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Abstract Since their inception, computational homogenization methods based on the fast Fourier transform
(FFT) have grown in popularity, establishing themselves as a powerful tool applicable to complex, digitized
microstructures. At the same time, the understanding of the underlying principles has grown, in terms of both
discretization schemes and solution methods, leading to improvements of the original approach and extending
the applications. This article provides a condensed overview of results scattered throughout the literature and
guides the reader to the current state of the art in nonlinear computational homogenization methods using the
fast Fourier transform.
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1 Introduction

Homogenization theory [1–3] serves as the mathematical basis for understanding the behavior of microstruc-
tured and composite materials. For given constitutive laws and an explicit description of the microstructure,
the effective constitutive law emerges naturally, based on solving a partial differential equation (PDE), the
so-called cell problem.

Only for special cases, the effective constitutive laws may be expressed in closed form [4], and bounding
techniques [5,6] may lack accuracy. For these reasons, numerical approaches for solving the cell problem, so-
called computational homogenization methods [7], emerged. Such techniques face a number of challenges. For
a start, microstructures of heterogeneous materials may be rather complex, which becomes clear when looking
at typical materials to be homogenized: polycrystalline materials, fiber-reinforced composites, rocks, foams,
textiles and many more [8]. Deep insights into such microstructures are provided by modern digital volume
imaging techniques like serial sectioning [9,10], optical microscopy [11,12], FIB-SEM [13–15], Electron back-
scatter diffraction [16–18], X-ray diffraction microscopy [19,20] and micro-computed tomography [21,22].
Computational homogenization methods need to handle the complexity of industrial-scale microstructures,
and should be compatible to digital volume data. In addition to their inherent complexity, microstructured
materials typically show a degree of randomness as a result of the production process [23–25]. To obtain
deterministic effective constitutive laws, the cell problem needs to be solved on sufficiently large cells, so-
called representative volume elements (RVE) [26,27]. To decide whether a cell is representative (enough), it
is necessary to quantify the standard deviation of the computed effective properties for cells of fixed size (the
so-called dispersion [28,29]), and to investigate the change in the empirical mean of the computed effective
properties for increasing cell size (to quantify the bias [28,29]). Thus, computational homogenization methods
need to solve the cell problem for complex microstructures on large volumes, and need to do so repeatedly in
order to quantify the randomness.

In addition to the geometrical properties of the microstructure, computational homogenization methods
should be applicable to a wide range of physical behaviors. This includes a variety of coupled problems, see
Milton [4] for an overview. However, for applications in mechanics, for instance, the ability to work with
nonlinear (and inelastic) material behavior is crucial.

From a mathematical perspective, the cell problem represents a partial differential equation (PDE) with
discontinuous coefficients. In particular, the associated solutions are not smooth across the material interfaces.
Thus, to exploit higher-order methods, the interfaces need to be resolved by the mesh. However, due to the
complexity of the microstructures, generating such meshes may be difficult.

Fortunately, there are also a few characteristics which simplify treating the cell problem. For a start, the
particular shape of the computational cell is not fixed beforehand—it is only required to be "large enough". In
particular, we may choose a rectangular cell, and solve the cell problem with periodic boundary conditions.
It was found empirically that using periodic boundary conditions produces results with smaller bias than for
Dirichlet and Neumann boundary conditions [28,30,31].

As a second simplification, the cell problem typically does not need to be solved to high accuracy. Indeed,
we are primarily interested in effective, i.e., averaged, quantities. Also, the useful accuracy is limited by the
variance associated with the current cell size.

There are a number of computational homogenization methods and associated multi-scale schemes, see
Matouš et al. [32] for a recent overview. The article at hand is devoted to the computational homogenization
method developed by Moulinec and Suquet [33,34] which is based on the fast Fourier transform (FFT), and
subsequent developments. The Moulinec–Suquet approach builds upon the Lippmann–Schwinger equation
[35–37], a reformulation of the cell problem as an equivalent volume integral equation. It operates directly on
voxel data and was formulated for nonlinear material behavior from the very beginning. Due to its inherently
matrix-free formulation and the associated low memory footprint, the method’s applicability to large-scale
microstructures is ensured. Last but not least, the method is comparatively simple to implement and produces
impressive results in short time, due to the efficient implementations of the FFT available [38,39].

In the 2000s, the Moulinec–Suquet method was accelerated and applied to a wider range of materials and
constitutive behaviors (to be discussed below). Still, the contributions were rather infrequent. In the beginning
of the 2010s, the number of corresponding articles started to increase significantly. Still, there was a lack of
deeper understanding of the numerical method, obstructing further developments.

For analyzing and constructing numerical methods, it is often convenient to separate the processes of
modeling, discretization and solution. Starting from the physical equation to be solved, the problem at hand
is discretized first, giving rise to a discrete system of equations involving a finite number of unknowns. The
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latter system is then solved by a solution method. In particular, a specific discretized system may be solved by
different solution methods. Also, the same solution method may be applied for solving the equations obtained
from different discretization schemes. For instance, a finite element discretization of a linear elastic problem
gives rise to a linear system with symmetric positive definite system matrix, and the conjugate gradient method
[40] may be used for solving the system. Alternatively, multi-grid algorithms [41] may be used, as well. The
latter, however, may also be used for finite difference and finite volume discretizations.

The strategy presented by Moulinec and Suquet provides a solution method for a discretized system of
equations. By disentangling the underlying discretization and solver, the Moulinec–Suquet approach was
re-integrated into the conventional canon of contemporary computational methods. Thus, around 2015, the
previous obstructions were removed and it became possible to change the discretization while preserving
the salient features of the solver, or to use faster solution methods for the same discretization. The underlying
insights and subsequent developments are discussed in Sects. 2 and 3. We shall also report on practical matters,
see Sect. 4, discuss applications, see Sect. 5, and hint at promising research directions, see Sect. 6. This article
is not intended to provide innovative research, and we claim no originality.

2 Discretization schemes

2.1 Lippmann–Schwinger framework for the cell problem

We use nonlinear elasticity at small-strains in its standard form [33,42,43] as our point of departure for
discussing the discretization schemes and the solution methods. For this purpose, we consider a rectangular
cell

Y = [0, L1] × [0, L2] × · · · × [0, Ld ] (2.1)

for positive L j ( j = 1, . . . , d). For the case of sheared cells, we refer to Bergmann and Merkert [44].
Let us denote by L2(Y ; Sym(d)) the (Hilbert) space of square-integrable Sym(d)-valued fields ε on the

cell Y (2.1), endowed with the Frobenius inner product

〈ε1, ε2〉L2 = 1

vol(Y )

∫

Y

ε1(x) : ε2(x) dx . (2.2)

We are interested in displacement fluctuation fields u living in the space H1
# (Y ;Rd), which is the closure of

the space
{

u : Y → Rd continuously differentiable
∣∣∣
∫

Y

u dx = 0, u and ∂ j u are Y -periodic for all j = 1, . . . , d

}

w.r.t. the norm induced by the inner product

(u1, u2) �→ 〈∇su1, ∇su2〉L2 ,

where ∇s denotes the symmetrized gradient ∇su = 1
2 (∇u + ∇uT ).

Suppose that a (condensed) free energy density

w : Y × Sym(d) → R, (x, ε) �→ w(x, ε), (2.3)

which is continuously differentiable in the second variable and satisfies other salient properties, is given. For
a detailed discussion of the assumptions necessary which make the succeeding constructions reasonable, we
refer to Schneider [43,45].

For a given macroscopic strain ε̄ ∈ Sym(d), we seek a displacement fluctuation field u ∈ H1
# (Y ;Rd)

which minimizes the variational problem
∫

Y

w(x, ε̄ + ∇su(x)) dx −→ min
u∈H1

# (Y ;Rd )

. (2.4)

The first-order necessary condition reads
∫

Y

∇sv(x) : ∂w

∂ε
(x, ε̄ + ∇su(x)) dx = 0 for all v ∈ H1

# (Y ; Rd). (2.5)
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In terms of the divergence operator, regarded as a bounded linear operator

div : L2(Y ; Sym(d)) → H−1
# (Y ;Rd) ≡

(
H1

# (Y ;Rd)
)′

,

mapping to the continuous dual space of H1
# (Y ;Rd), a formal integration by parts shows that the first-order

necessary condition is equivalent to the (quasi-static) balance of linear momentum

div
∂w

∂ε
(·, ε̄ + ∇su) = 0. (2.6)

Please note that the latter equation is not in strong form, but rather equivalent to the weak form (2.5).
Let C0 be a linear elastic reference medium, i.e., a linear operator C0 ∈ L(Sym(d)) which is symmetric

and positive definite w.r.t. the Frobenius inner product on Sym(d). For any right-hand side f ∈ H−1
# (Y ;Rd)

with vanishing mean, the problem

divC0 : ∇su = f (2.7)

may be solved uniquely for u ∈ H1
# (Y ;Rd). Denote by G0 the associated solution operator, i.e.,

divC0 : ∇su = f precisely if u = G0 f.

Representing a displacement fluctuation field u ∈ H1
# (Y ;Rd) as a Fourier series

u(x) =
∑

ξ∈Zd

û(ξ) ei x ·ξY , (2.8)

where Zd denotes the set of d-tuples of integers, û(ξ) are the complex-valued Fourier coefficient vectors, and
ξY symbolizes the re-scaled frequency vector

ξY =
(

2π
ξ1

L1
, 2π

ξ2

L2
, . . . , 2π

ξd

Ld

)
(with L j from Eq. (2.1)). (2.9)

Then, the action of the differential operator divC0 : ∇s is readily computed in Fourier space via

f̂ (ξ) = −
[
C0 :

(
ξY ⊗s û(ξ)

)]
ξY , ξ ∈ Zd ,

in terms of the Fourier coefficients f̂ (ξ) of the right-hand side in Eq. (2.7) and the symmetrized tensor product
⊗s . For C0 = 2μ0 Id, solving the latter equation is particularly simple, i.e., the relation

û(ξ) = − 1

2μ0

(
2

‖ξY ‖2
Id −ξY ⊗ ξY

‖ξY ‖4

)
f̂ (ξ), ξ �= 0, (2.10)

holds. We may rewrite the balance equation (2.6) in the form

divC0 : ∇su = −div

(
∂w

∂ε
(·, ε̄ + ∇su) − C0 : (ε̄ + ∇su)

)
,

i.e., isolating the displacement fluctuation field

u = −G0div

(
∂w

∂ε
(·, ε̄ + ∇su) − C0 : (ε̄ + ∇su)

)
. (2.11)

Applying the symmetrized gradient ∇s and adding ε̄ gives rise to the Lippmann–Schwinger equation

ε = ε̄ − Ŵ0 :
(

∂w

∂ε
(·, ε) − C0 : ε

)
, (2.12)

where

ε = ε̄ + ∇su ∈ L2(Y ; Sym(d))
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denotes the total strain field and Ŵ0 = div G0∇s is the Eshelby–Green operator. The latter operator may also
be expressed compactly in Fourier space via

(
Ŵ̂0 : τ

)
(ξ) = 1

μ0

[
ξY ⊗s (τ̂ (ξ)ξY )

‖ξY ‖2
−

ξY ·
(
τ̂ (ξ)ξY

)

2‖ξY ‖4

]
ξY ⊗ ξY , ξ �= 0, (2.13)

and
(
Ŵ̂0 : τ

)
(0) = 0 for any square-integrable stress-type field τ .

The Lippmann–Schwinger equation (2.12) may also be considered as a Fredholm integral equation of the
second kind (with non-compact kernel). Indeed, the operator Ŵ0 may also be regarded as a convolution-type
singular integral operator

Ŵ0 : τ(x) =
∫

Y

K 0(x − y) : τ(y) dy, x ∈ Y, τ ∈ L2(Y ; Sym(d)) (2.14)

for a suitable (singular) integral kernel K 0 : Y → L(Sym(d)), where the difference x − y has to be understood
Y -periodically. The integral-equation point of view was adopted predominantly in early stages of FFT-based
computational micromechanics [33,34], where the convolution product (2.14) appears to have invited having
recourse to computations in Fourier space.

The fixed point method associated with the Lippmann–Schwinger equation (2.12) is called the (continuous)
basic scheme

εk+1 = ε̄ − Ŵ0 :
(
σ(εk) − C0 : εk

)
, k = 0, 1, . . . , (2.15)

for any initial value ε0 ∈ L2(Y ; Sym(d)).

2.2 The Moulinec–Suquet discretization

The basic scheme introduced by Moulinec and Suquet [33,34] proceeds as follows. For a d-tuple N of positive
integers, describing the number of voxels per dimension, let us introduce the set of indices

IN =
{

I ∈ Zd
∣∣∣ 0 ≤ I j < N j for all j = 1 . . . , d

}
, (2.16)

the set of frequencies

ZN =
{
ξ ∈ Zd

∣∣∣−N j/2 ≤ ξ j < N j/2 for all j = 1 . . . , d
}

, (2.17)

and the discrete grid of points

YN =
{

x ∈ Y
∣∣ x j = I j L j/N j for all j = 1 . . . , d and some fixed I ∈ IN

}
(2.18)

in the cell Y (2.1). We shall write x I ∈ YN for the point with coordinates I j L j/N j ( j = 1, . . . , d).
Then, Moulinec–Suquet proposed to iterate, for k = 0, 1, . . .,

τ k(x I ) = ∂w

∂ε

(
x I , ε

k(x I )
)

− C0 : εk(x I ), x I ∈ YN ,

τ̂ k = DFT(τ k),

ε̂k+1(ξ) = − 1

μ0

[
ξY ⊗s (τ̂ k(ξ)ξY )

‖ξY ‖2
− ξY · τ̂ k(ξ)ξY

2‖ξY ‖4

]
ξY ⊗ ξY , ξ ∈ ZN \{0},

ε̂k+1(0) = ε̄,

εk+1 = DFT−1(εk+1),

(2.19)



2056 M. Schneider

where DFT denotes the discrete Fourier transform1

τ̂ = DFT(τ ) with τ̂ (ξ) = 1

N1 · · · Nd

∑

I∈YN

τ(x I ) e−i x I ·ξY , ξ ∈ ZN , (2.20)

and ξY is given by formula (2.9). Notice that, by Eq. (2.9), the product

x I · ξY =
d∑

j=1

I j L j

N j

2πξ j

L j

= 2π

d∑

j=1

I jξ j

N j

is independent of the dimensions L j of the cell Y (2.1). Actually, in the Scheme (2.19), the Nyquist frequencies
{
ξ ∈ Zd

∣∣∣ ξ j = −N j/2 for some j = 1, . . . , d
}

(2.21)

require special attention to ensure that the resulting fields are real-valued. For such a frequency ξ , one might
either set

ε̂k+1(ξ) = 0 or ε̂k+1(ξ) = −
(
C0)−1 : τ̂ k(ξ),

forcing the Fourier coefficients of the strain or the stress field at the Nyquist frequencies to zero [34]. We refer
to Eq. (2.52) for a computationally more efficient evaluation of the Ŵ-operator.

Moulinec–Suquet’s basic scheme in the form (2.19) iterates between real-valued fields, defined on the
discrete grid (2.18), and complex-valued fields which live in Fourier space and whose nonzero values are
restricted to the discrete frequencies (2.17). However, the connection to the continuous setting (2.15) is not
immediate. Inverting the DFT (2.20),

τ(x I ) =
∑

ξ∈ZN

τ̂ (ξ) ei x I ·ξY , x I ∈ YN , (2.22)

we observe that we may plug any point x ∈ Y (instead of just x I ∈ YN ) into the latter expression, i.e., for a
given set of Fourier coefficients {τ(ξ)}ξ∈ZN

, a field

τ(x) =
∑

ξ∈ZN

τ̂ (ξ) ei x ·ξY , x ∈ Y, (2.23)

is defined on the entire cell Y (2.1). The field (2.23) is called a trigonometric polynomial of order N [46]. With
this notion at hand, it is possible to interpret the discrete Fourier transform (2.20) as a solution method for an
interpolation problem. Indeed, given a set of values {τI }I∈IN

, the discrete Fourier transform (2.20) permits us
to find a trigonometric polynomial τ of order N , s.t. τ(x I ) = τI holds for all I ∈ IN . Let us denote the space
of trigonometric polynomials of order N with values in some vector space Z as TN (Y ; Z). (Typically, Z = Rd

or Z = Sym(d).) Let us write QN for the associated trigonometric interpolation operator, which takes any
field g : Y → Z as input, evaluates gI = g(x I ) (I ∈ IN ), and produces the unique trigonometric polynomial
QN [g] ∈ TN (Y ; Z) which interpolates these values. Then, we may recast the basic scheme (2.19) in the form
[47,48]

εk+1 = ε̄ − Ŵ0 : QN

[
∂w

∂ε
(·, εk) − C0 : εk

]
, k = 0, 1, . . . , (2.24)

and some initial strain ε0 ∈ TN (Y ; Sym(d)). In particular, the stress field associated with the strain field
ε ∈ TN (Y ; Sym(d)) is the trigonometric polynomial QN [∂w/∂ε(·, ε)] ∈ TN (Y ; Sym(d)), i.e., the stress
is evaluated only at the grid points (2.18), and interpolated thereafter. For linear elastic material behavior,
∂w/∂ε(x, ε) = C(x) : ε, x ∈ Y , such an approach is different from conventional finite element methods,
where the material law is evaluated exactly on the element, and the balance of linear momentum (2.6) is
approximated. Instead, for the Moulinec–Suquet discretization, the balance of linear momentum is satisfied
on the entire cell Y , but the stress–strain relationship is approximated.

1 Be cautious with possibly non-consistent terminology used for Fourier transforms. The DFT is computed via the FFT
algorithm.
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The formulation (2.24) of the basic scheme suggests that the Moulinec–Suquet discretization is a dis-
cretization of the integral equation (2.14). Following this rationale, Brisard and Dormieux [49,50] used the
Hashin–Shtrikman variational principle [51–53] to get insights into the Moulinec–Suquet discretization, see
Sect. 2.4 for more details. In a nutshell, Brisard and Dormieux regarded the Moulinec–Suquet discretization
as an under-integrated variant of the conforming Galerkin discretization of the Hashin–Shtrikman variational
principle with voxel-wise constant strains as ansatz functions. Brisard and Dormieux [50] were the first to
prove a convergence statement for the Moulinec–Suquet discretization. More precisely, they showed that, for a
stiffness distributionC : Y → L(Sym(d)) that is non-degenerate in the sense that there exist positive constants
α±, s.t.

α−‖E‖2 ≤ E : C(x) : E ≤ α+‖E‖2 holds for all x ∈ Y and E ∈ Sym(d), (2.25)

the (unique) fixed point εN of the basic scheme (2.19), considered as a voxel-wise constant strain field with
values εN (x I ), converges to the (unique) solution of the continuous Lippmann–Schwinger equation (2.12),
provided an appropriate stiffness averaging is performed,

(
CV − C0)−1 = 1

vol(V )

∫

V

(
C(x) − C0)−1

dx (2.26)

for the stiffness CV inside the voxel V ⊆ Y . However, the interpretation from the Hashin–Shtrikman point
of view was not completely satisfactory. For a start, the critical points of the Hashin–Shtrikman variational
principle, restricted to a general subspace of L2, depend on the chosen reference material (and not only on
the subspace). This contrasts with the Moulinec–Suquet discretization, where solutions are independent of the
reference material. Furthermore, the convergence statement required the judicious averaging rule (2.26).

Another interpretation [47,48,54] recasts the continuous Lippmann–Schwinger equation (2.12) in linear
elasticity

ε + Ŵ0 :
(
C − C0) : ε = ε̄

in terms of the stress polarization τ = (C − C0) : ε,

(C − C0)−1 : τ + Ŵ0 : τ = ε̄, (2.27)

where we suppose that C − C0 is invertible everywhere. Similarly, for the Moulinec–Suquet discretization
(2.24), the Lippmann–Schwinger equation may be written in the form

QN

[
(C − C0)−1 : τ

]
+ Ŵ0 : τ = ε̄ for τ ∈ TN (Y ; Sym(d)). (2.28)

Thus, the Moulinec–Suquet discretization may be interpreted as a trigonometric collocation discretization [55]
of the Lippmann–Schwinger equation (2.27) in polarization form. Convergence of the fixed point εN of the
basic scheme (2.19), regarded as a trigonometric polynomial, towards the solution of the continuous Lippmann–
Schwinger equation (2.12) could be established [48] for a class of nonlinear stress operators, which includes
stiffness distributions satisfying the conditions (2.25) as special cases. In contrast to the Hashin–Shtrikman
interpretation, no averaging rule is necessary (2.26). Instead, the nonlinear material law is evaluated directly
on the grid YN (2.18).

However, also the collocation interpretation (2.28) appeared stilted, as, although the reference material
does not influence the solutions, it is still an essential part of the formulation (2.28).

Vondřejc et al. [56] offered a natural explanation in terms of an under-integrated Fourier–Galerkin dis-
cretization of the displacement. More precisely, in view of the variational principle (2.4)

∫

Y

w(x, ε̄ + ∇su(x)) dx −→ min
u∈H1

# (Y ;Rd )

, (2.29)

Vondřejc et al. [56] suggested an approximation of the exact integral (2.29) by the trapezoidal quadrature rule,
i.e., to consider

∑

x I ∈YN

w(x I , ε̄ + ∇suN (x I )) −→ min
uN ∈TN (Y ;Rd )

. (2.30)
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The first-order necessary condition for the problem (2.30) reads

∑

x I ∈YN

∂w

∂ε
(x I , ε̄ + ∇suN (x I )) : ∇svN (x I ) = 0 for all vN ∈ TN (Y ;Rd),

which may be rewritten, using the Plancherel theorem for the DFT, in the form

div QN

[
∂w

∂ε
(·, ε̄ + ∇suN )

]
= 0. (2.31)

The latter equation serves as the equivalent of the continuous balance of linear momentum (2.6). For any
reference material C0 and an arbitrary right-hand side fN ∈ TN (Y ;Rd) with vanishing mean, we have

div C0 : ∇suN = − fN and
∫

Y

uN (x) dx = 0 precisely if uN = G0 fN (2.32)

in terms of the Green’s operator (2.10) for the displacement. In particular, uN ∈ TN (Y ;Rd) and the Green’s
operator preserves the order of trigonometric polynomials. As the reference material C0 is homogeneous, and
the differential operators ∇s as well as divmap trigonometric polynomials to trigonometric polynomials in a
way that does not increase the degree, the line of argument leading to the continuous Lippmann–Schwinger
equation (2.12) may be repeated. In particular, the displacement field uN ∈ TN (Y ;Rd) solves the balance
equation (2.32) if and only if the strain field εN = ε̄ + ∇suN solves the Lippmann–Schwinger equation
corresponding to the basic scheme (2.24)

εN + Ŵ0 : QN

[
∂w

∂ε
(εN ) − C0 : εN

]
= ε̄. (2.33)

The variational principle (2.30) has a number of positive properties, which makes it the "natural" setting
for the Moulinec–Suquet discretization, see Zeman et al. [57] for a more in-depth discussion. For a start, it
clarifies that the displacement field, and not the strain field, is the basic quantity of interest. In particular, the
Lippmann–Schwinger equation (2.33) is only an auxiliary construction (with benefits for solution methods,
see Sect. 3). The reference material gets exposed as an auxiliary quantity as well, having no intrinsic meaning.
Rather, it is required in order to write down an equation of fixed point type, in the first place. The Moulinec–
Suquet discretization is exposed as a result of a clever combination of trigonometric polynomials and the
trapezoidal quadrature rule. Trigonometric interpolation arises naturally in order to write down the Euler–
Lagrange equation (2.31).

The variational point of view (2.30) also clarifies the hidden "symmetry" of the Lippmann–Schwinger
equation. For linear problems, Zeman et al. [54] showed that the conjugate gradient method may be applied to
the Lippmann–Schwinger equation (2.33), although the linear operator involved is not symmetric. The reason,
to be discussed in Sect. 3.2 more thoroughly, is the displacement-based formulation (2.30).

Last but not least, the quadrature-based approach (2.30) makes it evident in which way salient properties of
the nonlinear energy function w dictate the behavior of nonlinear solution methods applied to the discretized
system (2.33). For instance, if w is convex in ε, the averaged energies

W (u) = 1

vol(Y )

∫

Y

w(x, ε̄ + ∇su(x)) dx and WN (uN ) = 1

N1 · · · Nd

∑

x I ∈YN

w(x I , ε̄ + ∇suN (x I ))

will be convex in u ∈ H1
# (Y ;Rd) and uN ∈ TN (Y ;Rd), respectively. Also, strict and strong convexity are

inherited by the Moulinec–Suquet discretization.
For completeness, let us remark that the article of Vondřejc et al. [56] contains a convergence proof for the

discretization under the condition that the coefficient field is smooth enough to ensure that the corresponding
strain field is Hölder continuous. Indeed, then the Fourier series for the strain field converges point-wise, and
simpler arguments may be used than for more general, discontinuous coefficients [48,50].

Last but not least, we refer to a number of works [58–60], where a comparison to finite element methods
was recorded.
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2.3 The Fourier–Galerkin discretization

The Moulinec–Suquet discretization (2.30) is a non-conforming discretization of the variational principle (2.4)
∫

Y

w(x, ε̄ + ∇su(x)) dx −→ min
u∈H1

# (Y ;Rd )

. (2.34)

Indeed, in addition to restricting to the subspace TN (Y ;Rd) of N -th order trigonometric polynomials, the
exact integral is approximated by a quadrature rule. To dispense with the introduced error, quadrature-free
Fourier–Galerkin discretizations were introduced [61–64], which evaluate the variational principle (2.34) on
the subspace TN (Y ;Rd)

∫

Y

w(x, ε̄ + ∇suN (x)) dx −→ min
uN ∈TN (Y ;Rd )

. (2.35)

The associated first-order necessary condition computes as
∫

Y

∂w

∂ε
(x, ε̄ + ∇suN (x)) : ∇svN (x) dx = 0 for all vN ∈ TN (Y ; Rd). (2.36)

Introducing the trigonometric projector PN , which truncates the Fourier coefficients of any square-integrable
field g : Y → Z to ZN , i.e.,

(P̂N g)(ξ) =
{

ĝ(ξ), ξ ∈ ZN ,

0, otherwise,

the balance equation (2.36) may be rewritten in the form

div PN

[
∂w

∂ε
(·, ε̄ + ∇suN )

]
= 0. (2.37)

This expression is very similar to the Moulinec–Suquet discretization (2.31). However, the trigonometric
projection operator PN appears instead of the trigonometric interpolation operator QN . Please note that whereas
QN solves an interpolation problem, PN solves a regression problem, i.e., for given τ ∈ L2(Y ; Sym(d)), it
provides the (unique) field τN ∈ TN (Y ; Sym(d)) minimizing ‖τ − τN ‖L2 .

If w is a heterogeneous Hookean energy with local stiffness field C : Y → L(Sym(d)), the action of the
operator PN : C on a strain field εN ∈ TN (Y ; Sym(d)) may be computed by the convolution theorem, see
pages 171–172 in McGillem and Cooper [65], i.e.,

(Ĉ : εN )(ξ) =
∑

η∈Zd

Ĉ(ξ − η) : ε̂N (η), ξ ∈ Zd , (2.38)

involving the Fourier coefficients of C and εN . As only the projection of the stress field C : εN onto the
restricted set ZN of frequencies (in Fourier space) is of interest, the quantity PN (C : εN ) may be computed by
a discrete Fourier transform on a doubly fine grid [61–63]. Still, the Fourier coefficients of the stiffness field
C are required to be known explicitly. If C attains only a finite number of distinct values, it suffices to know
the Fourier coefficients of the individual subdomains, where C is constant.

The Lippmann–Schwinger equation associated with the balance equation (2.37) reads

εN + Ŵ0 : PN

[
C : εN − C0 : εN

]
= ε̄, (2.39)

which is very similar to the Moulinec–Suquet discretization (2.33). Indeed, the same Ŵ0-operator enters, only
the trigonometric interpolation QN is replaced by trigonometric projection PN . Thus, similar properties hold
as well. For a start, the solutions of the balance equation (2.37) and the Lippmann–Schwinger equation (2.39)
may be identified via ε = ε̄ + ∇su. Secondly, solution methods may exploit the hidden "symmetry" of the
Lippmann–Schwinger equation (2.39). Last but not least, salient properties of the free energy w, like convexity
conditions, are inherited by the Fourier–Galerkin discretization.

The Fourier–Galerkin discretization was studied by Bonnet [61] for elliptical as well as ellipsoidal inclu-
sions, and for circular as well as rectangular inclusions by Vondřejc [63] and Monchiet [64] for conductivity
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and elasticity, respectively. The major benefit of the full Galerkin approach (2.35) is the emergence of a hier-
archy of upper bounds to the effective elastic properties. However, some care has to be taken if the number of
voxels N j in some direction j = 1, . . . , d is even, see section 4 in Vondřejc et al. [62] for a discussion.

Via dualization, see Sect. 4.1, lower bounds may be established as well [63,64]. These lower bounds are
special for the Fourier–Galerkin discretization, and are much harder to obtain for finite element methods, for
instance.

For the Fourier–Galerkin discretization, the equilibrium constraint is easy to encode in Fourier space.
However, the price to pay is the increased effort involved in computing the material law (2.38). Also, the
Fourier coefficients of the characteristic function need to be known explicitly. Last but not least, evaluating
the constitutive law (2.38) appears inherently limited to linear material behavior, and an extension to general
constitutive behavior would increase the range of applicability of the Fourier–Galerkin discretization.

2.4 Discretizations based on the Hashin–Shtrikman principle

As an alternative to the variational formulation (2.4) for the displacement fluctuation, Hashin–Shtrikman [51–
53] introduced another variational approach to the cell problem. Suppose that the material behavior is linear
elastic, i.e., w(x, ε) = 1

2ε : C(x) : ε holds, and suppose that

α−‖E‖2 ≤ E : C(x) : E ≤ α+‖E‖2 holds for all x ∈ Y as well as E ∈ Sym(d)

with positive constants α±, see condition (2.25). Then, provided the reference material C0 is sufficiently small,
the difference C−C0 defines a uniformly positive elastic energy. In particular, C−C0 may be inverted, giving
rise to a uniformly positive compliance tensor field (C − C0)−1. Then, the equivalent formulation (2.27)

(C − C0)−1 : τ + Ŵ0 : τ = ε̄

of the Lippmann–Schwinger equation in terms of the stress polarization τ = (C − C0) : ε arises as the
first-order necessary condition of the variational principle

1

2

〈
τ, (C − C0)−1 : τ + Ŵ0 : τ

〉
L2 − 〈τ, ε̄〉L2 −→ min

τ∈L2(Y ;Sym(d))
, (2.40)

where the angular brackets refer to the L2-inner product (2.2). It is not difficult to see that Ŵ0 is a self-adjoint
and positive semi-definite operator on L2(Y ; Sym(d)). Moreover, (C − C0)−1 is also self-adjoint and even
positive definite, by our choice of diagonal reference materialC0. Thus, the objective function (2.40) is strongly
convex (with Lipschitz-continuous gradient) and admits a unique minimizer. A similar argument shows that if
the reference material C0 is sufficiently large, a complementary variational principle may be established which
has a unique maximizer, see Willis [66] for details. The case of reference material C0 with general anisotropy
is more involved, and we refer to Brisard and Dormieux [50] for the case of isotropic linear elastic constituents.

An advantage of the Hashin–Shtrikman variational principle (2.40) compared to the classical variational
formulation (2.4), based on the displacement field, is that general competitor fields τ ∈ L2(Y ; Sym(d)) may
enter the functional (2.40) to produce bounds. In particular, discontinuous fields may be used. In contrast,
admissible competitors for the displacement-based variational principle (2.4) need to be H1

# , see Talbot and
Willis [66,67] for details.

For the discussion at hand, let us stick to the formulation (2.40) and sufficiently small reference material
C0. Brisard and Dormieux [49] proposed to use a Galerkin discretization of the Hashin–Shtrikman principle
(2.40) for the linear subspace VN ⊆ L2(Y ; Sym(d)) consisting of voxel-wise constant polarization fields. The
first-order necessary condition for the quadratic program

1

2

〈
τN , (C − C0)−1 : τN + Ŵ0 : τN

〉
L2 − 〈τN , ε̄〉L2 −→ min

τN ∈VN

(2.41)

reads
〈
ωN , (C − C0)−1 : τN + Ŵ0 : τN

〉
L2 = 〈ωN , ε̄〉L2 for all ωN ∈ VN .
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Let us denote by PN the L2-orthogonal projector onto VN , which takes any field τ as input and produces the
voxel-wise averaged field PN :τ as output. Then, the first-order necessary condition might be expressed in the
form

(CN ,0 − C0)−1 : τN + Ŵ0
N : τN = ε̄ with Ŵ0

N ≡ PN : Ŵ0 : PN , (2.42)

where CN ,0 is the voxel-wise constant stiffness obtained from averaging (2.26), i.e.,

(
CN ,0(y) − C0)−1 = 1

vol(V )

∫

V

(
C(x) − C0)−1

dx

for the stiffness CN ,0(y) at y ∈ V inside the voxel V ⊆ Y . We write CN ,0 to emphasize the dependence of
the resulting averaged stiffness on both the resolution and the reference material.

The formulation (2.42) has a number of advantages. First and foremost, it is inherently symmetric on the
entire space VN . Notice that this is not the case for the strain-based Lippmann–Schwinger equation (2.12)
in the continuous setting and for both Fourier-type discretizations discussed in previous sections. Indeed, the
Lippmann–Schwinger operator Id +Ŵ0 : (C−C0) is only symmetric on the subspace of compatible fields [68].
The symmetry of the linear operator in Eq. (2.41) naturally led to introducing Krylov-type linear solvers into
FFT-based computational homogenization methods, see Sect. 3.2. Secondly, the operator Ŵ0

N has an explicit
expression as a Fourier multiplier. This follows, as both operators PN and Ŵ0 are translation-invariant on the
voxel grid and their Fourier coefficients are known explicitly. Hence, the composition Ŵ0

N = PN : Ŵ0 : PN

is a Fourier multiplier (for the DFT), as well, and the Fourier coefficients are known explicitly. Moreover, the
rigorous variational formulation (2.41) permitted to prove convergence of the Moulinec–Suquet discretization
[50] by an ingenious argument. Last but not least, the naturally emerging averaging procedure (2.26) brought to
attention the idea of dealing with the distribution of the phases constituting the microstructures on a sub-voxel
scale, triggering the development of composite voxel techniques, see Sect. 4.3.

There are two primary disadvantages of the Brisard–Dormieux discretization (2.42). First, the solution
τN of the Brisard–Dormieux type Lippmann–Schwinger equation depends on the reference material. Thus, in
contrast to displacement-based discretization schemes, the reference material has a meaning beyond being a
numerical parameter. In particular, a judicious choice of C0 is necessary, balancing accuracy of the discrete
solution and retaining a favorable conditioning of the linear system (2.42). This is also encoded in the ŴN

-operator, as the operator C0 : ŴN does not define a projection operator, in general.
The second disadvantage of the discretization concerns the practical computation of the operator Ŵ0

N .
Although explicit expressions for the Fourier coefficients of the operator Ŵ0

N are available, the involved series
converges rather slowly in three spatial dimensions [50]. In particular, computing the operator Ŵ0

N on the fly
is not recommended, and the Fourier coefficients need to be pre-computed and stored.

Another (less critical) disadvantage is that the strain field εN = (CN ,0 − C0) : τN associated with a
polarization field τN solving the problem (2.42) is not compatible, in general, i.e., cannot be written as the
symmetrized gradient of a displacement field. As a remedy, Brisard [69] proposed an approach to recover an
associated displacement field which becomes more closely related to the strain field as the discretization is
refined.

The discretized variational principle (2.41) was also utilized for more general decompositions of the unit
cell Y (2.1), for instance obtained from a clustering analysis of solution fields. The resulting method, called
self-consistent clustering analysis [70–72], represents a state-of-the-art data-driven model order reduction
approach to up-scaling nonlinear constitutive relations via homogenization. Please note that the self-consistent
clustering analysis concerns the Lippmann–Schwinger equation (2.12), but may also be computed via finite
elements. In this context, the convergence analysis of Brisard–Dormieux [50] was generalized to strongly
convex free energies w with Lipschitz-continuous gradient, also covering cluster decompositions more general
than voxelizations. Recently, the Hashin–Shtrikman variational principle (2.40) was also used for constructing
a discretization based on B-Splines [73], generalizing a previous work with splines [74].

2.5 Finite difference, finite element and finite volume discretizations

In 1998, Müller [75] proposed a variant of the basic scheme (2.19) which replaces (continuous) derivatives by
appropriate central finite difference approximations on a regular grid and modifies the Ŵ0-operator appropri-
ately. In this way, the well-known ringing artifacts associated with spectral and pseudo-spectral discretizations
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of non-smooth problems [76,77] can be avoided. The underlying idea is that (homogeneous) finite difference
stencils give rise to Fourier multipliers upon discrete Fourier transformation [78,79].

When considering finite difference discretizations, care has to be taken concerning the placement of the
variables on the grid, and the location where the material law is evaluated. For the Moulinec–Suquet discretiza-
tion, no such problems arise. Recall that, via trigonometric interpolation, we may extend a set of values given
at the locations x I ∈ YN to the entire cell Y (2.1). In particular, we may evaluate the derivatives anywhere, for
instance at the positions x I ∈ YN . For the Moulinec–Suquet discretization, it is thus natural to assume that the
x I correspond to the voxel centers, and the constitutive law corresponding to this specific voxel is used.

In the context of conductivity, a regular grid of points may be linked by a "resistor network," connecting
adjacent grid points (in the coordinate directions) by line segments, and each of these segments is furnished with
a scalar conductivity, see Luck [80] for an application without FFT. For such models, Willot and Pellegrini [81]
derived the associated Ŵ0-operator and discussed the ensuing solution methods. The approach was extended
to more general finite difference approximations by Willot–Abdallah–Pellegrini [82].

For digital images of microstructures, each voxel corresponds to a specific material. For the "resistor
network," however, the conductivity naturally lives on the interface between adjacent voxels. Typically, material
properties are associated with the individual voxels of a digital image, and the material properties at the material
interfaces are a priori undefined. Also, the resistor network interpretation is, by construction, restricted to
isotropic conductivity.

An alternative finite difference discretization was exploited by Willot [83], based on the rotated staggered
grid [84,85] popular for simulating the propagation of elastic waves in anisotropic media. The latter discretiza-
tion places the temperatures at the voxel corners and considers a "resistor network" with resistors connecting
diametrically opposite corners of each voxel, see Fig. 1a.

In this way, the resistors meet at the voxel centers, and it makes sense to evaluate anisotropic constitutive
laws as well. Such an approach made it also possible to treat mechanical problems [83]. By a coordinate
transformation, the resulting gradient (at the voxel center) equals the averaged forward differences along the
coordinate axes, see Fig. 1b. Willot derived compact expressions for the Ŵ0-operator, see Eq. (2.48) and(2.52),
and proposed pertinent FFT-based solution methods.

This finite difference method has a number of positive properties. As the Moulinec–Suquet discretization,
Willot’s discretization may be derived from a variational principle. For this purpose, denote by Y node

N the nodal
grid, which we consider to be identical to YN (2.18). Furthermore, let us introduce the Gauss-point grid

Y Gauss
N =

{
x ∈ Y

∣∣ xi =
(
Ii + 1

2

)
L i/Ni (i = 1, . . . , d) for some index I ∈ IN

}
, (2.43)

where IN denotes the set of admissible indices (2.16). For any displacement field

u : Y node
N → Rd ,

u[i,j,k]

u[i+1,j,k]

u[i+1,j,k+1]

u[i,j,k+1]

u[i,j+1,k]

u[i+1,j+1,k]

u[i+1,j+1,k+1]

u[i,j+1,k+1]

(a) Single voxel with diagonal ”resistor network” (b) Finite differences in x-, y- and z-direction

Fig. 1 Illustration of Willot’s discretization scheme [83]
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let us denote by Du the symmetrized gradient computed via the rotated staggered grid discretization, giving
rise to a field

Du : Y Gauss
N → Sym(d).

Then, we may consider the variational problem
∑

x∈Y Gauss
N

w(x, ε̄ + DuN (x)) −→ min w.r.t. uN : Y node
N → Rd , (2.44)

which is very similar to the Moulinec–Suquet discretization (2.30). The associated first-order necessary con-
dition reads

∑

x∈Y Gauss
N

∂w

∂ε
(x, ε̄ + DuN (x)) : DvN (x) = 0 for all vN : Y node

N → Rd ,

which may be rewritten, via summation by parts, in the form

D∗
[
∂w

∂ε
(·, ε̄ + DuN )

]
= 0, (2.45)

where D∗ is (the negative of) the discrete divergence operator associated with the discrete symmetrized gradient
D. Introducing the set of undefined indices

UN = {0} ∪
{
ξ ∈ ZN

∣∣ there is some j = 1, . . . , d, s.t. 2ξ j = −N j

}
, (2.46)

comprising zero and the Nyquist frequencies (2.21) and defining a complex-valued vector field

k : ZN → Cd ,

with components

k(ξ) =

⎡
⎢⎣

N1
4L1

(
e2π iξ1/N1 − 1

) (
e2π iξ2/N2 + 1

) (
e2π iξ3/N3 + 1

)

N2
4L2

(
e2π iξ1/N1 + 1

) (
e2π iξ2/N2 − 1

) (
e2π iξ3/N3 + 1

)

N3
4L3

(
e2π iξ1/N1 + 1

) (
e2π iξ2/N2 + 1

) (
e2π iξ3/N3 − 1

)

⎤
⎥⎦ (2.47)

for d = 3, the symmetrized gradient D can be conveniently expressed in Fourier space

(̂Du)(ξ) = k(ξ) ⊗s û(ξ),

and the divergence operator D∗ reads, in terms of the complex conjugate,

(̂D∗τ)(ξ) = τ̂ (ξ)k(ξ).

Then, arguing as for the Moulinec–Suquet discretization, uN : Y node
N → Rd is a critical point of the variational

principle (2.44) precisely if εN : Y Gauss
N → Sym(d) solves the Lippmann–Schwinger equation

εN + Ŵ0
N :
[
∂w

∂ε
(·, εN ) − C0 : εN

]
= ε̄ (2.48)

via the identification εN = ε̄+ DuN , where Ŵ0
N = D(D∗C0 D)−1 D∗. Compared to the Lippmann–Schwinger

equation for the Moulinec–Suquet discretization (2.33), the similarities are striking. For C0 = 2μ0 Id and for
any field τ : Y Gauss

N → Sym(d), the Eshelby–Green operator Ŵ0
N for Willot’s discretization takes the form

Ŵ̂0
N τ(ξ) = 1

μ0

[
k(ξ) ⊗s (τ̂ (ξ)k(ξ))

‖k(ξ)‖2
− 1

2

k(ξ) · (τ̂ (ξ)k(ξ))

‖k(ξ)‖4
k(ξ) ⊗ k(ξ)

]
(2.49)

for ξ ∈ ZN \UN and identical to zero otherwise. Please notice that, upon replacing k(ξ) by ξY (which is
real-valued), the continuous case (2.13) is recovered.
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Willot’s discretization preserves all the advantages of the Moulinec–Suquet discretization: it is displacement
based, not restricted to linear constitutive laws, and permits efficient FFT-based solvers. There are two additional
advantages of Willot’s discretization over Moulinec–Suquet’s discretization. For a start, as the operators D and
D∗ can be computed in real space, it is possible to construct iterative Lippmann–Schwinger solvers formulated
for the displacement field. For instance, the basic scheme reads

uk+1
N = −G0

N D∗
[
∂w

∂ε
(·, ε̄ + Duk

N ) − C0 : Duk
N

]
. (2.50)

In particular, the necessary memory consumption can be reduced by a factor of two for three-dimensional
elasticity. This idea has been used earlier [82,86].

Secondly, Willot’s discretization permits treating porous materials by FFT-based techniques in a stable
way. For a porous material, the stress field vanishes identically on a certain sub-domain of the unit cell. For
conventional finite element or finite difference discretizations, the nodal degrees of freedom in the pore space
can be eliminated from the system to be solved. For FFT-based methods, such an approach is not possible,
because the regular grid requires retaining these degrees of freedom in the discretized systems. It has been
observed by many authors that the convergence behavior of the basic scheme deteriorates for increasing material
contrast, in particular for porous materials. As a remedy, more sophisticated FFT-based linear and nonlinear
solution methods were proposed, see Sect. 3. However, after some time it became clear that improved solution
methods do not solve the problem. Indeed, the lack of convergence of the basic scheme is a result of using
a discretization based on trigonometric polynomials. This is demonstrated by an example in Schneider et al.
[87]. There, a Kelvin-type foam microstructure with 503 voxels is investigated. It is shown that the average
stress of the iterates obtained by the Moulinec–Suquet discretization and the basic scheme converges to zero
as k → ∞, which is unreasonable from a physical point of view. It can be shown that, under reasonable
geometric conditions on the pore space and a non-degeneracy assumption on the constitutive behavior in the
solid, the continuous basic scheme (2.15) is linearly convergent [43]. However, Fourier-type discretizations
do not inherit this property. Without going into details, the essential insight is that the iterates εk of the
basic scheme (2.15) involve a C0-elastic extension to the pore space. Thus, on this subspace, the basic scheme
becomes a contraction mapping. Discretizations by trigonometric polynomials are not compatible toC0-elastic
extensions for prescribed values on the pore boundary. Indeed, due to the global nature of the trigonometric
polynomials, any small error propagates globally. In contrast, finite difference discretizations, like Willot’s
discretization, admit well-defined boundary values on the pore-solid interface. In particular, the C0-elastic
extension is the Lippmann–Schwinger equivalent of deleting the nodal degrees of freedom in the pore space.
We refer to Schneider [43] for details.

It took some time to realize the inherent advantages of finite difference discretizations. One of the reasons
is that there was no uniform agreement on the used convergence criterion, so that a particular scheme may
be defined as converging for one author, whereas another author considered it non-convergent. Furthermore,
the degree of ill-conditioning of Moulinec–Suquet’s discretization strongly depends on the complexity of
the microstructure and also on the physics considered. For instance, thermal conductivity problems are less
prone to ill-conditioning than mechanical problems, as are two-dimensional microstructures compared to their
three-dimensional counterparts.

Willot’s discretization has become the standard discretization scheme for FFT-based computational homog-
enization methods, apart from the Moulinec–Suquet discretization. However, for specific purposes, also other
finite difference discretization schemes were introduced.

Instead of the rotated staggered grid, the standard staggered grid [88] may be used for discretizing mechan-
ical problems. Originating in finite volume methods for fluid flow problems, each voxel is considered as a
control volume. Each such volume is furnished with a pressure, whereas the velocities naturally live on the
voxel faces and quantify the flux of fluid across this interface. Thus, the variables are located on different,
so-called staggered, grids. Discretizations on a staggered grid may also be used for mechanical problems,
where the velocities are replaced by the displacements, see Zhu et al. [89] who use a geometric multi-grid
solver. Without going into detail [87], it is also possible to write down a variational principle like for Willot’s
discretization (2.44), but for a different symmetrized gradient operator, which reads, for d = 3,

Du =

⎡
⎢⎣

D+
1 u1

1
2

(
D−

1 u2 + D−
2 u1

) 1
2

(
D−

1 u3 + D−
3 u1

)

1
2

(
D−

2 u1 + D−
1 u2

)
D+

2 u2
1
2

(
D−

2 u3 + D−
3 u2

)

1
2

(
D−

3 u1 + D−
1 u3

) 1
2

(
D−

3 u2 + D−
2 u3

)
D+

3 u3

⎤
⎥⎦ (2.51)
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in terms of appropriate forward and backward finite difference operators D±
j in direction j . In a similar

way as for Willot’s discretization, Lippmann–Schwinger-type solvers can be constructed, exploiting explicit
expressions of the Ŵ0-operator in Fourier space, see Eq. (2.52).

The staggered grid scheme leads to more robust solvers than Willot’s scheme for porous materials, in
particular for high porosity, see Sect. 5.6. The reasons for the inferior performance of Willot’s discretization
are the hourglass modes emerging for microstructures with complex pore space, to be explained below.

More recently, further finite difference discretization schemes [90–94] were investigated. For applications
without jumps in the material properties, like for microstructures emerging from minimizing non-convex
potentials, high-order central difference schemes [92,93] were reported to be advantageous.

When implementing the action of the (discrete) Ŵ-operator, it is often advantageous to exploit the product
structure of the Ŵ-operator. For the most common finite difference schemes, computing ε = Ŵ0 : τ in Fourier
space at specific frequency ξ is summarized as follows:

∀ j = 1, 2, 3 : k j ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2πξ j /L j , Moulinec–Suquet [33,34]
∏

k �= j (e
2π iξk/Nk + 1)(e2π iξ j /N j − 1) N j /L j Willot [83]

(e−2π iξ j /N j − 1) N j /L j , staggered grid [87]

i sin(2π iξ j /N j ) N j /L j , 2nd order central differences [90,91]

i
(
8 sin(2π iξ j /N j ) − sin(4π iξ j /N j )

)
N j /L j , 4th order central differences [92]

i
(
23760 sin(2π iξ j /N j ) − 7425 sin(4π iξ j /N j )

+2200 sin(6π iξ j /N j ) − 495 sin(8π iξ j /N j )

+72 sin(10π iξ j/N j ) − 5 sin(12π iξ j /N j )
)

N j /L j ,

12th order central differences [93]

η ← k/‖k‖

f ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣

−τ̂11(ξ)η1 + τ̂12(ξ)η̄2 + τ̂13(ξ)η̄3

τ̂21(ξ)η̄1 − τ̂22(ξ)η2 + τ̂23(ξ)η̄3

τ̂31(ξ)η̄1 + τ̂32(ξ)η̄2 − τ̂33(ξ)η3

⎤
⎦ , staggered grid

⎡
⎣

τ̂11(ξ)η̄1 + τ̂12(ξ)η̄2 + τ̂13(ξ)η̄3

τ̂21(ξ)η̄1 + τ̂22(ξ)η̄2 + τ̂23(ξ)η̄3

τ̂31(ξ)η̄1 + τ̂32(ξ)η̄2 + τ̂33(ξ)η̄3

⎤
⎦ , otherwise

s ← f · η̄

u ←
{

(− f + s η/2) /μ0, staggered grid,

(− f + s η̄/2) /μ0, otherwise,

ε̂(ξ) ←

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

−η̄1u1
η1u2+η2u1

2
η1u3+η3u1

2
η2u1+η1u2

2 −η̄2u2
η2u3+η3u2

2
η3u1+η1u3

2
η3u2+η2u3

2 −η̄2u3

⎤
⎥⎦ , staggered grid

⎡
⎢⎣

η1u1
η1u2+η2u1

2
η1u3+η3u1

2
η2u1+η1u2

2 η2u2
η2u3+η3u2

2
η3u1+η1u3

2
η3u2+η2u3

2 η2u3

⎤
⎥⎦ , otherwise

(2.52)

Closely related to finite difference discretizations are finite volume schemes. Based on the immersed interface
method [95], which may also be solved efficiently by FFT [79,96], Wiegmann and Zemitis [97] introduced an
FFT-based solver for isotropic thermal conductivity on digital images based on a finite volume discretization.
In their solution method, the jumps in the temperature gradient field across voxel interfaces are the primary
unknowns. The Wiegmann–Zemitis discretization improves upon the Willot–Pellegrini scheme [81] by asso-
ciating the harmonically averaged conductivities of the adjacent voxels to the interface. Dorn and Schneider
[98] interpreted the Wiegmann–Zemitis formulation as a finite difference equivalent of a boundary integral
equation and provided an associated (volumetric) Lippmann–Schwinger equation. As a result, the finite volume
discretization was integrated into the canon of FFT-based computational homogenization methods. Compared
to, both, the Moulinec–Suquet and Willot’s discretization, the Wiegmann–Zemitis finite volume method has
minimal artifacts.

As finite element methods on regular meshes may be interpreted as specific finite difference stencils, it is
possible to construct FFT-based solvers for finite element discretizations, as well. In particular, it does not make
sense to "compare" FFT-based methods to finite element discretizations. Rather, it is reasonable to compare
finite element discretizations on boundary/interface conforming meshes to discretizations on a regular grid.
Also, one may compare different solution methods applied to problems arising from the same discretization
scheme.
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Table 1 Summary of the considered discretization schemes

Discretization Nonlinear Anisotropic Heterogeneous Bounds Pores Explicit Ŵ Low memory Reference(s)

Moulinec–Suquet + + + − − + (+) [33,34,56]
Fourier–Galerkin − + + + − + (+) [62–64]
Brisard–Dormieux + + + + + − − [49,50,73]
Willot’s scheme + + + − + + + [83]
Staggered Grid + (+) + − + + + [87]
High-order FD + + − − + + + [90–93]
FEM + + + + + (+) + [99,102]
Finite volume (+) − + − + + + [97,98]

The columns indicate whether the scheme can handle material nonlinearities, material anisotropy and heterogeneous material
properties. Also, it is indicated whether bounds (of whatever type) may be derived and if the scheme retains numerical stability
for porous materials. Moreover, it is listed if computing the Ŵ-operator is inexpensive and whether low-memory implementations
are possible

FFT-based solvers for trilinear hexahedral elements on a regular periodic grid were introduced by Schneider
et al. [99]. The idea is to consider the nodal values of the displacement field to live on the nodal grid Y node

N ,
as for Willot’s discretization, and to introduce a Gauss-point grid Y Gauss

N with eight Gauss points per element.
Then, the symmetrized gradient may be interpreted as a mapping of displacement fields on the nodal grid Y node

N

to strain values at the Gauss-point grid Y Gauss
N , and the finite element variational principle

∑

x∈Y Gauss
N

w(x, ε̄ + DuN (x)) −→ min
uN

among uN : Y node
N → Rd

is similar as for Willot’s discretization (2.44), but with eight Gauss points per element instead of a single
Gauss point. It is interesting to note that the discretized system obtained by Willot’s discretization is identical
to using trilinear FEM ansatz functions and reduced integration [100,101] with only a single Gauss point per
element, located at the voxel center. The latter interpretation permits applying the established FEM-machinery
to Willot’s discretization, settling questions about convergence and stability of the discretization. Interestingly,
for non-porous materials, only global hourglass instabilities may occur. These instabilities are concentrated,
after discrete Fourier transform, at the Nyquist frequencies (2.21). Hence, setting the Green’s operator to zero
for these frequencies, as suggested by Willot [83], serves as an hourglass stabilization. Unfortunately, for
porous materials, local hourglass instabilities may emerge that are not taken care of by the Ŵ-operator.

Returning to the eight-point trilinear finite elements, a Lippmann–Schwinger equation and corresponding
FFT-based solvers may be established as before. The notable difference is the increase in both memory demand
and computational complexity when implementing such an FFT-based finite element solver on the strains.
Indeed, eight Gauss points are located in every voxel. Thus, for a fixed microstructure, eight times the number
of strain fields need to be stored for the full FEM discretization compared to the under-integrated version,
equivalent to Willot’s discretization, and also the number of evaluations of the constitutive law is increased
eightfold.

These shortcomings were addressed by Fritzen and Leuschner [102], building upon previous contributions
by Yvonnet [103] using finite elements. The resulting Fourier-analytic nodal solver (FANS) method operates
on the displacement field, see Eq. (2.50), and utilizes a Newton–Krylov method, see Sect. 3.4. Fritzen and
Leuschner store the Newton tangent in a sparse format, reducing the overhead from the increased number of
Gauss points. Indeed, only the nodal degrees of freedom are accessed for the linear solver. Moreover, Fritzen
and Leuschner exploit a selective reduced integration [104].

2.6 Overview

A (personal) summary of the presented discretization schemes is given in Table 1. Signs in brackets mean the
following. For the Moulinec–Suquet and the Fourier–Galerkin discretization, computing the gradient and the
divergence requires FFTs. Thus, the basic scheme requires at least a strain field to be kept in memory. However,
additional fields may be stored in displacement form. For instance, the CG method can be implemented on
a single strain and three displacement fields [105–107]. Thus, a low memory implementation is possible, but
not to the same degree as for other discretization schemes.
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Fig. 2 Comparison of von Mises stress (in MPa) at cross section for single spherical glass inclusion in polamide matrix and
different discretization methods (CD = central differences)

Table 2 Effective Young’s moduli (in GPa) in x-direction for the spherical glass inclusion and varying discretization and resolution

323 643 1283 2563 5123

Moulinec–Suquet 2.8166 2.7983 2.7898 2.7864 2.7848
Willot’s scheme 2.8270 2.8046 2.7928 2.7879 2.7856
Staggered grid 2.8188 2.7999 2.7910 2.7870 2.7852
2nd-order CD 2.8296 2.8047 2.7929 2.7879 2.7856
4th-order CD 2.8283 2.8038 2.7923 2.7876 2.7855
12th-order CD 2.8239 2.8021 2.7914 2.7872 2.7853

By moving the strain and stress unknowns to the voxel center, the staggered grid discretization is compatible
to anisotropic materials. However, the solution fields corresponding to a symmetric geometry may be non-
symmetric. Whether this is a problem for complex (non-symmetric) microstructures is another matter. For
the FEM discretization, computing the Ŵ-operator involves inverting a (Hermitian) 3 × 3 matrix. Thus, the
resulting Ŵ-operator is semi-explicit. The finite volume discretization is restricted to isotropic conductivity.

For the readers’ convenience, a few examples on the characteristics of the different discretization methods
are included. For a single spherical glass inclusion with 12.78% volume in a polyamide matrix, discretized
by 1283 voxels, the von Mises stress at the cross section for 5% uniaxial extension in x-direction and linear
elastic material behavior is shown in Fig. 2. We use the material parameters of Schneider [108] and subject
the composite to uniaxial extension at 5% strain. For all discretization methods, there are distinct artifacts
at the interface. In the matrix, all discretizations look rather similar. In the inclusion, Moulinec–Suquet’s
discretization shows ringing artifacts, whereas Willot’s scheme leads to checkerboarding. The central difference
discretizations lead to an oscillatory behavior away from the interface which increases for increasing order of
the method. This is a result of the lack of discrete combinatorial consistency of those discretizations, making
them more suitable for problems with small contrast.

For completeness, the computed effective Young’s moduli are listed in Table 2. We observe that all proposed
discretization schemes give rise to rather similar results for a fixed resolution. Concerning the behavior for
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Fig. 3 Influence of different discretization schemes on the convergence behavior of the (linear) conjugate gradient method and a
microstructure of bound sand [109]

Table 3 Axial components of the stress (in MPa) for the sandcore structure, ε̄xx = 1% ex ⊗ ex and varying discretization scheme

σ̄xx σ̄yy σ̄z

Moulinec–Suquet (∗) 87.47 18.90 18.15
Willot’s scheme (∗) 91.80 19.28 18.59
Staggered grid 91.08 19.23 18.51
2nd-order CD 91.59 19.29 18.63
4th-order CD (∗) 86.82 18.92 18.22
12th-order CD (∗) 86.18 18.81 18.10

The reported values either correspond to the converged values, or are extracted after 1000 iterations (marked by (*))

porous materials, we consider a 3D microstructure of bound sand with a (rather high) porosity of approximately
40.14% and 2563 voxels, see the original publication [109], where also the material parameters are listed. For
this (admittedly complex) microstructure, shown in Fig. 3a, the performance of the linear conjugate gradient
method [54] is compared in Fig. 3b. After an initially strong decrease, for the Moulinec–Suquet discretization,
the residual fails to be reduced significantly below 10−2. A similar behavior is observed for the high-order
finite difference schemes. Willot’s discretization permits to reduce the residual further by about an order of
magnitude, but hits a stall afterwards, as well. The second-order finite difference method converges after 774
iterations. The staggered grid discretization also converges and requires about an order of magnitude less
iterations, namely 95.

The resulting effective stresses in the three axial directions are reported in Table 3. Please note that we
included the effective stresses at iteration 1000 for those schemes which did not converge.

The only two discretization schemes which led to convergence within 1000 iterations, the staggered grid and
the second-order central differences, give rise to effective stresses which coincide for the first two significant
digits. These values coincide with those of Willot’s discretization which reaches the lowest residual among
the non-convergent cases. All the remaining discretization schemes give different predictions.

Last but not least, let us also take a look at the resulting solution fields, see Fig 4. In this magnified view, we
notice that the observations made before continue to hold for this porous setting, although the effects appear
to be less pronounced.
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(a) Moulinec-Suquet [33, 34, 56] (b) Willot’s scheme [83] (c) Staggered grid [87]

(d) 2nd order CD [90, 91] (e) 4th order CD [92] (f) 12th order CD [93]

Fig. 4 Von Mises stress (in MPa) on a quarter of a transverse section in the sand-grain structure, see Fig. 3

3 Modern nonlinear solution methods

3.1 The basic scheme

Moulinec and Suquet [33] introduced an algorithm that is nowadays known as the basic scheme, following
the terminology in Michel et al. [110]. It was formulated at small strains (2.15) and was already applicable to
nonlinear and inelastic materials

εk+1 = ε̄ − Ŵ0 :
(

∂w

∂ε
(·, εk) − C0 : εk

)
, k = 0, 1, . . . (3.1)

The algorithm was studied more thoroughly in Moulinec and Suquet [34]. In particular, the treatment of
Nyquist frequencies (2.21) was discussed and a selection strategy for the isotropic reference material was
suggested, provided all the materials in the microstructure are linear elastic and isotropic. More precisely,
from computational experience, it was suggested to compute the spatial maximum and minimum for the two
Lamé constants individually, and to select the Lamé constants of the reference medium to be the arithmetic
average of these extremes. Last but not least, instead of prescribing a macroscopic direction of strain, a way
for simulating a uniaxial stress driven process was introduced, see also Sect. 4.2.

In the context of (linear) conductivity, Eyre and Milton [111] analyzed the convergence behavior of the
basic scheme by interpreting it as a Neumann series. Indeed, for linear elasticity, ∂w/∂ε(·, ε) ≡ C : ε, the
basic scheme (3.1) may be expressed in the form

εk+1 =
k∑

j=0

(
−Ŵ0 :

(
C − C0)) j

ε̄.

It is well known that such a Neumann series for (Id +B)−1 converges provided the spectral radius of B is
less than unity. The spectral radius of the operator Ŵ0 : (C − C0) for isotropic stiffness C was analyzed by
Michel et al. [110]. They came to the conclusion that the best bound on the spectral radius (and thus the fastest
convergence rate) is reached by computing the maximum and minimum of the shear and the compression
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modulus of the materials, individually, and to take the arithmetic average of those for the reference medium,
see also Vinogradov and Milton [112] for a more functional analytic discussion. A salient feature of the basic
scheme (3.1) is that the necessary iteration count for reaching a desired tolerance is bounded independently of
the mesh width, depending only on the material contrast.

Milton [4], Sect. 14.11, extended the analysis of the basic scheme to a class of nonlinear materials. Suppose
that positive constants α± and a heterogeneous stress operator

σ : Y × Sym(d) → Sym(d), (x, ε) �→ σ(x, ε), (3.2)

are given, s.t. σ is uniformly α+-Lipschitz (in ε)

‖σ(x, ε1) − σ(x, ε2)‖ ≤ α+ ‖ε1 − ε2‖ for all x ∈ Y and all ε1, ε2 ∈ Sym(d) (3.3)

and uniformly α−-monotone (in ε)

(σ (x, ε1) − σ(x, ε2)) : (ε1 − ε2) ≥ α− ‖ε1 − ε2‖2 for all x ∈ Y and all ε1, ε2 ∈ Sym(d). (3.4)

Then, for the reference material C0 = α0 Id with α0 > α2
+/(2α−), the nonlinear operator

L2(Y ; Sym(d)) → L2(Y ; Sym(d)), ε �→ ε̄ − Ŵ0 :
(
σ(ε) − C0 : ε

)
,

defines a contraction mapping [113], and the basic scheme (3.1), interpreted as a fixed point method, converges
globally with a linear rate. The (theoretically) fastest convergence rate is reached for α0 = α2

+/α−. Specialized

to the linear elastic setting, however, the ensuing convergence rate
√

1 − α2
−/α2

+ is strictly inferior to the rate
1 − α−/α+ obtained for α0 = (α− + α+)/2.

In their study of finite strain problems, Kabel et al. [105] interpreted the basic scheme (3.1) as a gradient
descent method for the total (condensed) elastic energy on the cell Y . Recall that there is a difference between
the differential and the gradient of a (Frechét differentiable) function W on a Hilbert space H . Indeed, for any
u ∈ H , the differential DW (u) is an element of the dual space H ′, the space of bounded linear functionals on
H , whereas the gradient ∇W (u) at u ∈ H is a vector in H . Both are related via the inner product 〈·, ·〉H on
H , i.e.,

DW (u)[v] = 〈∇W (u), v〉H , u, v ∈ H, (3.5)

holds. In the context of small-strain mechanics, suppose a condensed free energy w (2.3) is given, together
with ε̄ ∈ Sym(d). Let us investigate the objective function (2.4)

W : H1
# (Y ; Rd) → R, u �→ 1

vol(Y )

∫

Y

w(x, ε̄ + ∇su(x)) dx,

where we endow the space H1
# (Y ;Rd) with the Korn-type inner product

〈·, ·〉H1
#

: H1
# (Y ; Rd) × H1

# (Y ; Rd) → R, (u1, u2) �→ 1

vol(Y )

∫

Y

∇su1(x) : ∇su2(x) dx . (3.6)

Then, for a sequence of positive step-sizes sk , the associated gradient descent method

uk+1 = uk − sk ∇W (uk), k = 0, 1, . . . (3.7)

may be studied. It is not difficult to see that, for the inner product (3.6), the gradient of W (3.5) becomes

∇W (u) = G
∂w

∂ε
(·, ε̄ + ∇su),

where G is a non-dimensional version of the Green’s operator (2.10) with Fourier coefficients

(Ĝ f )(ξ) = −
(

2

‖ξY ‖2
Id −ξY ⊗ ξY

‖ξY ‖4

)
f̂ (ξ), ξ �= 0,
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and (Ĝ f )(0) = 0, for any f ∈ H−1
# (Y ;Rd). In view of these formulae, the gradient descent method (3.7)

becomes

uk+1 = uk − sk G
∂w

∂ε
(·, ε̄ + ∇suk), k = 0, 1, . . . ,

which, for sk = 1
2μ0

, is the fixed point method associated with the Lippmann–Schwinger equation (2.11)

u = −G0div

(
∂w

∂ε
(·, ε̄ + ∇su) − C0 : (ε̄ + ∇su)

)

for the displacement field u.
Interpreting the basic scheme as a gradient descent method sheds light on its properties. For a start, if the

step size sk is sufficiently small, the averaged energy W (εk) will be non-increasing from one iteration to the
next. On the other hand, if the step-size is too large (which corresponds to a very soft reference material), the
explicit nature of the gradient update (3.7) leads to an unstable, non-convergent method.

The interpretation as a gradient scheme also permits drawing upon the mature convergence theory developed
for gradient methods. For instance, if the stress operator σ (3.2) associated with the condensed free energy
w (2.3) satisfies the conditions (3.3) and (3.4), the basic scheme (3.1) with C0 = α0 Id is a contractive
fixed point method for α0 > α+/2 and the fastest convergence rate is reached for α0 = (α− + α+)/2 at
(α+ − α−)/(α+ + α−). In particular, no speed is lost compared to the linear elastic case.

In view of Milton’s contraction estimate, this is, however, a result of investigating stress operators coming
from a potential. Indeed, Milton’s result also applies to linear and monotone "stiffness tensors" without major
symmetry, whereas gradient descent only covers symmetric (and positive definite) stiffness tensors.

The interpretation as a gradient scheme also sheds light on the role of anisotropy in the reference material.
Under the conditions (3.3) and (3.4), a reference stiffness of arbitrary anisotropy leads to a linearly convergent
basic scheme provided the reference material is sufficiently stiff. However, such a strategy is typically not
effective. Even for the linear case, to reach fast convergence, it is best if the reference material commutes with
all local stiffness tensors C : Y → L(Sym(d)). Then, an eigenvalue-based recommendation for the reference
material can be given. Of course, choosing the reference material proportional to the identity ensures that it
commutes with all material tangents (in the nonlinear case), which is the rationale behind this choice.

In any case, estimates for the constants α± may be obtained from spectral analyses of the material tangents.
Indeed, α− arises as the minimum (over all points) of the smallest eigenvalues of the symmetric part of the
tangent, whereas α+ is the maximum of the largest singular value of the tangent. If the stress operator (3.2) is
derived from a potential, the tangent is symmetric, and no distinction between eigenvalues and singular values
needs to be made.

A closely related, more geometric approach to the basic scheme was introduced by Bellis and Suquet
[114] based on the Helmholtz decomposition [115], where also further solvers exploiting geometric principles
were discussed. In a nutshell, the basic scheme may also be interpreted as a projected gradient method on
L2(Y ; Sym(d)), where the objective function is

L2(Y ; Sym(d)) → R, ε �→
∫

Y

w(x, ε(x)) dx,

and the L2-orthogonal projector onto the closed, convex and non-empty set

Cε̄ =
{
ε = ε̄ + ∇su

∣∣∣ u ∈ H1
# (Y ;Rd)

}
⊆ L2(Y ; Sym(d))

of compatible strain fields with prescribed mean is given by

ε �→ ε̄ + Ŵ : ε, Ŵ = ∇s Gdiv .

In any case, the interpretation as a (projected) gradient method instigated research on accelerated gradient
methods in the context of FFT-based computational homogenization, see Sect. 3.3.

An alternative interpretation of the basic scheme was provided by Mishra et al. [116], connecting the
basic scheme for linear composites to Richardson’s iteration [117], a classical numerical technique. This
interpretation served as the starting point for investigating the Chebyshev iteration [118] in this context [116],
as well. Recently, also comparisons to laminates [119] and to series expansions available for composites with
exact solutions [120] were made.
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For a long time, the basic scheme, albeit cherished for its stability and reliability, has been considered too
slow for nonlinear composites or linear composites with high material contrast. For this reason, alternative
solution methods were sought, to be discussed below. However, recent work has revived the classical basic
scheme to some extent. Motivated by investigations on Quasi–Newton methods, the Barzilai–Borwein method
[121]

εk+1 = ε̄ − 1

αk
Ŵ :
(
σ(εk) − C0 : εk

)
with αk = 〈σ(εk) − σ(εk−1), εk − εk−1〉L2

‖εk − εk−1‖2
L2

was introduced into FFT-based computational homogenization [108]. The Barzilai–Borwein scheme may
be interpreted as a gradient descent method (3.7) with an adaptive choice of step size (or, equivalently, the
reference material). It may be implemented in a manner that is remarkably close to Moulinec and Suquet’s
original suggestion [33], and is competitive to the fastest solvers available.

Also, it was realized that some discretization schemes lead to a numerical ill-conditioning of the discretized
systems [43,83,87], independent of the solver used, see Table 1. By changing the discretization, the basic
scheme turns into a linearly convergent method also for porous materials [43] (not a competitive one, though).

3.2 Krylov subspace methods

Krylov subspace methods for solving a linear system

Ax = b, (3.8)

where b and x are vectors in a high-dimensional space Rn , and A ∈ Rn×n is an invertible matrix, assume that
applying the matrix A is much more expensive than linearly combining vectors in Rn . Then, a general iterative
scheme for obtaining a solution x∗ of Eq. (3.8) may be expressed by counting the number of applications of
the matrix A, leading to the notion of Krylov subspaces

K
k(A; b) =

⎧
⎨
⎩x ∈ Rn

∣∣∣∣∣∣
x =

k−1∑

j=0

α j A j b for some real coefficients α0, . . . , αk−1

⎫
⎬
⎭ ,

see Saad [122]. Krylov subspace methods are iterative methods which select the k-th iterate from the (k +1)-th
Krylov subspace, often in such a way that a pre-specified objective function ϕA,b : Rn → R is optimized,

xk = arg min
x∈Kk+1(A;b)

ϕA,b(x).

Such Krylov subspace methods are ϕA,b-optimal iterative methods by construction. If the matrix A is symmetric
and positive definite, the solution x∗ ∈ Rn of Eq. (3.8) may be obtained by minimizing the function

ϕA,b(x) = 1
2 xT Ax − bT x .

Choosing the latter function as the objective function on the Krylov subspaces gives rise to a solution strategy
that is equivalent to the (linear) conjugate gradient (CG) method of Hestenes and Stiefel [40]. Considering
the residual ϕA,b(x) = ‖Ax − b‖2 as the objective to minimize for a symmetric and non-degenerate matrix A

gives rise to the minimum residual method (MINRES) [123]. Also, versions for non-symmetric matrices are
available [124,125].

Krylov subspace methods often become particularly powerful when combined with pre-conditioning, i.e.,
when Eq. (3.8) is transformed into the equivalent system

P−1 Ax = P−1b (3.9)

for a suitable (symmetric and positive definite) matrix P ∈ Rn×n whose inverse is readily computable, and
which improves the conditioning of the linear system (3.9) compared to the original one (3.8).

In the linear elastic setting and for a reference material C0, s.t. the difference C−C0 is invertible, Brisard
and Dormieux [49] considered the Lippmann–Schwinger equation (2.27)

(C − C0)−1 : τ + Ŵ0 : τ = ε̄ (3.10)
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for the polarization τ = (C−C0) : ε. Both, for the Moulinec–Suquet and the Brisard–Dormieux discretizations,
considering τ as the unknown and ε̄ as the right-hand side, the operator (C−C0)−1 + Ŵ0 is a symmetric and
invertible linear operator [50]. If C0 is softer than all local C’s, the operator is even positive definite, and if
C0’s smallest eigenvalue is larger than all of the individual C’s, the operator is negative definite. Then, Brisard
and Dormieux [49] proposed to use the linear conjugate gradient method [40]. For the remaining reference
material choices, they applied MINRES [123].

Krylov subspace solvers significantly speed up the convergence toward the solution τ ∗ of the Lippmann–
Schwinger equation (3.10). Indeed, the number of necessary iterations to reach a desired accuracy grows with√

κ , where κ is the material contrast. To reach the same accuracy for the basic scheme, the number of iterations
is proportional to κ . Thus, the improvement when using Krylov-type solvers can be substantial. Also, please
keep in mind that the estimated rate

√
κ is optimal in the class of strongly convex functions with Lipschitz

gradient, see Sect. 2.1.4 in Nesterov [126].
A salient feature of Brisard–Dormieux’s Krylov-type approach to solving the Lippmann–Schwinger equa-

tion (3.10), which it shares with the basic scheme, is that the (estimate on the) number of necessary iterations
is independent of the mesh size.

At practically the same time as Brisard and Dormieux [49], Zeman et al. [54] also considered Krylov
subspace methods, but applied to the Lippmann–Schwinger equation for the strain (2.12)

(
Id +Ŵ0 :

(
C − C0)) : ε = ε̄. (3.11)

Zeman et al. [54] considered, both, the conjugate gradient method and the stabilized bi-conjugate gradient
method Bi-CGStab [125], where the latter was developed for non-symmetric linear systems. Indeed, even for
a reference material proportional to the identity C0 = α0 Id, the operator appearing on the left-hand side of
Eq. (3.11) is not symmetric on L2(Y ; Sym(d)),

∫

Y

ε1 :
((

Id + Ŵ0 :
(
C − C0)) : ε2

)
dx �=

∫

Y

ε2 :
((

Id + Ŵ0 :
(
C − C0)) : ε1

)
dx

for general ε1, ε2 ∈ L2(Y ; Sym(d)). Despite this fact, Zeman et al. [54] reported that the conjugate gradient
method converged when applied to the Lippmann–Schwinger Eq. (2.12) and that the produced iterates were
identical to those resulting from BiCGStab! The reasons behind this unexpected behavior were uncovered by
Vondřejc et al. [68], who showed that the operator Id +Ŵ0 :

(
C − C0

)
is symmetric and positive definite on

the subspace of compatible strain fields. Indeed, utilizing the properties of the Helmholtz projector Ŵ0 : C0

onto the compatible strain fields, it may be shown that
∫

Y

ε1 : C0 :
((

Id + Ŵ0 :
(
C − C0)) : ε2

)
dx =

∫

Y

ε1(x) : C : ε2(x) dx

holds for all εi = ∇sui for some ui ∈ H1
# (Y ;Rd) (i = 1, 2). Alternatively, one might think of the Lippmann–

Schwinger equation (3.11) as a pre-conditioned version (3.9) of the balance of linear momentum

divC : ∇su = −divC : ε̄, (3.12)

where the pre-conditioner P is chosen by the reference problem P = −divC0 : ∇s . Then, P−1 = −G0 in
terms of the Green’s operator (2.10) for the displacement, and the Lippmann–Schwinger equation (2.11)

G0divC : ∇su = −G0divC : ε̄

for the displacement is recovered. This point of view clarifies the underlying principles: The Lippmann–
Schwinger equation (2.12) may be regarded as a pre-conditioned balance equation (3.12), where the pre-
conditioner is chosen to solve a comparison problem with constant coefficients. Such a pre-conditioner removes
the dependence of the condition number of the original balance equation (3.12) on the mesh size. However,
as the coefficients are constant, the dependence on the variation of the coefficients, measured by the material
contrast, remains.

Also, the point of view proposed by Vondřejc et al. [68] naturally leads to low-memory implementations
on the displacement.

To conclude our discussion of Krylov-type methods, let us remark that the pre-conditioned conjugate
gradient method in FFT-based computational homogenization was proposed by Nagai et al. [86] in 1998
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already, but remained largely unnoticed. Also, let us briefly discuss the memory consumption of the Krylov-
type methods. The conjugate gradient method is typically implemented on four vectors, and MINRES requires
seven vectors. For the Brisard-Dormieux approach, thus, four and seven strain fields need to be kept in memory,
respectively. If CG is implemented á la Zeman et al. [68], four strain fields are necessary, but a memory-efficient
implementation on the displacement field may reduce the memory footprint further [106].

3.3 Fast gradient methods

Fast (or accelerated) gradient methods augment plain gradient descent (3.7)

uk+1 = uk − sk ∇W (uk), k = 0, 1, . . . , (3.13)

by a momentum term, and come in essentially two flavors. Heavy ball type methods [127] take the form

uk+1 = uk − sk ∇W (uk) + βk (uk − uk−1), k = 0, 1, . . . , (3.14)

where βk , valued in [0, 1), are momentum coefficients, and u−1 ≡ u0. Nesterov’s fast gradient method [128]
uses the update formula

vk = uk + βk (uk − uk−1),

uk+1 = vk − sk ∇W (vk),
(3.15)

for k = 0, 1, . . ., and u−1 ≡ u0 and βk ∈ [0, 1). Whereas gradient descent (3.13) may be interpreted as a
forward Euler discretization in time of continuous gradient descent

u̇(t) = −∇W (u(t)) for t ≥ 0 and u(0) = u0,

the fast gradient methods (3.14) and (3.15) arise as explicit and semi-explicit time discretizations [129,130]
of the Newtonian dynamical system with linear damping

ü(t) + b u̇(t) = −∇W (u(t)) for t ≥ 0 and u(0) = u0, ü(0) = 0,

involving a damping coefficient b ≥ 0. For FFT-based computational micromechanics, they take the form
[131]

εk+1 = ε̄ − sk Ŵ :
(
σ(εk) − 1

sk εk
)

+ βk (εk − εk−1) (3.16)

for the heavy ball method, and

ek = εk + βk (εk − εk−1),

εk+1 = ε̄ − sk Ŵ :
(
σ(ek) − 1

sk ek
) (3.17)

for Nesterov’s method [132]. The two fast gradient variants (3.14) and (3.15) differ in the parameter selection,
the convergence speed and the stability properties.

For linear elasticity, and under the conditions (2.25), the (k-independent) choice

1

sk
=
(√

α− + √
α+

2

)2

and βk =
(√

α+ − √
α−√

α+ + √
α−

)2

(3.18)

is optimal for the heavy ball method (3.16), leading to the estimate

‖εk − ε∗‖L2 ≤ Cη

(√
α+ − √

α−√
α+ + √

α−
+ η

)k

‖ε0 − ε∗‖L2

for any η > 0 and where ε∗ is the (unique) solution of the Lippmann–Schwinger equation (2.12), see Polyak
[129]. The constant Cη goes to infinity as η → 0. In particular, the heavy ball method (3.16) has (almost) the
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optimal convergence rate, but may be implemented on only two strain fields, saving 50% of memory compared
to the conjugate gradient method.

However, the heavy ball method is somewhat limited for nonlinear problems. By a perturbation argument,
the choice (3.18) also leads to a locally convergent method for general twice differentiable, α−-strongly
convex functions with α+-Lipschitz gradient [129]. However, the method may be globally unstable using
these parameters [133,134].

In contrast, Nesterov’s method (3.15) converges for general once differentiable, α−-strongly convex func-
tions with α+-Lipschitz gradient and the choice

sk = 1

α+
and βk =

√
α+ − √

α−√
α+ + √

α−
(3.19)

with an estimate

‖εk − ε∗‖L2 ≤ C

(√
1 −

√
α−
α+

)k

‖ε0 − ε∗‖L2

and a fixed constant C , see Nesterov’s book [126]. Thus, the rate is slower than for the heavy ball method, but
the range of applicability is larger.

In computational practice, both fast gradient variants (3.16) and (3.17) suffer from the same shortcoming
as the classical basic scheme, discussed in Sect. 3.1, namely that the algorithmic parameters, sk and βk , need to
be chosen judiciously. Often, only estimates of the true constants α± are available. Also, for porous materials,
the "effective" strong convexity constant is not known, and determining it can be more difficult than solving
the problem in the first place [43]. For these reasons, an adaptive choice of the algorithmic parameters is
recommended. For Nesterov’s method (3.15), a number of restarting strategies became popular [130,135].
The restarting strategy of Su et al. [130] was investigated in Schneider [132]. Although the resulting method
could recover the optimal convergence rate, the necessary number of iterations lags behind other competitive
methods [108]. Indeed, when using the linear case as a sanity test, relying upon the speed restarting strategy
increases the iteration count by a factor of two to three compared to the optimal choice [134] available for the
linear case.

As a consequence, adaptive strategies for selecting the parameters of the heavy ball method were sought.
Actually, for the linear elastic case and for the optimal choice of the parameters sk and βk (via plane search),
the heavy ball method reduces to the (linear) conjugate gradient method of Sect. 3.2, see Polyak [129]. More
generally, the class of heavy ball methods (3.14)

uk+1 = uk − sk ∇W (uk) + βk (uk − uk−1), k = 0, 1, . . . ,

is identical to the class of nonlinear conjugate gradient methods

dk = −∇W (uk) + γ k−1 dk−1,

uk+1 = uk + sk dk,
(3.20)

via the identification βk = γ k−1sk/sk−1 [129]. However, for nonlinear conjugate gradient methods, the step
size sk is typically chosen via line search, and a variety of explicit formulas for the coefficient γ k have emerged,
see Dai [136] for a recent overview.

In FFT-based computational micromechanics, evaluating ∇W via the constitutive law is typically the most
expensive step, and a line search should be avoided. Thus, it was suggested [137] to use the step size of the
gradient scheme α0 = (α+ + α−)/2 in combination with the Fletcher–Reeves [138] formula

γ k−1 = ‖∇W (uk)‖2

‖∇W (uk−1)‖2
.

The associated nonlinear CG method may be interpreted as a (discrete) dynamical system with feedback
control. The resulting FFT-based method may be implemented on three strain (or displacement) fields, and
shows excellent performance [137].
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3.4 Newton and Quasi-Newton methods

The Newton–Raphson method is a classic way of solving the balance equation (2.6)

div
∂w

∂ε
(·, ε̄ + ∇su) = 0 (3.21)

via the update

uk+1 = uk + sk△uk, (3.22)

where the increment △uk ∈ H1
# (Y ;Rd) solves the linearized balance equation (3.21)

div
∂2w

∂ε2
(·, ε̄ + ∇suk) : ∇s△uk = −div

∂w

∂ε
(·, ε̄ + ∇suk) (3.23)

and sk ∈ (0, 1] is a step size. For an arbitrary reference material C0, the linearized equilibrium equation (3.23)
may also be rewritten in Lippmann–Schwinger form (with residual stresses)

△εk + Ŵ0 :
([

∂2w

∂ε2
(·, εk) − C0

]
: △εk + ∂w

∂ε
(·, εk)

)
= 0, (3.24)

where εk = ε̄ + ∇suk and △εk = ∇s△uk . For finite strain problems, Lahellec et al. [139] proposed to use
a Newton–Raphson method, where the linearized equilibrium equation (3.23) is solved by the basic scheme
naturally associated with the Lippmann–Schwinger equation (3.24).

After the emergence of linear solvers of Krylov type, see Sect. 3.2, Newton–Krylov methods were put
forward, both at small [140] and finite strains [105]. Kabel et al. [105] compared Newton’s method, com-
bined with a variety of linear solvers, to the basic scheme, and Newton-CG proved to be the most effective
combination.

Coupling Newton’s method to an iterative solver for the linearized equation (3.23) is commonly referred
to as a Newton–Krylov solver [141], a special class of inexact Newton methods [142]. To be competitive,
Newton’s method (3.22) needs to be supplemented by a globalization strategy and a judicious choice of the
forcing term, i.e., the tolerance for the linear solver. Concerning the globalization strategy, it is well known that
Newton’s method is not globally convergent. Outside of the local region of attraction, it is not convergent, in
general. For this purpose, globalization strategies are necessary, and back-tracking line search is probably the
simplest strategy available, see Boyd [143]. Furthermore, to ensure the convergence of Newton-type methods, it
is important to choose the tolerance for the linear solver, the so-called forcing term, depending on the nonlinear
residual [144]. For computational homogenization problems, both topics are discussed in Wicht et al. [145].

For general nonlinear optimization problems, Quasi–Newton methods are often preferred over plain New-
ton methods, see Nocedal and Wright [146] for a discussion. A particularly powerful method is the Quasi-
Newton scheme proposed by Broyden-Fletcher-Goldfarb-Shanno (BFGS) [147–150]. However, investigations
for small-strain inelasticity revealed that the limited-memory version of BFGS, L-BFGS [151], is not compet-
itive to the Barzilai–Borwein scheme, see Wicht et al. [145]. The reason is found in the large computational
overhead associated with L-BFGS. Furthermore, for general large-scale optimization problems, BFGS typi-
cally outperforms plain Newton methods for objective functions with densely populated Hessians. However,
for the problem at hand (3.21), the "stiffness matrix" in Eq. (3.23) is block-diagonal and, hence, sparse. Inter-
estingly, the Barzilai–Borwein method [108], which may be interpreted as L-BFGS of depth one without line
search, turns out to be competitive to the fastest solvers available.

As a general note, Newton’s method will lead to the fastest solver if applying the tangent material is
much cheaper than evaluating the nonlinear constitutive law. Indeed, for the basic scheme and its variants,
an evaluation of the nonlinear material law is required for every iteration. In contrast, such an expensive
computation is required for Newton’s method only when the right-hand side of the linear system (3.23) is
computed. Also, for materials which involve voxel-wise rotations, these rotations may be shifted into the
tangent material, accelerating the solution of the linear problem further. However, this speed comes at a price,
namely the increased memory demand. Suppose that we wish to solve a problem with 5123 voxels. Then, a
single scalar field in double precision occupies 1 GB of memory, and a single strain field requires 6 GB of
memory. Ignoring internal variables, the basic scheme may be computed in-place on a single strain field. The
Barzilai–Borwein method, the fast gradient methods and the polarization schemes may be implemented on two
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strain fields, requiring 12 GB of memory. In contrast, the classical Newton-CG requires 51 GB for symmetric
material tangents. Indeed, 21 GB are required for the tangent, in addition to five strain fields (εk and four fields
for computing △εk using CG). It is possible to reduce this memory demand by 50% by using displacement-
based implementations and storing the tangent in single precision. Still, more than 25 GB are required. These
numbers increase for finite strains and non-symmetric tangents. This is the reason why alternatives to the
established Newton–Krylov solvers are (still) sought.

To conclude our discussion of Newton-type methods, let us remark that Volmer et al. [152] proposed an
improved initial guess for Newton-type solvers. Peng et al. [153] investigated the recursive projection method,
a variant of Newton’s method, to take care of possible ill-conditioning of Lippmann–Schwinger solvers for
porous materials and discretizations based on trigonometric polynomials.

In addition to Quasi–Newton methods, a generalization of the secant methods popular for solving one-
dimensional problems, a particular type of multi-secant method was introduced to FFT-based computational
micromechanics with great success. Anderson mixing [154] is a general approach for accelerating fixed point
methods of the type

uk+1 = F(uk),

where derivatives of F are not available. Anderson mixing of depth m > 0 keeps the previous m iterates
uk, uk−1, . . . , uk−m+1 in memory, together with their images F(uk), F(uk−1), . . . , F(uk−m+1) under F . Then,
the next iterate is determined by the mixing rule

uk+1 =
m−1∑

i=0

αi,m F(uk−i ), (3.25)

where the coefficients αi,m are chosen to minimize

∥∥∥∥∥

m−1∑

i=0

αi,m

(
uk−i − F(uk−i )

)∥∥∥∥∥

2

−→ min among

{
(α0,m, . . . , αm−1,m) ∈ Rm

∣∣∣∣∣

m−1∑

i=0

αi,m = 1

}
.

(3.26)

The latter optimization problem (3.26) may be considered as a linearly constrained quadratic optimization
problem in m dimensions, and the coefficients involve only scalar products of the vector residuals uℓ − F(uℓ).
It has been shown that, applied to linear problems, Anderson mixing (3.25) and (3.26) is essentially equivalent
to GMRES, see Walker and Ni [155]. For general fixed-point iterative schemes, Anderson mixing (3.25) and
(3.26) was exposed as a multi-secant method by Fang and Saad [156].

Anderson mixing was applied to the fixed point methods used in FFT-based computational homogenization
by Shantraj et al. [157] under the banner of nonlinear GMRES, and found to be quite performing. Independently,
Chen et al. [158] reported the Anderson-mixed basic scheme with depth m = 4 to be both robust and efficient
for problems at small strains.

3.5 Polarization methods

Eyre and Milton [111] proposed an ingenious rewriting of the Lippmann–Schwinger equation (2.12)

ε + Ŵ0 :
(
C − C0) : ε = ε̄ (3.27)

for the strain ε in terms of an equation

P − Y 0 : Z0 : P = 2C0 : ε̄ (3.28)

for the polarization field P = (C + C0) : ε, involving the operators

Y 0 = Id −2C0 : Ŵ0 and Z0 =
(
C − C0) :

(
C + C0)−1

. (3.29)

Actually, Eyre–Milton [111] discussed the case of conducting composites, and the extension to linear elasticity
was reported by Michel et al. [110]. The Eyre–Milton equation (3.28) was motivated by fractional analytic
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convergence acceleration techniques for series representations of the effective conductivity [159], and has
a number of remarkable properties. First, the Helmholtz reflection Y 0 is non-expansive in the C0-weighted
L2-norm. Furthermore, if the local stiffness tensors satisfy the conditions (2.25), the Cayley transform Z0 of
the local stiffness field is an L2-contraction for every (!) choice of the reference material C0. In particular, the
Eyre–Milton scheme

Pk+1 = 2C0 : ε̄ + Y 0 : Z0 : Pk (3.30)

is linearly convergent for any reference material C0 and any initial value P0. Under the conditions (2.25),
among reference materials of the type C0 = α0 Id for α0 > 0, the choice α0 = √

α−α+ leads to the fastest
converge rate

‖Pk+1 − P∗‖L2 ≤
√

α+ − √
α−√

α+ + √
α−

‖Pk − P∗‖L2 ,

where P∗ = (C + C0) : ε∗ is the unique solution of the Eyre–Milton equation (3.28). In particular, for fixed
accuracy, the number of iterations is proportional to the square root of the material contrast,

√
α+/α−. Thus,

the Eyre–Milton method has the same worst case convergence rate as the fastest Krylov methods, see Sect. 3.2.
In the very same paper that reported the extension of Eyre–Milton’s conductivity scheme to linear elastic

composites, Michel et al. [110] introduced another solution method. The starting point [160] is the reformulation
of the displacement-based, unconstrained variational principle (2.4)

∫

Y

w(x, ε̄ + ∇su(x)) dx −→ min
u∈H1

# (Y ;Rd )

as a constrained optimization problem
∫

Y

w(x, e(x)) dx −→ min
(u,e)

among
{
(u, e) ∈ H1

# (Y ; Rd) × L2(Y ; Sym(d))

∣∣∣ e = ε̄ + ∇su
}

. (3.31)

The Lagrangian function, see chapter 5 in Boyd and Vandenberghe [143], associated with this constrained
optimization problem reads

L(u, e, λ) =
∫

Y

w(x, e) + λ : (ε̄ + ∇su − e) dx, (3.32)

where λ ∈ L2(Y ; Sym(d)) is the Lagrange multiplier associated with the constraint (3.31). For a parameter
α0 > 0 with dimensions of stress, the augmented Lagrangian, see Bertsekas [161], becomes

Lα0(u, e, λ) =
∫

Y

w(x, e) + λ : (ε̄ + ∇su − e) + α0 ‖ε̄ + ∇su − e‖2 dx .

Michel et al. [110] proposed to use the alternating direction method of multipliers (ADMM) [162,163], also
called the method of partial updates,

uk+1 = arg min
u

Lα0(u, ek, λk),

ek+1 = arg min
e

Lα0(u
k+1, e, λk),

λk+1 = λk + α0 (ε̄ + ∇suk+1 − ek+1),

(3.33)

for computing saddle points of the Lagrangian L . Please note the difference to the classical augmented
Lagrangian method [164,165], which updates

(uk+1, ek+1) = arg min
(u,e)

Lα0(u, e, λk),

λk+1 = λk + α0 (ε̄ + ∇suk+1 − ek+1),

coupling u and e in the first line. The first line of the ADMM recursion (3.33) reads, explicitly,

α0 div ∇suk+1 = −div (λk − α0 ek).



A review of nonlinear FFT-based computational homogenization methods 2079

In terms of the operator G0 (2.10) for C0 = α0 Id, we might express the latter equation in the form

uk+1 = −G0div (λk − α0 ek), or, rather, εk+1 = ε̄ − Ŵ0 : (λk − C0 : ek)

for εk+1 = ε̄ + ∇suk+1. The second line in the update (3.33) reads, more explicitly,

∂w

∂ε
(·, ek+1) + C0 : ek+1 = λk + C0 : εk+1,

which is a nonlinear, but local equation for the strain-type field ek+1 ∈ L2(Y ; Sym(d)). The resulting method,
formulated for C0 = α0 Id, reads

εk+1 = ε̄ − Ŵ0 : (λk − C0 : ek),

ek+1 =
(

∂w

∂ε
+ C0

)−1 (
λk + C0 : εk+1

)
,

λk+1 = λk + C0 : (εk+1 − ek+1).

(3.34)

Here, the second line involves the inverse of the stress operator,

e =
(

∂w

∂ε
+ C0

)−1

(τ ) precisely if τ = ∂w

∂ε
(·, e) + C0 : e for e, τ ∈ L2(Y ; Sym(d)).

Notice that λk+1 = ∂w/∂ε(ek+1) holds by comparing the second and third lines in the algorithm (3.34).
For linear elastic composites, a similar method was introduced by Nguyen et al. [47]. Any fixed point

(ε∗, e∗, λ∗) of the iterative scheme (3.34) satisfies ε∗ = e∗ and λ∗ = ∂w/∂ε(·, ε∗), i.e., λ∗ is the stress field
associated to the strain ε∗. Furthermore, ε∗ solves the Lippmann–Schwinger equation (2.12), i.e.,

ε∗ + Ŵ0 :
(

∂w

∂ε
(·, ε∗) − C0 : ε∗

)
= ε̄

holds. By computational experiments, Michel et al. [110,160] showed that their proposed solution method
(3.34) improves upon the basic scheme significantly. Please note that the performance of the ADMM scheme
(3.34) strongly depends on the ability to solve the second equation rapidly. Michel et al. [110] remarked that,
for nonlinear elastic power-law von-Mises-type materials, the latter nonlinear tensorial equation reduces to a
single scalar nonlinear equation, which may be solved quickly, see also Moulinec and Suquet [166].

For linear elastic composites, Monchiet and Bonnet [167] introduced a more general class of iterative
schemes operating on the polarization field P = (C+C0) : ε. These methods depend on a scalar parameter γ ∈
[0, 1), and, for γ = 1

2 and linear elastic composites, are equivalent to the ADMM scheme (3.34). Subsequently,
these polarization schemes were also considered for conductivity [168] and for nonlinear problems [169].
Through the effort of Moulinec and Silva [170], it was uncovered that the polarization schemes of Monchiet
and Bonnet may be written in the form

Pk+1 = γ Pk + (1 − γ )
(

2C0 : ε̄ + Y 0 : Z0 : Pk
)

, (3.35)

which closely resembles the Eyre–Milton scheme (3.30). The expression (3.35) shows that the polarization
schemes of Monchiet–Bonnet are damped versions of the Eyre-Milton method. For no damping, γ = 0, the
Eyre–Milton method (3.35) is recovered, whereas γ = 1

2 leads to the ADMM (3.34) (for linear elastic con-
stituents). Also, via carefully investigating the spectral radius of the linear operator appearing in the fixed point
scheme (3.35), Moulinec and Silva showed that the iterative scheme (3.35) converges for any (isotropic) refer-
ence material C0 and any damping factor γ ∈ [0, 1), provided the conditions (2.25) hold. The (theoretically)
fastest convergence rate is reached for γ = 0, i.e., the Eyre-Milton scheme, and the previously mentioned
optimal choice for the reference material of the Eyre–Milton method.

Thus, for linear elasticity, the ADMM (3.34) turned out to be a damped (actually slower) version of
the Eyre–Milton scheme (3.30). Conversely, the ADMM was formulated for nonlinear constitutive behavior,
whereas the Eyre–Milton method was derived from a fractional-linear transformation in complex coordinates,
and appeared restricted to linear problems in an intrinsic way.
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It was subsequently realized [171] that the nonlinear extension of the Eyre-Milton method

Pk+1 = 2C0 : ε̄ + Y 0 : Z0(Pk) (3.36)

using the Cayley transform of the nonlinear stress operator ∂w/∂ε (3.2)

Z0(P) = P − 2C0 :
(

∂w

∂ε
+ C0

)−1

(P) ≡
(

∂w

∂ε
− C0

)(
∂w

∂ε
+ C0

)−1

(P), (3.37)

can be identified with the Peaceman–Rachford iterative scheme [172], and the method introduced by Michel et
al. (3.34) arises as the Douglas–Rachford iterative method [173,174]. In convex optimization, the equivalence
of ADMM with the Douglas–Rachford method (applied to the dual) is well known [175]. This identification
permitted gaining insights into selecting the reference materialC0 = α0 Id, entering the nonlinear Eyre–Milton
method (3.36), properly. Indeed, Giselsson and Boyd [176] showed that, for a (condensed) free energy w which
satisfies the conditions (3.3) and (3.4), the choice α0 = √

α−α+ and γ = 0 leads to the fastest converge rate

‖Pk+1 − P∗‖L2 ≤
√

α+ − √
α−√

α+ + √
α−

‖Pk − P∗‖L2 ,

where P∗ = ∂w/∂ε(·, ε∗)+C0 : ε∗ is the unique fixed point of the Eyre–Milton scheme (3.36). In particular,
the results obtained by Eyre and Milton [111] for the case of linear composites are recovered. Also, the result
confirms the insights of Moulinec and Silva [170].

We already mentioned that the practical performance of the ADMM (3.34) and the nonlinear Eyre–Milton
method (3.36) crucially depend on solving the equation

∂w

∂ε
(·, ε) + C0 : ε = P (3.38)

quickly for ε and prescribed polarization P . Extending previous ideas of Lebensohn et al. [177], Schneider et
al. [171] showed that the latter equation may be solved quickly for generalized standard materials with a free
energy, for which the dependence on the elastic strain is Hookean. Then, equation (3.38) may be solved by
evaluating the original material law ∂w/∂ε with a modified stiffness tensor. Also, for a class of compliance-
based damage models, an inexpensive resolution is possible [178].

The point of view taken by Schneider et al. [171] considers the nonlinear Eyre–Milton scheme (3.36) as
the basic solution method of interest, and the ADMM (3.34) arises as a special case. However, the opposite
point of view may be taken, as well. Indeed, let us consider, for γ ∈ [0, 1), the following variant [176] of the
algorithm (3.34)

ε
k+ 1

2 = ε̄ − Ŵ0 : (λk − C0 : ek),

εk+1 = 2(1 − γ )ε
k+ 1

2 − (1 − 2γ )ek,

ek+1 =
(

∂w

∂ε
+ C0

)−1 (
λk + C0 : εk+1

)
,

λk+1 = λk + C0 : (εk+1 − ek+1),

(3.39)

which reduces to the original method (3.34) for γ = 1
2 . By algebraic manipulations, see section 2 in Schneider

[178], it can be shown that the iterative scheme (3.39) is equivalent to the Monchiet–Bonnet scheme (3.35)
(for nonlinear Z0 and general γ ∈ [0, 1)) via the identification Pk = λk + C0 : ek . In particular, for γ = 0,
the nonlinear Eyre-Milton method (3.36) and, for general γ , the Monchiet–Bonnet methods may also be
written in the Michel–Moulinec–Suquet framework (3.34). Thus, it turns out to be a matter of taste whether
the Eyre–Milton formulation (3.36) or the Michel–Moulinec–Suquet framework (3.39) is used. The former
can be implemented with lower memory requirements. The latter, however, has direct access to the physically
meaningful strain and stress fields, and it is more convenient for adaptively choosing the reference material
[178].

To sum up, the polarization methods in FFT-based computational homogenization can be connected to the
operator splitting methods (ADMM, Douglas-Rachford, PDHG, Split Bregman, …) that became popular in
convex optimization of non-smooth problems, see Chambolle and Pock [179] for an introduction. In particular,
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polarization methods have a different nature than the solution methods that are built on top of the basic scheme
and which were discussed in the previous sections. Indeed, whereas solvers built on top of the basic scheme
evaluate the stress explicitly, Eq. (3.38) needs to be solved for polarization schemes and ADMM.

This characteristic, however, should not distract from the efficiency of polarization methods. Under the
conditions (3.3) and (3.4) and whenever Eq. (3.38) can be solved with little overhead, the polarization methods
can be extremely effective methods with minimal memory footprint. Indeed, for a proper choice of reference
material, they are on the same level as the most advanced gradient-type and Newton methods, and may be
implemented on two polarization fields.

Adaptive choices for general nonlinearity were studied recently [178]. Also, polarization methods were
combined with Anderson acceleration [180], giving rise to extremely powerful and robust solution methods
for computational micromechanics.

Last but not least, let us remark that To et al. [181] proposed an online estimation of the optimal algorithmic
parameters of polarization methods. Also, recently polarization methods were used for non-differentiable
problems associated with strongly nonlinear materials [182] and for computing the effective crack resistance
of microstructured brittle materials [183].

3.6 Convergence tests and overview

The “natural” way of measuring the extent to which the equilibrium condition (2.6)

div σ = 0 (3.40)

is satisfied for any stress field σ ∈ L2(Y ; Sym(d)) is in the dual norm to H1
# (Y ;Rd), i.e.,

‖ f ‖
H−1

#
:= sup

{∫

Y

f (x) · u(x) dx

∣∣∣ u ∈ H1
# (Y ; Rd) with

∫

Y

‖∇su(x)‖2 dx ≤ 1

}
,

i.e., to consider

‖div σ‖
H−1

#

!
≤ tol

∥∥∥∥
1

vol(Y )

∫

Y

σ dx

∥∥∥∥ (3.41)

for a prescribed tolerance tol > 0. Indeed, under the conditions (3.3) and (3.4), the upper-lower bounds

α− ‖ε − ε∗‖L2 ≤
∥∥∥∥div

∂w

∂ε
(·, ε)

∥∥∥∥
H−1

#

≤ α+ ‖ε − ε∗‖L2 (3.42)

hold for any ε = ε̄+∇su with u ∈ H1
# (Y ;Rd), and where ε∗ is the unique solution of the Lippmann–Schwinger

equation (2.12), see Appendix A.1 in Schneider [43]. Thus, the condition (3.41) measures the distance to the
solution ε∗, and is both necessary and sufficient for convergence of those Lippmann–Schwinger solvers that
are built on top of the basic scheme. Also, the natural convergence criterion for CG is, up to re-scaling, identical
to the condition (3.41).

A practical way for computing the convergence criterion is via the identity

‖div σ‖
H−1

#
= ‖Ŵ : σ‖L2 (3.43)

in terms of the non-dimensional Ŵ-operator Ŵ = ∇s Gdiv with G = (div ∇s)−1, see Bellis and Suquet [114]
or Monchiet and Bonnet [167]. With the formula (3.43) at hand, the convergence criterion (3.41) is readily
evaluated in Fourier space, and even appears naturally in the basic scheme (2.15) with C0 = α0 Id via

∥∥∥∥div
∂w

∂ε
(·, εk)

∥∥∥∥
H−1

#

≡
∥∥∥∥Ŵ : ∂w

∂ε
(·, εk)

∥∥∥∥
L2

= α0 ‖εk+1 − εk‖L2 .

There is even a version using only a single strain field in memory [131], based on the identity

∥∥∥εk+1 − εk
∥∥∥

L2
=
∥∥∥εk+1

∥∥∥
2

L2
−
∥∥∥εk
∥∥∥

2

L2
+ 2

vol(Y )

(∫

Y

∂w

∂ε
(x, εk(x)) : εk(x) dx −

∫

Y

∂w

∂ε
(x, εk(x)) dx : E

)
.
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Table 4 Summary of memory consumption and respective merits of FFT-based solvers for nonlinear and inelastic computational
homogenization

Solver Footprint Remarks Reference(s)

ε u

Basic scheme 1 1 Slow, but reliable [33,34]
Barzilai–Borwein method 2 2 Fast, but non-monotone [108]
Fast gradient methods 2 2 Tricky parameter choice [131,132]
Polarization schemes 2 – Fast if applicable [169,171]
ADMM 3 – Fast if applicable [110,178]
Nonlinear CG 3 3 Adaptive fast gradient [137]
Linear CG 4 4 Only linear, spd systems [54]
MINRES 7 7 Only linear, symmetric systems [123]
Newton-CG 8.5 12 Best for expensive material laws [140,145]
Anderson-mixed basic of depth m 2m + 2 2m + 2 Fast, robust and versatile [157,158]
L-BFGS of depth m 2m + 4 2m + 4 Fast, robust and versatile [145]

The memory footprint is measured in strain fields (first column) and displacement fields (second column) if displacement-based
implementation is used. - indicates that no displacement-based implementation is possible

valid for the basic scheme (2.15). Notice that the estimate (3.42) also holds for suitable discretization schemes,
as long as the continuous Green operator Ŵ is replaced by the corresponding discrete version.

In the literature, also alternative convergence criteria are used. For instance, the elementary estimate

‖div σ‖
H−1

#
≤ L√

2π
‖div σ‖L2 for L = min

j=1...,d
L j

on the cell Y (2.1) shows that a convergence criterion of the form

‖div σ‖L2 ≤
√

2π

L
tol

∥∥∥∥
1

vol(Y )

∫

Y

σ dx

∥∥∥∥ (3.44)

implies the condition (3.41), see Eisenlohr et al. [184]. However, the root mean squared criterion (3.44) is
not consistent from the a functional analytic point of view, see Bellis and Suquet [114], i.e., the number of
iterations for a specific solver to satisfy (3.44) is typically not bounded as the number of voxels goes to infinity.

For the polarization methods, discussed in Sect. 3.5, more care has to be taken, as the iterates of the
polarization schemes are neither in equilibrium nor compatible, in general. Indeed, for the iterates of the
polarization scheme (3.36) with damping γ ∈ [0, 1)

Pk+1 = γ Pk + (1 − γ )
(

2C0 : ε̄ + Y 0 : Z0(Pk)
)

,

the identity

‖Pk+1 − Pk‖2
L2

4(1 − γ )2
= ‖div λk‖2

H−1
#

+ α2
0 ‖ek − ε̄ − Ŵ : ek‖2

L2

holds for Pk = λk + C0 : ek split according to the ADMM (3.39).
For the ADMM implementation (3.39), an equivalent criterion may be set up based on the identity [178]

‖εk+ 1
2 − ek‖2

L2 = ‖div λk‖2
H−1

#
+ α2

0 ‖εk+1 − ε̄ − Ŵ : εk+1‖2
L2 .

For the convenience of the reader, a (personal) summary of the solution methods reviewed in this article is
provided in Table 4. A comparison is made for small strain inelastic materials which derive from a potential, and
the primal formulation (in the strain) is considered. The solvers are sorted by their memory footprint, and it is
indicated which solvers admit low-memory implementations (provided suitable finite difference discretizations
are used). The comparison does not account for the last converged field necessary for extrapolating between load
steps, as proposed by Moulinec and Suquet [34]. Also, the (symmetric) tangent for Newton’s method is stored
in double precision (which is not necessary). The Eyre–Milton iterative method (3.36) may be implemented
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Fig. 5 Performance [108,137] of different solvers for the bound-sand microstructure, see Fig. 3a, and the staggered-grid dis-
cretization [87]

on a single strain field. However, it is not clear how to check convergence (3.36) with only a single field in
memory.

As a conclusion to this section on solution methods, we report on the performance of the different classes
of solution methods for the microstructure of bound sand, see Fig. 3a, and the staggered-grid discretization
[87]. The results are taken from different publications [108,137,178]. For uniaxial extension to 1% strain, the
residual (3.41)

‖div σ‖
H−1

#∥∥∥ 1
vol(Y )

∫
Y

σ dx

∥∥∥

is plotted vs. iteration for the gradient-based solution methods. We refer to Schneider et al. [171] for details
on the residual for the polarization schemes.

The basic scheme, see Fig 5b, converges linearly, but fails to converge to the desired tolerance 10−5 within
1000 iterations. Nesterov’s method with speed restarting [130] and Fercoq-Qu restarting [135] also converges
linearly, but does not match the performance of the fastest methods.

The (linear) conjugate gradient method is the fastest method considered, see Fig. 5a. L-BFGS of depth four,
the Fletcher-Reeves nonlinear CG and the Barzilai–Borwein method come in second, all with a comparable
iteration count. For exact line search, BFGS (without L) and the Fletcher–Reeves nonlinear CG produce
identical iterates as the linear CG method. However, they are applicable to nonlinear problems as well. Thus,
the reduction of performance is a result of this increase in generality. The inherent non-monotonicity of the
Barzilai–Borwein method is certainly noticeable. Up to a residual of 10−3, the Anderson-mixed basic scheme
of depth four is the second best method. For higher accuracy, the method slows down to some degree. Still,
the scheme represents a strong competitor for the other methods just discussed.

Furthermore, the Monchiet–Bonnet scheme is included with Lorenz–Tran–Dinh scaling [178]. Up to a
tolerance of 10−3, it is the fastest method. The latter combination turned out to be the fastest among various
combinations of damping and strategies for adaptively selecting the reference material in ADMM [178]. We
observe that, for properly selected solver parameters, polarization schemes are competitive with or even faster
than the fastest strain-based solvers, also for porous microstructures.
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4 Practical issues and efficient implementation

4.1 The dual scheme

Bhattacharya and Suquet [185] noticed that Lippmann–Schwinger-type solvers may also be developed in a
dual framework. Rewriting the unconstrained variational principle (2.4) in the form
∫

Y

w(x, ε) dx −→ min
ε

among
{
ε ∈ L2(Y ; Sym(d))

∣∣∣ ε = ε̄ + ∇su for some u ∈ H1
# (Y ; Rd)

}
,

the associated Lagrangian2 reads

L(ε, σ ) =
∫

Y

w(x, ε) − σ : (ε − ε̄)dx

for the Lagrangian multiplier σ living in the space of equilibrated stress fields

σ ∈ S =
{
σ ∈ L2(Y ; Sym(d))

∣∣ div σ = 0
}
.

The associated Lagrangian dual function

W ∗(σ ) = inf
ε∈L2(Y ;Sym(d))

L(ε, σ )

can be expressed in the form

W ∗(σ ) = −
∫

Y

w∗(x, σ ) − σ : ε̄ dx,

where

w∗(x, σ ) = sup
ε∈Sym(d)

σ : ε − w(x, ε)

is the Legendre–Fenchel dual of the (condensed) free energy w, the condensed Helmholtz free energy. For the
variational principle

∫

Y

w∗(x, σ ) − σ : ε̄ dx −→ min
σ∈S

,

the associated projected gradient method [114] is identical to the dual (basic) scheme of Bhattacharya and
Suquet [185],

σ k+1 = C0 : ε̄ + C0 :
(

Id − Ŵ0 : C0 − 1

vol(Y )

∫

Y

· dx

)
:
(

∂w∗

∂σ
(·, σ k) − D0 : σ k

)
, (4.1)

where D0 = (C0)−1 is the reference compliance. An advantage of the dual scheme (4.1) is its ability to
account for rigid phases, which are characterized by vanishing compliance. Another advantage, also discussed
in Sect. 2.3, is that the dual scheme naturally operates on (discretely) divergence-free fields. For finite element
methods, it is much more difficult to incorporate the divergence constraint into the formulation. A possible
remedy is to introduce a “vector potential”, but the issue of gauge fixing needs to be dealt with.

All solvers built on top of the primal basic scheme (2.15) may be developed for the dual basic scheme
(4.1), and the convergence assertions carry over to the dual setting. However, reduced memory implementations
exploiting the compatibility of the primal iterates are not available for the dual scheme.

For some materials of practical interest, computing the strain as a function of applied stress is computa-
tionally less expensive than computing the stress for applied strain. Then, it is possible to utilize solvers based
on the dual scheme (4.1) to accelerate FFT-based solvers. For crystal plasticity models at small strains, such
a strategy was applied by Wicht et al. [186], where an acceleration of about an order of magnitude could be
achieved.

2 Notice the difference to the expression (3.32).
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Polarization methods, as discussed in Sect. 3.5, are primal-dual methods by construction. Hence, there is
no benefit from a dual formulation. Rather, for the nonlinear Eyre–Milton method (3.36)

Pk+1 = 2C0 : ε̄ + Y 0 : Z0(Pk),

the Cayley transform of the nonlinear stress operator ∂w/∂ε (3.37)

Z0(P) = P − 2C0 :
(

∂w

∂ε
+ C0

)−1

(P)

can be alternatively expressed in the form

Z0(P) = 2

(
∂w∗

∂σ
+ D0

)−1

(D0 : P) − P,

whenever w is convex in ε. In this way, the dual energy w∗ enters, see Michel et al. [110] and Schneider et al.
[171].

4.2 Mixed boundary conditions

The Lippmann–Schwinger equation (2.12)

ε = ε̄ − Ŵ0 :
(

∂w

∂ε
(·, ε) − C0 : ε

)

was originally formulated for prescribed macroscopic strain ε̄ ∈ Sym(d). However, for inelastic and nonlinear
constitutive behavior, it is often desirable to prescribe the macroscopic stress, instead, or to prescribe some
components of the strain and the complementary components of the stress. For uniaxial strain, an extension of
the basic scheme was discussed in Appendix B of Moulinec and Suquet [33]. An approach for handling mixed
boundary conditions in coordinate directions was proposed by Eisenlohr et al. [184].

In order to cover arbitrary mixed boundary conditions, it is convenient to introduce a pair of orthogonal
complementary projectors P and Q on the space Sym(d). Then, for ε̄ ∈ Sym(d) and σ̄ ∈ Sym(d) satisfying
the admissibility conditions

P : ε̄ = ε̄ and Q : σ̄ = σ̄ ,

it is natural to consider the equilibrium problem

div
∂w

∂ε
(·, E + ∇su) = 0, P : E = ε̄ and Q : 1

vol(Y )

∫

Y

∂w

∂ε
(x, E + ∇su) dx = σ̄ (4.2)

for E ∈ Sym(d) and u ∈ H1
# (Y ;Rd). Kabel et al. [187] and Lucarini and Segurado [188] showed that the

problem (4.2) is equivalent to a Lippmann–Schwinger equation, which takes the form

ε +
(

Ŵ0 + D0 : Q : 1

vol(Y )

∫

Y

· dx

)(
∂w

∂ε
(·, ε) − C0 : ε

)
= ε̄ + D0 : σ̄

for C0 = α0 Id and D0 = 1
α0

Id. Furthermore, the equilibrium equation (4.2) arises as the first-order nec-
essary condition of a variational principle, and Lippmann–Schwinger-based solvers may be developed in the
framework of gradient-type methods, as well.
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4.3 Composite voxels

Brisard and Dormieux [49], based on earlier FEM work [189], first proposed the idea of considering sub-voxel
scale information on the microstructure. This idea was further refined by Gélébart and Ouaki [190] and by
Kabel et al. [191], who investigated, for the linear elastic setting, the effect of using simple micromechanical
models for deriving “effective” properties of composite voxels. It was found that furnishing the composite
voxels by the effective stiffness of a two-phase laminate material with volume fractions respecting the sub-
voxel volume fraction of the materials, and a normal that approximates the average interface normal between
the constituents in the voxel, led to the most accurate results for finitely contrasted media. When intersecting
pores, Voigt averaging turned out to be advantageous, whereas Reuss averaging is best when intersecting a
rigid inclusion.

The composite voxel method was subsequently extended to finite strains [192] and to inelastic problems
[193]. For the latter, the idea is to introduce internal variables for all the phases in a composite voxel, and to
solve the evolution equations on the laminate, considered as a sub-voxel scale microstructure. Using laminates
on such a scale appears to be related to homogenization at interfaces, see Josien and Raithel [194].

Often, dedicated composite voxel methods permit to reduce the number of degrees of freedom while
retaining the accuracy of the computed results, even for inelastic and nonlinear constitutive behavior. Thus,
they are an indispensable tool for FFT-based computational methods on an industrial-scale.

Composite voxel methods were applied to crystal plasticity [195], hollow glass microspheres composites
[196], for predicting slip bands [197] and to assess the failure behaviors of composites [198].

5 Applications

In this section, we indicate which applications may be solved by FFT-based computational homogenization
methods. We do not give much details. Rather, this section serves as a look-up table from which the reader
may extract the references concerning his or her area of interest.

5.1 Conductivity and diffusivity

FFT-based methods were applied to predict the electrical response of composites [82], the thermal diffusivity
of periodic porous materials [199], also accounting for thermal barrier coatings [200] and imperfect interfaces
[201]. A coupling to the Nemat–Nasser–Iwakuma–Hejazi estimates for conductivity was proposed [202], and
the conductivity of polygonal aggregates [203] was addressed. Also, FFT-based methods were applied to com-
pute the through-thickness conductivity of heterogeneous plates [204] and for an inverse reconstruction of the
local conductivity [205]. Furthermore, extensions to compute Fickian diffusion [206] and ionic conductivity
[207] were reported, as were applications to the effective conductivity and diffusivity of porous carbon elec-
trodes [208], the electronic conductivity of lithium ion positive electrodes [209] and the conductivity of solid
oxide fuel cell anodes [210].

5.2 Coupled problems

Using FFT-based methods for piezoelectricity was pioneered by Brenner [211]. Disregarding the differential
constraints, the central problems can be understood by taking a look at the piezoelectric constitutive law

σ = C : ε − eT · E

D = e : ε + γ · E
or

[
σ

D

]
=
[
C −eT

e γ

] [
ε

E

]
(5.1)

written in suggestive matrix-vector form. Here, C is the stiffness tensor, γ denotes the dielectric permittivity,
and e refers to the (third-order) piezoelectric moduli tensor. Furthermore, ε and σ are the elastic strain and
stress, and D and E symbolize the electric induction and the electric field, respectively. Please note that the
linear operator on the right-hand side of equation (5.1) is not symmetric. However, it is strictly monotone, as

[
ε

E

]T [
C −eT

e γ

] [
ε

E

]
= ε : C : ε + E · γ · E
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holds for all ε ∈ Sym(3) and E ∈ R3. Brenner [211] applied the basic scheme to the original form (5.1).
Such an approach is justified, as the basic scheme may be applied to general strongly monotone and Lipschitz
continuous operators, see Sect. 14.11 in Milton [4]. Also, ADMM-type solvers (3.39) may be applied in this
setting, see Giselsson [212] for a discussion how to choose the algorithmic parameters in this case.

Alternatively, the constitutive equation may be rewritten in the form
[

σ

−D

]
=
[

C −eT

−e −γ

] [
ε

E

]
, (5.2)

which is symmetric, but indefinite. Still, dedicated iterative solution methods may be applied, for instance
MINRES [123]. A third alternative consists of eliminating one of the variables, for instance the electric
induction D, and replacing it by the electric field E . The resulting system reads

[
σ

E

]
=
[
C + eT · γ −1 · e −eT · γ −1

−γ −1 · e γ −1

] [
ε

D

]
, (5.3)

which corresponds to a partial Legendre–Fenchel transformation of the free energy in E . The linear operator
in the right-hand side is symmetric and positive semi-definite

[
ε

D

]T [
C + eT · γ −1 · e −eT · γ −1

−γ −1 · e γ −1

] [
ε

D

]
= ε : C : ε + (D − e : ε) · γ −1(D − e : ε) ≥ 0.

Actually, the operator is even positive definite due to the invertibility of the operator guaranteed by strong
monotonicity. Thus, the conjugate gradient method [40] may be applied for solving the piezoelectric problem
in the formulation (5.3).

All three formulations have their respective merits. The primal formulation (5.1) enables low-memory
solvers, such as the basic scheme or polarization methods, to be applied. However, those are less effective than
their Krylov counterparts. The indefinite formulation (5.2) inherits the conditioning of the original formulation
(5.1), and converges rapidly. However, MINRES has a comparatively high memory demand. The symmetric
and positive definite formulation (5.3) requires less memory. However, the spectrum of the linear operator may
differ strongly from the original formulation.

The discussed alternatives pervade also coupled problems with a higher degree of sophistication. The
electroelastic case was investigated by Brenner [213] applying ADMM to the primal form, and the multi-
ferroic case was treated by Brenner and Bravo-Castillero [214] by a similar technique. Göküzüm and Keip
[215] investigated piezoelectric coupling at finite strains by (a finite strain version of) the partial Legendre
transform approach (5.3). Sixto-Camacho et al. [216] homogenized thermo-magneto-electro-elastic media in
the primal formulation. Vidyasagar et al. [92] investigated ferroelectric ceramics by a phase-field approach.
They rely upon a staggered, semi-explicit technique in the primal formulation. Rambausek et al. [217] proposed
a Newton-CG approach for the partially Legendre transformed formulation.

A completely different type of coupling was studied by Hofmann et al. [218,219], where electro-chemo-
mechanical coupling in lithium ion batteries was investigated. The authors consider a finite volume discretiza-
tion and use an adaptive Newton method with an FFT-based pre-conditioned linear Krylov solver. The effective
properties of thermoelastic composites may also be computed by FFT-based methods [112,220]. A full thermo-
mechanical coupling strategy was recently proposed [221].

5.3 Damage and fracture mechanics

Predicting the strength and lifetime properties of multi-scale materials is certainly of practical interest, and a
number of FFT-based solvers have been developed. However, care has to be taken, as the underlying models
are typically non-convex, and interesting effects may arise. For instance, the balance equations might not be
uniquely solvable, and physically plausible solutions need to be selected [222]. Also, there are damage and
fracture models which may degenerate upon homogenization [223]. (This is independent of FFT.)

After the initial contribution by Herrmann et al. [224] who considered linear and elastic-plastic fracture
mechanics, it took more than ten years until local damage models were considered again. FFT-based approaches
are reported for isotropic local damage [225–227] and anisotropic local damage in SiC/SiC composite tubes
[228], woven composites [229] and braided composites [230,231].
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Non-local damage models, well-known for finite elements [232], remove the spurious mesh dependence of
local damage models upon failure, and were considered by different authors [233–236], where the non-locality
is typically realized as a convolution-type integral, which is readily computed in Fourier space.

For FEM, a specific non-local damage model was proposed by Bourdin et al. [237] in order to approximate
the variational approach to fracture [238], and is very popular nowadays because of its modular character and
the ability to predict complex crack patterns. A semi-explicit FFT solver for phase-field fracture was introduced
by Chen et al. [239], and Ernesti et al. [131] discussed a fully implicit solver based on a fast gradient method.
Cao et al. [240] investigated the influence of different damage degradation functions with an implicit solver
and a viscous regularization. Phase-field fracture in ceramic matrix composites (CMCs) [241], for interface
decohesion [242], with random fracture energy [243], multi-phase field fracture [244] and fatigue in metals
[245,246] and fiber composites [247] were reported. A different phase-field damage model was investigated
by Biner and Hu [248].

As an alternative to non-convex models, an FFT-based solver for computing the effective crack resistance
of heterogeneous brittle materials was introduced [183], based on rigorous homogenization results [249,250].
The problem to be solved is convex, but not differentiable, and an FFT-based primal-dual hybrid gradient
method was developed. This approach is closely related to the solution method introduced by Willot [182] for
a different application.

5.4 Polycrystalline materials

Applications of FFT-based methods to study the physical behavior of polycrystalline materials are rather
frequent, and separate review articles are available on this topic [251–253]. For this reason, we will discuss
the matter only briefly.

As a general note, different crystals of a material differ only in their orientations, reducing the material
contrast of the microstructure to the inner material contrast of the single crystal. Thus, the Moulinec–Suquet
discretization is most commonly used, unless softening constitutive laws are considered. Also, the inherent
complexity of crystal plasticity models makes evaluating the material law expensive, and (Quasi-)Newton-type
solvers are generally to be preferred when time to solution is to be minimized.

5.5 Composites

Composite materials may have a larger elastic contrast than polycrystalline materials. Also, isotropic models
are encountered frequently, so that a time-consuming rotation step is not necessary. For non-spherical fillers,
representative volume elements may be rather large. In view of these facts, memory-efficient solvers are
preferred for such composites. Also, the stochastic nature inherent to the production process of composites
makes it necessary to determine the size of a representative volume element [254–256].

Woven [229] and non-woven [257,258] materials as well as braided composites [230,231] were considered.
For short fiber composites, studies included their viscoelastic behavior [259,260], a comparison to in situ micro-
tensile experiments [261] and an optimal experimental design [262]. Furthermore, SiC/SiC composites [158,
228], ceramic matrix composites (CMCs) [241], metal matrix composites (MMCs) [263], carbon nanoparticle
reinforced composites [264], sheet molding compound (SMC) composites [265] and filled rubbers [266,267]
were studied via FFT-based computational homogenization methods.

5.6 Porous and granular materials

When treating porous and granular materials by FFT-based computational methods, the pore space needs to
be meshed as well. In particular, numerically stable discretizations, as discussed in Sect. 2.5, are mandatory.
Then, balancing computational speed and memory footprint determines the appropriate solution technique.

FFT-based methods were developed to compute the conductivity [268] and the thermal diffusivity [199]
of porous materials, and for predicting microstructure-induced hotspots in granular media [269]. The elastic
and plastic properties of porous materials [270,271] were studied, and the effective yield [272,273] and failure
[274] surfaces could be identified.

FFT-based methods are particularly effective for analyzing digital volume images of rocks [275–277],
sedimentary rocks [278] and shales [279]. In this context, the mechanical compression of the digital images
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is indispensable for simulating the ambient conditions several kilometers below earth’s surface [280]. Closely
related are applications to microstructures of bound sand used for casting processes [109,281]. FFT-based
computational methods may be used to calculate the elastic properties of bones [282,283], for estimating
stiffness and strength of medium-density fiberboards [284–286] and gaining insight into the orientations of
fiber bundles in natural fiber based microstructures [285,287].

FFT-based methods were reported to be effective for aluminum [288], concrete [289] and ceramic foams
[290]. Also, applications to cellular alumina ceramics [291], sintered alumina ceramics [292], ceramics with
spheroidal pores [293], alumina and zirkonia ceramics [294], ferroelectric ceramics [92] and for auxetic
ceramics [295] were reported. Besides, applications to cubic-cell [296] and porous metamaterials [297] were
provided.

5.7 Miscellaneous

Extensions to mechanics at finite strains were reported for hyperelastic [139,298,299] and hypoelastic [300]
constitutive formulations. FFT-based solvers were developed to compute the permeability [301–304] of het-
erogeneous materials, for instance for random cylinders [305] and doubly porous media [306]. Variants also
account for inertial terms [307] or compute the dynamic permeability [308].

Moreover, FFT-based methods can be used to compute the effective viscosity of particle suspensions [309].
FFT-based computational techniques proved useful for studying the viscoelasticity of cement paste [310],
mortar samples [311], cement [312] and concrete [313]. Furthermore, FFT-based techniques were used for
studying explosive materials [314], secondary creep in a porous nuclear fuel [315], the thermal expansion of an
energetic material [316], optical properties of deposit models for paint [317], dynamic recrystallization [318],
to compute geodesics in two-dimensional media [182], fitting microstructure-property relationships [319],
topology optimization [320] and for finding emerging microstructures associated to non-convex potentials
[93,321].

FFT-based computational homogenization methods have been used in concurrent multi-scale simulation
[217,226,322,323] and in connection to stochastic FEM [324]. They served as the basis for investigating field
statistics [325–328] and as a reference for mean-field estimates [329–331]. FFT-based methods for higher-
order homogenization were reported for strain gradient materials [332,333] as well as to calculate the elastic
moduli of beams and plates [334].

6 Concluding remarks and future directions

Since the early pioneering days [33,34,335], computational homogenization methods utilizing the fast Fourier
transform (FFT) were developed into a mature state, where treating complex microstructures and constituents
with sophisticated material behavior is feasible within reasonable time. FFT-based methods exploit the spe-
cific structure of regular grids, and utilize the FFT for constructing general-purpose pre-conditioners for the
discretized (nonlinear) systems. These methods were developed in a modular fashion, where specific discretiza-
tion schemes and dedicated solvers can be combined for advantageous problem formulations tailor-suited to
the application at hand. For instance, to compute the effective viscosity of a suspension, a dual formulation,
discretized by finite differences may be solved by a fast gradient method. To speed up material modelling, the
integration of automatic differentiation approaches [336] can be useful, as well.

Despite the progress made, overcoming a few remaining technological challenges is expected to improve
the applicability of computational multi-scale methods, in general, and FFT-based techniques, in particular.
For instance, the requirements of modern multi-scale methods necessitate going beyond solving a specific
homogenization problem for given parameters and a single microstructure. Indeed, variations in both the
microstructure and the material parameters are to be taken into account. For instance, for injection-molded
fiber-reinforced composites, both the filler content and the fiber orientation may be locally varying, and material
models for any such combination need to be provided for macro-scale computations [259]. Moreover, it might
be necessary to calibrate the microscopic material parameters inversely. For example, it is known that the
material properties of the matrix material in a fiber composite may show a (strongly) different behavior than
a pure matrix sample, for instance as a result of a change in crystallization caused by the presence of fibers.

Possible solutions include the use of sparse sampling techniques [337], tensor methods [338] or AI-based
surrogate models [339].
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