear models with a normal prior distribution for the model parameter (see Chaloner

and Verdinelli [1995] and Verdinelli [2000] for further details).

Ryan (2003) used mutual information to find static designs for efficient parameter estimation. Kim et al.

(2013) used the mutual information utility to find sequential designs to efficiently estimate parameters, which

was of the form:

U(d(t)) =

∫
Θ

∫
Y

[
log

(
p(θ|d(t),y(1:t))

p(θ|y(1:t−1))

)]
p(y(t)|d(t),θ)p(θ|y(1:t−1))dy(t)dθ,

where y(1:t) are the data that were observed from the 1st to the t-th trial, y(t) are the data that were observed

at the current, t-th trial, using design dt, y(1:t−1) are the data that were measured from the 1st to the (t − 1)-

th trials using the designs d(1:t−1). Paninski (2005) proved that under acceptably weak modelling conditions,

utility functions based on mutual information can choose designs that lead to consistent and efficient parameter

estimates in the adaptive design framework.

Despite the theoretical appeal, mutual information is computationally complex, due to the difficulty in calcu-

lating the evidence p(y|d) in equation (2). Therefore, many design problems have been restricted to special cases,

such as designing for parameter estimation of linear gaussian models (e.g., Lewi et al. [2009]) or binary models

(e.g., Kujala and Lukka [2006]) in which the evidence can be computed analytically. Conjugate priors have been

used to obtain analytic results (e.g., Borth [1975]) and numerical quadrature has also been used (e.g., Cavagnaro

et al. [2010]). Drovandi et al. (2013) used sequential Monte Carlo algorithms (which are described in more detail

in Section 5) for both posterior and evidence approximation so that the mutual information could be calculated

for sequential design problems for parameter estimation. Ryan et al. (2014c) used importance sampling to cal-

culate the KLD between the prior and posterior distributions for static design problems, but found this to be

computationally intensive. Huan and Marzouk (2012, 2013) used polynomial chaos approximations and nested

Monte Carlo integration (Ryan [2003]) to estimate the KLD between the prior and posterior distributions for

static design problems for parameter estimation.

4.1.2 Scalar Functions of the Posterior Covariance Matrix

The inverse of the determinant of the posterior covariance matrix is a useful utility function if one is interested

in maximising the (joint) posterior precision of all (or a subset) of the model parameters θ (e.g., Drovandi et al.

[2013], Ryan et al. [2014c]) or a function of the model parameters φ(θ) (e.g., Stroud et al. [2001], Drovandi et al.
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[2013], Ryan et al. [2014a]). This utility is also known as the ‘Bayesian D-posterior precision’ and is given by:

U(d,y) =
1

det(cov(φ(θ)|d,y))
.

If one were interested in maximising the precision of the marginal posterior distributions of the model pa-

rameters, then one should use the trace instead of the determinant to obtain the Bayesian A-posterior precision.

The Bayesian D-posterior precision is much less computationally intensive to estimate than equation (2). How-

ever, if the posterior distribution is multi-modal, then use of the Bayesian D-posterior precision utility may be

inappropriate and one should instead use equation (2) as the utility function.

The posterior variance-covariance matrix can easily be obtained from the weighted posterior samples that are

obtained from importance sampling (e.g., Stroud et al. [2001], McGree et al. [2012c], Ryan et al. [2014a]), ABC

rejection (e.g., Drovandi and Pettitt [2013]) and via sequential Monte Carlo (Drovandi et al. [2013]). The posterior

variance-covariance matrix is also easily obtained when one uses numerical quadrature or Laplace approximations

to the posterior distribution.

4.1.3 Quadratic Loss

When one is interested in obtaining a point estimate of the parameters, or linear combinations of them, a

quadratic loss function may provide a suitable utility function:

U(d,y) = −
∫
φ(θ)

(φ(θ)− φ̂(θ))TA(φ(θ)− φ̂(θ))p(φ(θ)|d,y)dφ(θ),

where A is a symmetric non-negative definite matrix (e.g., Chaloner [1984], Chaloner and Verdinelli [1995], Han

and Chaloner [2004]) and φ̂(θ) is some estimate (e.g., the mean) of p(φ(θ)|d,y). Once the posterior distribution

has been approximated, it is quite straightforward to estimate this utility. For normal linear models, when one

is interested in point estimates of parameters, this utility is the Bayesian equivalent of the classical A-optimal

criterion. When one is interested in linear combinations of the parameters, this utility is the Bayesian equivalent

of the classical c-optimal criterion (for normal linear models).

4.2 Utilities for Model Discrimination

Model discrimination is an important experimental design problem which has generated a substantial amount of

research (see, for example, Box and Hill [1967], Hill et al. [1968], Borth [1975], Cavagnaro et al. [2010], Drovandi

et al. [2014]). Much of the design literature has focused on producing designs that offer efficient and precise

parameter estimates. However, these designs can perform poorly on model discrimination problems (see, for

example Atkinson [2008], Waterhouse et al. [2009]).
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Mutual information has commonly been used as the utility function in the Bayesian design literature to design

for model discrimination (e.g., Box and Hill [1967], Borth [1975], Ng and Chick [2004], Cavagnaro et al. [2010],

Drovandi et al. [2014], McGree et al. [2012b]). The optimal design d is the one that maximises the mutual

information between the (random variable) model indicator, m, and the future observation y (see, for example,

Cavagnaro et al. [2010]). Drovandi et al. (2014) give an expression of this utility to design for model discrimination

for discrete data, and McGree et al. (2012b) provide an expression for continuous data. Both Drovandi et al.

(2014) and McGree et al. (2012b) used sequential Monte Carlo methods to approximate the necessary quantities

so that mutual information could be used to obtain sequential designs for model discrimination.

Roth (1965) proposed a model discrimination utility that is known as ‘total separation’, and selects design

points that yield the largest differences between the posterior predictive means of rival models. This is achieved

by maximising a weighted sum (over all of the potential models) of the product of the absolute differences between

the posterior predicted mean responses from all rival models and the given (‘true’) model. Total separation has

recently been used by Masoumi et al. (2013) and McGree et al. (2012b) to design for model discrimination.

The total separation utility can be approximated quite easily once the posterior predictive distribution has been

found (see, for example McGree et al. [2012b]). This utility does not account for the variance of the predicted

responses (Hill [1978]), which is problematic if the competing models differ in their error structures (e.g., additive

vs. multiplicative error) (McGree et al. [2012b]).

Both mutual information and total separation do not rely on the assumption of a particular model being true

(unlike many of the classical design criteria), but require the experimenter to define a set of rival models with

prior probability of being true. That is, these utilities use the M -closed approach of Bernardo and Smith (2000,

chapter 6).

Vanlier et al. (2014) proposed a model discrimination utility that is based on a k-nearest neighbour estimate

of the Jensen Shannon divergence (which is the averaged KLD between the probability densities and their

mixture) between the multivariate predictive densities of competing models. They showed that their utility is

monotonically related to the expected change in the Bayes Factor in favour of the model that generated the

data. MCMC was used to sample from the posterior distributions and the predictive distributions were sampled

using these posterior distribution values and by adding noise generated by the error model. This was found

to be computationally intensive, especially for their application which involved nonlinear models of biochemical

reaction networks.

4.3 Utilities for Prediction of Future Observations

If one is interested in choosing d to predict yn+1 from y = (y1, ...,yn), then the expected gain in Shannon

information for a future observation, yn+1, from the prior predictive distribution to the posterior predictive
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distribution can be used as the utility function:

U(d(n+1),y) =

∫
θ

∫
Yn+1

p(yn+1|dn+1,y1:n,θ) log p(yn+1|dn+1,y1:n,θ)dyn+1dθ − log p(y1:n|d1:n),

(e.g., Chaloner and Verdinelli [1995] and references therein). This is equivalent to the mutual information

between the future observation yn+1 and the previous observations y1:n, conditional on the future designs dn+1

and previous designs d1:n. For normal linear models, this criterion is related to the classical c-optimal criterion

(which maximises the precision of estimates of linear combinations of model parameters for linear models).

Leipe et al. (2013) used mutual information to minimise prediction uncertainty in sequential systems biology

experiments. Zidek et al. (2000) used maximum entropy to obtain designs that maximised information about

expected responses for air quality monitoring sites.

Geostatistical design problems often use utilities that are functions of the prediction variance. For example,

Diggle and Lophaven (2006) propose a Bayesian design criterion that chooses a set of sampling locations to

enable efficient spatial prediction by minimising the expectation of the spatially averaged prediction variance

(with respect to the marginal distribution of the data).

If one is interested in minimising the variance of the expected response, then one could use the utility

function developed by Solonen et al. (2012) which places the next design point where the prior variance of the

mean response is largest. The utility is calculated by bringing in the observations one-at-a-time and is given by:

U(d,y) =

K∏
k=1

(σ2 + V arθ|y1:(k−1)
(mk(θ))), (4)

where mk(θ) = E(yk|dk,θ) and K is the number of observations. The expression V arθ|y1:(k−1)
(mk(θ)) gives

the variance of the mean response at dk, given measurements y1:(k−1) at points d1:(k−1). The utility at dk

is evaluated using a weighted variance, where each simulated response is weighted based on the likelihood of

previous simulated measurements, p(y1:(k−1)|d1:(k−1),θ).

Solonen et al. (2012) advocate the use of this utility function to design for parameter estimation since it is

easier to compute than information-based utility functions (equation (2)). Solonen et al.’s (2012) utility function

assumes a constant variance. Ryan et al. (2014c) present a generalised version of this utility function which may

be used when the error structure of a model has a non-constant variance.

4.4 Utilities for Several Design Objectives

Researchers often have several competing goals for an experiment, rather than one single goal, and so these

competing design objectives can be incorporated into one or several utility functions. One approach to dealing

with competing design objectives is to weight each design criterion and search for the design that optimises the
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weighted average of these criteria. This is known as a compound or weighted design problem (e.g., Dette [1990]).

Clyde and Chaloner (1996) discuss compound design criteria and present an equivalence theorem for Bayesian

constrained design problems. DasGupta et al. (1992) gave examples of compromise designs in which one is

interested in finding a design that is highly efficient for several design problems.

Borth (1975) extends the mutual information utility proposed by Box and Hill (1967) so that fully Bayesian

designs could be obtained for the dual goals of model discrimination and parameter estimation. This utility is

known as “Total entropy”. This dual design problem has been investigated in a number of classical design papers

through use of compound criteria such as D|T - and T |D−optimality and hybrid DT-optimality (e.g., Atkinson

[2008], Tommasi [2009], Waterhouse et al. [2009]), but is largely unexplored in the Bayesian design literature.

Chaloner and Verdinelli (1995) discuss several Bayesian utility functions that may be used for the dual purpose

of maximising the expected value of the response and the expected information gain, and utilities which may be

used to design for parameter estimation and prediction.

McGree et al. (2012c) considered compound utility functions in the context of Bayesian adaptive designs for

dose-finding studies for the dual design objectives of estimating the maximum tolerated dose and addressing the

safety of the study subjects. A number of different estimation utilities were used, and the utility functions only

allowed doses to be available for selection if the 95th percentile of the posterior predictive probability of toxicity

was less than some pre-specified tolerance level. Drovandi et al. (2013) developed a hybrid utility function for

an adaptive dose-finding study to obtain robust estimates of the target stimulus-response curve in the presence

of model and parameter uncertainty.

A number of studies have had the dual objectives of designing for parameter estimation or prediction accuracy

and to minimise study costs (or inconvenience to study subjects). Stroud et al. (2001) used utility functions

which designed for the precise estimation of parameters of interest, as well as minimising inconvenience to study

subjects by penalising samples that were collected after a certain time period. Palmer and Müller (1998) searched

for the optimal sampling times for stem cell collections in cancer patients, to minimise the expected loss function

over the posterior predictive distribution for a new patient. Their utility function also included a penalty for

failing to collect a certain target number of stem cells and a cost penalty for each sampling time scheduled.

5 Static Design Search Algorithms

Static design problems assume that the same design will be used throughout the experimental process, regardless

of the incoming information that may be collected from the experiment. Static designs are useful when data are

collected in a batch, according to a fixed protocol. A number of different algorithms have been used to solve

Bayesian static design problems and they will be discussed below.
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5.1 MCMC Algorithms

A number of stochastic algorithms have been proposed in the literature to approximate the maximisation and

integration problem of equation (1) for static design problems. These include: prior simulation (Müller [1999]);

smoothing of Monte Carlo simulations (Müller [1999]); Markov chain Monte Carlo (MCMC) simulation in an

augmented probability model (Müller [1999]); and sequential Monte Carlo methods (Kück et al. [2006]).

5.1.1 Monte Carlo Integration

In many situations, one can simulate values of (θi,yi) (for i = 1, ...,M) from p(θ,y|d) and the utility function

can be estimated using these values. The integral is approximated by using:

Û(d) =
1

M

M∑
i=1

U(d,θi,yi). (5)

The optimal design, d∗ = arg max Û(d), can then be found by using a suitable maximisation method to search

over the estimates, Û(d) (see Müller [1999]). This approach has commonly been used in the literature (e.g.,

Wakefield [1994], Carlin et al. [1998], Palmer and Müller [1998]) and is useful when a discrete set of possible

designs that are of low dimension are used.

Müller and Parmigiani (1995) use a similar approach to equation (5), in which stochastic optimisation is

performed by fitting curves to the Monte Carlo samples. First, they simulate draws from (θ,y) and evaluate the

observed utilities. Then, a smooth curve is fitted through these simulated points, which serves as an estimate

of the expected utility surface. The optimal design can then be found deterministically. Kuo et al. (1999) also

used these curve fitting methods for solving design problems of low dimension.

Straightforward Monte Carlo integration over (θ,y) for each design d may be computationally intensive for

design problems involving a large number of design variables or model parameters, since a large value of M is

required to obtain an estimate of U(d) with high accuracy.

5.1.2 MCMC Simulation in an Augmented Probability Model

Alternatively, Clyde et al. (1996), Bielza et al. (1999) and Müller (1999) solved the optimal design problem by

treating the expected utility as an unnormalised marginal probability density function. This was achieved by

placing a joint distribution on (d,θ,y) to form an augmented probability model h(d,θ,y), which is given by:

h(d,θ,y) ∝ U(d,θ,y)p(θ,y|d),

where it was assumed that U(d,θ,y) satisfies the appropriate conditions for h(·) to be positive and integrable over

(D,Θ,Y). The probability distribution h(·) is defined such that the marginal distribution in d is proportional
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to the expected utility, i.e.,

h(d) ∝
∫ ∫

U(d,θ,y)p(θ,y|d)dθdy

= U(d).

It is assumed that the design space D is bounded and that the utility U(d,θ,y) is non-negative and bounded.

One can then use a Metropolis-Hastings (MH) MCMC scheme to simulate from h(·) and select random draws

from the design space that are proportional to the utility that is attached to the design. The MH MCMC

algorithm focuses on sampling designs in areas of high expected utility and discourages sampling in areas of low

expected utility (see Müller [1999]). The sample of simulated d may be used to provide an estimate of h(d) and

the joint mode of h(d), d∗, corresponds to the optimal design.

We note that the joint mode of h(d) needs to be found rather than the marginal modes for each element of d

as the latter may be very different from the former. Cook et al. (2008) and Drovandi and Pettitt (2014) propose

methods for searching for the multivariate mode of the multivariate normal kernel smoothing density estimates

of the design variables. However, for design problems that involve a large number of design points (dim(d) ≥ 4),

the problem of finding the multivariate mode is more difficult than finding marginal modes and one may need

to use dimension reduction techniques, such as those that Ryan et al. (2014c) propose. However, dimension

reduction techniques may not always be appropriate and further research is needed into the problem of finding

the multivariate mode for a large number of design variables.

5.1.3 Simulated Annealing-type Approach

In many design problems the shape of the expected utility surface can be very flat around its mode and pro-

hibitively large simulation sample sizes may be required to estimate the mode. To overcome this problem, one

can use an approach that is similar to simulated annealing (see Van Laarhoven and Aarts [1987]) in which the

expected utility surfaces are replaced by a more peaked surface. This does not change the solution of the optimal

design problem. The target function h(d) is replaced with hJ(d) where J is an integer, usually large (say 20 or

higher). The joint augmented distribution to simulate from is:

hJ(d,θ1, ...,θJ ,y1, ...,yJ) ∝
J∏
j=1

U(d,θj ,yj)p(θj ,yj |d). (6)

For each d, one simulates J experiments (θj ,yj), j = 1, ..., J , independently from p(θ,y|d) and considers the

product of the calculated utilities. The product of the calculated utilities (rather than the sum) is used to ensure

that hJ(d) ∝ UJ(d).

This approach has been very popular in the literature (e.g., Bielza et al. [1999], Müller [1999], Stroud et al.
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[2001], Cook et al. [2008], Ryan et al. [2014c]) and uses similar ideas to simulated annealing (see Van Laarhoven

and Aarts [1987]) where T = 1/J may be interpreted as the ‘annealing temperature’. As T → 0, the original

target function is replaced with a point mass at the mode (Müller [1999]). As J increases, the utility surface will

become more peaked and simulations will cluster more tightly around the mode. However, increasing J obviously

increases the number of required computations. An annealing schedule is not required, i.e., the same value of J

may be used for all simulations. However, this is not efficient for high dimensional problems (see Amzal et al.

[2006]) and a ‘cooling’ schedule may be required where J increases to +∞. Müller et al. (2004) recommend

that J should be gradually increased as the algorithm progresses so that the search will not become trapped in

a local mode for situations where several modes exist. In Müller et al.’s (2004) approach, the algorithm initially

explores the entire design space, but as the J value increases, the MCMC draws focus around one of the highest

modes.

Whilst the algorithm presented by Müller (1999) has “theoretically appealing” properties, it has been found

to have slow convergence in practice, particularly for situations where there are a large number of design variables

for which this algorithm becomes inefficient (Stroud et al. [2001], Amzal et al. [2006]). Use of this algorithm has

therefore mostly been restricted to up to four design variables (e.g., Bielza et al. [1999], Müller [1999], Stroud

et al. [2001], Cook et al. [2008]) and further research is required for searching for solutions to high dimensional

design problems.

5.2 SMC Algorithms

Sequential Monte Carlo (SMC) algorithms, also known as “particle filters”, use a population of particles to

approximate a distribution and move through a smooth sequence of connected target distributions using resam-

pling and diversification of particles until the final target distribution is reached (see Chopin [2002], Del Moral

et al. [2006]). SMC combined with Markov and MCMC kernels provides a powerful and efficient computational

approach for approximating target distributions. SMC has only recently been applied to static design problems

(see Amzal et al. [2006], Kück et al. [2006]).

SMC methods can be useful for sampling from target distributions that change over time. This also includes

the target distribution hJ(d,θ1:J ,y1:J) (Müller et al. [2004]) in which J increases over time. For nonlinear and

high dimensional design problems, Amzal et al. (2006) extended the approach of Müller (1999) and Müller et al.

(2004) through the use of particle methods, which are similar to particle filters (e.g., Doucet et al. [2001], Chopin

[2002]) and population Monte Carlo simulations (e.g., Cappé et al. [2004]). This involves the simulation of Np

‘parallel’ Markov chains from the target distribution hJ(·), which are known as an ‘interacting particles system’.

At each iteration of the algorithm, an approximate weighted sample is generated from hJ(d,θ1, ...,θJ ,y1, ...,yJ)

via importance sampling (Geweke [1989]) and a selection procedure, such as ‘sampling with replacement’ (e.g.,
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Chopin [2002]), is then used to duplicate those particles that occur near the modes of the target distribution,

whilst eliminating those that fall further away. An independent Markov step (Chopin [2002]) could also be added

to the algorithm to avoid degeneracy problems and enrich the sample. Amzal et al. (2006) suggest that the

proposal distribution for the design points should have a fairly large variance to enable the detection of other

modes.

Amzal et al. (2006) also propose a “resampling-Markov algorithm” in which the importance sampling step is

only implemented at initialisation of the algorithm. It is assumed that at time t− 1, a sample that approximates

hJ(t−1) is available. If J(t) > J(t − 1), then additional values for each of the particles {θ(t−1)
j,k ,y

(t−1)
j,k }Np

k=1,

j = J(t−1)+1, ..., J(t), are drawn from the posterior for t−1 and weights are computed that are proportional to

the product of the utilities of the newly sampled values. The resampling and Markov steps are then implemented.

Kück et al. (2006) generalise the approach of Müller et al. (2004) to non integer annealing steps and used SMC

samplers (similar to Del Moral et al. [2006], Johansen et al. [2006]) to search for designs which maximise the KLD

between the prior predictive and posterior predictive distributions. In their application the model parameters θ

could be analytically integrated out of the expected utility which simplified the problem. A sequence of target

distributions is generated artificially by incrementally “powering up” some measure of the utility for each particle.

They define the following sequence of artificial target distributions:

hJ(t),νt(d,θ1:J(t),y1:J(t)) ∝
(J(t)−1∏

j=1

U(d,θj ,yj)p(yj |d,θj)p(θj)
){

U(d,θJ(t),yJ(t))p(yJ(t)|d,θJ(t))p(θJ(t))
}νt

.

The inverse annealing temperature, J(t), is assumed to have an integer value. Kück et al. (2006) assumed that

J(t) could increase by at most one per iteration. Kück et al. (2006) also used the variable νt ∈ [0, 1] to enable

smoother non-integer increases of the inverse annealing temperature. If νt = 1, then the target density given in

equation (6) is obtained and the dimension of the target distribution increases by J(t) = J(t− 1) + 1, and νt is

set back to zero. In all other instances, J(t) = J(t − 1). The choice of how to increase J(t) is important, since

large increments could result in degeneracy of the particles, and small increments are computationally inefficient.

McGree et al. (2012a) propose to choose the increment to maintain a specific level of efficiency (based on the

ESS) in the sample.

At time t − 1, the particle set {d(t−1)
k ,W

(t−1)
k }Np

k=1 provides an approximation for hJ(t−1). A re-weight step

is then implemented in the SMC algorithm via importance sampling to update the weighted particle set to

approximate hJ(t). Particles with a higher utility are given more weight than those with a lower utility. As J

increases, the target distribution becomes more peaked around the mode. Resampling and mutation steps are

also used to avoid denegeracy in the particle set.

Kück et al.’s (2006) approach was found to behave well when exploring multi-modal target distributions.
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5.3 Other Stochastic Approximation Algorithms

Huan and Marzouk (2013) used simultaneous perturbation stochastic approximation (SPSA) (Spall [1998]) and

Nelder-Mead nonlinear simplex (NMNS) (Nelder and Mead [1965]) algorithms to perform stochastic optimisation

for nonlinear and computationally intensive models. SPSA is a stochastic approximation method that is similar

in nature to a steepdest-descent method that uses a finite difference estimate of the gradient. However, SPSA

only uses two random perturbations to estimate the gradient, regardless of the dimension of the problem. Whilst

the finite differences stochastic approximation (FDSA) algorithm only perturbs in one direction at a time, the

SPSA algorithm perturbs in all directions at once. In SPSA, the error in the estimation of the gradient is

“averaged out” over a large number of iterations (Spall [1998]) and the algorithm has a similar convergence rate

to FDSA. SPSA has a global convergence property that relies on the existence of a non-negligable noise level in

the objective function and the finite-difference-like perturbations (Maryak and Chin [2004]). However, high noise

levels can cause slow convergence or can cause the algorithm to become stuck in local optima. SPSA is suitable

for large-scale population models.

The NMNS algorithm has commonly been used for deterministic optimisation of nonlinear functions. It is

a well-studied numerical method that is useful for problems in which gradients may be unknown. The NMNS

algorithm is useful when dealing with noisy objective functions since it only requires a relative ordering of the

function values, rather than the magnitudes of the differences (as when estimating gradients). NMNS is less

sensitive than SPSA to the noise level, but can converge to non-stationary points. Huan and Marzouk (2013)

found that the NMNS algorithm performed better than SPSA overall, in terms of the asymptotic distribution of

the design variables and how quickly convergence was achieved.

Huan and Marzouk (2012) used the Robbins-Munro (RM) (Robbins and Monro [1951]) stochastic approxima-

tion, and compared it to a sample average approximation combined with the Broyden-Fletcher-Goldfarb-Shanno

method (SAA-BFGS) to solve the optimal design problem for partial differential equations. The RM algorithm is

one of the oldest stochastic approximation methods. It uses an iterative update that is similar to steepest descent,

but uses stochastic gradient information. Sampling average approximation (SAA) algorithms reduce a stochastic

optimisation problem to a deterministic one. For instance, in the optimal experimental design framework, we

may define the problem to be solved as:

d∗ = arg max
d∈D
{U(d)} = EW [Û(d,W )],

where d is the design variable, W is the “noise” random variable, and Û(d,W ) is an unbiased estimate of the

objective function, U(d) (e.g., KLD between the prior and posterior distributions). SAA approximates this
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optimisation problem using

d̂s = arg max
d∈D
{ÛM (d, ws) ≡

1

M

M∑
i=1

Û(d, wi)},

where d̂s and ÛM (d, ws) are the optimal design and utility function values under a particular set of M realisations

of W , where ws ≡ {wi}Mi=1. The same set of realisation of W is used for different values of d throughout the

optimisation process, which makes the maximisation problem deterministic. The Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method (Nocedal and Wright [2006]), which is a deterministic quasi-Newton method, was used

to find d̂s as an approximation to d∗.

Huan and Marzouk (2012) used infinitesimal perturbation analysis (Ho and Cao [1983]) to construct an

unbiased estimator of the gradient of the KLD for use in the RM algorithm. A polynomial chaos approximation

of the forward model was also used to speed up computation of the utility function and gradient evaluations.

Huan and Marzouk (2012) found that, although SAA-BFGS generally required fewer iterations, each iteration

had a longer run time than a step of RM. As the evaluation of the utility function becomes more expensive, RM

may be the more suitable of the two methods. RM was also found to outperform SAA-BFGS in terms of the

size of the mean square error (between the “true” optimal value of the KLD and the value of the KLD for the

current iteration), for a given computational effort.

6 Sequential Design Search Algorithms

Decisions are often made in stages, with additional data being observed between the decisions. For example, in

dose-finding trials, dose allocation decisions are often made after previous cohorts have been administered the

treatment so that future cohorts may be given doses that are closer to the maximum tolerated dose. Whitehead

and Brunier (1995) and Whitehead and Williamson (1998) implement a Bayesian m-step look-ahead procedure

to find the optimal treatment dose to administer to the next m patients in a dose-finding study. Sequential design

problems are those that involve an alternating sequence of decisions and observations. The Bayesian paradigm is

extremely useful for sequential design problems since the posterior can be used as the prior distribution for the

next experiment.

6.1 Backwards Induction

Although many approaches to solving sequential design problems use a myopic approach, which involves looking

ahead only to the next observation (e.g., Cavagnaro et al. [2010], Drovandi et al. [2014], McGree et al. [2012b]),

in general, this is not optimal, and one should instead look ahead to all future observations in the experiment

(Borth [1975]). To achieve this, the computationally intensive backward induction method should be used (see,

for example, DeGroot [1970], Berger [1985], Bernardo and Smith [2000] for a description) which considers all
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future observations. Backward induction is also known as stochastic dynamic programming (e.g., Ross [1983]).

Early work in this area was restricted to simple model settings, such as one-sided tests of a univariate

parameter (Berry and Ho [1988]), and binary outcome settings (Lewis and Berry [1994]). These approaches

typically used only two or three backwards steps (interim looks at the data). Carlin et al. (1998) extend these

approaches by including a forward sampling algorithm that can be used to find the optimal stopping boundaries

in clinical trials and eases the computational burdens associated with backward induction. However, Carlin et

al. (1998) used a univariate normal likelihood, assumed that the standard deviations were known at each step,

and considered a maximum of 4 backwards steps.

Brockwell and Kadane (2003) proposed a gridding method which approximates the expected loss function

(utility function) at each decision time, and consists of a function of certain summary statistics (low dimensional)

of the posterior distribution of the parameter of interest. Their approach is similar to that of Berry et al. (2000).

Brockwell and Kadane (2003) use a one-step-ahead forward simulation procedure to evaluate the expected utilities

and focus on problems related to parameter estimation. Müller et al. (2006) also use a similar approach

to Brockwell and Kadane (2003) which involves forward simulation to approximate the utility functions and

constrain the action space to circumvent the problem of an increasing number of possible trajectories in the

backward induction steps. Rossell et al. (2007) extend the approaches of Carlin et al. (1998), Brockwell and

Kadane (2003), and Müller et al. (2006), in which they compute a summary statistic when new data are observed

and use decision boundaries that partition the sample space. Once the summary statistic falls in the stopping

region, the experiment is terminated. Thus the sequential problem is reduced to the problem of finding optimal

stopping boundaries, and the choice of these boundaries accounts for all future data. Rossell and Müller (2013)

extend these ideas to high-dimensional data by assuming that the data are suitably pre-processed.

6.2 MCMC Algorithms

McGree et al. (2012c) used MCMC methods (MH algorithms) to sample from the posterior distribution to find

adaptive designs for a dose-finding study. Bayesian compound utility functions were used to find the dose for the

next subject for the dual purposes of estimating the maximum tolerated dose (MTD) and addressing safety issues

of toxicity. To estimate the utility functions, importance sampling was used in which the posterior distribution

of the parameters (using the observations up to the i − 1th subject) p(θ|y(1:i−1)) was used as the importance

distribution, and the target distribution was p(θ|y(1:i)), where yi is the new data point given by dose D. McGree

et al.’s (2012c) algorithm involved a form of self-tuning in that the proposal distribution for the model parameters

θ was based on a bivariate normal distribution in which the mean and variance were obtained from a maximum

likelihood fit to the current data. Each time a new dose was selected, the proposal distribution was updated.
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6.2.1 SMC Algorithms

SMC provides a natural framework for sequential design problems and has been used for parameter estima-

tion design problems (e.g., Drovandi et al. [2013]), and model discrimination design problems (see Cavagnaro

et al. [2010], Drovandi et al. [2014]). Its design applications are diverse and include computer experiments (e.g.,

Loeppky et al. [2010]), astrophysics (e.g., Loredo [2004]), cognitive science (e.g., Cavagnaro et al. [2010]), neu-

rophysiology experiments (e.g., Lewi et al. [2009]), clinical trials (e.g., Liu et al. [2009]) and bioassays (e.g.,Tian

and Wang [2009]).

SMC algorithms have commonly been used to design for model discrimination for Bayesian sequential design

problems (e.g., Cavagnaro et al. [2010], Drovandi et al. [2014], McGree et al. [2012b]). Designs that efficiently and

precisely estimate model parameters usually perform poorly on model discrimination problems (e.g., Atkinson

[2008]).

Cavagnaro et al. (2010) use a similar approach to Amzal et al. (2006) in which an SMC algorithm was

implemented to design optimally for model discrimination in the context of memory retention models. A simulated

annealing effect (Müller [1999]) was used in which the utility function was incrementally “powered up”. Cavagnaro

et al.’s (2010) SMC algorithm designs for experiments one-observation-at-a-time, using the posterior distribution

that is based on all of the data that has been observed thus far. Whilst these myopic approaches are sub-optimal,

they are necessary in many applications of Bayesian design of experiments due to computational complexity of

the backwards induction algorithm (Section 6.1).

Drovandi et al. (2014) present an SMC algorithm to sequentially design experiments one-at-a-time in the

presence of model uncertainty for discrete data. McGree et al. (2012b) extended this approach for continuous

data. In these works, an SMC algorithm is run in parallel for each of the competing models and the results are

combined to compute the utility function in the presence of model uncertainty. This algorithm avoids between-

model or cross dimensional proposals. The SMC algorithm produces an approximation to the evidence (the

marginal likelihood of the data given a particular model) as a by-product (Del Moral et al. [2006]), which is used

to compute the posterior model probabilities and to estimate the utility function. This avoids the need to use

computationally intensive numerical integration techniques, such as quadrature (e.g., Cavagnaro et al. [2010]) to

obtain an estimate of the evidence. Once the posterior model probabilities are computed, model discrimination

utility functions, that are derived from information theory, such as the entropy of model probabilities (Box

and Hill [1967], Borth [1975]) can be evaluated. The design d that is chosen is the one that maximises the

mutual information between the model indicator, m, and the predicted observation (Cavagnaro et al. [2010]).

Little problem specific tuning is required for this algorithm and it is much less computationally intensive than

approaches that rely on MCMC for posterior simulation in sequential design contexts (e.g., McGree et al. [2012c],

Section 6.2).
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In both Drovandi et al. (2014) and McGree et al.’s (2012b) work, only a discrete design space was consid-

ered and no optimisation algorithm was implemented. To reduce the computational requirements, the utility

was evaluated for all possible choices of design, and the design which maximised the utility was chosen. For

high dimensional design problems or those with continuous support, optimisation routines such as the exchange

algorithm (Meyer and Nachtsheim [1995]) or simulated annealing (Corana et al. [1987]) may be required. Alter-

natively, one could incorporate the simulation-based algorithms of Müller (1999) or Amzal et al. (2006) to search

over the design space.

7 Applications

We will now highlight some of the key areas that Bayesian experimental design is being applied to. Please

note that this is not a comprehensive review on the applications of Bayesian experimental design, but rather an

overview of some of the key papers in the literature.

7.1 Clinical Trial Design

There is a wealth of literature on Bayesian designs for clinical trial studies, with many practical developments in

both sequential and static frameworks. The requirement of a decision-theoretic approach for the design of clinical

trials was recognised as early as Anscombe (1968). Clinical trial design typically involves making decisions prior

to the commencement of the experiment in relation to the drug dosage (e.g., dose level, timing of doses, number

of doses, number of subjects to assign to each dose level), and for pharmacokinetic (what the subjects’ body

does to the treatment) and pharmacodynamic (what the treatment does to the subjects’ body) studies, sampling

times (e.g., number of samples to take, timing of the samples, assignment of subjects to sampling schedules).

Spiegelhalter et al. (2004) and Berry (2006) provide a general overview on how Bayesian methods can be used

for inference and experimental design for clinical trial design. Berry (1993), Spiegelhalter et al. (1994), Kadane

(1996), and Stangl and Berry (1998) discuss a number of important issues present in the use of Bayesian methods

for the design and analysis of clinical trials, such as: ethics, prior elicitation, randomisation, treatment allocation,

utilities, and decision making. However, the use of fully Bayesian designs for clinical trial design remains mostly

theoretical and their use in practice is still uncommon. This is most likely due to the difficulties associated with

prior elicitation for complex models and selection of a utility function, as well as the computational difficulties

of optimising the expected utility function.

Decisions are often made sequentially in clinical trials as information is gathered on the experimental process

from previous study subjects and enables the investigators to modify the experiment according to the accumulated

information. Modifications to sequential clinical trial designs include adaptively assigning study subjects to

treatments that have a higher performance or that will give more information about the experimental aims;
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adding or deleting treatment arms; termination of the trial; and incorporation of more study subjects if the

experimental aims have not been satisfied. Bornkamp et al. (2011), Müller et al. (2006), Wathen and Thall

(2008), and Dragalin et al. (2010) present Bayesian sequential designs for clinical trials.

Dose-finding studies are concerned with determining the effect of different doses of the treatment on the

response of interest and are required to ensure that marketed drug doses are safe and efficacious. One of the

earliest works on Bayesian adaptive design for dose-finding studies is that by Whitehead and Brunier (1995),

in which they obtain priors through elicited data and select treatment doses based on the gain in statistical

information about an estimate.

Bornkamp et al. (2011) determine adaptive designs in a dose-finding study so that the minimum effective

dose (MED), i.e., the smallest dose that achieves a clinically beneficial response over the placebo response, can be

precisely estimated (using the approaches described in Bornkamp et al. [2007]). The dose-response relationship

of a treatment is often unknown prior to the study. To account for model uncertainty, Bornkamp et al. (2011)

average the design criterion (the posterior variance of the MED), conditional on model m, with respect to the

model probabilities (see also, Dette et al. [2008]). This produces designs that are robust to model uncertainty.

Bornkamp et al. (2011) also use a Bayesian shrinkage approach to stabilise the parameter estimates during the

sequential updates of the parameter estimates and model probability.

Müller et al. (2006) use a grid-based backwards induction approach to make decisions about adaptive dose

allocation, optimal stopping of a trial and the optimal decision upon stopping to enable optimal learning about

the dose-response curve. Wathen and Thall (2008) describe an approach to find a group sequential design

that maintains a targeted false-positive rate and power, under a wide range of true event time distributions for

right-censored data in a phase III clinical trial. At each interim analysis, Wathen and Thall’s (2008) procedure

adaptively chooses the most likely model (based on the posterior probability) for the hazard function, using

Bayesian model selection, and then they apply the decision bounds that are optimal for the chosen model. Their

focus is on two-sided tests in two-arm trials. Dragalin et al. (2010) conduct an extensive simulation study

that compares five different adaptive dose-finding designs. These designs differed in the number of doses, the

number of interim analyses, and the number of patients allocated to each design, and were derived under different

experimental objectives.

Stroud et al. (2001) use the MH MCMC algorithm of Müller (1999) to determine the optimal blood sampling

times for the next patient to precisely estimate pharmacokinetic parameters of interest (subject to a cost penalty)

for the anticancer agent, paclitaxel. The priors were obtained by fitting nonlinear mixed effects models to existing

data. Ryan et al. (2014b) present fully Bayesian static designs for a horse population pharmacokinetic study.

The design problem was to determine the optimal urine sampling times, as well as the number of subjects and

samples per subject to obtain precise posterior distributions of the population parameters (subject to a cost
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constraint). These designs were also obtained using an adaption of the MH MCMC algorithm of Müller (1999).

Other recent examples of Bayesian clinical trial design include Christen et al. (2004), Dragalin et al. (2007),

Miller et al. (2007), Ding et al. (2008), Drovandi et al. (2013), and McGree et al. (2012c).

7.2 Cognitive Science

Optimal experimental design methods are also commonly used in the field of cognitive science. For example,

Kujala and Lukka (2006) and Lesmes et al. (2006) use Bayesian sequential designs to estimate psychometric

functions using utility functions based on maximum entropy. Lewi et al. (2009) present a sequential design

framework that searches for the optimal design for a neurophysiology experiment that maximises the mutual

information between the prior and posterior distribution for a generalised linear model. To facilitate estimation

of the mutual information, a Gaussian approximation to the posterior was used. Myung and Pitt (2009) search

for optimal static designs for model discrimination for memory retention and categorisation examples, using the

approach of Amzal et al. (2006). Cavagnaro et al. (2010) use a similar approach to Myung and Pitt (2009),

but instead search for sequential designs for model discrimination for a memory retention example. Kim et al.

(2013) extend the approach of Cavagnaro et al. (2010) to find sequential designs for a population study of visual

perception. Zhang and Lee (2010) find sequential designs to discriminate amongst competing models for a two

arm bandit problem for human choice behaviour.

7.3 Natural Sciences

Loredo (2004) found sequential Bayesian designs for astrophysics experiments to detect extrasolar planets, using

the maximum expected Shannon information gain on the posterior parameter estimates for the utility function.

Huan and Marzouk (2013) use polynomial chaos approximations and nested Monte Carlo integration (Ryan

[2003]) to estimate the KLD between the prior and posterior distributions to find static designs which enable

inference about parameters for chemical kinetic models for combustion. Solonen et al. (2012) derive optimal

static designs for an exothermic example. Cook et al. (2008) used Bayesian simulation-based strategies similar to

Müller (1999) to determine observation times for botanical epidemic experiments that were governed by nonlinear

stochastic processes.

8 Directions for Future Research

We believe the future of Bayesian experimental design lies in: (1) developing and implementing fast methods

for approximating the posterior distribution for use in Bayesian utility functions, and fast computation of the

Bayesian utility functions, as these are the most computationally intensive components of Bayesian experimental
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Search Algorithm framework Method for approx. posterior Example(s)
Static designs

MCMC Laplace approximation Ryan et al. [2014a]
MCMC Importance sampling Cook et al. [2008], Ryan et al. [2014a,c]
MCMC ABC Drovandi and Pettitt [2013], Hainy et al.

[2013]
MCMC MCMC Clyde et al. [1996]
Monte Carlo MCMC Han and Chaloner [2004]
SMC Importance sampling Amzal et al. [2006]
SPSA and NMNS Polynomial chaos approximations

and nested Monte Carlo integra-
tion

Huan and Marzouk [2013]

RM stochastic approximation Nested Monte Carlo integration Huan and Marzouk [2012]
SAA-BFGS Nested Monte Carlo integration Huan and Marzouk [2012]
Sequential designs

Discrete search Laplace approximation Lewi et al. [2009]
SMC Numerical quadrature Cavagnaro et al. [2010]
Discrete search SMC / importance sampling Drovandi et al. [2013]
MCMC Importance sampling Stroud et al. [2001], McGree et al. [2012c]
Monte Carlo MCMC Wakefield [1994], Palmer and Müller [1998]

Table 1: Summary of methods used to approximate the posterior distributions for Bayesian utility function
estimation and for optimisation over (d,θ,y).

design; and (2) finding solutions to complex Bayesian experimental design problems, such as problems in which

the likelihood is intractable or computationally prohibitive to calculate, or problems with a large number of

design points.

8.1 Fast Algorithms for Bayesian Experimental Design

In Table 1 we provide a summary of the methods which have previously been used to approximate the posteriors

for Bayesian utility functions, along with the search algorithms in which they are embedded.

MCMC and importance sampling have been found to be computationally intensive to perform at each iteration

of the optimisation algorithm that searches over the space (d,θ,y), due to the large number of samples that

are required to ensure that the Bayesian utility is well estimated. In particular, importance sampling from

the prior performs poorly when large amounts of data are involved due to a low ESS (Ryan et al. [2014a]).

Adaptive importance sampling (e.g., Kinas [1996], Pennanen and Koivu [2006]) may provide a faster method for

approximating the posterior distributions, but is yet to be explored for Bayesian experimental design.

Laplace approximations and numerical quadrature have been found to be fast alternatives for approximating

the posterior distribution in Bayesian design, and can be used when large amounts of data are involved, but rely

on the assumption that the posterior distribution follows a multivariate normal distribution and also suffer from

the curse of dimensionality. INLA can also provide a fast method for approximating the posterior distribution, but
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has not been used for Bayesian experimental design. VB methods are a fast method for facilitating approximate

inference for intractable posterior distributions, but are yet to be used in a Bayesian experimental design context.

Drovandi and Pettitt (2013) and Hainy et al. (2013) have explored the use of ABC rejection (see Beaumont

et al. [2002]) within an MCMC framework to approximate the posterior distributions for Bayesian utility functions

for design problems in which the likelihood function is intractable. Further use of ABC methods for posterior

distribution approximation should be explored in the experimental design context.

A few studies have investigated the use of SMC for approximating the necessary quantities for Bayesian utility

functions (e.g., Drovandi et al. [2013]), but its use has been limited. Future studies should focus on extending

previous approaches to allow for more complicated design problems. SMC with a Liu West filter (Liu and West

[2001]) could offer a fast method for posterior approximation for Bayesian design problems.

Computational burden is a major obstacle in all Bayesian design problems for complex models and must

be overcome so that designs can be obtained efficiently and in real time, and to broaden the applicability of

Bayesian design methodology by making it more accessible to practitioners, scientists and industry. This may be

achieved through algorithmic developments and the exploitation of current parallel computing technology (such

as graphics processing units or GPUs). Indeed, new parallel architectures are becoming increasingly available

to individual researchers, and will have a significant impact on Bayesian experimental design. In order to take

advantage of this increased power, computational problems and approaches should be adapted from the current

serial processing paradigm to one that optimises algorithms for parallel processing. To our knowledge, there is

no published, peer reviewed research on the use of GPUs in the derivation of a Bayesian experimental design.

8.2 Finding Optimal Designs for Complex Models

The future of Bayesian experimental design also lies in solving complex or nonstandard problems, such as problems

in which the likelihood is intractable or computationally prohibitive to evaluate, problems where the observed

data likelihood cannot be evaluated analytically, or problems with a large number of design points. Whilst

sophisticated inference techniques are available for Bayesian data analysis for complex data models, corresponding

methodology for deriving Bayesian experimental designs is severely lacking, and it is important that the methods

for inference are complemented with appropriate experimental design methodologies that enable more informative

data to be collected in a more timely manner. Use of parallel computing technology may be required to ease

the computational burden of finding optimal Bayesian experimental designs for complex models (such as mixed

effects models).

Fully Bayesian experimental designs for nonlinear mixed effects models are largely unexplored. Most of the

current work has focused on evaluating Bayesian utility functions for a fixed set of discrete designs (e.g., Han

and Chaloner [2004], Palmer and Müller [1998]) and selecting the design that produces the highest utility value

27



(i.e., no search over a continuous design space is performed). Ryan et al. (2014b) extend this by searching over

a continuous design space to determine (near) optimal sampling times for a horse population pharmacokinetic

study. Kim et al. (2013) find optimal sequential designs for population studies. Further work on using SMC

algorithms (Chopin [2002]) to search for optimal designs for mixed effects models in the presence of model

uncertainty is currently being conducted, so that solutions to real-world design problems can be found. The

main difficulty in finding solutions to experimental design problems in which the data is modelled by mixed

effects models is that the observed data likelihood is unavailable in closed form for all but the simplest examples.

8.3 Finding Optimal Designs for a Large Number of Design Variables

Better search algorithms are also required to find static designs. Many of the search algorithms for obtaining

optimal designs (e.g., Müller [1999], Amzal et al. [2006]) are restricted to a small number of design variables

(≤ 4), as these algorithms are computationally prohibitive for a large number of design variables (e.g., Bielza

et al. [1999], Müller [1999], Stroud et al. [2001], Cook et al. [2008]). MCMC algorithms are good at estimating

the marginal distribution of random variables, but experimental design requires the joint distribution, and in

particular the joint mode of the design variables, which is quite difficult to find and estimate.

Ryan et al. (2014c) propose the use of lower dimensional parameterisations to enable near optimal designs

to be found for problems that require a large number of design points. The lower dimensional parameterisations

consist of a few design variables, which are optimised, and are then input into various functions to generate

multiple design points. This was found to have substantial computational savings, and it was much easier to

obtain the multivariate mode for a few design variables than for a large number of design variables. However,

designs found using this method are not optimal but near optimal, which is a compromise of the computational

savings achieved. The approach is only useful for design variables (e.g., sampling times/locations) that require

multiple measures to be taken at specific points that are separated from one another in the design space. This

approach does not overcome the problem of having a large number of different types of design variables (e.g.,

temperatures, pressures), and further research needs to be conducted for solving this design problem.

9 Conclusion

Bayesian experimental design is a fast growing area of research with many exciting recent developments. The

Bayesian approach to experimental design offers many advantages over frequentist approaches, the most notable

of which is the ability to optimise design criteria that are functions of the posterior distribution and can easily be

tailored to the experimenters’ design objectives. Bayesian design criteria are optimised often with the assumption

that Bayesian inference will be performed on the data that is obtained from the experimental design. Bayesian

frameworks also provide a formal approach for incorporating parameter uncertainties and prior information into

28



the design process via prior distributions, and provide a unified approach for joining these quantities with the

model and design criterion. Another advantage of using a Bayesian design criterion is that a single design point

can be used, and the prior distribution is updated by the single observation in a sequential manner. The prior

information is not “thrown away” in fully Bayesian experimental design, as it is in pseudo-Bayesian design.

Whilst several review papers on Bayesian experimental design have been written, there is a lack of recent

Bayesian experimental design papers that reflect the computational advancements that have occurred in recent

times. In this article we have reviewed the computational methods that have been used to approximate the

posterior distribution for Bayesian utility functions, along with methods for calculating the Bayesian utility

functions (once the posterior has been approximated) and the search algorithms that have been used for finding

the optimal designs. We have also highlighted some numerical methods and stochastic algorithms that have

previously been used to perform Bayesian inference, but have not been used in the design context, and may

provide fast alternatives for finding Bayesian designs.

It is our opinion that the future of Bayesian experimental design lies in the development and implementation of

rapid methods for approximating the Bayesian utility functions, since this is the most computationally intensive

component of the Bayesian experimental design process. We also believe that the future of Bayesian experimental

design lies in finding solutions to complex or nonstandard design problems, such as problems in which the

likelihood is intractable or computationally prohibitive to evaluate, problems where the observed data likelihood

cannot be evaluated analytically, or problems with a large number of design points or design variables. Solutions

to these difficult problems can only be achieved through algorithmic developments and the exploitation of current

parallel computing technology.
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P. Müller, B. Sansó, and M. De Iorio. Optimal Bayesian design by inhomogeneous Markov chain simulation.

Journal of the American Statistical Association, 99(467):788–798, 2004.

P. Müller, D. A. Berry, A. P. Grieve, and M. Krams. A Bayesian decision-theoretic dose-finding trial. Decision

Analysis, 3(4):197–207, Dec. 2006.

J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7(4):308–313,

1965.

S. H. Ng and S. E. Chick. Design of follow-up experiments for improving model discrimination and parameter

estimation. Naval Research Logistics, 51:1129–1148, 2004.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

J. Ormerod and M. Wand. Explaining variational approximations. American Statistical Association, 64(2):

140–153, 2010.

J. Palmer and P. Müller. Bayesian optimal design in population models for haematologic data. Statistics in

Medicine, 17:1613–1622, 1998.

L. Paninski. Asymptotic theory of information-theoretic experimental design. Neural Computation, 17:1480–1507,

2005.

T. Pennanen and M. Koivu. An adaptive importance sampling technique. In H. Niederreiter and D. Talay,

editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 443–455. Springer Berlin, Heidelberg, 2006.

J. Pilz. Bayesian estimation and experimental design in linear regregression models (2nd ed). Wiley, New York,

1991.

36



L. Pronzato and E. Walter. Robust experiment design via stochastic approximation. Mathematical Biosciences,

75(1):103–120, 1985.

F. Pukelsheim. Optimal Design of Experiments. Wiley, New York, 1993.

F. Pukelsheim and B. Torsney. Optimal weights for experimental designs on linearly independent support points.

The Annals of Statistics, 19(3):1614–1625, 1991.

D. Rios Insua and F. Ruggeri. Robust Bayesian Analysis. Springer Verlag, New York, 2000.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics, 22(3):

400–407, 1951.

S. Ross. Introduction to stochastic dynamic programming. Academic Press, 1983.

D. Rossell and P. Müller. Sequential stopping for high-throughput experiments. Biostatistics, 14(1):75–86, 2013.

D. Rossell, P. Müller, and G. L. Rosner. Screening designs for drug development. Biostatistics, 8(3):595–608,

2007.

P. Roth. Design of Experiments for Discrimination Among Rival Models. PhD thesis, Princeton University, New

Jersey, USA., 1965.

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models using integrated

nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B, 71(2):

319–392., 2009.

E. Ryan, C. C. Drovandi, and A. N. Pettitt. Fully Bayesian experimental design for pharmacokinetic studies.

Technical report, Queensland University of Techonology, 2014a.

E. Ryan, C. C. Drovandi, and A. N. Pettitt. Simulation-based fully bayesian experimental design for mixed

effects models. Technical report, Queensland University of Technology, 2014b.

E. Ryan, C. C. Drovandi, M. Thompson, and A. N. Pettitt. Towards Bayesian experimental design for nonlinear

models that require a large number of sampling times. Computational Statistics and Data Analysis, 70:45–60,

2014c.

K. Ryan. Estimating expected information gains for experimental designs with application to the random fatigue-

limit model. Journal of Computational and Graphical Statistics, 12:585–603, 2003.

C. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423, 623–656,

1948.

37



S. D. Silvey. Optimal design. Chapman and Hall, London, 1980.

S. A. Sisson and Y. Fan. MCMC handbook, chapter Likelihood-free Markov chain Monte Carlo, pages 313–335.

Chapman & Hall., 2011.

A. Solonen, H. Haario, and M. Laine. Simulation-based optimal design using a response variance criterion.

Journal of Computational and Graphical Statistics, 21(1):234–252, 2012.

J. C. Spall. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL

Technical Digest, 19(4):482–492, 1998.

D. Spiegelhalter, L. Freedman, and M. Parmar. Bayesian approaches to randomize trials. In D. Berry and

D. Stangl, editors, Bayesian Biostatistics, pages 67–108. Dekker, New York, 1996.

D. J. Spiegelhalter. Incorporating Bayesian ideas into health-care evaluation. Statistical Science, 19(1):156–174,

2004.

D. J. Spiegelhalter, L. S. Freedman, and M. K. B. Parmar. Bayesian approaches to randomized trials. Journal

of the Royal Statistical Society. Series A (Statistics in Society), 157(3):357–416, 1994.

D. Stangl and D. Berry. Bayesian statistics in medicine: Where are we and where should we be going? The

Indian Journal of Statistics, 60:176–195, 1998.

J. Stroud, P. Müller, and G. Rosner. Optimal sampling times in population pharmacokinetic studies. Journal of

the Royal Statistical Society: Series C (Applied Statistics), 50(3):345–359, 2001.

Y. Tian and D. Wang. Sequential bayesian design for estimation of EDp. In The 2nd International Conference

on Biomedical Engineering and Informatics, 2009. BMEI’09, 2009.

B. Toman and J. Gastwirth. Efficienct robust experimental design and estimation using a data-based prior.

Statistical Sinica, 4:603–615, 1994.

C. Tommasi. Optimal designs for both model discrimination and parameter estimation. Journal of Statistical

Planning and Inference, 139:4123–4132, 2009.

C. Tsai and K. Chaloner. Case studies in Bayesian Statistics 5, chapter Using Prior opinions to examine sample

size in a clinical trial: two examples, pages 409–423. Springer-Verlag, New York, 2002.

P. Van Laarhoven and E. Aarts. Simulated Annealing: Theory and Applications. Reider, Dordrecht, 1987.

J. Vanlier, C. Tiemann, P. Hilbers, and N. van Riel. Optimal experimental design for model selection in bio-

chemical networks. BMC Systems Biology, 8:20, 2014.

38



I. Verdinelli. Bayesian design for the normal linear model with unknown error variance. Biometrika, 87:222–227,

2000.

J. Wakefield. An expected loss approach to the design of dosage regimens via sampling-based methods. Journal

of the Royal Statistical Society. Series D (The Statistician), 43(1):13–29, 1994.

T. H. Waterhouse, J. A. Eccleston, and S. B. Duffull. Optimal design criteria for discrimination and estimation

in nonlinear models. Journal of Biopharmaceutical Statistics, 19:386–402, 2009.

J. Wathen and P. Thall. Bayesian adaptive model selection for optimizing group sequential clinical trials. Statistics

in Medicine, 27:5586–5604, 2008.

J. Whitehead and H. Brunier. Bayesian decision procedures for dose determining experiments. Statistics in

Medicine, 14:885–893, 1995.

J. Whitehead and D. Williamson. Bayesian decision procedures based on logisic regression models for dose-finding

studies. Journal of Biopharmaceutical Statistics, 8:445–467, 1998.

L. Wolfson, J. Kadane, and M. Small. Expected utility as a policy making tool: an environmental health example.

In D. Berry and D. Stangl, editors, Bayesian Biostatistics, pages 261–277. Dekker, New York, 1996.

S. Zhang and M. Lee. Optimal experimental design for a class of bandit problems. Journal of Mathematical

Psychology, 54(6):499–508, 2010.

J. Zidek, W. Sun, and N. Le. Designing and integrating composite networks for monitoring multivariate Gaussian

pollution fields. Applied Statistics, 49:63–79, 2000.

39


