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Abstract 

Recently, carbon dioxide (CO2) conversion into higher-value platform chemicals and synthetic fuels 

has drawn great attention as a result of global warming. Non-thermal plasma (NTP)-catalytic CO2 

conversion has emerged to significantly reduce the reaction temperature. However, this technology 

requires a paradigm shift in process design to enhance plasma-catalytic performance. CO2 conversion 

using NTP and catalysts has great potential to increase reaction efficiencies due to the synergetic effects 

between the plasma and catalysts that can provide mutual improvement in their performances. It is 

crucial to present the recent progress in CO2 conversion and utilization whilst specifying a research 

prospects framework and providing future research directions in both industries and laboratories. 

Herein, a review of encouraging research achievements in CO2 conversion and utilization using NTP in 

recent years is provided. The topics reviewed in this work are recent progress in different NTP sources 

in relation to product selectivity, conversion, and energy efficiency; plasma-based CO2 reactions and 

applications; CO2 conversion integrated with CO2 capture; and process development of NTP in terms 

of potential large-scale applications processes. The high market value of the possible products from 

the NTP process, including chemicals and fuels, make the commercialization of the process 

feasible. Developing a suitable catalyst with effective sensitivities and performance under intricate 

conditions can improve the selectivity of these carbon-based liquid chemicals. There is a need for 

more studies to be performed in this field. 
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1. Introduction  

The concentration of CO2 has been increasing significantly in the biosphere over the past century. 

It accounts for approximately 55% of total yearly anthropogenic greenhouse gas emissions (49 Gt 

CO2eq in 2010) responsible for global warming. The increasing concentration of CO2 has resulted 

in destructive effects to the ecosystem, such as a change in hydrological and vegetation patterns, 

surface temperature increase, and frequent incidences of disastrous weather [2-5]. Thus, a 

significant reduction in CO2 emissions has received noticeable consideration and substantial 

progress in recent years. CO2 conversion into value-added platform chemicals or synthetic fuels 

(CO, CH4, Dimethyl ether (DME), methanol (CH3OH)) using a variety of methods has attracted 

significant attention due to its potential to reduce CO2 emissions and utilize them as a useful carbon 

source. The combination of CO2 utilization together with the conversion of CH4 through the syngas 

path is being weighed as an up-and-coming process due to the high heating value (34 MJ/m3) in 

CH4 [6-8]. CO and H2 are the major chemical feedstocks for the production of oxygenates 

(alcohols, acetic acid) and for Fischer-Tropsch synthesis to generate liquid hydrocarbons [9]. 

Different processes have been developed and investigated for CO2 conversion to value-added fuels 

and chemicals, namely electromechanical [10-12], photochemical [13-18], plasma catalytic 

process [19-23] and biological fixation [24-27]. Selecting which CO2 storage and utilization 

processes to use requires an understanding of both the chemical and physical properties of CO2. 

CO2 utilization efforts target the development of valuable applications of CO2 where geologic 

storage may not be a favorable solution. Fig. 1 shows the main pathways for CO2 utilization [16, 

24, 28, 29]. 
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Figure 1. Main pathways of CO2 conversion and utilization 

The major challenge related to the conversion of CO2 is in overcoming the high stability of the 

CO2 molecule as a large amount of energy is needed to dissociate the molecule and break the 

double bond(s) of O=C=O [30]. The application of plasma is a promising and innovative technique 

that provides an attractive solution for the efficient conversion of CO2 into beneficial chemicals 

and fuels [31-34]. This is because plasma has the potential to enable thermodynamically adverse 

chemical reactions to occur at ambient conditions. Furthermore, plasma technology is faster and 

simple structures are required compared to other existing methods, such as 

photochemical/photocatalytic processes [16, 35, 36], enzymatic/biochemical processes [16, 37, 

38], electro-catalytic/electrochemical [39, 40], and catalytic conversion [41, 42]. NTP performs at 

non-equilibrium conditions, low temperature and at atmospheric pressure. Without using an 

advanced pulse power supply, reaction rates are high and quickly attained. Meanwhile, the 

energetic electrons produced in the plasma have an average temperature of 1-10 eV and are capable 

of activating CO2 molecules by ionization, excitation, and dissociation, thus creating an avalanche 

of reactive species such as excited atoms, ions, molecules and radicals for propagation and 

initiation of chemical reactions [43-45]. In addition, the compactness, ease of installation and 

flexibility of NTP systems provide great potential for integration with technologies that harvest 

energy from renewable resources (e.g. solar panels and wind turbines), which could enable them 

to serve as a potential energy storage system for surplus electricity from renewable energy during 

peak moments on the grid. This could, in turn, lead to a carbon-neutral network as the technique 

can be scaled up for industrial applications [46, 47].  
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The major challenges in CO2 conversion using NTP are in improving the plasma process energy 

efficiency, and in increasing its competitiveness [48]. Combining catalysts with NTP creates a 

hybrid plasma-catalytic process [49, 50] with an enormous capacity to produce a plasma-catalyst 

synergy that can enhance the conversion of CO2 [51], and the selectivity and yield of target 

products [52-54]. This plasma catalytic effect results from a specific excited species, formed in the 

plasma, having the ability to interact with the catalyst surface — and subsequently reacting — 

before relaxation occurs [55]. Nonetheless, it is difficult to find cost-effective and exceptionally 

active catalysts for the plasma catalytic CO2 conversion into CO and O2. Plasma reactor 

modification or new design concepts might open the route for improving the energy efficiency of 

the NTP process for CO2 conversion. Various routes have been investigated for CO2 conversion 

using NTP, namely dry reforming of methane (DRM), which is the combined conversion of CH4 

and CO2, (R1) [56-61], CO2 hydrogenation using hydrogen or water (R2 and R3) [49], [62-66] and 

CO2 decomposition to CO and O2 (R4) [67-69], as illustrated in Fig. 2. DRM has received much 

attention due to the benefit that it entails simultaneous conversion of two greenhouse gases 

(GHGs), CO2 and CH4, specifically for desired syngas ratio, low syngas ratio, etc [70]. It is mostly 

carried out using dielectric barrier discharge (DBD). Use of gliding arc (GA), and microwave 

plasma (MW) NTPs is uncommon for DRM, although GA and MW have higher energy 

efficiencies compared to DBD plasma in DRM, as well as in CO2 splitting [71, 72]. 

            CO2 + CH4 → 2CO + 2H2,     ∆H0
, 298 K= 247 kJ/ mol                                                    (R1) 

            CO2+ 4H2 → CH4 + 2H2O,    	∆H0
, 298 K= -165 kJ/ mol                                                  (R2) 

            CO2 + H2 → CO + H2O,          ∆H0
, 298 K= 41.2 kJ/ mol                                                  (R3) 

            2CO2 → 2CO + O2,                 ∆H0
, 298 K= 283 kJ/ mol                                                  (R4) 
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Figure 2. CO2 hydrogenation routes [30] 

This paper is based on an extensive literature survey on NTP- CO2 conversion and utilization with 

purposes to define the scope, limitations, and opportunities for NTP-CO2 conversion. This work 

reviews the progress on (a) CO2 conversion using different types of NTP, (b) the interactions and 

synergies between catalysts and NTP, and their subsequent effects on CO2 conversion and 

utilization, (c) the process development on NTP assisted CO2 conversion and utilization with CO2 

capture. 

2. Non-thermal plasma systems  

2.1 Equations and parameters 

In this section, an overview of the various expressions for the specific input energy (SIE), 

conversion (χ) and energy efficiency (η) are given, which are used in the subsequent sections. 
Plasma power (P), specific input energy	(SIE), gas flow rate (Q), and energy density (Ed) can be 

calculated from	SIE. The energy efficiency (η) is determined using the following formulas; 

The conversion of CO2 (χCO2) = Moles of CO2 converted × 100                                   (Eq.1) 
                                                   Initial moles of CO2 
 
The conversion of CH4 (χCH4) =    CH4 converted (mol) × 100                                    (Eq.2) 
                                                       CH4 input (mol) 
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SIE (kJ/L) = discharge power (kW) × 60 (s/min)                                                           (Eq.3) 
                       Gas flow rate (l/min) 
 
 
SIE (J/cm3) = discharge power (J/s)                                                                            (Eq.4) 
                       Gas flow rate (cm3/s) 
 
η	(mmol/J) = CO2 converted (mol/s)                                                                          (Eq. 5) 

                   Discharge power (kW) 
 
η (%) = CO2 converted (mol/s) × ∆H(	(kJ/mol) × 100%                                             (Eq. 6) 
              Discharge power (kW) 
 

η (%) = ∆H(	(kJ/mol) × χ CO2 (%)                                                                               (Eq. 7)                  
              SIE (kJ/l) × 22.4 (l/mol)	

where ∆H(	–the reaction enthalpy, χ CO2- CO2 conversion. Note that this equation is only applicable 

for pure CO2 splitting (at room temperature and atmospheric pressure) and the absorbed power is 

determined by the Lissajous method. This formula is also used for other gases, however, in these 

equations another ∆H(	is applied to account for both CO2 conversion and conversion of other gases 

in the mixture. Since SIE can also be presented as J/cm3 (1 kJ/l = 1 J/cm3)  or in eV/molec (eV per 

molecule) applying the formulas [73]: 

SIE (eV/molec) = Ed (J/cm3) × eV/J × cm3/mol                                                         (Eq. 8)                  
                                         molec/mol	

For CO2, H2O, H2 or CH4 conversion, calculations for the absolute conversion ( Eq. 7) and effective 

conversion (Eq. 8) are mostly used. The absolute conversion is calculated based on the molar flow 

rates of the reactants  

χ abs, reactant, i = 𝜗 reactant, i, inlet- 𝜗 reactant, i, outlet × 100                                                       ( Eq. 9)                  
                                         𝜗 reactant, i, inlet 

Where 𝜗- molar flow rate for the reactant species, i.  

The effective conversion considers the dilution effect when the feed gas mixture contains more 

than one gas. 

χ eff, reactant, i = χ abs, reactant, i - 𝜗 reactant, i, inlet                                                                  ( Eq. 10)                  

                                  ∑i 𝜗 reactant, i, inlet 

And the total conversion is given by; 
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χ Total = ∑i   𝜗 reactant, i, inlet ×   χ abs, reactant, i =   ∑i χ eff, reactant, i                                      (Eq. 11)                                                               

                    ∑i 𝜗 reactant, i, inlet 

 

The selectivity (S) and yield (Y) are calculated as: 

SCO (%) =    CO produced (mol) × 100                                                                     (Eq.12) 
                       CO2 converted (mol) 

 

SCH4 (%) =    CH4 produced (mol) × 100                                                                        (Eq.13) 
                       CO2 converted (mol) 

                 

SH2 (%) =       H2 produced (mol) × 100                                                                     (Eq.14) 
                       CO2 converted (mol) 

 

                        YCH4 = SCH4 (%) × χCO2 (%)                                                                                   (Eq.15) 

The H2/CO2 molar ratio in the product is determined as: 

 H2   =    H2 produced (mol) × 100                                                                                (Eq.16) 
 CO2       CO2 produced (mol) 

 

A correlation factor is used for the equation since gas expansion as a result of CO2 splitting (R4) 

is not put into consideration in Eq. 7 (for details, refer to [74]). The specific input energy and 

energy efficiency are calculated as given in Eq. 3 and Eq. 5 respectively, using a  temperature of 

0 oC and a pressure of 1 atm [75-78].  

2.2 Types of non-thermal plasma  

The electrons in NTP can attain an average temperature range of 10,000-100,000 K (1-10 eV) even 

though the gas temperature can remain as low as room temperature. The high electron temperatures 

dictate the unusual chemistry of NTP [79-81]. Various non-thermal plasma methods have been 

employed in the conversion of CO2 depending on the applied pressure, electrode geometry, and 

plasma generation mechanism. The main three types of NTP for CO2 conversion are dielectric 

barrier discharge  or silent discharge, microwave discharge and gliding arc discharge (GAD) [82-

87]. In addition, the following types have been experimented with as well: corona discharge (CD) 
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[88], radio frequency (RF) [89], glow discharge (GD) [90, 91] capillary discharge [90, 91], and 

nanosecond pulse discharge [92]. 

2.2.1. Dielectric barrier discharge 
	

Also known as a silent discharge, DBD has been experimentally investigated for more than a 

hundred years. DBD has been applied extensively in various technical aspects, including pollution 

control [93, 94], surface modification [95, 96], sterilization, using water as an electrode and for 

cooling [97, 98], chemical vapor deposition, ultraviolet excimer lamps, bio treatment of micro-

organisms [99-101], ozone generation [102, 103], and the decomposition of CO2 [104]. A typical 

DBD reactor has two electrodes asymmetrically positioned on both sides of a dielectric barrier 

material, such as quartz, glass, ceramic material or polymers [105]. The physical properties of the 

dielectric barrier can influence the DBD by not only limiting the number of charges but by also 

distributing micro discharges over the complete barrier surface area [106]. The main purpose of 

dielectric barrier material is to limit electric current, hence inhibiting spark formation [107, 108]. 

The main difference between DBD and other discharge types is that other types of plasma 

discharges use electrodes that are directly in contact with the plasma and discharge gas leading to 

corrosion and electrode etching [107, 109]. DBD applications in CO2 conversion has drawn 

significant consideration due to the following advantages as DBDs produce a homogenous 

discharge with low energy consumption [110, 111] and they can avoid the formation of sparks in 

the streamer channels. The avoidance of spark formation avoids  overheating and reduces noises 

and local shock waves [112, 113]. In addition, DBD has low operational cost, simple structure, 

feasible scalability and a proven effectiveness for many reactions [114].  

The main drawback of using NTP for the conversion of CO2 is that further improvement is required 

to ensure that the plasma process is more competitive and attractive. Thus finding an exceptionally 

cost-effective and active catalyst for plasma catalytic conversion of CO2 is very important [115, 

116]. Plasma catalytic conversion of CO2 into value-added fuels and chemicals is greatly 

determined by a range of plasma processing parameters, such as gas composition, feed flow rate, 

dielectric material, discharge gap/length, carrier gas, electrode configuration, discharge, 

frequency, and discharge power [117-120]. Table 1 shows a summary of the characteristics 

parameters of DBD [79, 81].  
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Table 1. Typical characteristic parameters of dielectric barrier discharge [79, 81]. 

DBD Parameters 

Electric field (kV/cm)                                              0.1- 100  

Degree of ionization (variable)                                    10-4     

Reduced field (Td)                                                     1-500  

Electron density (e Å
-3)                                             1014 

Average electron energy (eV)                                    1-10  

 

Nanosecond pulsed DBD (NP-DBD) is distinguished by higher mean electron energies, which 

lead to a higher rate of dissociation and higher CO2 conversion [121, 122].  In NP-DBD, the peak 

plasma density can be as high as 1015 cm-3 with a relatively low cost of power, since NP-DBD  

uses a high voltage in a very short span [123, 124]. NP-DBD  in most cases is in a highly non-

equilibrium condition due to comparable long excited-state relaxation timescales [125, 126]. Non-

equilibrium NP-DBD  has been applied in CO2 dissociation [127], aerodynamic flow control [128] 

and stabilizing combustion [128, 129]. When CO2 splitting for CO production using an NP-DBD  

was carried out at  a very high voltage (15 kV) over a very short period (10 ns), an electrical 

discharge was obtained that produces as much as 0.4 mJ of energy and a maximum energy 

efficiency and conversion rate of 11.5%  and 7.3%, respectively, at a frequency of 30 kHz and 

with a pressure variation range of 2.4 - 5.1 atm  [130].  The major products obtained from the 

conversion of CH4/CO2 (1:1) using a nanosecond repetitively pulsed discharge were H2, CO2, solid 

carbon, and C2H2. 40% energy efficiency was achieved for syngas (H2 + CO) production  [92]. 

Furthermore, it was realized that NP-DBD improved the selectivity to end products (CO, H2, C2H2) 

at the expense of oxygenated and liquid hydrocarbon compounds  [131].  

2.2.2. Gliding arc discharge  
	

Gliding arc discharge is a promising plasma source for the conversion of CO2 into fuels and value-

added chemicals [132-136]. GAD combines both the advantages of the non-thermal and thermal 

discharge systems (a transient type of discharge) [137-140]. They are generally known as ‘warm’ 

discharges, which are distinguished by a better energy efficiency compared to other forms of 

plasma discharge [141]. Warm plasma, examples of which include microwave discharge (MW) 
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and GAD plasmas, is an intermediate case between thermal and non-thermal (cold) plasmas. The 

gas can attain a temperature of ≥ 1000K while the electron temperature is generally ~1	eV, which 

is conducive for populating CO2 vibrational levels. In comparison, in a DBD (a nonequilibrium or 

cold plasma) the gas is more or less at room temperature, and the electrons are heated to 

temperatures of 2−3 eV by the strong electric field in the plasma [55, 142]. Warm plasmas are 

more beneficial in relation to processing energy efficiency than either thermal or non-thermal 

plasmas. 

 

Fig. 3 provides a schematic of the diagram of a GAD and a picture of a GAD reactor.  Because 

GAD offers efficient vibrational excitation of chemical molecules [143-146], which is viewed as 

the most energy-efficient means to split CO2 molecules [146-148], the physical and chemical 

characteristics of GAD have been extensively explored both experimentally [148-151] and through 

modeling [152-157]. The GAD generates a string (weakly ionized gas) between two horn-shaped 

electrodes in a gradually diverging electrode gap. The gas is supplied at the electrode base, creating 

a potential difference between the electrodes. An electric arc plasma is established at the narrowest 

gap. The newly generated arc string is then moved slowly by the gas flow towards the top of the 

electrodes along the diverging gap, causing the arc string to gradually elongate. Eventually, the arc 

string elongates to a length that is no-longer sustainable, the arc is extinguished, and a new arc is 

ignited in the shortest electrode gap. More precisely, the arc column length (l) increases with an 

increase in arc voltage until the critical value (U4567) is exceeded. The arc voltage (U8) gradually 

increases with a small reduction of arc current (I8) until it attains the breakdown voltage (U95) 

value of the starting gap [152]. At this moment, heat losses from the arc plasma column start to 

surpass the supplied energy. It is impossible to maintain the arc plasma in its local thermodynamic 

equilibrium state (LTE), considering its fast transition into a non-local thermodynamic equilibrium 

state. The arc discharge speedily cools to attain the gas temperature; however, due to the high 

electron temperature, which is best applicable for efficient vibrational excitation of CO2, plasma 

conductivity is kept constant. The discharge is systematically submitted to the ignition–

lengthening–extinction cycle [152, 158, 159]. During the cycle, nearly 70-80% of energy is 

dissipated in the non-local thermodynamic equilibrium zone. To improve GAD applications, 

especially in CO2 conversion, both chemical and physical features of GAD have been widely 
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examined; for instance, high-speed photography, and spectroscopic and electrical measurements 

[151, 152, 160-163]. 

 

 

 

(a)                                                           (b) 

 

Figure 3. (a) Gliding arc, schematic diagram (b) a picture of a GAD reactor [8, 132] 

 

The GAD, nevertheless, has some drawbacks. For example, it is less compatible with some 

industrial systems due to the flat 2D electrode geometry. Furthermore, the CO2 conversion is quite 

non-uniform and limited because a substantial amount of the gas does not pass through the active 

discharge region. In addition, in order to drag the arc, a high gas flow rate is required and hence 

limits gas residence time resulting in limiting CO2 conversion.   

The effect of vortex flow configuration on CO2 conversion was investigated by Nunnally et al. 

[137] using a rotating gliding arc[164]. Comparing reverse vortex flow and forward vortex flow, 

a high level of thermodynamic efficiency (approximately 40%) was attained due to 3D vortex 

stabilization. GAD has shown a high energy efficiency in the range of 30-35% using reverse vortex 

flow at atmospheric pressure with a CO2 conversion of about 10% (CO2 splitting). This high 

efficiency in GAD may be attributed to a high-temperature gradient existing between the 

surrounding gas and GAD, resulting in fast quenching. Li et al. [165] experimented with a 

combination of GAD with a Ni/CeO2/Al2O3 catalyst in a heat-insulated reactor. An energy 

efficiency of 86% was obtained with a CO2 conversion and CH4 conversion of 23% and 92%, 



14	

	

respectively. The distance of the catalyst-bed to the GAD played a role in increasing both CO2 and 

CH4 conversions. The Ni-based catalysts may have been reduced by the warm plasma (containing 

the outgoing gas) during the set-up, which may have also helped to improve the conversion of both 

gases.  

	

2.2.3. Microwave discharge  
	

MW discharge is created by electromagnetic waves with frequencies (f) greater than 300 MHz. 

MW wavelengths are in the limits of millimeters (mm) up to several tens of centimeters (cm). The 

most frequently used MW discharge frequency is 2.45 GHz. There are various kinds of MW 

plasma discharges, such as surface wave discharge, electron cyclotron resonance, cavity induced 

discharges, and freely expanding atmospheric plasma discharge torches. MW discharges are used 

for medical and industrial applications, and scientific usage [166, 167]. Furthermore, MW 

discharge was classified into four major areas of application, namely [168]: 1) plasma  discharge 

resonance heating and current drive (high average power oscillators); 2) radio-frequency charged 

particle acceleration in high energy linear colliders; 3) radar and communications systems 

(generally moderate power); and 4) high-peak-power sources for exploratory development and 

weapons-effect simulation. Surface wave (SW) discharge is most regularly used for the conversion 

of CO2 [169, 170].  

 

MW discharge can be created either in pulse or in the continuum wave spectrum at incident MW 

powers ranging from several Watts (W) to hundreds of kilowatts (kW). The MW Discharge 

absorbed power is approximately 90% of the supplied incident power. Low pressure MW 

discharges often operate with the plasma density (n=)  greater than the given critical density nc, nc 

(cm3) ≈1.24 × 1010 f2 (GHz)[146-147], compared to other types of discharges. Some of the merits 

of MW discharge are 1) plasma generation is simple (with absorbed power level either >100 

W/cm3 or < 1 W/cm3; 2) MW discharge is electrodeless, hence low maintenance cost and a wide 

range of operating pressures (10-5 Torr to atmospheric pressure); 3) it has a high electric utilization 

efficiency (approximately 85% conversion of electric to microwave energy at a frequency of 815 

MHz); 4) no contamination of the gas-phase or electrode corrosion occurs during plasma 

generation; and 5) MW discharge can be generated in both small and large chambers (as well as 
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in free space), providing great flexibility for reactor design and potential for scale-up. Besides, the 

MW discharge internal structure can be changed by controlling electrodynamic characteristics. 

The energy efficiency of MW can be improved through the realization of the interaction between 

the electromagnetic field and the plasma, prompting variations in generator design that can 

produce highly efficient MW for different plasma applications [171-177].  example  schematic and 

image of a MW discharge are shown in Fig. 4. Fig. 5 shows the schematic for a nozzleless 

waveguide-supplied coaxial line-based MW plasma used for CH4 reforming.  

 

 

 

 

Figure 4. Schematic (left) and image (right) of a MW discharge [158] 
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Figure 5. Schematic view of the nozzleless waveguide-supplied coaxial line-based microwave 

plasma source [178, 179]. 

 

The mechanism of MW discharge generated by a virtual cathode oscillation was investigated and 

it was concluded that the frequency dependence of MW power gain is affected by both the current 

of the modulated electron beam and oscillating electric field [180]. The major disadvantages of the 

MW discharge method are that it is less cost-effective and has low energy efficiency [181, 182]. 

Thus, continuous improvement of electrical-based systems is crucial for the commercial 

applications of the MW discharge method [183-186].  

 

2.2.4. Glow discharge (GD)  
	

GD is a low pressure (0.1–10 mbar) discharge normally operating between two flat electrodes. The 

electrons in GD are usually highly energetic with sufficient energy to dissociate, ionize, or excite 

any molecules or neutral atoms with which they may collide [187-189]. The glow discharge 

chemistry entails CO2 reduction and the formation of noticeable concentrations of additives i.e. 

CO, O2, OH, water vapor, and nitric oxides in the laser gas chamber. These additives, to a large 

extent, can reduce efficiency and laser output power which interferes with the kinetics of 
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ionization, excitation and recombination processes [190-192]. The excitation collision results in 

the generation of excited species which decay to lower levels by the emission of light, leading to 

its characteristic name “glow” discharge [193-196]. Several reported research works focus on 

atmospheric pressure glow discharge (APGD) [197-199], partial discharges (pulseless discharge) 

[200], cold plasma processing [201] and lasers [202]. APDG has various applications in 

combustion, aerodynamic flow control, biomedical, surface treatment, and biological and chemical 

decontamination [203]. Li et al. [83] carried out DRM to syngas using APDG. The highest 

conversions of 90.3% for CO2 and 98.5% for CH4 (conversion ability was 12.2 mmol/kJ) were 

achieved within the input power range of 49.5 W ~ 88.4 W, CH4/CO2 of 0.43 to 1.5, and total feed 

flow rate range 360 mLmin-1 ~4000 ml/min. This was achieved mainly due to the benefits of 

APDG, such as the ability to offer a vast array of chemically active species without increasing gas 

temperatures. An investigation conducted for CO2 reforming of CH4 using APGD attained a 

conversion of 83.2% and 91.9% for CO2 and CH4, respectively, under the following conditions: 

input power range of 240-600 W, CH4/CO2 of 0.2 to 1.0, and total flow of 140 - 500 ml/min [84]. 

This indicates that the electron energy distribution is not affected during the discharge even though 

the electron density is directly proportional to the input power. Furthermore, increasing CH4 

content may lead to serious carbon deposition on electrodes. The synthetic gas produced contained 

a low H2 to CO ratio, which is highly preferentially used for liquid hydrocarbon production. The 

major challenge encountered was carbon deposition which led to rapid catalyst deactivation. 

Generally, the benefits of APGD are that continuous conversion can be attained and it is effective. 

However, the drawbacks are in complications involved in forming a uniform plasma in the full-

length volume of the reactor, higher voltages are needed for gas breakdown, and there can be 

difficulties in sustaining GD [204]. Table 2 provides a summary of GD characteristic parameters, 

the glow discharge pressure, electron density, degree of ionization and other parameters. 

 

Table 2. Typical characteristics of glow discharge [68,70, 300] 

Glow Discharge Parameters 

Electric field (V/cm)                                                       10  

Degree of ionization                                                   10-6-10-5      

Pressure (mbar)                                                          0.1~10	 
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Reduced field (Td)                                                          50 

Electron density (e Å-3)                                             108-1011  

Average electron energy (eV)                                    0.5-2  

	

2.2.5 Corona discharge (CD) 
	

A Corona discharge (CD)  is comprised of many streamers that extend from the tip of the electrode 

into the gas space where they eventually extinguish. The name is derived from the crown-like 

appearance of the streamers, which are formed when the voltage surpasses a certain value and 

creates a sufficiently large electrical field in the gas space surrounding the electrode for accelerated 

electrons to ionize gas molecules and create an electron avalanche [205, 206].  The subsequent 

formation of ions by the electron avalanche creates an additional electrical field that extends the 

length of the streamers. An ionization zone is then formed around the electrode in which the 

discharges are produced. The streamers are extinguished  A discharge gap ≥ 10cm is highly 

suitable for large scale application [207]. CD is, therefore, an inhomogeneous discharge, generated 

without the use of dielectric [208, 209]. From an industrial perspective, CD can be used in handling 

a large volume of gas because it can be generated at a low temperature at near to or higher than 

atmospheric pressure. CD has various industrial applications, e.g. ozone generation, NOx/SOx 

reduction, destruction of toxic compounds, etc. The main advantage of the CD is that it can be set 

up relatively easily compared to other cold plasma processes [88]. The effect of CD and Ni 

supported catalyst was investigated for CO2 reforming of CH4 at temperature T < 523K. A 

favorable rise in CO2 and CH4 was realized when the ratio of CH4/CO2 was 1:2 [210]. This resulted 

in an increase in selectivity to CO, and fewer by-products (oxygenates and hydrocarbons) were 

formed. When CH4 partial oxidation was conducted in humid CO2 or O2 using a pulsed CD, the 

primary products obtained were C2H4, C2H2 and C2H6, in addition to oxygen-containing  

hydrocarbons, namely methanol and ethanol [211]. Furthermore, ketones, methyl formate, 

aldehydes, and dimethyl ether were also obtained in lower concentrations; direct bond cleavage 

breaks down CO2.  

Pulse CD is a promising technique using a high voltage discharge which can be controlled and 

operated in a wide temperature range.  Other advantages of pulsed CD treatment are: insensitive 
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to contamination, high destruction efficiency, compact, easy to install, no demands on pressure 

and temperature, and little service required [212]. However, due to the restricted area of CD, it has 

limited applications in environmental pollution control. To overcome this problem, dielectric 

packed-bed corona reactors have been developed. Table 3 provides the typical characteristic 

parameters of the CD. 

Table 3. Typical characteristics of corona discharge [81, 213] 

Corona Discharge Parameters 

Electric field (V/cm)                                                  0.5-10  

Degree of ionization:                                              small, variable       

Reduced field (Td)                                                      2-200  

Electron density (e Å-3)                                              1013, variable 

Average electron energy (eV)                                     3.5-6  

 

2.2.6. Electron beam (EB) irradiation 
	

Currently, there are great interests in radiation technology applications as they offer new 

opportunities in dealing with environmental challenges. Matzing et al. [214] and Getoff et al. [215] 

reported that EB irradiation performance is comparable to the state of art techniques available for 

water and air pollution. Apart from environmental applications of EB radiation, it has also been 

used in modifying various solid catalysts, such as CuO–Al2O3 [216, 217], leading to significant 

changes in catalytic properties (improving catalyst performance). Jun et al. [218] investigated the 

enhancement of DRM by application of EB irradiation. The conversion of CO2 and CH4 after EB 

irradiation treatment (2 MGy) was 5-10% higher compared to untreated catalyst. The effect of EB 

irradiation on the conversion of CO2-CH4 mixture (CH4: CO2: He=1:1:1) into syngas (H2/CO) at 

500 oC over Ni/γ-Al2O3 catalysts was investigated. This validated the fundamental investigation 

carried out on radiation-induced CO2 utilization for the production of value-added products [219]. 

The main limitation in electron beam irradiation assisted CO2 dissociation is scalability for 

industrial applications due to low efficiency, the inability to sustain large mass flow rates [55, 163, 

220-222], and low CO2 conversion efficiency [223]. 
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2.2.7. Micro hollow cathode discharge (MHCD) 
	

MHCD is a specific kind of microplasma in which several hundred-micrometer diameter holes are 

drilled through an anode–dielectric–cathode structure. MHCD is an up-and-coming  technique for 

producing a stable, non-equilibrium plasma discharge in a small volume at high pressure [224, 

225]. Due to the high density, a large number of active species and accelerated radiation are 

produced by the MHCD [226]. The region of stability occurs at a power density of approximately 

100kWcm-3 [227]. Taylan et al. [228] studied CO2 dissociation using MHCD plasma reactor. The 

maximum energy conversion efficiency   of 14% was achieved at a specific energy input of 

1.1 eV/mole, whereas the maximum  CO yield of 10.5% was obtained at a specific energy input 

of 4 eV/mole, indicating that MHCD is a promising technique. MHCD finds it’s applications in 

different fields, namely: environmental pollution control [229, 230], medical fields (cancer cell 

treatment and sterilization) [231], light sources [232], optical electromechanical systems [233] 

materials surface treatment [234], micro propulsion [235], and laser applications [236]. There has 

been increased interest in MHCDs due to their ability to operate at sub-atmospheric pressure and 

at atmospheric pressure [237].  

 

2.2.8. Spark discharge (SD) 
	

A SD develops when the electric field strength between the electrodes surpasses a certain threshold 

value in v/cm. This causes a short-lived rise in ion concentration between the two points, 

transiently allowing the gases between the electrodes to act as an electrical conductor [238]. The 

SD in an adjustable reactor highly promotes the conversion of CO2 and CH4 into syngas at low-

medium power[239]. An investigation of DRM using SD attained a CO2 conversion of 65% and 

CH4 conversion of 71% at an input power of 20 W, a CO2/CH4 molar ratio of 1:1 and a flow rate 

of 100 ml/min. The selectivities to CO and H2 attained were 86% and 78%, respectively, and the 

energy efficiency was 2.3- 2.4 mmol/kJ [240]. A greater discharge stability was reported for 1:1 

CO2/CH4 compared to when ratio was increased to 1.5. This was because a reverse water gas shift 

(RWGS) reaction occurred at a 1.5 ratio, favoring formation of CO and producing H2O as a 

byproduct which affects the discharge stability. Fig. 6 shows a graph of all the data collected from 
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the literature on CO2 splitting using different plasma discharges, showing the energy efficiency as 

a function of the conversion. 

 

Figure 6. A summary of all the data collected from the literature on CO2 splitting using different 

plasma discharges, showing the energy efficiency as a function of the conversion. The thermal 

equilibrium limit and the 60% efficiency target are also indicated [158]. 

2.2.9. Radio frequency (RF) discharges 
	

RF electromagnetic fields can be applied in the generation of weakly ionized plasma at low 

pressures, generally in the range 1 – 103 Pa. At higher pressures, the collision frequency increases 

leading to change in the properties of the RF discharge, resulting in a discharge approaching a 

thermal regime when close to atmospheric pressure. In most industrial applications of RF 

discharges, a frequency of 13.56 MHz and a wavelength of 22 m are commonly used [241]. 

Homogenous plasmas are formed by the RF discharge method as a result of the large wavelength 

corresponding to the size of the discharge chamber. 

	In the 1970s and 1980s, the use of RF discharge in the conversion of CO2 was already widely 

researched both theoretically and experimentally. However, it regained much interest with the 

increased environmental challenges due to anthropogenic CO2 emissions [55, 242]. RF normally 

operates within a 1–100 MHz frequency range, leading to a corresponding wavelength in the range 

of 300–3 m, which is greatly exceeding the plasma reactor dimensions. The decomposition of CO2 
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and CH4 molecules is a result of direct electron collision by excitation of an unstable electronic 

state. In RF, inductive or capacitive coupling can be used, leading to inductively or capacitively 

coupled plasma. Some of the applications include plasma etching, thin film deposition, use in mass 

spectrometry as an ion source, and in materials sputtering [158] in addition to CO2 conversion 

applications [243-248]. The advantage of using RF discharge for CO2 conversion applications is 

its ability to obtain high electron densities at a low gas temperature [249-252]. 

3. Plasma catalysis development 

3.1 Plasma catalysis configurations 

The two main combinations of plasma-assisted catalysis are in-plasma catalysis (IPC) and post- 

plasma catalysis (PPC) as illustrated in Fig. 7. 

 

Figure 7. Schematic of the different plasma-catalyst configurations: (a) NTP only (without a 

catalyst); (b) Post-plasma catalysis;  and (c) In-plasma catalysis [158, 253, 254].  

In the PPC system, the end-products and the long-lived intermediate species produced in the 

plasma will interact with the catalyst, which is positioned downstream of the discharge [170, 255]. 

In the IPC configuration, the catalyst is situated in the plasma discharge zone and so it can interact 

with all the short-lived species produced in the plasma, e.g. radicals, electrons, excited species, 

radicals, and photons. In addition, due to its position inside the discharge zone, the catalyst 

properties are influenced by the plasma discharge and vice versa, as illustrated in Fig. 7 (c). 

Additionally, for plasma-catalytic CO2 conversion, the preparation techniques and catalysts 



23	

	

modification by plasma treatment is gaining increased attention, particularly for catalysts with low 

thermal stability [256-259].   

3.2 Interactions and synergies between non-thermal plasma and catalysis 

Interesting interactions between the catalyst and plasma for CO2 conversions generally results in 

the increase of CO2 conversion, product yield, energy efficiency, and product selectivity. The 

interactions between catalysts and plasma are commonly referred to as “synergy” [260]. It is the 

supernumerary effect of combining plasma and a catalyst (effect of catalyst plus plasma is greater 

than the sum of individual effects) [261, 262]. Fig. 8 and Fig. 9 illustrate the plasma catalysis 

synergetic effect, i.e. combining plasma with Cu-Ni/Al2O3 in DRM (Fig. 8). 

 

Figure 8. Maximum CH4 and CO2 conversion in DRM using plasma-only, thermal catalysis, and 

plasma catalysis. The improvement in the conversion of both gases due to the synergy of plasma 

catalysis is clearly illustrated.[263]. 
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Figure 9. Demonstration of the improvement in CH4 and CO2 conversion due to the synergy of 

plasma-catalysis for the DRM [158, 263] 

It is substantial to differentiate the two main effects of combining catalysts with the plasma, 

including the physical and chemical effects. The chemical effects are responsible for the improved 

selectivity of the targeted products. At the same time, the physical effects are the foundation for 

improved energy efficiency. Meanwhile, for pure CO2 splitting, primarily O2 and CO are formed. 

Therefore, the main added value of the catalyst is for energy efficiency improvement. 

Notwithstanding, CO2 conversion can also be increased by chemical effects (e.g. enhanced 

dissociative chemisorption) as a result of catalyst acid/basic sites. For reactions involving CO2 and 

other reactants (e.g., H2O, H2), such as in DRM reactions, the catalyst allows modifying selectivity 

to targeted products, although it needs to be realized that both effects are interdependent and cannot 

always be separated [255, 259]. These complex interactions/interdependence effects can be 

separated into two categories, namely: 1) the effects of plasma on the catalyst and 2) the effects of 

the catalyst on the plasma, as illustrated in Fig. 10. 

 

It is worth noting that the induced changes and the effects due to plasma catalyst reactions are 

closely related. The modification of catalyst electronic properties is as a result of morphological 

changes, and these cause changes in chemical properties. The plasma effects on the catalysts are: 

(i) surface structure and morphological changes in the catalyst resulting in improved dispersion 

and larger active surface area [264, 265]. For example, Guo et al. [266] noted that the catalyst 
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surface area increased as a result of plasma catalyst reactions and the number of corner atoms, 

vacancies, and edges of manganese oxide increased at the surface leading to improved plasma 

reactivity; (ii) modification of reaction pathways due to the availability of a wide range of active 

species; (iii) lower activation barriers and higher pre-exponential factors as a result of vibrationally 

excited plasma species, which may lead to non-adiabatic barrier crossings; (iv) formation of 

catalyst surface hot spots due to small micro-discharges; (v) collision-induced surface chemistry 

[267]; (vi) chemical and electronic changes on the catalyst surface that may change the catalyst 

oxidation state leading to a change in the catalyst work-function. This may be attributed to the 

presence of current or voltage altering the work-function of the catalyst [158, 255, 268, 269]. Khoja 

et al. [270] noted that surface chemistry is the most pertinent mechanism while discussing the 

synergetic effect in the DBD reactor since the plasma-catalytic effect depends on the DRM-DBD 

surface chemistry. This illustrates the delivery mechanism of the reactive species and the removal 

of unwanted molecules from the surface, which regulates the activity of the DRM process. DRM-

DBD surface chemistry can be divided into different categories, such as kinetic energy reactions 

or gas molecules with internal energy, photon-induced surface reactions, adsorption of charge 

carriers, collision-induced surface reactions, adsorption of natural species, and surface charging. 

Before the dissociation process, the gas molecules are organized according to their vibrational or 

translational energy. This occurrence is usually known as dissociative chemisorption and 

molecular physisorption.  

Some effects of plasma on the catalyst are closely related to the effects of catalysts on plasma, e.g. 

improved electric field, the formation of catalyst hot spots due to  micro discharges in the catalysts, 

and changes in discharge type [255]. Presumably, the most frequently researched effect of the 

catalyst on plasma is the electric field improvement near the surface of the catalyst using DBD. 

Another effect of the catalyst on the plasma  is the alteration in the discharge type as a result of the 

development of surface discharge and vibrationally excited species. The influence of catalyst on 

plasma is particularly important for GAD and MW since the amount of energy that is deposited in 

vibrational excitations can be adjusted either on the catalyst-coated pellets/dielectric beads or on 

the catalyst surface. Generally, the discharge mode is filamentary discharge formation. 

Nevertheless, the discharge volume is decreased when fully packing the discharge zone of a DBD 

reactor, leading to a change in the discharge mode — generally from a filamentary discharge to a 
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surface discharge — which in the long run leads to a decrease in CO2 and CH4 conversion in DRM 

[271, 272].  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. An overview of the possible effects of the catalyst on the plasma and vice versa, 
possibly leading to synergism in plasma-catalysis[255, 269, 272].	

4. Plasma CO2 conversion 

4.1. Plasma CO2 conversion without catalyst 

Plasma has the potential to enable thermodynamically unfavorable chemical reactions to occur on 

the basis of its non-equilibrium properties, low-power requirement and its capacity to induce 

physical and chemical reactions at a relatively low temperature [273]. Numerous works have been 

conducted on the application of plasma technology in relation to CO2 conversion. Nunnally et al. 

[137] reported an energy efficiency and a conversion of 43% and 18%, respectively, for CO2 

splitting. The level of efficiency attained may be accredited to non-equilibrium CO2 excitation and 

the high-temperature gradient that exists between GAD and the surrounding gas, leading to fast 

quenching. Tu et al. [91] attained an energy efficiency of 60% and a conversion in the range of 8-

16% was reported for DRM using a GAD. The result indicated that the energy efficiency of DRM 

using GAD is in an order of magnitude greater than that for DBD processing or CD. This is mainly 

because of the higher electron density (approximately 1023 per cubic meters) generated in the 

GAD. Lu et al. [274] studied CO2 conversion at low temperature and atmospheric pressure in a 

DBD reactor. The results obtained for the system at 600 oC without a catalyst were 41% CH4 
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conversion and 55% CO2 conversion. CO2 dissociation in an inductively coupled RF plasma and 

MW plasma was carried out at a low gas pressure with both systems exhibiting the features of 

NTP. The maximum energy efficiency attained was 59.3% [275]. For CO2 reduction in pure CO2 

and CO2 + O2 with a flow rate of 100 ml/min using a wire to cylinder reactor operated in the range 

of 4.5–6.5 kV at a negative polarity without catalyst, the conversion rate of CO2 to CO was very 

low [396]. However, increased CO production was observed when the O2 percentage was raised 

in the gas mixture. Similarly, when CO2 decomposition using direct current wire-plate CD was 

investigated, the maximum CO2 decomposition achieved was 10.91% for a flow rate of 30 ml/min 

[276]. This confirmed that direct current CD plasma can lead to higher conversion of CO2 into O2 

and CO. The low discharge power and higher flow rates are essential in transforming electric 

energy into chemical energy in CO2 molecules [276]. When CO2 conversion was conducted using 

a coplanar DBD without a catalyst, the highest CO2 conversion of 1% was attained at 0.190 kJ/L. 

In addition, the highest CO yield of 0.7% was obtained at a specific input energy of 0.210 kJ/L: a 

clear indication that energy efficiency can be increased by the use of diluted CO2 in plasma 

operation [277]. The highest energy efficiency achieved so far for MW is 90% at a pressure range 

of 100 Torr-200 Torr [55]. Table 4 provides a summary of the results obtained by various works 

on plasma CO2 without a catalyst. 

Table 4. Plasma CO2 conversion without a catalyst 

Plasma Type χ (%) η(%) SIE (eV/molecule) SIE (J/cm3) Ref. 

DBD 30 1 87 375 [46] 

DBD 18 3.8 13 45 [278] 

DBD 14.3 8 5.2 22.4 [279] 

CD 11 2 16 69 [280] 

GAD 4.3 46 0.3 1.3 [137] 

GAD 15 19 2.3 9.9 [77] 

RF 20 3 19 82 [244] 

MW 10 20 1.4 6 [115] 

MW 10 90 0.3 1.3 [281] 

MW 80 6 39 168.1 [282] 

MW 20 20 2.9 12.5 [283] 
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MW 20 20 3 - [64] 

MW 83 24 10.3 - [284] 

MW 47 35 3.9 - [284] 

MW 11 51 0.6 - [284] 

MW 9 50 0.9 - [285] 

MW 3 82 0.1 - [285] 

 

4.2. Plasma-catalytic CO2 conversion 

The combination of NTP with a catalyst is a promising solution for CO2 conversion [286]. 

Integrating NTP with catalysts can improve the energy efficiency of the reaction by more than 

60%, generate UV emission, enhance the formation of both short-lived radicals and long-lived 

intermediate species (100 µ s) [256],  and enable catalyst surface modification [107]. The 

incorporation of different catalysts in the plasma zone is frequently conducted with NTP for DRM 

in order to attain a high conversion rates and improved H2 selectivities,  while reducing the amount 

of carbon deposition [287-289]. DRM using Pt-Ni/ZSM-5 prepared via the impregnation method 

was conducted and the results were compared with those attained from theoretical conversions 

without catalyst [290]. It was discovered that the amount of nickel precursor plays a crucial role 

in both the surface and catalytic properties, especially on bimetallic catalysts. The improved 

catalytic activity and stability achieved when using bimetallic catalysts was linked to the increased 

nickel dispersion. 

In a study of CO2 conversion at low temperature and atmospheric pressure using a DBD reactor, 

the conversion obtained using a plasma/g-C3N4 catalyst was twice that achieved when using the 

plasma without the g-C3N4 catalyst. In addition, incorporating the g-C3N4 catalyst into the plasma 

system improved the energy efficiency  by 157%  [274]. This was due to the injection of high 

energy electrons into the conduction band of g-C2N4 from the plasma that then participated in the 

conversion of CO2 adsorbed on the surface of the catalyst to COad and Oad. The high voltage was 

found to significantly enhance the separation of holes and photogenerated electrons on the catalyst 

surface, while the g-C3N4 catalyst modified the plasma discharge mode to produce a more uniform 

discharge. Michielsen et al. [291] showed the impact of catalyst materials and packing on CO2 
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conversion in a DBD plasma. The synergy created between the plasma and catalyst  lowered the 

catalyst operating temperature, improved the catalytic activity, stability, the yield, selectivity, and 

energy efficiency of the process during CO2 conversion. The highest CO2 conversion and energy 

efficiency obtained was 25% and 4.5%, respectively, using BaTiO3 as a catalyst. This work 

showed that altering the catalyst active sites and adjusting the support  properties (e.g. packing and 

material) has huge potential to improve the performance of a packed bed plasma reactor for 

conversion of CO2. It was observed by Mei et al. that when  Ni/Al2O3 was used for DRM in a 

cylindrical DBD reactor, the yield of the targeted products (CO+H2) were notably improved 

compared to reactions using catalyst alone or NTP alone [49]. This was attributed to the great 

potential and synergy generated between the NTP and the catalyst, which lowered the catalyst 

operating temperature and improved the catalytic stability and activity. As a result, the conversion 

of reactants, the selectivity of products, and the energy efficiency were significantly improved, 

which also improved product yield. Table 5 provides a summary of various catalysts used in 

plasma-catalytic CO2 conversion. 

Table 5. Summary of various catalysts used in plasma-catalytic CO2 conversion 

 

Catalyst Catalyst 

weight 

(g) 

Power (W) CH4 

conversion 

(%) 

CO2 

conversion 

(%) 

Ref. 

g-C3N4  0.2 40 - 12 [274] 

LaNiO3@SiO2 0.2 150 88 78 [292] 

Pt12Ni 0.05 34.6 54 73 [290] 

K-Ni/MgO-

ZrO2 

0.2 - 80 88 [293] 

BaZr0.75T0.25 O3 4.2 - 58 43 [294] 

BaTiO3 0.3 100 - 25 [291] 

Ni/Al2O3 0.25 50 18 13 [295] 

Zeolite 1 74 52 50 [296] 
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The two major types of catalysis used in plasma catalytic process are noble metal-based catalysis 

(e.g. Rh- and Ru- based catalysis) and transition metal-based catalysis (Ni-based catalysis, Cu- 

and Fe- based catalysis). Noble metal-based catalysis is efficient for the formation of formates and 

formic acids, but is not suitable for industrial applications due to the high costs of noble metals 

[297]. Transition metal-based catalysts, however, are much cheaper, though they generally have 

problems with low selectivity and low yields.  It is essential, therefore, that advancements are made 

to improve the catalytic systems in order for the plasma catalytic process to become economically 

feasible [9, 158]. 	

4.2.1 CO2 dissociation to CO and O2 

	

Much interest has been drawn to CO2 dissociation into CO and O2. It is worth noting that the 

reaction is unattainable at low temperatures with commercially available catalysis, although CO is 

a crucial chemical feedstock for fuel synthesis and production of other chemicals [30, 41, 257]. 

The direct decomposition of CO2 could be an interesting method to valorize CO2 and eliminate 

side product formation from hydrocarbons [1, 298]. NTP enhances the highly endothermic reaction 

(R4). Experiments and modeling have been conducted by various researchers using different kinds 

of plasmas. DBDs (with coaxial DBD reactor being the most used reactor) [46, 299, 300], MW 

[169], and GAD [301] are the most commonly researched. The effects of NTP on the system can 

be related to the following reactions: electronic excitation of molecules, joule effect (gas heating) 

due to vibrational excitation, ionization, and direct dissociation of the CO2 molecules by electrons 

(R5 – R8). 

e + CO2→ e + CO2 (v*)                                                                                                                 (R5)  

e +CO2 (v*) → e + CO + O                                                                                                         (R6) 

e + CO2 → CO2
+ + e + e                                                                                                                (R7) 

e + CO2 → CO + O + e                                                                                                                         (R8) 

 

v* is the vibrationally excited state; approximately 97% of the total NTP energy can be transmitted 

to vibrationally excited state CO2 if the NTP discharge has an electron temperature range of 1-2 
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eV, or a reduced electric field (E/N) of 20-40 Td [302, 303]. For temporary and spatially transient 

DBD plasmas, E/N is greatly determined by the microdischarge (typically greater than 200 Td). 

Using DBD, the energy efficiency for CO2 conversion is usually in the range of  4-8% [47].            

CO2 dissociates by collision with energetic electrons, resulting in the formation of CO, O2, and C 

via various reactions subject to the energy level of the electrons [1, 291]. The most crucial 

parameter in CO2 dissociation is the specific input energy as it affects both the energy efficiency 

and the CO2 conversion [117]. When specific input energy was reduced, the energy efficiency 

improved to 9% and a corresponding drop in conversion to 8%. CO2 dissociation has been 

conducted in packed bed DBD reactors using the following catalysts: Pd, Ag, Ni, coated with 

Al2O3 support [291] or zeolite 3A. Zeolite 3A enhanced selectivity towards hydrogen; the shape 

selectivity resulted in the formation of liquid hydrocarbons (CxHy) [304]. The synergetic effects 

between the catalysts and plasma depend on the variation of plasma characteristics as a result of 

the catalyst material and packing. A possible negative or positive effect, therefore, hinges on the 

following: changes in produced plasma species, discharge type, discharge length, discharge power, 

sorption effects, electric fields, etc. [295]. It was realized that the main parameter that affects 

process energy efficiency was the flow rate when using a cylindrical DBD for CO2 conversion 

[117] . At the same time, an increase of discharge power and discharge length increased the CO2 

conversion. Furthermore, the applied frequency had an insignificant effect on the energy efficiency 

and also on the conversion. Nonetheless, the plasma appears more filamentary at high frequency 

(75 kHz) in comparison to low frequency (6 kHz).  The effects of carrier gas (N2, He and Ar) in 

CO2 dissociation via NTP has also been investigated. When Ar and He were used, an increase in 

CO2 conversion was recorded. However, the effective conversion was reduced due to less CO2 in 

the mixture, hence inefficiency in counteracting the drop in CO2 fraction [126, 127, 151, 223]. It 

has been noted that the addition of carrier gas resulted in increased costs. DBD has been shown to 

be successful in the absence of carrier gas [46]. It has been found that the most critical parameter 

is the gas flow rate as it affects CO-yield and the conversion of CO2. Optimization of the dielectric 

material and reactor geometry are some of the ways of improving energy efficiency and CO2 

conversion, in addition to the introduction of a catalyst bed to the discharge zone [46]. Electron 

impact dissociation has been singled out as the dominant pathway for CO2 decomposition in DBD 

plasma, whereas in GAD and MW discharges,  a more energy-efficient vibrational excitation 

pathway plays a crucial role.[305]. Fig. 11 shows reaction pathways demonstrating the CO2 
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splitting formation and mechanisms. The predominant CO2 loss mechanism is dissociation upon 

collision with electrons (e), forming CO and O. As shown from the thickest arrow line, no clear 

contrast is made between the ground state CO2 molecules and the vibrationally excited levels.  

 

  

(a) 

  

(b) 
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Figure 11. Reaction pathways demonstrating the CO2 splitting (a) and formation (b) mechanisms. 

The thickness of the arrow lines corresponds to the importance of the reactions. The conversion 

reactions between O, O2, and O3 are also indicated in (b), with green arrow lines [8] 

When CO2 splitting using a DBD with BaTiO3 was carried out [8], the dielectric material  

improved the energy efficiency and CO2 decomposition. The CO2 conversion and the energy 

efficiency obtained were 13.5% and 7%, respectively, at a CO2 feed of 50sccm and power of 20 

W.  It has been demonstrated that CO2 can be effectively decomposed by MW discharge of Ar/CO2 

or He/CO2, with Ar being the most effective carrier gas for a low-temperature decomposition of 

CO2 into O2 [275] The most frequently used MW type for CO2 decomposition is surface guide 

(915 GHz and 2.45 GHz) [306]. This may be due to the high frequency of MW which in most 

cases is linked to the maximum absorption of applied power by the electrons, in addition to the 

slightly high excitation of the carbon dioxide asymmetric mode which is crucial for CO2 

decomposition.  

Wang et al. [307] carried out CO2 decomposition using a glow discharge with a 7 kV input voltage 

and achieved a CO2 conversion of 30%. It was realized that the reaction rates increased with an 

increase in input voltage. However, the highest energy efficiency was attained with CO2-

containing gas at high flow rates, high CO2 concentration and reduced input voltage, at the expense 

of CO2 conversion. The amount of heat in the reactor is removed by the high flow rates, hence 

high flow rates are preferred in order to improve the reaction rate and the reactor efficiency. An 

investigation of CO2 dissociation efficiency using RF discharge at a plasma power of 1 kW and at 

a frequency of 13.56 MHz was carried out and a 90% conversion was achieved  [244], which can 

be linked to the low-temperature plasma system. The system was capable of attaining high electron 

densities, hence improving the frequency of electron collisions that stimulate dissociation. The low 

gas temperature discharge also shields O2 and CO from reverse reactions by reducing the rate of 

reaction, which would otherwise lower the efficiency of the entire process. However, the 

maximum energy efficiency achieved was 3%. The process of CO2 dissociation using plasma and 

a g-C3N4 catalyst is illustrated in Fig. 12. NTP is generated in the high voltage electric field and 

CO2 is dissociated into O and CO radicals by gas-phase high energy electrons [308].  The g-C3N4 

catalyst  has a broad pore distribution, containing mostly mesopores which increase the g-C3N4 

catalyst specific surface area and, hence play a key role in the CO2 adsorption process [274]. The 
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plasma-excited molecules of CO2 are adsorbed onto the catalyst surface to form CO2ad. The O 

radicals and CO radicals generated by the gas phase plasma are also adsorbed onto the catalyst 

surface, forming Oad and COad, respectively. Furthermore, the g-C3N4 is excited by the high-energy 

active species produced in the discharge, which generates holes and electrons in the surface 

structure of the catalyst.. The holes and electrons are efficiently separated by the existing high 

voltage electric field. 

 

Figure 12. CO2 dissociation over a g-C3N4 catalyst in a NTP [274]   

 

Huang et al. [275] carried out CO2 dissociation in two different systems: one with an inductively 

coupled RF plasma at 2 kW and 27.12 MHz, and the other with a MW plasma at 2 kW. Both the 

systems showed features of NTP and the maximum energy efficiency obtained was 59.3%, 

surpassing a peak value of approximately 45% attained at thermodynamic equilibrium. This is a 

clear indication that electron-induced vibrational excitation plays a significant role in CO2 

dissociation in the NTP. The addition of gases during the performance of CO2 dissociation using 

GAD at atmospheric pressure improved the conversion reaction due to the existence of excited N2 

levels, which creates a positive impact. However, air and oxygen produced a negative effect, which 

may have been be due to C and CO reverse reaction to CO2 [135] [77]. Table 6 provides a 

summarized result for various NTP sources. Table 6 compares the energy efficiency, conversion 

efficiency and SIE of different non-thermal plasma types with different gas mixtures.  

Table 6. Comparison of CO2 splitting and energy efficiency	using different NTP sources 
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Plasma  Gas  Catalyst SIE 

(eV/ 

molecule) 

SIE 

(J/cm3) 

χ	(%) η	(%) Ref. 

DBD CO2 g-C3N4 - 24 47.0 - [274] 

MW CO2 NiO/TiO2 2.9 12.5 42.0 42.0 [283] 

DBD CO2 - - 120.0 27.2 2.8 [48] 

GAD CO2 - 0.25 - 34.3 2.9 [132] 

MW CO2/Ar/O2 NiO/TiO2  - 30.0 41.3 17.2 [22] 

DBD CO2 BaTiO3 6.5 28.0 38.0 17.0 [302] 

MW CO2-H2O-

Ar 

- 1.6 - - 10.0 [62] 

MW CO2/N2 - 7.1 - 53.0 21.0 [309] 

MW CO2-N2 - 39.0 168.1 80.0 6.0 [282] 

DBD CO2-H2O-

Ar 

Ni/γ-

Al2O3 

4.5 19.4 36.0 23.0 [287] 

DBD  CO2 CaTiO3 - 52.9 20.5 4.8 [310] 

RF CO2 - 19.0 82.0 90.0 3.0 [46] 

GAD CO2/H2 - - 15.4 17.4 14.1 [77] 

Corona CO2 - - 80.0 10.9 1.7 [276] 

	

4.2.2 Dry reforming of methane 
	

4.2.2.1. Dry reforming of methane for syngas production 
	

As illustrated in reaction R1, DRM has the advantage of utilizing CO2 and CH4 (both greenhouse 

gases) in a single process to produce syngas along with other valuable chemicals, i.e. direct higher 

hydrocarbon formation. Syngas can be further processed into other chemicals and fuels i.e. value-

added oxygenated products namely; ethanol, dimethyl ether, formic acid, formaldehyde and 

methanol [81, 311-313]. Consequently, DRM is an effective method for environmental protection 

through effective energy resource utilization, hence acting as a means of sustainable development 

[34, 314, 315]. DRM is especially valuable in the production of oxygenated chemicals due to the 

low H2/CO molar ratio of the product gas [91, 316]. However, the DRM process faces challenges, 

such as unfavorable thermodynamic limitations (ΔG > 0 at T > 700 °C). Indeed, DRM is more 

endothermic than steam reforming and demands more energy [70, 317]. This is because the	

reactant gases in DRM, CO2 (5.5 eV) and CH4 (4.45 eV), have dissociation energies that require 

considerable thermal energy to overcome (CO2 is very stable and has the highest oxidized state of 
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carbon [318]). It is, therefore, difficult to conduct the co-activation of both C-H and C-O bonds in 

CH4 and CO2, and so DRM is frequently carried out at high temperatures (~800 °C) for thermal 

processes [319-321], although this can be significantly reduced through the use of catalysts [81, 

322, 323]. NTP-based techniques also have great potential for converting CO2 into fuels and value-

added chemicals since NTPs possesses the capability of breaking the C-O bonds in a highly stable 

CO2 molecule at room temperature [30]. Investigations have been conducted on DRM using either 

pure or diluted CO2 with non-oxidative gases, such as H2, Ar or He, to improve the conversion 

[52, 73, 117, 324], as illustrated in Fig. 13. 

 

Figure 13. Effect of He addition on the conversion of CH4 and CO2 in the plasma packed with 

glass balls (discharge Power 8 W, total flow 40 ml/min, room temperature, CO2/CH4 molar ratio 

1:1) [47]. 

Diluent gases such as N2, He, and Ar are mostly used in DBD plasma DRM to enhance the product 

distribution and minimize coke formation. However, this leads to additional, undesired cost. 

Diluent gas regulates the electron energy distribution function, which adjusts the reaction 

pathways, discharge characteristics, and H2/CO ratio. Noble gases, namely He and Ar, are the 

preferred choice as a diluent, which can influence the plasma discharge owing to their lower 

breakdown voltages (compared with CO2 and CH4), resulting in the improved dissociation and 

ionization process [325]. He and Ar can be excited to metastable levels and ionized states, which 

are responsible for the energy transfer in DBD plasma DRM. Indeed, the addition of Ar or He 
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results in greater electron energy distribution functions in the gas discharge state, leading to more 

opportunities for inelastic impact on CO2 and CH4 with the other species or co-reactants. Thus, the 

degree of ionization of the CO2 and CH4 molecules in the presence of Ar and He increases and 

CO2 and CH4 dissociation is faster [270].  

The production of syngas by DRM using DBD has been investigated extensively under different 

experimental conditions, including flow rates, reactor designs, CH4/CO2 ratios, input powers, 

temperatures, and discharge lengths, etc. [263, 326]. Due to the complexity of plasma media, 

several hundred reactions can take place. The most probable reaction pathways for the formation 

and consumption of value added products and their intermediates from the conversion of a 

CO2/CH4 mixture are shown in Table 7. The CO production is closely correlated with CO2 

dissociation as indicated in reactions R13, R20, R28, R31, R37, R39, R40, and R41. R29 is as a 

result of an electron impact on CO2, converting it into CO and O; this is a very crucial process in 

CO2 splitting. In the presence of CH4, the O atoms are consumed by the following reactions: R11, 

R13, R31, and R25.  According to R21 the recombination of two CH3* results in the formation of 

ethane. R22 and R23 may also result in ethane formation, though with less probability than R21. 

CH2O can also be formed to some extent from R24 and R25. According to Ozkan et al. [150], the 

formation of oxygenated molecules, including methanol or acetic acid, also occurs in plasma. A 

two-step collisional mechanism may lead to C2H4 production, beginning with the dissociation of 

C2H6 into H radicals and C2H5
* (R35) followed by the collision of C2H5

* with the second electron, 

which then leads to the formation of C2H4 due to the abstraction of H radical (R35).  

 

Table 7. Reaction pathways for formation and consumption of value added products in CO2/CH4 

and their intermediates for plasma [313, 314,.315, 316, 317, 150, 323] 

Reaction Rate Constant 

 (cm
3
/s) 

Reaction 

No.  

Ref. 

CH4 + CH*     →    C2H4 + H* 9.74   × 10-11  R9 [327, 328] 

CH3* + CH2*  →   C2H4 + H* 7.01   × 10-11  R10 [327, 328] 

C2H5* + O*    →     C2H4 + OH* 4.40   × 10-11  R11 [328, 329] 

CH4 + e           →    CH3* + H* + e σ3 R12 [328, 330, 331] 

CH2 + O*        →    CO + H2     5.53   ×   10-11  R13 [328, 332] 
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CH3*               →    CH2* + H* 1.69   ×  10-8  R14 [150, 327, 333] 

CH3* + e         →    CH2* + H* 2.25   ×   10-8  R15 [331, 332] 

CH3* + e         →    CH* + H2 7.88   ×   10-9  R16 [331, 332] 

CH3* + H*      →    CH2* + H2 1.00   ×   10-10  R17 [327, 333] 

CH4 + H*         →    CH3* + H2 5.83   ×   10-13 R18 [327] 

CH4
+ + H*        →    CH3*+ H2 1.00   ×   10 11   R19 [333] 

CH* + O*        →    CO + H* 6.90   ×  10-11  R20 [327] 

CH3* + CH3*  →     C2H6 4.20   × 10 11  R21 [334] 

C2H5* + H*      →     C2H6 2.25   ×  10-10  R22 [329] 

C2H5* + CH4   →     C2H6 + CH3* 1.83   ×  10-24  R23 [335] 

CH2* + O2      →     H2CO + O* 5.93   ×  10 -13  R24 [327, 336] 

CH3* + O*      →     H2CO + H* 1.12   ×  10-10  R25 [337] 

CH* + CO2     →      2CO + H* 9.68   ×  10 -13  R26 [328] 

H* + H*          →      H2 1.44   ×  10 -14  R27 [300, 338] 

CO2 + H*        →       CO + OH* 1. 40  ×  10 29  R28 [81, 335] 

CO2 + e           →       CO + O* + e 

CO2 + e           →       CO2
+ + 2 e 

σ23 

1.27   ×  10 -10  

R29 

R30 

[81, 330, 338, 339] 

[339, 340] 

CO2 + O*        →       CO + O2 2.01   ×   10 -10  R31 [339, 341] 

CO2
+ + e          →       CO + O* 2.71   ×   10-07  R32 [332] 

CO2 + e          →        CH4CO + O* + 

e- 

σ24 R33 [339] 

C2H6 + e         →       C2H5 + H* +e σ18 R34 [330, 342] 

C2H5* + e       →       C2H4 + H* + e σ19 R35 [342] 

CH + e            →       C + H + e σ20 R36 [330] 

CO2 + e           →       CO + O + e 5.4     ×  10 -11 R37 [340] 

CH4 + e*        →       CH3* + H* σ21 R38 [340] 

C + O + e*     →       CO σ22 R39 [150, 340] 

CO2 + e           →       CO + O- 5.94   ×   10 -13  R40 [150] 

CO2
+ + e          →       CO + O  6.6    ×   10 -31  R41 [340] 

*The adsorption sites. 
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The combination of NTP with heterogeneous catalysts has attracted much attention in order to 

improve the selectivity to target products and the conversion of CO2 [213]. Various catalysts have 

been investigated for DRM, including those reported by Yap et al. [52], Ozkan [300], Wang et al. 

[311], Snoeckx et al. [158] and Sentek et al. [324]. For a full summary of different catalysts used 

for CO2 DRM, refer to [343, 344]. 

Zhang et al. [329] studied the conversion of  CH4  and CO2 for higher hydrocarbons and synthesis 

gas by the combination of catalysts and DBD. It was noted that, in addition to the dissociation of 

CO2 to O and CO radicals in a gas phase plasma, CO2 and plasma-excited CO2 molecules can also 

be adsorbed on the surface of the Ni/SiO2 catalyst forming adsorbed CO2ad. In NTP, the energetic 

electrons can dissociate these CO2ad molecules to form adsorbed Oad and COad species on the 

surface of Ni/SiO2. The desorption of COad can produce CO. Meanwhile, the recombination of Oad 

can form O2ad and the desorption of O2ad can produce O2. At the same time, the Oad species may 

oxidize Ni catalyst to form NiO which can then be reduced to Ni by COad or CO in the reaction. 

There is a likelihood that the CO and O radicals produced by plasma in the gas phase can be 

adsorbed on the Ni/SiO2 forming COad and Oad. The combination of Oad and COad on the Ni catalyst 

could lead to CO2 formation. The other reactions, including the reaction between CO and Oad, and 

the reaction between COad and O, may lead to the formation of CO2 [330]. Spencer et al. [244]  

reported that the recombination of O radicals to O2 prevails over the combination of CO with O 

radicals on various solid surfaces at low temperatures.		 

Zeng et al. [51] and  Sentek et al. [324] carried out DRM using a DBD reactor. The molar ratio of 

CO2/CH4 affects the CO/H2 molar ratio, conversion of the reactants, the yield, and the selectivities 

of the main products. Variation of the total flow rate of the reactants has an effect on neither the 

selectivity to syngas nor CO/H2 molar ratio [51]. The parameters that affect the CO2 and CH4 

conversion were confirmed when Nguyen et al converted them to CO+H2 using a CD [88]. Applied 

peak voltage, pulse frequency, CH4/CO2 ratio, and the total flow rate were key variables for DRM. 

Rahemi et al. [345] conducted CO2 reforming of CH4 using a glow discharge (GD) to investigate 

the influence of applied voltage on catalytic properties using a Ni–Co/Al2O3–ZrO2 catalyst. The 

results obtained are further confirmation that enhanced voltages lead to increased production of 

energetic plasma species, resulting in increased surface defects which are important for catalytic 

reactivity. Long et al. [346] carried out DRM using a Ni/γ-Al2O3 catalyst and cold plasma jet, and 
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realized that cold plasma was a better option to convert CO2 and CH4 to CO+H2. The combination 

of cold plasma jet and Ni/γ-Al2O3 enhanced the production yields, energy efficiency and the 

reactant conversions. The activity of the catalyst, which was placed outside the discharge zone, 

was improved as it was automatically heated by the plasma jet. Li et al. [347] investigated the 

HZSM-5 zeolite effect on the CO2 reforming of CH4 using a corona discharge. The composition 

and CO/H2 ratio changed as a result of the high voltage applied to initiate CD.  

4.2.2.2. Dry reforming of methane for the synthesis of oxygenates  
Direct conversion of methane and carbon dioxide into liquid fuels and chemicals through a single-

step catalytic process that bypasses the formation of syngas remains a major challenge. The direct 

conversion of CO2 with CH4 represents a promising process (Fig. 14) for not only CH4 activation 

but also CO2 valorization. CH4 can replace H2 as an ideal H supplier in CO2 hydrogenation as CH4 

contains a high hydrogen density and is available from various sources, such as biogas, flared gas, 

natural gas, and shale gas [348].  

 

 

Figure 14. Possible reaction routes for the formation of CH3COOH, CH3OH, and C2H5OH in the 

direct reforming of CH4 and CO2 using a DBD [348]. 

Wang et al. [348] developed a unique and groundbreaking plasma synthesis process for the direct 

and one-step activation of carbon dioxide and methane into higher value liquid fuels and chemicals 

(e.g., acetic acid, methanol, ethanol, acetone and formaldehyde) at room temperature and 
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atmospheric pressure using a novel DBD plasma reactor with a water electrode. The total 

selectivity of oxygenates was 50-60%, with acetic acid being the main liquid product with 40.2% 

selectivity. This is the highest value obtained for acetic acid so far and is a clear indication that 

NTPs can be used in overcoming the existing thermodynamic barrier for the direct conversion of 

CO2 and CH4 into a range of platform chemicals and synthetic fuels. This major breakthrough 

technology has great potential to deliver a step-change in future CH4 activation and CO2 

conversion for chemical energy storage. 

Zou et al. [349] carried out a starch-enhanced synthesis of oxygenates directly from CH4 and CO2 

using a DBD. The use of starch was found to inhibit the production of liquid CxHy and significantly 

improve the selectivity to oxygenates (CH2O, CH3OH, C2H6O, CH2O2, CH3COOH). The total 

selectivity obtained was about 10-40% with a CH4 and CO2 conversion of approximately 20%. 

Lower CH4 feed favored the formation of CH2O, CH3OH, C2H6O, CH2O2, and CH3COOH, and 

increased flow rate of CH4 resulted in improved selectivity of oxygenates. Starch was used as a 

coating in order to modify the dielectric surface, thereby improving the production of oxygenates 

from CO2 and CH4. In this case, starch is a co-reactant, even though its conversion is much lower 

compared to CO2 and CH4. Scapinello et al. [350] investigated the catalytic effect of the electrode 

surface and discharge power in a DBD reactor on CH4 and CO2 conversion to CnH2n+1COOH and 

CH2O2 at atmospheric pressure using Cu and Ni electrodes. It was suggested that CO2 

hydrogenation on the metal surface, plasma synthesis of CH2O, CH3OH, C2H6O, CH2O2, and 

CH3COOH was enhanced by increasing the discharge power. Aldehydes (-CHO, including C2H4O 

and CH2O, could be easily produced, even at room temperature. The selectivity of the end products 

was related to the CO2:CH4 ratio. In addition, the formation of CH2O was proposed to be from a 

methyl radical (CH3 + O → HCHO + H) [68, 342]. Dey et al. [351] reported the selective reduction 

of CO2 with Ar as a carrier gas using a DBD in the presence of organic CxHy. The addition of 

hydrocarbons (C n H 2n+x; n = 6–12; x = 0 or 2) led to the formation of HCHO, with the highest H- 

atom utilization efficiency being approximately 15% of the total present.  

Evidently, CO2 conversion with H2-containing co-reactant is a promising technique for the 

formation of aldehydes, acids, esters, and alcohols, especially because this method offers direct 

oxidative route can bypass the intermediate formation of syngas.  However, more research is 

required in this area to improve the selectivity of these value-added products over the currently 

produced syngas. 
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4.2.2.3. Dry reforming of methane for synthesis of higher hydrocarbons (CxHy)  
CO2 oxidative coupling is a very attractive technique as it obviates the intermediate steps, like 

reforming, to directly form valuable products. CO2 can be a better oxidant than O2 for oxidative 

CH4 conversion, notwithstanding, C2-hydrocarbon yields are still fairly low [352, 353]. Further 

research is needed, therefore, especially on high-performance catalysis, the behavior of the 

catalysts, and the design of the reactors. Production of C2+ hydrocarbons, especially C2H4, from 

CH4 oxidative coupling is a promising pathway for the utilization of extremely large reservoirs of 

natural gas, converting it into products like petrochemical feedstock, liquid fuels and chemicals 

[354, 355]. Co-feeding CO2 with a CH4 feed stream improves CH4 conversion and reduces coking 

[213]. Coking formation results in carbon deposition on the electrode surface, catalyst and 

dielectric surface due to CH4 decomposition, which is the main problem in DBD plasma reactors 

used specifically for pure CH4 as a feed. The coke limits both the number of discharge streamers 

and energetic electrons that interact with feed gases in the reaction zone, hence reducing CH4 

conversion. 

Liu [356] conducted an investigation on C2H4 and C2H6 oxidative synthesis from CH4 by using 

CO2 as oxidant, initiated by an AC electric field. By streaming discharge reactions, the gas 

discharge improved CH4 conversion, attaining a 20-45% yield of C2 hydrocarbons. The CH4 and 

CO2 conversions were 25%-80% and 8-40%, respectively. The reactions were as shown in R42 

and R43. The gas discharges, such as glow, arc, silent, and corona discharges, were an abundant 

resource for the formation of free radicals [357]. The streamer discharge induced decomposition 

of CO2 (e + CO2 → CO + O- or e + CO2 → CO + O + e). O species (O- and O) are actively involved 

during coupling reactions, leading to the formation of C2H4 and C2H6. Khoja et al. [71] noted that 

the selectivity of CO and H2 increased with improved SIE; however, the selectivity of C2H6 

decreased. This indicates that the increase in SIE leads to a change in the reaction pathways and 

enhances the yield of H2 by the recombination of CH3 and H, or may help in the methyl radicals’ 

breakdown. A detailed description of the main reactions have been reported by Fotouh and Liu 

[357]. The conversion of CH4 and CO2 and the yield of C2H4 were improved with the increase of 

feed CO2 and input voltage, but the increase of CO2 composition resulted in the reduction of the 

yield of C1 hydrocarbons [356, 357].  

 

2CH4 + CO2 → C2H6 + CO + H2O                                                                                               (R42) 
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2CH4 + 2CO2 → C2H4 + 2CO + 2H2O                                                                                       (R43) 

 

Recent advances have been achieved in the direct production of higher hydrocarbons using CO2 

as an oxidant. The use of silent plasma discharge has increased the energy yield significantly. 

Biloen and Sachtler [358] conducted an experimental investigation into the mechanism of CxHy 

synthesis over Fischer-Tropsch catalysts. In addition to CxHy (x=2 and x=3), heavy oil, syngas, 

plasma polymers, liquid fuel and a small percentage of oxygenates were also produced with 

varying energy yields, as follows: light higher hydrocarbon 6 g/kWh, syngas 14.4 g/kWh, and 

liquid fuel 5.8 g/kWh. Chain reactions led to the production of higher hydrocarbons initiated by 

[CH3
*] methyl radical [81, 213]. When CO2 was reacted with CH4, H2 or H2O, the following end 

products were formed: CH3OH, C2H6O, CH2O, C2H4O, CnH2n+1COOH, higher hydrocarbons 

(C2Hx, C3Hy, C4Hz) and syngas. Thus, the combination of plasma technology with catalysis is 

advisable when selective synthesis of specific compounds is required. Table 8 shows a summary 

of various catalysts used for DRM in NTP-assisted CO2 conversion, comparing the conversion and 

selectivity. Various studies have been carried out on oxidative coupling of CH4 to C2H6 and C2H4 

over SrO–Cr2O3, SrO–ZnO, SrO–CeO2, SrO–MnO2, BaO–ZnO, BaO–Cr2O3, BaO–CeO2 [359], 

CaO–CeO2 [360], La2O3–ZnO [361], CaO–MnO2, CaO–Cr2O3 [362], MnO2–SrCO3 [363], and 

La2O3/γ -Al2O3. Zhang et al. [364] investigated the effect of La2O3/ γ -Al2O3 catalysts on CO2 and 

CH4 reactions via corona pulse discharge. A C2 selectivity 72.8% was achieved with a 7% La2O3/ 

γ-Al2O3 catalyst, which is higher than when no catalyst was used. The conversion of CH4 attained 

was 24.9%. The highest C2 product selectivity achieved using the catalyst was 54.5% for C2H2, 

followed by C2H4 (9.3%) and C2H6 (9.1%). The CO2 concentration influences C2 selectivity and 

CH4 conversion as the CO2 feed concentration is directly proportional to CH4 conversion.  

 

Table 8. Summarized list of catalysts used for DRM to higher hydrocarbons. 

 

Catalyst Plasma  Power 

(W) 

T (
o
C) CO2/CH4 

molar 

ratio 

SIE 

(kJ/L) 

CO2 

conversion 

(%) 

CH4 

Conversion 

(%) 

Highest H2 

selectivity (%) 

Highest CO 

selectivity 

(%) 

Ref.  

10 % Ni/La2O3-

MgAl2O4 

DBD 125.6 - 1:1 - 84.0 79.9 41.4 40.5 [365] 
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Ni/ɤ-Al2O3-MgO  DBD 100 - 1:1 300 74.5 73 47.0 48.0  [71] 

2 – 10 wt. % 

Ni/γ-Al2O3 

DBD 260 - 1:1 130 33.5 55.7 53.5  63.9 [366] 

Zeolite NaX DBD 500 150 1:1 200 18.0a 22.0a -  44.9  [367] 

Zeolite A DBD 100 – 500 150 1:1 150 39.4 63.6 50.0 50.0a  [287] 

Zeolite NaY DBD 500 150 1:1 150 39.9 66.6 38.6 42.7  [368] 

Zeolite HY DBD 100 – 500 150 - 150 37.0 63.0 - 46.1  [369] 

20% 

La2O3/Al2O3 

DBD 8 RT 2.3:1 - 12.9 21.9 30.0 66.9 [52] 

Ni/Al2O3-ZrO2 LPGD - 850 2:1 - 77.8 80.7 - -  [370] 

Ni/Al2O3 APGD - 750 - - 78.8 73.3 - -  [371] 

Ni/MgO DBD - 700  - 30.7 20.0 - - [372] 

NiFe/γ-Al2O3 DBD 160  1:1 - 60.5 68.7 74.4 86.7  [369] 

NiFe2O4#SiO2 DBD 160  1:1 - 70.3 80.0 80.5 89.9  [369] 

RT- Room temperature; LPGD-Low pressure glow discharge; a- indicates that the values were taken from the graph 

The oxidative synthesis of high-value CxHy using CH4 and CO2 as oxidants, together with the 

removal of NOx and SOx, has great potential for industrial applications for the removal of CO2 

emissions by conversion, which is very economically attractive. In order to commercialize this 

technique, there is a need for further investigation and improvement in the following areas: 

obtaining a usable production rate of useful products, optimization of NTP discharge reactor, and 

sourcing a low cost and sustainable power supply. 

 

4.2.3 CO2 hydrogenation 
	

4.2.3.1 Reverse water gas shift reaction 
	

CO2+ H2 → CO+ H2O,             ∆	H0
, 298 K= -49.8 kJ/mol                                                        (R44) 
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This is one of the main ways of converting CO2 into fuel and chemical energy. Reaction R44 is 

commonly known as the reverse water gas shift (RWGS) reaction. It occurs when H2 is reacted 

with CO2 in a plasma process and is used when products other than CH4 are needed. The H2/CO2 

ratio can be altered appropriately as various products attain the maximum selectivity at varying 

reagent ratios [30]. The production of liquid fuels can also be achieved through Fischer-Tropsch 

synthesis, whereby CO2 is at least partly converted using H2 at high temperatures to form CO via 

the RWGS to form the syngas required for Fischer-Tropsch synthesis. The RWGS leads to extra 

consumption of H2 and inhibits the formation of CH3OH [373]. According to Inui & Takeguchi 

[374], the large amount of H2O produced as a byproduct from both CH3OH synthesis and the 

RWGS side reaction had a negative effect on the active metal in the reaction process, thus resulting 

in catalyst deactivation. Consequently, CH3OH synthesis from the hydrogenation of CO2 requires 

more selective catalysts to avoid the formation of unwanted byproducts [375]. 

 

4.2.3.2 Hydrogenation of CO2 to CH3OH 
	

CO+ 2H2 → CH3OH                   ∆	H0
, 298 K= -90.8 kJ/mol                                                      (R45) 

CO2 + 3H2 → CH3OH + H2O     ∆	H0
, 298 K= -40.9 kJ/mol                                                      (R46) 

 

The main reactions for hydrogenation of carbon dioxide to CH3OH synthesis are shown in R44- 

R46. There is a high likelihood that CO produced from reaction R44 may undergo further 

hydrogenation to form CH3OH (reaction R45). Reactions R45 and R46 show the selective 

hydrogenation of CO and CO2 to CH3OH (methanol), respectively. The major disadvantage of 

selective hydrogenation of CO2 is the formation of H2O as a product as this can deactivate catalysts 

and has to be separated from the methanol to isolate the pure product [158, 311]. Reactions R45 

and R46 are currently employed on an industrial scale for CH3OH production. CO2 hydrogenation 

to CH3OH is a promising process for CO2 conversion and utilization. Despite a well-developed 

route for CO hydrogenation to CH3OH, the use of CO2 as a feedstock for CH3OH synthesis remains 

underexplored, and one of its major drawbacks is high reaction pressure (usually 30−300 atm) 

[376].  Current research on CO2 hydrogenation to CH3OH mostly focuses on the use of 

heterogeneous catalysis at high pressures. Cu-based catalysts have attracted great interest for 
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catalytic CO2 hydrogenation for CH3OH synthesis, attributable to the excellent activity of metallic 

Cu for this reaction [376]. 

4.2.3.3 Hydrogenation of CO2 to CH4 

	

CO2 + 4H2 → CH4 + 2H2O     ∆	H0
, 298 K= -165kJ/ mol                                         (R47) 

For reaction R47 (methane production), a higher H2 feed content is favorable for CO2 conversion. 

A typical H2/CO2 ratio of 4:1 is used to give the best CH4 selectivity and CO2 conversion [66].  

CO2, being a stable molecule, requires a very active catalyst and/ or high energy input for the 

chemical transformation, but the addition of H2 provides room for methanation (R47), which is 

exothermic and highly thermodynamically favorable at low temperatures. Therefore, lower 

temperatures and high pressures promote the reaction. Nakagawa et al. [377] used a pulse power 

discharge in the reduction of CO2 both in the presence and absence of H2. CO2 reduction using H2 

was found to be independent of gas pressure. At a pressure <450 Torr the reduction efficiency 

recorded was approximately twice that when H2 was a presence in CO2 feed. H2O can be used for 

syngas production and in methanation [62], though further reports indicated that the addition of 

H2O may result in a reduced CO2 conversion [378]. Table 9 provides a simplified scheme for the 

reaction of H + CO2 in the presence of microwave plasma. It should be highlighted that some of 

the recorded rate constants are out of the temperature range of less than 2000 K [379]. The reverse 

shift water gas reaction mechanism considers the proposed scheme and starts with R57, where O 

and CO are released [62]. The generation of O atoms generally results in the production of H atoms 

and OH radicals, as indicated in R60. Therefore, the large concentration of H atoms renders R48 

the predominant path for CO production, whereas R61 dominates the H2O formation path (as 

shown in R48, R65 and R 66 for OH radical generation).   

Table 9. Summary of chemical reactions scheme for the reaction of H2 and CO2 

Reaction Rate Constant  

(cm3 molecule-1 s-1) 

Reaction 

No. 

Ref. 

CO2 + H → CO + OH 2.5 × 10-10 exp (-13300/T) R48 [379] 

O2 + O → O + O + O 2 × 10-8 exp (-57900/T) R49 [380] 

O2 + O2 → O + O + O2    8.14 × 10-9 exp (-59700/T) R50 [380] 

O2 + CO → O + O + CO 2.40 × 10-9 exp (-59500/T) R51 [380] 
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O2 + CO2 → O +  O + CO2 2.57 × 10-9 exp (-56150/T) R52 [380] 

CO + O2 → CO2 + O 1.23 × 10-12 exp (-12800/T) R53 [328] 

CO2 + O → CO + O2 7.77 × 10-12 exp (-16600/T) R54 [328] 

CO2 + O2 → CO + O + O2 3.72 × 10-10 exp (-60200/T) R55 [380] 

CO2 + CO → CO + O + CO 4.39 × 10-7 exp (-65000/T) R56 [380, 381] 

CO2 + CO2 → CO + O + 

CO2 

4.39 × 10-7 exp (-65000/T) R57 [380, 381] 

CO + OH → CO2 + H 1.12 × 10-13 exp (0.00091/T) R58 [379] 

H2 + H2 → H + H + H2 1.43 × 10-12 T-0.7 exp (-52530/T) R59 [379] 

O + H2 → OH + H 1.80 × 10-20 T2.8 exp (-2980/T) R60 [379] 

OH + H2 → H2O + H 1.06 × 10-17 T2 exp (-1490/T) R61 [379] 

OH + H → O + H2 8.10 × 10-21 T2.8 exp (-1950/T) R62 [379] 

OH + O → H + O2 7.50 × 10-10 T-0.5 exp (-30/T) R63 [379] 

OH + OH → H2O+ O 3.50 × 10-16 T1.4 exp (200/T) R64 [379] 

H2O + O → OH + OH 7.60 × 10-15 T1.3 exp (-8605/T) R65 [379] 

H2O + H → H2 + OH 1.03 × 10-16 T1.9 exp (-9265/T) R66 [379] 

 

Currently, there are increasing interests in the development of improved sustainable industrial 

processes for the direct hydrogenation of CO2 to CH3OH due to the promising significance of 

CH3OH in an expanding hydrogen economy. CH3OH is a primary liquid petrochemical which is 

of high significance in both the energy and chemical industries. CH3OH can be easily stored and 

transported [382, 383]. During the non-thermal discharge process, both H2 and CO2 are excited, 

whereby they possess sufficient energy to counter the limitation of high activation energy of direct 

hydrogenation of CO2 without the use of catalyst [81]. Activation energy is defined as the 

minimum input energy required to initiate a reaction. 

CO2 + e → CO2* + e                                                                                                                    (R67) 

H2 + e → H2* + e                                                                                                                         (R68) 

Direct production of CH3OH from the hydrogenation of CO2 is environmentally sustainable and 

efficient as it becomes increasingly attainable to make hydrogen gas in an economically efficient 

way using renewable energy [383]. Eliasson et al. [384] investigated CO2 hydrogenation into 
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CH3OH using a DBD with and without a catalyst. The numerical simulation and experimental 

results indicated that CH4 formation was the main competitive reaction for the formation of 

CH3OH. Furthermore, the effects of pressure, gas temperature, the flow rate of the feed gas, the 

mixing ratio of inlet gas and electric power were also investigated. It was shown that at high 

pressure and low electric power the formation of CH3OH can exceed the methanation process. De 

Bie et al. [383] carried out 1D fluid modeling for CO2 hydrogenation in a DBD plasma at varying 

CO2/H2 ratios, residence time, and plasma species. The most common reaction products obtained 

were H2O, CH4 and CO, while CH3OH, C2H6, O2, and CH2O were also formed to a lower extent. 

Varying the CO2/H2 molar ratios did not greatly affect the densities of oxygenates and hydrocarbon 

formed as the CO2 conversion was found to be low, irrespective of the gas mixing ratios. Very 

recently, Wang et al. have developed a novel and specially designed DBD reactor using water as 

both the ground electrode and cooling for the direct CO2 hydrogenation to methanol at room 

temperature and atmospheric pressure. They found that the reactor structure greatly affects the 

production of methanol in this process. The highest methanol selectivity of 54% was achieved in 

the plasma hydrogenation of CO2 without a catalyst at ambient conditions [376].   

Liu et al. [81] provided the radical reaction mechanism for the hydrogenation of CO2 [384] in a 

review on NTP approaches in CO2 utilization. Bill et al. [385] carried out the hydrogenation of 

CO2 to CH3OH in a tubular packed bed reactor using Cu-based catalysts and a comparative 

approach was also investigated using a DBD reactor. It was realized that the simultaneous presence 

of plasma discharge and a catalyst led to a considerable decrease in the optimum temperature range 

from 220 oC (packed bed reactor) to approximately 100 oC inside the discharge. A considerable 

increase in CH3OH yield was obtained when CuO/ZnO/Al2O3 catalysts were introduced in the 

discharge zone, with the yield of CH3OH improved by a factor of approximately 10. CO2 reduction 

and recycling were conducted using NTP at atmospheric pressure by surface discharge. Valuable 

hydrocarbons (dimethyl ether and CH4) were produced at 11 kV discharge voltage, a CO2/H2 ratio 

of 1:2, and a flow rate of 0.2 l/min. CO2 conversion to CxHy plus water vapor (deoxidizing agent) 

of 50% needed a higher voltage of 12 kV [386]. In CH3OH formation using NTPs plasma, methyl 

formation plays an important role [387]. Bhatnagar et al. [388] confirmed that the methyl radical 

could promote the parallel formation of C2H6. Apart from CH4, H2, and H2O commonly being used 

as hydrogen sources, glycerol has been suggested as a hydrogen source. It has been investigated 
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and implemented as a H2 donor in the formation of CH3OH from CO2 in a hybrid photocatalytic-

enzymatic system [389]. 

 

4.2.4 Reduction with H2O 
	

CO2 + H2O → CO + H2 +		
H

I
 O2, ∆	H

0
, 298 K= 525 kJ/ mol                                                        (R69) 

CO2 + 2H2O → CH3OH +  
J

I
O2,    ∆	H

0
, 298 K= 676 kJ/mol                                                       (R70) 

There is no known traditional reforming approach for the conversion of CO2 with H2O, hence R69 

and R70 are presented for the purpose of interest. R69 and R70 are endothermic reactions, partially 

explaining why there is no thermocatalytic approach. High temperatures are required for R69 and 

R70 as they are for the splitting of pure CO2, but with lower energy efficiency.  

5. Technology development of plasma CO2 conversion and utilization 

5.1. CO2 capture 

Recently, numerous technologies on CO2 capture and storage (CCS) have been reported. The 

process involves three main steps: capturing CO2 emissions (pre-combustion, oxy-fuel 

combustion, post-combustion), transportation, and CO2 storage. The CO2 storage methods 

currently under consideration include CO2 disposal in deep oceans, aquifers, and minerals storage 

[390-392]. CCS and CO2 utilization are two effective approaches for mitigating or limiting CO2 

emissions. One of the major criteria that have to be attained is that a sufficient quantity of CO2 

must be converted, stored or otherwise prevented from release into the atmosphere [393]. 

Generally, CO2 is captured from large industrial plants and other non-atmospheric CO2 sources 

like geothermal vents (releasing stored CO2). Some methods used to capture CO2 from the 

atmosphere include using carbonate and hydroxide absorbents, producing H2 by H2O hydrolysis, 

and synthesizing CH3OH by the reaction of H2 and CO using heat and electricity supplied by 

nuclear fusion or fission. CO2 stripping from seawater is another method that is being considered 

to reduce the environmental impact of CO2 emissions [394-396]. The major problem of CO2 

disposal can be avoided, and even turned into an advantage, by converting CO2 into valuable 

products and alternative fuels using NTP.  
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Lee et al. [397] reviewed various techniques for CO2 capture and utilization. These include: CO2 

capture, electrolysis of CO2 and H2O, and fuel synthesis. The electrolysis of CO2 and H2O has 

been carried out in solid oxide cells to produce a CO and H2 mixture [398-402]. However, the 

process also disadvantageously produced CO2 and O2 together in the anode compartment of the 

electrolysis cell, hence the need for subsequent gas-phase separation [403, 404]. Different options 

for CO2 capture are illustrated in Fig. 15, with the primary focus on both atmospheric air and 

stationary air. 

 

Figure 15. Various options for CO2 capture  

The use of alkaline chemicals has dominated other methods for scrubbing the air to achieve stores 

of concentrated CO2. Indeed, various methods for removing CO2 from the atmosphere using 

alkaline absorbents have been investigated since the 1940s. Different metal hydroxides, including 

Ca(OH)2, NaOH and KOH, have been used since they readily react with CO2 to form carbonates 

(CO2 + 2OH → CO3
2- + H2O).  The adsorbents are regenerated using heat or electrical energy to 

release the bound CO2, or a carbonate solution is used that dissolves the CO2 to form bicarbonate 

(CO2 + CO3
2– + H2O → 2HCO3

–). Fig. 16 illustrates some of the different CO2 capture 

technologies, including adsorption, absorption, membrane, cryogenic, chemical looping 

combustion, and hydrate. The major challenges of these technologies are presented in Table 10. 
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Fig. 16. The schematic diagrams of various CO2 capture technologies 

 

Table 10. Major challenges of different CO2 capture technologies [397, 405-408]. 

Technology Major challenges 
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Adsorption v CO2 selectivity is relatively low. 

v Adsorption rate is generally low. 

v Difficulties in handling solid. 

v Large pressure drop in the flue gas. 

v There is attrition and degradation of sorbents in cyclic 

operation. 

v It requires periodic regeneration of adsorbents. 

Membrane v High cost due to membrane manufacturing. 

v Requires a compression work for driving force.  

v Requires high selectivity as a result of low-pressure 

ratio and CO2 concentration. 

v Fouling effect. 

v Needs high surface area membrane due to the 

increased flow rate of the industrial flue gas. 

v The permeability of the polymeric membrane is 

negatively affected by moisture.  

v Temperature, pressure and other operating 

parameters affect the performance.  

Absorption v Solvent degeneration e.g. amine. 

v Extra compression work needed for captured CO2 

transportation and storage. 

v Large energy penalty for regeneration.  

v High corrosion rate on the equipment. 

v Solvent emissions cause a negative environmental 

impact.  
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Cryogenic v Not suitable for low CO2 concentration, generally 

below 50%. 

v Requires high energy to cater for adequate 

refrigeration. 

v Requires removal of moisture from the gas mixture to 

prevent blockage as a result of ice particles. 

v A constant build-up of solidified CO2 on heat-

exchanger surfaces unfavorably affect heat transfer 

and lowers the process efficiency. 

Chemical looping combustion v Requires high installation cost. 

v During capture/regeneration cycles there is sorbent 

decay. 

v High vulnerability and attrition rate.  

v Air separation unit is required to attain pure O2 for 

calcination. 

Hydrate v CO2 capture efficiency is adversely affected by 

various molecules trapped in the cage structures. 

v It is secondary pollution of promoter. 

v Low temperature and high pressure is required. 

 

 

Typical CO2 separation processes, like membrane-based separation and cryogenic distillation, are 

not feasible economically. Numerous techniques have been developed for CO2 capture from 

ambient air. Table 11 shows a selection using amine-grafted oxides, traditional solids, alkaline 

solutions and Metal-Organic Frameworks [409]. 
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Table 11. Selection of technologies for CO2 capture from ambient air and relevant advantages and 

disadvantages 

 

Material Advantages Disadvantages 

Solid supported amine low energy requirement for regeneration; 

high tolerance to moisture 

require hours to achieve 

saturation 

Amine-grafted MOF high CO2 capacity; fast kinetics sensitivity to moisture; 

expensive synthesis routes; 

unclear stability 

Alkaline solution high CO2 selectivity; cheap material energy-intensive regeneration 

Traditional solid 

(physisorbent) 

high thermal stability negative impact of moisture 

Chemisorbent high adsorption capacity under high 

temperature 

huge heat requirements for 

desorption 

 

5.2. Integration of CO2 capture with plasma CO2 conversion 

On an industrial scale, the integration of CO2 capture and conversion using NTP seems more 

feasible since NTP possesses the ability to break highly stable CO2 molecule at room temperature 

and pressure [4, 30, 42]. CO2 capture and utilization by NTP is a technique which relies on CO2 

conversion to liquid fuels such as CH3OH, carbonate, C2H6O, C2H4, etc. In particular, CH3OH is 

the main feed for chemicals that can be further converted to alternative high molecular liquid fuels 

[373, 395]. Various energy sources can be used in generating NTP for splitting CO2 and H2O to 

reverse the combustion process and produce fuels [399]. Chemical conversion of CO2 into fuels 

and value-added platform chemicals has been viewed as a vital aspect for developing low-carbon 

economic sustainability in the energy and chemical sector. A notably significant pathway that is 

presently being developed for CO2 utilization is catalytic CO2 hydrogenation. This technique can 

produce various fuels and chemicals, such as CO, CH2O2, CH3OH, alcohols, and hydrocarbons. 

Nevertheless, high H2 consumptions (CO2 + 3H2 → CH3OH + H2O) and high operating pressures 

(ca. 30– 300 bar) are the main disadvantages related to this technique [348]. 
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CO2 capture, conversion, and utilization are the most up and coming techniques for stabilizing the 

amount of greenhouse gas pollution in the atmosphere. Using wasteful CO2 emissions as a portion 

of energy carriers for the synthesis of fuels and high value-added chemicals is an attractive 

chemical pathway. However, considering the chemical stability of CO2, it is very challenging to 

discover an energy efficient thermal process for CO2 conversion. NTP technology provides an 

attractive alternative to thermal processes for converting inert CO2 emissions into value-added 

chemicals and fuels due to its low power requirements and non-equilibrium characteristics  [115, 

283]. 

In this section, two pathways are proposed for CO2 capture and utilization that use NTP as an 

activator for either direct or indirect CO2 conversion. The first system (Fig. 17) directly converts 

the captured CO2 (here via reduction) to useful fuels and value-added chemicals (e.g. alcohols) 

using NTP. The second system (Fig. 18) first converts the captured CO2 to syngas (CO+H2), e.g. 

by DRM, using NTP, which is then used as a feedstock for Fischer-Tropsch synthesis to produce 

fuels and liquid chemicals (e.g. hydrocarbons).  

	

 

Figure 17. CO2 capture, direct CO2 conversion, and utilization. 
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Fig. 18.  CO2 capture, indirect CO2 conversion and utilization 

Moss et al. [410] demonstrated that CO2 capture by pressure swing absorption (PSA) and 

conversion by NTP is a feasible process for the production of CO, although on a small scale. CO 

is a useful precursor to many chemicals and major feedstocks for the chemical industries. CO2 

capture was first carried out using a high PSA technique, then the flue gas composition was 

upgraded to high purity CO2. The captured CO2 was passed through a pulse corona discharge 

reactor where CO2 was converted to CO and other products through electron-initiated dissociation. 

The aim was to produce non-fossil fuels derived from carbon for chemical feedstocks using NTP 

technology. The advantages of this technique are that it has flexible operating conditions, the 

flexibility of carrier gases, and the allowance for variable gas streams to be captured and upgraded 

to achieve a higher concentration of CO2 with some conversion to a useful product. It was 

concluded that high selectivity can be attained with swift adsorption/desorption while utilizing a 

cheap and durable sorbent that displays zero sorbent losses and can be regenerated freely by simple 

pressure drops.  

Nakajima et al. [411] investigated CO2 reduction using adsorption followed by NTP treatment. 

The technique consisted of the physical adsorption process followed by an N2 plasma reduction 

treatment. During the physical adsorption stage, CO2 was adsorbed by molecular sieve zeolite 13X 

(APG-III). The second stage involves the N2 plasma reduction process in which the adsorbed CO2 

was reduced to CO using NTP flow that was generated by a circulating N2 plasma reactor. The CO 



57	

	

produced is then used as a fuel. The CO2 conversion to CO was less than 5.3% with a CO 

concentration of approximately 1%.  

Thermal catalytic techniques are presently applied to produce liquid hydrocarbons, such as 

methoxymethane (CH3OCH3) from CO2 and H2. For the production of CH3OCH3, the following 

conditions are required: high temperatures in the range of 240-270 °C and pressures of 3 MPa. If 

NTP processes can be used as an alternative, the energy input can be remarkably reduced as NTP 

is at room temperature and pressure. Therefore, to produce hydrocarbons directly from CO2, hybrid 

catalysts are essential. New reactor setups and novel catalysts may aid in offsetting the required 

high pressures in a plasma reactor. Progressive research is required to develop plasma processes 

that produce liquid hydrocarbons, which are presently only produced by other (non-plasma) 

methods. However, if successful, these NTP assisted catalysis processes could completely change 

the energy and chemical industries [30, 412-414]. 

5.2 Demonstrations of NTP-CO2 conversion  

Many laboratory-based investigations and a few large-scale demonstrations have been carried out 

in relation to the conversion of CO2 into valuable chemicals and fuels. There have been various 

practical commercialization attempts. However, none of these have been able to adequately meet 

the environmental and economic market requirements as a result of various challenges. Some of 

the most noticeable challenges include i) CO2 conversion requires higher energy input, ii) 

insufficient socio-economical driving forces i.e. inadequate investment-incentives and restricted 

market size, iii) lack of industrial commitments to promote CO2-based chemicals, iv) insufficient 

maturity of the technology. Considering these issues, the industrial-scale implementation of CO2 

conversion to valuable products is not feasible economically [415]. The US Department of Energy 

is investigating various NTP technologies for their catalytic properties related to CO2 

decomposition and fossil energy conversion. In addition to evaluating the effectiveness of DBD 

plasma for both CO2 decomposition and conversion into valuable fuels and chemicals, they have 

partnered with the Department of Physics at West Virginia University (WVU) to develop a 

Versatile Atmospheric Dielectric Barrier Discharge Experimental Reactor (VADER) to probe 

plasma-assisted CO2 decomposition. The VADER system has the following characteristics: 

variable plasma frequency range (0-10 kHz), a flexible operating pressure range of 10-3-2 atm, 

optical access ports for plasma diagnostics, and flexible electrode gap of approximately 2 cm. 
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Currently, there are ongoing investigations to quantify CO2 decomposition and the application of 

optical diagnostics to determine plasma parameters, such as  the temperatures of electrons and 

neutral species [396]. The US Department of Energy is also investigating the performance of a 

GAD plasma technology for the logistic fuel conversion into H2- rich synthesis gas.    

A prototype solution has been developed for CH3OH production from renewable feeds (CO2 and 

biomass) based on a novel MW plasma technology (an NTP generated by high-intensity MW 

fields). A bench-scale reactor based on solid-state MW generator MiniFlow 200SS manufactured 

by SAIREM has been conceptualized, designed and constructed. Furthermore, a scalable 

containerized MW plasma gasifier of 10-20 kWth using a 6 kW power input was built for biomass 

gasification through the funding of the Bill and Melinda Gates Foundation. The results showed a 

super equilibrium conversion process [397]. The United States patented technology [416] for 

heavy hydrocarbon and natural gas co-conversion using DBD plasma at moderately elevated 

temperatures (<300 oC) to activate CH4 to produce a high concentration of reactive light 

hydrocarbons and H2 radicals.  

In the process of development and evaluation of a new technique, the production capacity depicts 

the fundamental design guideline, hence determining the equipment requirements. Generally, bulk 

chemicals are produced on a very large scale, consequently, reactions need to operate at 

significantly high throughput. As a result, high energy input is needed; for instance, a typical 

CH3OH production plant [417] with a 100 kton/year rate of production and electricity consumption 

rate of 550 kWh/ton is considered herein. The largest microwave plasma system developed so far 

has an output capacity of 3.3 kton biomass/year and produces 1.5 kton ethanol/year [418]. 

Therefore, to achieve the required capacity for bulk chemical manufacturing, the current MW 

plasma reactors should be scaled up by a factor of 66 for this specific process, which is challenging. 

In order to accelerate the industrial application of NTP technology, there is a need for the 

development of a low cost and reliable power supply with large output. 

 

6. Concluding remarks and future perspectives  

In this review, NTP-assisted CO2 conversion into value added-chemicals and fuels has been 

demonstrated to be a technology with considerable potential for reducing CO2 emissions, since 

NTP has a great ability to break CO2 bonds at room temperature and pressure. The selectivity and 

efficiency for these reactions can often be improved by introducing a catalyst to the system. In 
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order to make NTP-catalytic CO2 capture and conversion technology feasible and economically 

attractive, an advanced investigation into the reactor technology and the unusual plasma-catalyst 

chemistry is essential. Indeed, plasma and catalysts operate via different mechanisms, but their 

combination in plasma catalysis can generate synergetic effects that improve their performances 

during reactions. Thus, combining NTP and catalysts is an option for integrating the benefits of 

both plasma and catalysts into systems used for CO2 conversion and utilization. The presently 

available CO2 capture technology needs improvement in relation to cycle durability and increasing 

adsorption capacity to achieve economic feasibility. In addition, the use of efficient CO2 

adsorbents is imperative. Therefore, it is important to acquire further knowledge of these 

technologies in order to design and develop efficient processes that successfully integrate systems 

for CO2 capture and conversion using NTP. 

 

Furthermore, it was realized that CO2 conversion using NTP is a promising technology for 

upscaling and commercialization to produce more complex carbon-based chemicals and fuels. 

Some of the carbon-based liquids presently produced in small amounts include CH3OH, C2H4, and 

C4 hydrocarbons. Notwithstanding, the viability of this technology is affected by the low 

selectivity of these products. Developing a suitable catalyst can enhance the selectivity of these 

carbon-based liquid chemicals. Moreover, detailed research is required on the catalyst sensitivities 

to admixtures and the performance of plasma-catalysts under intricate conditions as the catalyst 

plays a crucial role in reducing kinetic barriers and improving activities. In the presence of the 

catalyst, electron density can be improved and micro discharges can be induced, leading to higher 

energy efficiency, high-value products, and high reaction rates. However, this may not be attained 

simultaneously by a single method. An in-depth understanding of the intrinsic structure-

composition-activities link, morphologies, shapes, sizes, and recipes can be a major boost in 

designing cost-effective catalysis and improving plasma-catalytic performance.  

Various reactions can occur in NTP-activated CO2 conversion that operate through the formation 

of different intermediates, which then follow different mechanistic steps along pathways to make 

different products. Some of these reactions can aid the conversion to useful products, whereas 

others can hinder it. For example, electron transfer reactions that produce CO2 anion radicals 

hinder further conversion of CO2, yet electron impact reactions that break C-O bonds are crucial 

to produce CO — an important precursor in the production of liquid fuels and value-added 
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chemicals. Therefore, in order to increase the yield and selectivity of desired products, the 

identification of exact steps in the activation of CO2 will be essential, especially when designing 

modified catalysts for the process.   

 

Finally, in order to realize a successful CO2 conversion and utilization project with integrated CO2 

capture technology, many commercial and technical challenges must be overcome. Examples of 

some of the most important issues are: that the plasma produces a complex mixture of chemicals, 

including higher hydrocarbons (HCs); the separation of syngas needs advanced technological and 

energy requirements, forecasting additional energy consumption; and the interaction between the 

catalyst and plasma is only on the external surface of the particles, which means that the active 

sites of the catalyst are not fully explored by the plasma-excited species. However, structured 

methods to incorporate the catalyst into the reactor may help to strengthen the synergy between 

the plasma and catalyst. Future research in this area could be related to the general design of 

product flow diagrams, feasibility studies, economic analysis, catalyst modification, and in using 

combinations of hybrid processes for CO2 emissions control.  
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