
Vol. 40, No. 3, May–June 2010, pp. 222–245
issn 0092-2102 �eissn 1526-551X �10 �4003 �0222

informs
®

doi 10.1287/inte.1090.0492
©2010 INFORMS

A Review of Operations Research in Mine Planning

Alexandra M. Newman
Division of Economics and Business, Colorado School of Mines, Golden, Colorado 80401,

newman@mines.edu

Enrique Rubio
Mining Engineering Department, University of Chile, Santiago, Chile,

erubio@ing.uchile.cl

Rodrigo Caro, Andrés Weintraub
Industrial Engineering Department, University of Chile, Santiago, Chile

{rcaro@dii.uchile.cl, aweintra@dii.uchile.cl}

Kelly Eurek
Division of Economics and Business, Colorado School of Mines, Golden, Colorado 80401,

keurek@mymail.mines.edu

Applications of operations research to mine planning date back to the 1960s. Since that time, optimization and
simulation, in particular, have been applied to both surface and underground mine planning problems, including
mine design, long- and short-term production scheduling, equipment selection, and dispatching, inter alia.
In this paper, we review several decades of such literature with a particular emphasis on more recent work,
suggestions for emerging areas, and highlights of successful industry applications.

Key words : literature review; mine planning; mine design; production scheduling; equipment selection;
dispatching; optimization; simulation; open-pit mining; underground mining.

History : This paper was refereed. Published online in Articles in Advance April 7, 2010.

Mining is the process of extracting a naturally

occurring material from the earth to derive a

profit. In this paper, we confine our discussion of

mining to the extraction of the following minerals:

(1) metallic ores such as iron and copper, (2) nonmetal-

lic minerals such as sand and gravel, and (3) fossil

fuels such as coal. We omit literature regarding natu-

rally occurring liquids such as petroleum and natural

gas that have very different characteristics and require

different extraction procedures. The oldest mine is

located in southern Africa; about 43,000 years ago, pre-

historic humans found iron (i.e., hematite) close to the

earth’s surface and used open-pit (i.e., surface) min-

ing to remove ore and waste from the top downward

in a methodical fashion. Ancient underground mines

also exist. One such site in England was exploited

from about 3,000 to 1,900 BC to recover flint from well

beneath the earth’s surface. Rather than completely

exposing the mining face, miners dug shafts and used

ladders to retrieve the hard stone before backfilling

the extracted areas to enforce stability in the excavated

tunnels (Gregory 1980).

Mining has five stages: (1) prospecting, (2) explo-

ration, (3) development, (4) exploitation, and (5) recla-

mation. In the first phase, geologists use visual

inspection and physical measurements of the earth’s

properties to discover mineral deposits. In the explo-

ration phase, geologists determine the value of

the deposit by drilling holes to estimate the min-

eral concentration and its variability throughout the

orebody. Interpolation techniques such as kriging

(Krige 1951) and simulation techniques (Deutsch 2004)

provide tonnage-grade curves representing the poten-

tial benefits of exploiting the orebody for a given

set of economic parameters. The third stage, devel-

opment, consists of obtaining rights to access the

land and preliminarily preparing it to be mined by

removing overlying waste by sinking shafts below

the earth’s surface. The development stage trans-

lates mine planning studies into mine design by
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(1) determining the mining method, which consists

of the geometrical arrangements of infrastructure;

(2) estimating production capacity and infrastructure

capital; and (3) performing detailed engineering

design. In the exploitation stage, ore is removed from

the ground via surface and (or) underground min-

ing methods. It is transported to the surface in trucks

via haulage ramps or in shafts. From there, it may be

stockpiled (and eventually sent to a processing plant),

sent directly to a processing plant, or taken to a dump.

Finally, the fifth stage, reclamation, consists of restor-

ing the area in which mining occurred to its natural

state to the extent possible.

Operations research (OR) has been used in min-

ing primarily for the development and exploita-

tion stages. Mine planners must make decisions

about when and how to perform both surface and

underground extraction. Extraction decisions consist

of determining (1) how to recover the material and

(2) what to do with the extracted material. Because

machines are used to extract the ore, decisions about

which type of machines to use, how many machines

to use, and how to allocate them also arise.

Topuz and Duan (1989) mention potential areas of

mining applications, e.g., production planning, equip-

ment selection and maintenance, mineral processing,

and ventilation. Osanloo et al. (2008) review long-

term optimization models for open-pit scheduling.

Although the mining industry has been aware of OR

methods for half a century, few places in the litera-

ture include a comprehensive, state-of-the-art review

of the field and mention papers both from the OR

and the mining-engineering literature. Our work pro-

vides an all-encompassing review of optimization

and simulation models to improve mining operations.

Although we limit ourselves primarily to papers

appearing in the last three decades, we highlight

directions for future research and note the progres-

sion of methodologies and theories throughout these

decades. We hope to overcome existing shortcomings

in the literature and to motivate researchers to con-

tinue to improve models and algorithms that have a

direct application to the mining industry. We have

organized the remainder of this paper as follows. In

the Surface Mining section, we discuss surface-mining

models; in the Underground Mining section, we give

a corresponding treatment of underground models.

We separate both sections into subsections based on

strategic, tactical, and operational models. Finally, we

conclude with the Emerging Areas and Conclusions sec-

tion, in which we point out emerging areas in mine

planning research.

Surface Mining
Surface mining, which can be used when ore is close

to the earth’s surface, is an older and more pro-

ductive method than underground mining. Open-pit

mines differ depending on the nature of the mate-

rial removed. Shallow mines from which gravel and

sand are extracted are generally referred to as quar-

ries; deeper, long mines from which coal is removed

are known as strip mines. Figure 1 depicts a deep

surface mine that is typical of mines with hard metal

deposits such as copper. Overburden (i.e., waste)

must be removed before extraction can begin. Haul

roads wind up through the mine from the bottom of

the pit to the surface. Extraction occurs from benches

(i.e., open faces of material).

If prospectors deem the extraction of material in an

open pit to be viable, they must determine both the

pit design and the plan of operations. Pit design relies

on preliminary analysis consisting of (1) an orebody

model in which the deposit is discretized into a grid

of blocks, each of which consists of a volume of mate-

rial and the corresponding mineral properties; (2) the

value of each block, which is determined by compar-

ing market prices for ore with extraction and process-

ing costs; and (3) a geometric model of the deposit.

Blocks are used as spatial reference points. Geomet-

ric constraints, as Figure 2 depicts, ensure that the pit

walls are stable and that the equipment can access the

areas to be mined.

Solving the pit design problem yields the final pit

boundary, i.e., the ultimate pit limit, while balancing

the ore-to-waste (stripping) ratio with the cumulative

value in the pit boundaries. This analysis requires that

the cutoff grade, i.e., the grade that separates ore from

waste, is fixed. Other aspects of open-pit mine design

include the location and type of haulage ramps and

additional infrastructure, as well as long-term deci-

sions regarding the size and location of production

and processing facilities.

Following the solution of the pit design prob-

lem, traditional open-pit production scheduling uses
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Figure 1: The schematic illustrates an open-pit mine.

Source. Illustration from http://www.visualdictionaryonline.com ©QA International, 2010.

a discretized orebody model, i.e., the block model,

assuming a fixed cutoff grade to determine a series

of nested pits in which a given (notional) price is

used to define one pit and increasing prices corre-

spond to larger pits. From these pits, an ultimate

pit is chosen. The nested pits within the ultimate

pit are then grouped into pushbacks, where a sin-

gle pushback is often associated with similar resource

usage, e.g., extraction equipment. Within each push-

back (which contains only a small subset of blocks

within the block model), an extraction sequence is

1

4 43

3

2

2

5

5

6

6

7 8 9

10

1

Figure 2: Sequencing rules can be based, for example, on the removal of

five blocks above a given block (left) or on the removal of nine blocks

above a given block (right).

then determined. The basic premise of this approach

is that one can determine a cutoff grade policy to

maximize net present value (NPV) subject to capacity

constraints. Higher cutoff grades in the initial years of

the project lead to higher overall NPVs; over the life

of the mine, the tendency is to reduce the cutoff grade

to a break-even level depending on the overall grade

composition of the mine. Lane (1988), Fytas et al.

(1987), and Kim and Zhao (1994) extensively discuss

this process. The need to partition the problem in this

way stems from the daunting and, until now, com-

putationally intractable task of determining a start

date (if any) for each production block in the entire

geologic area of interest. Determining these dates for

a subset of blocks within a predefined pushback is

less challenging. However, three problematic aspects

of this approach are (1) the assumption of a fixed

cutoff grade, which depends on an arbitrary delin-

eation between ore and waste; (2) the use of notional

(and monotonically increasing) prices in determin-

ing the nested pits; and (3) the piecemeal approach

to the entire optimization problem, which disregards

the temporal interaction of resource requirements.
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We now mention the progress from the traditional

technique to advanced techniques that attempt to

solve the entire mine scheduling problem as a mixed-

integer program. Although the latter approach is

newer and less tractable, there is promise that it will

soon solve large enough models to become widely

accepted. Bixby and Rothberg (2007) remind us of the

continued improvements in hardware and software

capabilities.

Strategic Ultimate Pit Limit Design and

Mine Layout Models

Two principal classical methods determine the shape

of a surface mine. The floating cone method (Laurich

1990) assumes a block as a reference point for expand-

ing the pit upward according to pit slope rules. This

upward expansion, which contains all blocks whose

removal is necessary for the removal of the refer-

ence block’s removal, forms a cone whose economic

value we can compute. One can then take a second

reference block and add to the value of the cone

the incremental value associated with the removal of

the additional blocks necessary to remove the sec-

ond reference block; the process then continues. Prob-

lems with this method include the following: (1) the

final pit design relies on the sequence in which refer-

ence blocks are chosen, and (2) many reference blocks

might need to be chosen (and the associated value of

the cone computed) to achieve a reasonable, although

not even necessarily optimal, pit design.

Although the floating cone method is used

widely in practice, the seminal work of Lerchs and

Grossmann (1965), who provide an exact and compu-

tationally tractable method for open-pit design, and

associated extensions appear more often in the litera-

ture. This problem can be cast as an integer program

(Hochbaum and Chen 2000), as we describe below.

• �b� b′� ∈ B: set of precedences between blocks

(predetermined set).

• vb: value obtained from extracting block b

(parameter).

• yb: 1 if block b is extracted, i.e., if the block is part

of the ultimate pit, 0 otherwise (variable).

max
∑

b

vbyb

subject to yb ≤ yb′ ∀ �b� b′� ∈ B�

0≤ yb ≤ 1�

Note that this problem has a totally unimodu-

lar structure; therefore, solving the linear program

relaxation of the model, as we show above, is suffi-

cient. Specifically, Lerchs and Grossmann (1965) use

a maximum-weight closure algorithm that exploits

network structure to produce an optimal solution.

Because of their algorithm’s fast solve times and

solution accuracy, many current commercial soft-

ware packages that incorporate open-pit mine design

(e.g., Whittle 2009, Maptek 2009, Datamine 2009)

use it. Other authors seek to improve this algo-

rithm. Underwood and Tolwinski (1998) solve the

problem by developing a network-flow algorithm

based on the dual of its linear programming formu-

lation. The authors provide an interpretation of the

graph theoretic methodology. Similarly, Hochbaum

and Chen (2000) suggest a maximum-flow, push-

relabel algorithm with improved theoretical complex-

ity and faster run times on problem instances with

varying mine characteristics such as ore-grade distri-

bution. Wright (1989) argues that dynamic program-

ming is an effective way to determine the ultimate

pit limits, particularly because it allows identification

of incremental pit boundaries. The boundaries define

production requirements and equipment capacities,

and these boundaries can then be used to determine

those incremental pits that satisfy the corresponding

constraints. Wright presents a case study.

Two authors propose extensions to the basic ulti-

mate pit limit problem by incorporating stochastic-

ity. Frimpong et al. (2002) argue that most models

developed to address pit design lack the ability to

incorporate structural, hydrological, and geotechnical

elements. The authors discuss a case study on a gold

mine in Zimbabwe using neural networks and artifi-

cial intelligence approaches. Jalali et al. (2006) propose

the use of Markov chains to determine ultimate pit

limits via spatial constraint aggregation. The authors

assume an initial pit depth and then assign prob-

abilities to the existence of lower pit depths based

on the economic values of underlying blocks. They

then present an application of the algorithm for two-

dimensional problems; however, they concede that

the method would be more difficult to apply to three-

dimensional cases.

In addition to the design of the mine itself with

respect to the pit limits, authors have also consid-

ered mine layouts. Specifically, Bradley et al. (1985)
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determine the number of train tracks and silos to

include at a mine site by using formulae to compute

storage capacity requirements and minimum produc-

tion rates as a function of demand. They then use

simulation to analyze trade-offs between the number

of loading trucks, storage capacity, production rates,

and train filling rates. Using data from Wyoming’s

Powder River Basin mine, they measure the average

train waiting time.

Tactical Block-Sequencing Models

Unlike the ultimate pit limit problem, the block-

sequencing problem considers not only which blocks

to remove, i.e., which blocks form part of the eco-

nomic envelope, but also when to remove these

blocks. The introduction of time into these sequenc-

ing models allows for the inclusion of resource con-

straints, e.g., production (extraction) and processing

(milling). In addition, discounting can be used to

more accurately reflect the value of a block as a func-

tion of its extraction date.

A typical formulation of such a model is as follows:

• b ∈ B: set of all blocks b.

• t ∈ T : set of periods within the horizon.

• Bb: set of blocks that must be excavated immedi-

ately before block b.

• vbt : value associated with the extraction of block

b in period t.

• cb: consumption of resource associated with the

extraction of block b (tons).

• C� �C: minimum (maximum) resource bound in

any period (tons).

• ybt : 1 if block b is extracted in period t, 0 other-

wise.

max
∑

b∈B

∑

t∈T

vbtybt

subject to
∑

t∈T

ybt ≤ 1 ∀ b�

C ≤
∑

b∈B

cbybt ≤ �C ∀ t�

ybt ≤
t∑

�=1

yb′� ∀ b� b′ ∈ Bb� t�

ybt ∈ �0�1� ∀ b� t�

Life-of-mine instances of the above model contain

many blocks and periods. Therefore, researchers often

assume a fixed cutoff grade and tend to aggregate

entities (strata in early work and aggregated blocks

later). Although authors also use linear programming,

this method cannot accurately capture block prece-

dence. Finally, authors also present decomposition

techniques and heuristics.

Early work aggregated blocks into strata, or hori-

zontal layers, subject to a simple set of constraints.

Busnach et al. (1985) solve the problem of produc-

tion scheduling in a phosphate mine in Israel. They

determine which sublayers to extract at what time

and to which extent (referred to as shallow or deep

mining). The corresponding model maximizes the

NPV (influenced by factors such as phosphate prices,

transportation distance, and ratio of good material to

waste) while ensuring that each sublayer is removed

either via deep or shallow mining, and that only one

sublayer is mined within a given period. The objec-

tive function is nonconcave; therefore, the authors use

a tailored local search heuristic and demonstrate its

use with a numerical example. Klingman and Phillips

(1988) solve a similar problem (although they do

not differentiate by shallow and deep mining, and

they use a linear objective) also for phosphate; they

note that their model has been used to make deci-

sions worth millions of dollars. Gershon and Murphy

(1989) determine which strata of material to mine,

either as ore or waste, to maximize NPV, and they

present a dynamic program that aggregates strata into

layers, which are mined entirely as ore or waste.

A spreadsheet model demonstrates the technique on

an oil shale deposit. Samanta et al. (2005) extract lay-

ers of material to minimize deviation between target

levels of two quality characteristics, silicon oxide and

aluminum oxide, subject to sequencing constraints,

for a bauxite mine. The authors employ a genetic

algorithm on a data set containing 98 layers and

24 periods to arrive at “good” schedules.

Other early work treats blocks but ignores the

binary nature of the decisions. Tan and Ramani (1992)

consider both a linear program and a dynamic pro-

gram to schedule extraction over multiple periods

subject to equipment capacity constraints. The linear

program assesses the differences in production sched-

ules with varied interest rates and equipment avail-

ability. In the absence of discrete variables, block-

sequencing decisions are not made. Fytas et al. (1993)
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use simulation to determine long-term extracted

material in each period subject to sequencing con-

straints and to minimum and maximum produc-

tion bounds, processing bounds, waste stripping, and

quality. They then use linear programming (under

the assumption of partial block removal) to schedule

blocks in the short term subject to constraints similar

to those considered in the long term. The authors pro-

pose an iterative technique to obtain practical mining

sequences.

In the 1980s, researchers were aware that sequenc-

ing decisions had to be made at the block level for

reasonable schedule fidelity and also that such models

were difficult to solve because of their problem struc-

ture and size. Some authors exploit the structure. An

example of seminal work in this area is Dagdelen and

Johnson (1986), who maximize NPV subject to con-

straints on production and block sequencing. Rather

than relying on heuristics, the authors propose an

exact approach, Lagrangian relaxation, that exploits

the network structure of the problem if side con-

straints, e.g., a constraint on the maximum amount

of material that can be removed per period, are

dualized, i.e., placed in the objective with associated

multipliers to induce the relaxed constraint(s) to be

satisfied. They apply a subgradient multiplier updat-

ing scheme to small examples. Akaike and Dagdelen

(1999) extend this work by iteratively altering the

values of the Lagrangian multipliers until the solu-

tion to the relaxed problem meets the original side

constraints, if possible. Kawahata (2006) expands on

the Lagrangian relaxation procedure (Dagdelen and

Johnson 1986) by including a variable cutoff grade

(with a variable such as yblt , where the l index would

denote the location to which the extracted ore is sent),

stockpiling (with the inclusion of an inventory vari-

able and associated balance constraints), and waste-

dump restrictions. To bound the solution space, he

uses two Lagrangian relaxation subproblems, one for

the most aggressive case of mine sequencing and the

other for the most conservative case. Because he has

difficulty obtaining feasible solutions for the relax-

ation, he adjusts bounds on capacities to ensure that

the Lagrangian solution is feasible for this adjusted

model. Cai (2001) also uses Lagrangian relaxation.

His problem differs from conventional scheduling in

that he designs open-pit mine phases and incorpo-

rates constraints such as production capacity and sul-

phur content. The author concedes that there may

be gaps between nested pits, precluding his solution

technique from providing optimal multiperiod sched-

ules; he presents a gold mine case study with 11 mil-

lion blocks.

Although the above are exact techniques for

addressing the monolithic problem, many authors

attempt to sequentially determine the ultimate pit lim-

its, and then the production schedule, by either suc-

cessively or iteratively solving the problem. Dynamic

programming is a popular approach because of its

ability to allow the creation of solutions sequentially.

For example, Dowd and Onur (1993) use dynamic pro-

gramming for sequence and pit design via a variable

cone algorithm. Onur and Dowd (1993) take the ulti-

mate pit limits as given and schedule blocks to be

extracted while including haul roads. The production

schedule can be smoothed to include such roads after

the pit design has been created. The authors’ software

generates a number of feasible roads from which the

user can select based on various monetary and geolog-

ical criteria. Elevli (1995) presents a model that max-

imizes the NPV of extracted blocks subject to hard

sequencing constraints and soft constraints on pro-

duction and processing capacity. The author poses the

problem as a dynamic program and uses local search

techniques to solve it. He illustrates his methodology

with a small example of approximately 1,000 blocks.

Two papers use a sequential approach; the first

is Sundar and Acharya (1995), who consider one

model to determine blocks to be blasted and a sec-

ond model to subsequently find the benches and

blocks to be excavated from those available from the

blast, accounting also for mill and transport capacity.

A chance-constrained program addresses the random

nature of ore quality and quantity characteristics and

variations in operation-time requirements. Blending

of ore blocks meets demand. The authors test the

program on a mine in India, demonstrating results

with reduced equipment requirements for a given

production level. The second paper, Sevim and Lei

(1998), describes how the ultimate pit limits, the cut-

off grade, the mining sequence, and the production

rate interact in a circular fashion. The authors propose

a methodology based on a combination of heuristics
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and dynamic programming to obtain simultaneously

the optimum mining sequence, ore and waste produc-

tion, ultimate pit limits, and mine life. Their model

has three phases. In the first phase, a block model is

formed based on the deposit’s boundaries. A bound-

ing algorithm is then applied to this block model to

determine the largest feasible pit. The second phase

considers a spectrum of cutoff grades; for each cut-

off grade, a series of nested pits is generated inside

the largest feasible pit. These pits are generated in

such a way that each pit contains the highest amount

of metal among all possible pits of the same size. In

the third phase, all possible sequences of pushbacks

are formed with the generated pits and are evaluated

with respect to their NPV.

Erarslan and Çelebi (2001) determine a production

schedule to maximize NPV subject to such factors

as grade, blending, and production constraints. They

use dynamic programming to enumerate various vol-

umes and determine the optimal pit size. This method

ostensibly solves the ultimate pit limit problem and

the block-sequencing problem simultaneously. Wang

and Sun (2001) propose an approach using a dynamic

pit-sequencing scheme to integrate cutoff-grade deter-

mination, production rates, the ultimate pit limits,

and sequencing. In each period, different options for

the next pit phase are modeled as a network.

Some of the above authors concede that dynamic

programming is not tractable for larger problems.

However, the Lagrangian approach described above

remains a prominent method for addressing large

problems while also (theoretically) ensuring an opti-

mal solution. Other authors simply pose a mono-

lithic integer program; e.g., Hoerger et al. (1999)

develop a multiperiod mixed-integer programming

model for Newmont’s mining operations. The authors

use LINGO (Lindo) to solve small instances.

The following two works use genetic algorithms

to attempt to solve large integer programs more

efficiently. Denby and Schofield (1994) concede that

determining the final open pit and extraction sched-

ule must be integrated. The authors define schedules

as a combination of a final open pit and one extrac-

tion schedule. To generate the best “schedules” from

these combinations, the authors use a genetic algo-

rithm, employing the typical tools of crossover and

mutations. They obtain good results, e.g., 6 percent

higher NPV, on small problems, but solution times

increase rapidly with problem size. Zhang (2006) also

uses a genetic algorithm and aggregates blocks a pri-

ori to reduce the problem size. The author tests the

algorithm against the ability of CPLEX (IBM 2009)

to solve the same instances from BHP Billiton and

finds that CPLEX requires approximately two to four

times longer to achieve solutions of the same quality.

However, the author does not mention the practical

consequences of aggregation or how to subsequently

disaggregate.

Caccetta and Hill (2003) provide an exact approach

by defining variables representing whether a block

is mined by period t. (Using the definition of ybt
(above) and defining wbt = 1 if block b is mined by

period t and 0 otherwise, then yb1 =wb1 and for t > 1,

ybt =wbt −wb� t−1.) The model contains constraints on

the mining extraction sequence; mining, milling, and

refining capacities; grades of mill feed and concen-

trates; stockpiles; logistics; and various operational

requirements such as minimum pit-bottom width and

maximum vertical depth. To solve this problem, the

authors use a branch-and-cut strategy, which con-

sists of a combination of breadth-first search and

depth-first search to achieve a variety of possible

pit schedules. A judicious choice of variable def-

initions and fixings and the implementation of a

linear programming-based heuristic help obtain good

bounds on the solutions. Bley et al. (2010) present

an open-pit formulation defined by the same vari-

ables (see Caccetta and Hill 2003) that maximizes

net present value subject to precedence and multiple

upper bound resource constraints; cutoff grade is

fixed. The authors develop variable reduction tech-

niques and cuts based on the precedence-constrained

knapsack structure of the problem and demonstrate

how their developments significantly reduce solution

time for problems containing hundreds of blocks and

5–10 time periods.

Halatchev (2005) maximizes revenues of gold, less

fixed and variable operating (e.g., processing) costs,

costs associated with handling waste, and fixed-

capital costs. To adhere to sequencing and capacity

constraints, the author enumerates all viable produc-

tion sequences. However, he takes benches, which are

generated via the ultimate pit limit, as given and uses
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variants of bench-sequencing rules to provide flexi-

bility to his production schedules, all of which must

adhere to mill supply and demand constraints; cutoff

grade is fixed. The author uses Monte Carlo simu-

lation to generate a variety of data sets that reflect

ore-grade variability; he provides a case study with a

sample of schedules for various ore-grade data.

Aggregation combined with optimal solution

strategies, as opposed to heuristics such as genetic

algorithms, has also started to play a role in block

sequencing. In short, authors seek to reduce model

size by combining blocks with similar properties; they

then exploit the problem structure with a view to

using fast solution methods on the reduced problem.

For example, Ramazan (2007) proposes an aggrega-

tion scheme in which he uses linear programming to

construct “fundamental trees” to reduce the number

of blocks to sequence. Each fundamental tree con-

tains blocks within the smallest aggregate entity pos-

sible that can be mined without violating sequencing

constraints and that have an overall positive value.

The author applies his techniques to a copper mine

consisting of about 40,000 blocks to be scheduled

over eight years. Boland et al. (2009) use binary vari-

ables (similar to those in Caccetta and Hill 2003)

to enforce precedence between aggregates of blocks

while continuous-valued variables control the amount

of material extracted both from each aggregate and

from each block within an aggregate. The authors

exploit the structure of the linear programming relax-

ation of their problem to develop partitions of the

aggregates into sets of blocks such that these sets

are optimal for the linear programming (LP) relax-

ation of their monolith, if possible, or show how

to obtain good sets of such blocks. They then use

these sets to approximate a solution for their origi-

nal, mixed-integer program. The authors demonstrate

their procedure using instances containing as many

as 125 aggregates and nearly 100,000 blocks. Times

to obtain a solution within 1 percent of optimality

range from thousands to tens of thousands of sec-

onds. Gleixner (2008) extends these results with a dif-

ferent type of aggregation and also presents ideas for

using Lagrangian relaxation in this context. Bienstock

and Zuckerberg (2010) extend the work of Boland

et al. (2009) by developing a customized linear pro-

gramming algorithm to solve the linear program-

ming relaxation of the problem addressed in Boland

et al. The authors solve model instances contain-

ing between 8 and 100 time periods and between

about 3,000 and 200,000 production blocks in seconds,

whereas CPLEX consumers up to 4 orders of magni-

tude more time, if it can solve the instances at all.

Amaya et al. (2009) also use “by” variables but not

aggregation. They maximize NPV based on a fixed

cutoff grade subject to upper bounds on resource and

block-sequencing constraints; the authors develop a

random, local search heuristic that seeks to improve

on an incumbent solution by iteratively fixing and

relaxing part of the solution, with the relaxation

determined through geometric strategies. This simple,

effective idea produces solutions for instances contain-

ing up to four million blocks and 15 periods in four

hours of computing time. These solutions are approx-

imately 25 percent better than the solutions that stan-

dard heuristics provide, e.g., Gershon (1987); in some

cases, a standard application of CPLEX requires mul-

tiple days to find any feasible solution. Chicoisne et al.

(2009) extend the aforementioned work to include a

customized algorithm to solve linear programming

relaxations of large instances of the same problem; the

authors also demonstrate that using heuristics simi-

lar to those in Amaya et al. (2009) on the solutions

obtained from the LP relaxations produces results in

about an hour that are within 5 percent of optimal-

ity for problem instances containing millions of blocks

and 20 time periods.

Open-pit block sequencing is a heavily studied

area, largely because of the many open-pit mines

in existence today and the somewhat generic nature

of the mines. Researchers are able to solve increas-

ingly large models, which has enabled progress from

solving an ultimate pit model and subsequently

sequencing blocks within small nested pits to solv-

ing a monolith sequencing problem containing up

to hundreds of thousands of blocks. However, work

remains in terms of incorporating fidelity such as

variable cutoff grades and inventory constraints into

large models that produce optimal solutions in a rea-

sonable amount of time.

Tactical and Operational Equipment-Allocation

Models

In addition to determining a production schedule,

a related question is determining the resources that
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enable such a schedule. These are generally separate

models in the literature; however, in theory, the deci-

sions are connected. A tactical problem consists of the

size and nature of the fleet, which can be determined

by artificial and geological mine characteristics and

by equipment capabilities. The operational problem

of equipment allocation entails scheduling and dis-

patching strategies; decisions are based on haul route

requirements and equipment limitations. To this end,

both stochastic and deterministic models exist.

Both queuing theory and simulation are used as

stochastic methodologies. For example, Oraee and Asi

(2004) use simulation for truck scheduling, consid-

ering fuzzy parameters on outputs per shovel. The

authors wish to attain desired production levels while

ensuring that the ore sent to the mill is of sufficient

quality. They present a case study for Songun Copper

Mine in Iran.

Kappas and Yegulalp (1991) use queuing theory

to analyze the steady-state performance of a typical

open-pit truck and shovel system in which trucks,

or customers, transport excavated material to an end

location on a path consisting of a network of haul

roads. Trucks also undergo repair and maintenance;

although these facilities are capacitated, the authors

assume that the haul roads have infinite capacity.

Because no trucks enter or leave the system, it is

closed; a matrix gives the probabilities of a truck tran-

sitioning from one (service) area to another. Because

of factors such as the service-time distributions at var-

ious areas, the corresponding stochastic process is not

Markovian. However, the authors derive results based

on extensions of Markovian principles to estimate

performance parameters such as the expected number

of trucks in an area. The authors verify the accuracy

of their derivations with simulation, benchmark tests

against a purely Markovian approach, and present a

small numerical example.

Najor and Hagan (2006) use queuing theory to

model stochastic behavior of truck and shovel sys-

tems. A spreadsheet records truck productivity given

truck payloads, crusher feed rate, and cycle time.

The model analyzes equipment idle time and predicts

lower material throughput when both truck and plant

capacity are considered rather than simply the former.

Numerical results on the Pilbara mine in Australia

show that ignoring queuing leads to overestimating

production by about 8 percent.

Many equipment routing and selection models use

optimization, i.e., integer programming, to deter-

mine fleet size and allocation. A few exploit the

problem structure to arrive at network-like models

or incorporate stochasticity. Weintraub et al. (1987)

exploit network structure in their development of lin-

ear programming-based heuristics to route multiple

trucks with varying capacities to minimize waiting

time at servers, i.e., loaders that fill trucks with ore

and waste for transport from the mine. The authors

account for loading, unloading, and transportation

times and use the underlying transportation network

structure of the problem as a basis for their solu-

tion algorithm. This model results in an estimated

8 percent increase in productivity at Chuquicamata,

a large open-pit mine in northern Chile. Similarly,

Goodman and Sarin (1988) develop an integer

program combined with a transportation model to

determine an optimal equipment schedule and waste

distribution. They successively solve the integer por-

tion of the model, fix those values, and evaluate the

fixed solution in the resulting transportation model.

The authors’ results provide insight as to which com-

binations of transport equipment result in the highest

productivity. Soumis et al. (1989) also solve a model

in phases. In short, they seek to maximize truck and

shovel productivity while meeting demand require-

ments. The authors first determine the location of

shovels; they then use a network model to estab-

lish an optimal production plan (considering waiting

times) that includes access routes to the ore. Finally,

they solve a real-time assignment model to dispatch

trucks within the mine.

White and Olson (1992) suggest an operational

truck-dispatching system based on network models,

linear programming, and dynamic programming. The

objectives maximize production, minimize material

rehandling, and ensure that the plant is supplied

with material while meeting blending constraints. The

authors’ three-stage process first finds shortest paths

between all locations in the mine; the linear program

then determines material flows along these paths.

Finally, the dynamic program assigns trucks to oper-

ate between shovels and dumps. The authors’ system,
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which is in real-time use at more than 10 mines inter-

nationally, yields significant (10–20 percent, in most

cases) productivity improvements in these mines.

Naoum and Haidar (2000) develop an integer

program to choose a cost-minimizing set of equipment

that satisfies maximum production requirements, min-

imum and maximum bounds on the number of pieces

of each type of equipment and the operational hours

for each piece of equipment, and mine-life duration.

The different characteristics of each type of equipment,

e.g., capital and maintenance costs and capabilities,

make solving the problem difficult. The authors tai-

lor a genetic algorithm to provide solutions that save

15 percent in equipment-selection costs to the mine

for specific case studies. Burt et al. (2005) develop an

integer program to determine the number of trucks

assigned to a loader to minimize the cost of operating

a truck and loader fleet subject to capacity, cycle time,

fleet efficiency, and tonnage requirements. The fleet

is heterogeneous, and some machines cannot work

together. Operational costs increase and productiv-

ity decreases, both nonlinearly with equipment age.

The authors linearize their objective and demonstrate

their model on small instances containing fewer than

10 trucks and loaders.

Ta et al. (2005) extend optimization modeling

to incorporate stochasticity by formulating a truck

allocation model using chance-constrained stochastic

optimization that accommodates uncertain parame-

ters such as truckload and cycle time. The num-

ber and type of trucks that are allocated to shovels

are the decision variables. The objective minimizes

the operating and capital cost of ore delivery sub-

ject to production rates, shovel capacity, waste mate-

rial removal, and truck availability. The crucial step

in solving the chance-constrained problem is to con-

vert the constraints into a deterministic form by iden-

tifying the confidence level that must be satisfied.

Apparently, the technique is simple to implement and

possesses reasonable computation times, thus making

it applicable to real-time problems.

Rubio (2006) addresses the use of processing

facilities rather than the routing or scheduling of

transportation equipment. He takes the production

schedule as given; for each block, he then determines

the processing facility to which it is to be sent, if any,

to maximize revenue subject to processing time avail-

able at the mills. Rubio demonstrates the use of his

model at the open-pit Grasberg Mine in Indonesia,

compares the results against a heuristic, and con-

cludes that using an optimization model can have

significant benefits; however, he concedes that such

a model should also incorporate block sequencing.

McKenzie et al. (2008) address the question of how

to locate equipment, specifically a feeder into which

extracted aggregate (e.g., sand and gravel) is fun-

neled. This feeder is attached to a conveyor belt that

transports the material to a processing plant and can

be moved by adding conveyor belt extensions. The

trade-off is the proximity of the feeder to the opera-

tions, vice the (nonoperational) time required to relo-

cate the feeder as the mining frontier progresses. The

authors model the problem as a dynamic program

and solve it as a shortest-path model in which an arc

in the model represents moving the feeder along a

linear path from location i to location j . Implement-

ing the model results in savings of approximately

14 percent of total operational costs at the mine.

Munirathinam and Yingling (1994) discuss sur-

vey articles on open-pit truck dispatching; they

classify truck-dispatching strategies, examine their

underlying mathematical formulations in detail, and

identify the strengths and weaknesses of alternate

approaches. Alarie and Gamache (2002) analyze dis-

patching systems and the advantages and disadvan-

tages of solution strategies, and they present the

current challenges of dispatching systems such as

real-time monitoring capabilities.

Underground Mining
Despite the relatively lower fixed infrastructure cost

of an open-pit mine, surface mines necessitate signif-

icant extraction of waste. A mine can be or become

cost prohibitive to operate when the ratio of extracted

waste to ore becomes too high, when waste storage

space is insufficient, when pit walls fail, or when envi-

ronmental considerations outweigh extraction bene-

fits. In these cases, underground mining begins.

The economic viability of an underground mine

relies on much of the same economic analysis as

an open-pit mine. Given viability, there are both pit

design and operating decisions. However, in under-

ground mine planning, there is no real equivalent to
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determining ultimate pit limits. Underground mining

methods are commonly categorized as unsupported

methods, supported methods, and caving methods;

the choice of which method to employ in a mine

depends on the size and shape of the orebody, the

characteristics of the surrounding rock, and the char-

acteristics of the ore. Although there are many under-

ground methods (and variants), we restrict ourselves

to brief descriptions of the methods used in papers

contained in our literature review.

Room and pillar (Figure 3, left panel) is an unsup-

ported method designed for flat, relatively thin,

homogeneous deposits such as coal. Regularly posi-

tioned pillars consisting of unrecoverable ore sup-

port “rooms” from which ore is blasted and then

removed via trackless loaders. Bolts or pillars are used

as ceiling supports. In a second phase of this method,

retreat mining, the pillars are mined until the tunnel

collapses.

Sublevel stoping (Figure 3, right panel) is another

unsupported method used for steeply dipping ore-

bodies with regular boundaries. The orebody is

divided into separate stopes (i.e., large, vertical pipes

of rock) into which ore is blasted from various drilled

access levels. Ore is recovered from drawpoints at the

bottom of each stope. Stopes are usually backfilled.

Caving methods rely on the rock breaking into

pieces that are small enough to be retrieved from the

Pillar

Pillar

Vertical benching

Benching of thicker parts

Transport drift

Blasted ore

Stope

Long-hole
drilling and

blasting
Drill

access 1

Drill
access 2

Undercut fan
blasting

Loading
crosscut

Drawpoint

Figure 3: The diagram illustrates room-and-pillar mining (left) and sublevel stoping mining (right).

Source. Hamrin (2001).

deposit and to flow into a recovery location without

having to blast all the ore. Longwall mining (Figure 4)

is a caving method used on long, thin deposits such

as coal seams. If the rock (e.g., coal) is soft, it is sim-

ply mechanically cut from the mining face (without

blasting). The continuous extraction of the material

makes it amenable to transport via a conveyor belt.

Mined-out areas collapse behind the currently active

ones.

Sublevel caving (Figure 5, left panel) is a caving

method that is used for long, relatively pure vein-like

deposits. Ore is blasted and extracted from systemati-

cally laid-out tunnels (sublevels) parallel to each other

at the same depth. Other series of parallel tunnels lie

deeper in the mine. Because of the highly structured

nature of the mine design, the surrounding rock must

cave in a controlled fashion. Blasted ore is hauled via

loaders to an ore pass; the ore falls down a chute to

a haulage level from where it can be broken into rock

small enough to be hoisted to the surface via a series

of vertical shafts.

Finally, block caving (Figure 5, right panel) is a cav-

ing method with much less structure than sublevel

caving. It is applied to orebodies of much lower qual-

ity in which large masses of rock are blasted; the

ore is recovered through drawpoints at the bottom

of the location at which the ore is undercut. Manag-

ing the size of the rock and the rate at which rock
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Longwall

face

by yieldable

steel arches

behind supported

area

Belt

conveyor

Transport drift

Detail of

coal mining

with drum shearer

and self-advancing

hydraulic support

Chain

conveyor

Drift supported

Roof collapses

Figure 4: The diagram illustrates longwall mining.

Source. Hamrin (2001).

filters through the drawpoints, as well as continually

monitoring the stability of the mine, are critical. Early

applications of block caving relied entirely on the

gravity flow of the rock. Now, large rock is redrilled

and reblasted or broken with hydraulic hammers. As

in sublevel caving, the rock is sent down a chute to a

main haulage level before it is hoisted to the surface.

The literature on underground mining is more

recent, partially because of the complicated nature

of underground operations. A parallel to the Lerchs–

Grossmann algorithm (1965) does not exist for

underground mines; therefore, early optimization

work does not necessarily rely upon network-based

methods. Strategic decisions in underground mining

may consider how to geographically position various

facilities, e.g., mills, on the mine site. One may also be

concerned with which mining method to choose and

with mine layout, such as the design of haulage ramps

and other infrastructure. Alternative mining methods

or haulage systems can be evaluated using simula-

tion. Haulage ramps can be designed using geomet-

ric approaches. Long-term decisions, e.g., whether to

operate a mine or to position a mill at a given location,

are often made using integer programming optimiza-

tion models.

Tactical production models generally consist of a

mixed-integer program in which binary variables

address longer-term block-extraction decisions and

continuous variables address the related shorter-term

decisions of how much ore should be extracted from

a block. Transportation devices, e.g., conveyor belts in

coal mines or front-end loaders, are usually assessed

using tactical or operational optimization and simula-

tion models.

Strategic Mine Layout and Design Models

Generally speaking, the mining method is determined

via geotechnics rather than using OR techniques;
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Main level

Finger
raise

Grizzly
level

Haulage
level

Haulage
tunnel + drift

Undercut
preparation

Ore pass

Footwall drift

Sublevels

Development of
new sublevels

Long-hole
drilling

Caved
hanging

wall

Charging

Drilled

Production =
blasting and

drilling

Figure 5: The diagram illustrates sublevel-caving mining (left) and block-caving mining (right).

Source. Hamrin (2001).

however, Qinglin et al. (1996) use neural networks

based on a deposit’s geotechnical and economic

factors to optimally select an underground mining

method. The case study the authors address is that

of a gold mine in which they consider longwall,

room-and-pillar, sublevel caving, and sublevel stop-

ing methods.

Other prominent work on underground mine

design concerns mine shape and layout given the

method. Yun et al. (1990) use a genetic algorithm to

determine the number and spacing of openings given

restrictions on their relative placement. To value the

quality of a given set of openings, the authors consider

costs of development, drilling and blasting, under-

ground pressure, transportation and dilution, and the

revenue from the excavated ore. They apply their algo-

rithm to a sublevel caving mine and show how they

tune algorithmic parameters, e.g., crossover and muta-

tion rates.

The following three articles pertain to underground

sublevel stoping. Concerned with the shape of an

underground mine, much like the shape of an ulti-

mate pit for surface mining, Alford (1995) describes

the floating stope method (analogous to the float-

ing cone method for surface mines as the Strategic

Ultimate Pit Limit Design and Mine Layout Models sub-

section describes) as a tool for analyzing mineral

reserves and stope geometry. Model inputs are the

orebody model, the stope geometry, and a cutoff

grade. The model minimizes waste, maximizes grade,

or maximizes metal based on ore-quality restrictions

such as minimum grade and maximum dilution from

a stope. Brazil and Thomas (2007) provide theory

and background for Brazil et al. (2003), who con-

sider the strategic decision of determining the three-

dimensional geometry of haulage ramps through

a sublevel stoping mine to serve each stope in a

given order while subscribing to maximum-gradient,

minimum-curvature, and area-avoidance constraints.

They use existing mathematical theory that projects

their problem onto a two-dimensional space to find

a minimum-cost path satisfying the above conditions

with the exception of the gradient and area-avoidance

constraints. These constraints are later imposed on

the ramp geometry. The optimization model has been

embedded into software and implemented at various

mines in Australia. The authors specifically mention

an 11 percent decrease in costs at one representative

mine in Queensland.
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Two early papers address underground facilities,

e.g., production shafts, and those above ground, e.g.,

mills. Lizotte and Elbrond (1985) discuss the prob-

lem of siting a single facility to minimize demand-

weighted transportation costs for a set of existing

facilities. Using Euclidean distances, the authors for-

mulate their problem as an unconstrained, nonlinear

optimization model. Therefore, they propose using

a hyperboloid approximation procedure based on

methods of calculus and show how the procedure can

be adapted to the problem of siting multiple facili-

ties. They then describe two case studies in which

they use their procedure to lay out underground lev-

els and to locate a production shaft. Finally, they point

out some shortcomings in their optimization model,

e.g., assumptions that haulage and excavation costs

are not necessarily directly proportional to Euclidean

distance. Barbaro and Ramani (1986) formulate a

mixed-integer programming model that can be used

to determine if a mine produces in a given period, if

market demand is satisfied in a given period, where

to locate a processing facility, and the amount of ore

to ship from a mine to a processing facility and then

to a market. The objective function maximizes rev-

enue less production, processing, waste disposal, and

fixed costs. Constraints include minimum and maxi-

mum production requirements, market demand, qual-

ity, and limits on the number of mines and facilities

open simultaneously. The authors use a coal system

to demonstrate their model’s capabilities.

Tactical Block-Sequencing Models

The literature on sequencing models for underground

operations is relatively new. Early models use simu-

lation to assess production schedules and linear pro-

gramming to make decisions regarding ore extracted.

Integer programming models are needed to deter-

mine whether to mine a given segment of ore in

a particular period, e.g., to maximize NPV sub-

ject to, inter alia, complex sequencing constraints

and minimum and maximum production (or draw)

rates. These models, which have appeared relatively

recently, were solved first via enumeration and later

via more sophisticated techniques.

As is the case for underground mine design, in

which it is not easy to identify a general mine-design

formulation, it is also not easy to identify a generic

underground block-sequencing formulation. Such for-

mulations possess the general flavor of those of

open-pit block sequencing in that objective functions

represent NPV and constraints generally encompass

both precedence and resource restrictions. However,

both sets of constraints are more complex and min-

ing method (or even mine) specific. Typical decision

variables in this context could include the following:

(1) yatt′ = 1 if we (start to) mine area a in period t and

subsequently backfill it in period t′, and 0 otherwise

(for some type of supported method); (2) yakt = 1 if

we (start to) mine area a with equipment of type k

in period t, and 0 otherwise (Sarin and West-Hansen

2005); or (3) variables representing whether area a

is developed, drilled, prepared, or extracted from in

period t (Carlyle and Eaves 2001).

Linear programming enables the user to optimize

yet does not account for discrete aspects such as

block sequencing. Jawed (1993) uses linear program-

ming to determine the amount of material to be

extracted, e.g., via room and pillar. He minimizes

deviation from prescribed production and cost tar-

gets subject to operational constraints, manpower

requirements, extraction capacity, ventilation require-

ments, plant capacity, and lower bounds on extrac-

tion quantity. The author performs sensitivity analysis

on the results for a typical mine; of special interest

are changes in cost parameters and resource (min-

ing equipment) availability. Similarly, Magda (1994)

circumvents binary variables in a model that evalu-

ates the economics of decision making in mine pro-

duction processes. He gives formulas for the costs

and benefits of investments as a function of time.

Using geometry, the rate at which the project is con-

structed, construction costs, and commodity prices,

he can maximize values, e.g., NPV or internal rate

of return. The author presents an example of long-

wall coal mining in which, for a particular extraction

sequence of panels, the length and width of exploita-

tion panels and the number of longwall panels within

an exploitation panel can be determined. An enumer-

ative procedure yields the NPV for a given point in

time and interactions between NPV and panel dimen-

sions can be examined.

Authors combine simulation with optimization—

the first article we describe here uses linear pro-

gramming, and the second uses integer programming.
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Winkler (1998) describes a production-scheduling

model to determine the amount of ore to mine in each

period from each production block. He minimizes

weighted deviations from production goal averages

in each of 14 to 28 daily periods subject to con-

straints on ore quality, a lower bound on demand

and on the amount extracted from a block, and

capacity restrictions on available ore. Linear program-

ming solves a corresponding single-period model;

simulation is then used to fix the current period’s

decisions and optimize over the successive period.

The results for a case study involving an iron ore

mine using sublevel caving are displayed in a three-

dimensional environment. Chanda (1990) combines

simulation with optimization in a model that uses

an integer program to determine when ore should

be extracted from drawpoints in an underground

block-caving mine to minimize the differences in aver-

age grade between successive periods. Constraints

include limits on production and grade, and on the

operational aspects of block caving. The production

schedule given by the integer program is used as

input to a simulation model that considers constraints

such as production capacity. Depletion of the ore as it

is extracted is based on gravity flow principles. The

author applies his model to a copper mine in Zambia

and shows a decreased intertemporal ore-quality fluc-

tuation and a decreased number of open drawpoints.

The presumed intractability of a mixed-integer pro-

gram to model the complexities of tactical production

scheduling is sometimes mitigated by the fact that

much of the added detail is modeled with continu-

ous, as opposed to binary, variables. As software (e.g.,

IBM’s CPLEX) and hardware improved, researchers

began to use mixed-integer programs. Trout (1995)

might represent the first attempt to optimize under-

ground mine production schedules, either at the

strategic or at the tactical level, using integer program-

ming. By maximizing NPV, the model schedules an

underground stoping mine for base metals (e.g., cop-

per sulphide). Binary variables control the timing of

extraction from or backfilling of a stope. Continuous-

valued variables track the material extracted from

or backfilled into a stope in a given period. The

constraint set incorporates (1) stope sequencing in

terms of extraction, backfilling, and the corresponding

relationship in time; (2) stope extraction and back-

fill quantities; (3) equipment capacity; and (4) grade

requirements on the metal recovered. The model con-

tains a 17-period horizon in which the last 4 peri-

ods are aggregated into durations that are three times

longer than the previous 13. Although the model runs

out of memory, it yields a 25 percent improvement

over the NPV generated by then-current operational

policies.

Since the early 2000s, authors have routinely

used increasingly sophisticated optimization models

to derive tactical production schedules, in some cases

for complex underground mines, that use a vari-

ety of methods. Carlyle and Eaves (2001) present a

model that maximizes revenue from Stillwater’s sub-

level stoping platinum and palladium mine. Integer

variables schedule the timing of various expansion-

planning activities, such as development and drilling,

and the number of stopes to prepare and pro-

duce from in a given period. Constraints include

(1) sequencing of operations and stope preparation;

(2) production limits of stopes, lower bounds on

production targets, and upper bounds on process-

ing per period; and (3) bounds on the change in

crew size between periods. The authors obtain near-

optimal solutions for a variety of scenarios over

a 10-quarter time horizon. Their scenarios exam-

ine variations consisting of (1) constraint relaxation,

(2) time-horizon expansion, and (3) mine-design

(drift-spacing) changes, and the scenarios provide

planners with insights into different tactical oper-

ating procedures. Smith et al. (2003) construct a

production-scheduling model for a copper and zinc

underground mine at Mount Isa, Australia. Decision

variables represent the time at which to mine each

production block to maximize NPV subject to oper-

ational constraints, e.g., ore availability, concentrator

(mill) capacity, mine-infrastructure production capac-

ity, grade (mineral quality) limits, continuous produc-

tion rules, and precedence relationships between pro-

duction blocks. However, the authors are unable to

solve all instances of their problem in a reasonable

amount of time.

Epstein et al. (2003) present a mathematical pro-

gramming model to determine the levels of extracted

ore from several different underground copper mines

to maximize profit over a 25-year horizon subject
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to demand, technical exploitation constraints, and

environmental limitations. The mixed-integer pro-

gram specifically defines the geological area of inter-

est through profitable columns (or extraction points),

which are the vertical aggregation of blocks; a mine

or sector corresponds to a set of neighboring columns.

Extracted material is sent through a network of alter-

native technologies and (or) infrastructure (e.g., mill)

investments. This capacitated network contains hun-

dreds of thousands of variables and constraints. The

authors develop a rounding heuristic that provides

implemented solutions that represent an improve-

ment of more than 5 percent on current operations at

El Teniente, the largest underground copper mine in

the world.

Interestingly enough, several seminal works in this

subfield do not consider monetary goals. The exam-

ples that follow use different methods—block caving

and sublevel caving—and although the models are

conceptually similar, it is interesting to note the differ-

ence in decisions because of the difference in mining

methods. Rahal et al. (2003) describe a mixed-integer

programming model to plan operations of a block-

caving mine. Their mathematical program schedules

drawpoint production to minimize deviations from

preset demand levels while also minimizing devia-

tions from a given draw profile. Constraints measure

these deviations, restrict draw rates between mini-

mum and maximum levels, limit waste content within

a drawpoint, and establish precedence relationships

between points from which ore is removed. Detailed

implementation of these constraints can incorporate

ore grade and quality. The authors develop life-of-

mine draw profiles for notional scenarios and show

that by using the results from their integer program,

they greatly reduce deviations from ideal drawpoint

depletion rates while adhering to a production target.

Rubio and Diering (2004) expand the analysis to

include cost considerations. Newman and Kuchta

(2007), motivated by an underground mining oper-

ation at Kiruna, Sweden, formulate a multiperiod

mixed-integer program for iron ore production. The

optimization model determines an operationally fea-

sible ore extraction sequence that minimizes devia-

tions from planned production quantities. The authors

design a heuristic based on solving a smaller, more

tractable model in which they aggregate periods;

they then solve the original model using information

gained from the aggregated model. They compute a

bound on the worst-case performance of this heuris-

tic and demonstrate empirically that this procedure

produces good-quality solutions while substantially

reducing computation time for problem instances; this

model was implemented at the Kiruna mine (Kuchta

et al. 2004).

Sarin and West-Hansen (2005) use decomposition to

successfully solve the original problem. The authors

maximize NPV for an underground coal mine that

consists of sections mined with longwall, room-and-

pillar, and retreat mining. Binary variables track

whether a section is scheduled to start being mined

by a given set of equipment at a given time, whereas

continuous variables track the quality and produc-

tion volume of the material extracted. The con-

straint set consists primarily of enforcing precedence,

smoothing quality and production levels, and limit-

ing the quantity of sections simultaneously mined.

The authors tailor a Benders’ decomposition tech-

nique, exploiting the structure of the master problem.

A case study containing over 100 weekly periods sug-

gests that their model can improve profits. Weintraub

et al. (2008) also successfully exploit the problem

structure to arrive at good solutions by develop-

ing an aggregation scheme based on cluster analysis

for El Teniente, a large Chilean block-caving mine.

The scheme reduces the size of the five-year pro-

duction scheduling model, allowing it to be solved

about one order of magnitude faster with an error of

approximately 3 percent (on original, disaggregated

instances) because of aggregation. Note that both this

work and that of Epstein et al. (2003) use aggregation

for underground block-sequencing operations and

embed it in an optimization-based heuristic; we also

mention this technique in open-pit block-sequencing

models.

Underground OR problems, both strategic mine-

layout and design models and tactical block-

sequencing models, are not as heavily studied as

their open-pit counterparts because fewer real-life

instances of such models exist; each underground

mine is unique in its design and operations. Mine

planners work with existing software but try to meet

conflicting objectives—to have software specifically

tailored to the orebody at hand yet to also have the
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same software that can handle a general underground

orebody. Continuing to develop faster-solving and

customized models is necessary. It remains to be seen

whether such models could be developed into a gen-

erally applicable underground design and scheduling

model.

Tactical and Operational Equipment-Allocation

Models

The majority of equipment allocation concerns trans-

portation systems in underground coal mines that

have numerous alternatives, complicated systems,

and different types of machines, e.g., conveyor belts

and transport cars that are interdependent and

require analysis to determine bottleneck locations. To

allow managers to address uncertainty, these mines

commonly use discrete event simulation as their

analysis tool.

In the early 1980s, Topuz et al. (1982) simulated the

performance of two different haulage systems for an

underground coal mine. Their work compares a con-

ventional shuttle car with a conveyor belt and a diesel

shuttle car (without a conveyor belt). They vary per-

formance parameters such as haulage distance and

speed, the number and discharge rates of haulage

units available for coal transport, and the capacity

of a feeder located where the shuttle car dumps its

output. They also perform a case study on a room-

and-pillar mine to select feeder discharge rates, the

number and type of haulage units, and a reasonable

haulage distance to improve the overall production

potential of the mine. Sevim (1987) uses simulation

to examine a hydrotransport system that mixes coal

with water upon extraction of the coal from the mine

face; the coal is then pumped directly to a process-

ing plant. Model events include (1) preparing coal

to be extracted from a face, (2) pumping water into

a pipeline to the requisite pressure level, (3) min-

ing the coal and subsequently pumping it into the

pipeline with the water, and (4) repositioning the

equipment for new extraction. Between the third and

fourth stages, a delay can occur because of factors

such as equipment malfunction. The authors con-

sider two particular operational characteristics: (1) the

merging of pipelines from different areas of the mine

and (2) the inclusion of a surge tank to store slurry.

The authors present an instance using both room-and-

pillar and longwall mining. Their simulation study

shows statistics on water and slurry pumping times,

surge-tank overflows, the concentration of slurry fed

to the preparation plant, etc., as well as associated

operating costs for particular mine configurations.

Mutagwaba and Hudson (1993) present a simulation

model to assess underground transportation systems.

Given a mine layout, a hoisting system, and desired

production rates, their model evaluates the perfor-

mance of various transport systems, such as trucks

and conveyor belts. The authors apply their anal-

ysis to a mine in North Wales, UK to choose the

equipment that best balances performance and costs.

McNearny and Nie (2000) simulate a conveyor belt

system used with longwall and continuous miner

methods to transport coal from a mine face to the

surface. The authors balance the cost of the con-

veyor belt system with overall performance. The

study reveals bottlenecks and examines the effect of

adding surge bins to remove or mitigate these bottle-

necks. The authors experiment with various conveyor

belt speeds and sizes and show that at a mine in

southern Utah, productivity could increase by more

than 13 percent. Simsir and Ozfirat (2008) construct

a simulation model as a case study for a Turkish

coal mine that uses longwall top-coal caving. The

model assesses the efficiency of loaders, crushers, and

conveyor belts; however, it omits the geomechanical

effects on the mine of different types of extraction

equipment.

In contrast, in another type of stochastic model that

is applied to an iron ore mine, Huang and Kumar

(1994) use queuing theory to determine the optimal

number of load-haul-dump machines by considering

their performance and price, required maintenance,

operators’ salaries, etc. An example from a Swedish

mine illustrates that their queuing model can accu-

rately calculate the probability that a given number

of machines is sufficient for production. The authors

argue that the number of machines estimated by

using the queuing model is more accurate than a stan-

dard method using statistical distributions.

Optimization models are also used to allocate

equipment in underground mines. These models are

deterministic and less common; in general, they

address a more limited system than simulation mod-

els do. Dornetto (1988) studies equipment that is

designed to extract, store, and transport material in
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an underground coal mine. The objective is to min-

imize the number of extraction cycles necessary to

fill a shuttle car that transports coal from a surge

bin to a belt feeder by determining optimal values

for the position and rate of mining equipment. Con-

straints include lower and upper bounds on the min-

ing position and rate, allowable amounts of coal

mined in a cycle, and an upper bound on the dis-

tance that must be mined before the equipment can

be moved. This nonlinear program is solved via ana-

lytical methods; the author shows that lost production

decreases by using his (optimized) operational policy.

Vagenas (1991) examines real-time dispatching for

load-haul-dump units in underground mines. He

considers bidirectional loader movement and a few

alternate paths between an origin and a destination;

he preliminarily uses Dijkstra’s (1959) algorithm to

determine a shortest path between an origin and

a destination, and he subsequently develops algo-

rithms that resolve vehicle conflicts either by slowing

a loader, by stopping it completely, or by routing it to

a different destination. The goal is to minimize loader

delays. The author uses a simulation model to assess

the performance of his algorithms via case studies.

Gamache et al. (2005) extend Vagenas (1991) by con-

sidering routing on a network with load-haul-dump

unit orientation and by accounting for time win-

dows; the authors use Dijkstra’s algorithm to solve

these shortest-path problems. The approach has two

drawbacks; it assumes deterministic travel times and

the algorithm considers only a single vehicle at a time,

thus ignoring the effect of the current vehicle on sub-

sequent vehicle movements.

Kumral (2005) poses the problem of choosing the

extent to which to improve the reliability of an

underground mine consisting of five independently

functioning subsystems: (1) drilling, (2) blasting,

(3) loading, (4) hauling and hoisting, and (5) ventila-

tion. The author assumes that each subsystem is either

operational or not and defines a failure as the result

of events such as uncontrolled caving, improper air

circulation, or equipment breakdowns. He minimizes

the cost of operating all subsystems at an accept-

able level of reliability subject to bounds on reliability

variances and reliabilities of the subsystems them-

selves. He presents a case study in which he uses a

genetic algorithm to solve the nonlinear programming

problem and arrives at reasonable levels of minimum

required reliability levels for each subsystem.

Operational decisions other than in situ transporta-

tion exist—specifically, issues outside of the mine

such as stockpiling, transportation, and facility oper-

ating procedures. For example, Baker and Daellen-

bach (1984) use dynamic programming to determine

optimal operating settings for a coal-fired power sta-

tion and subsequently use simulation to determine

corresponding coal mining and stockpiling policies.

Everett (1996) uses a simulation model to reduce fluc-

tuations in iron ore composition by intelligently stack-

ing the ore in stockpiles and subsequently recovering

it prior to placing it on a ship for overseas trans-

port. Pendharkar (1997) presents a short-term model

to determine the quantity of coal to ship from a mine

to a processing facility and from the processing facil-

ity to a market in each period of the planning horizon.

Pendharkar and Rodger (2000) extend the afore-

mentioned model to include a nonlinear objective.

Binkowski and McCarragher (1999) use queuing the-

ory to determine the optimal number and size of

stockpiles in a yard to maximize throughput. Ore

arrives at the yard by train, is deposited into a single

stockpile, can be blended, and awaits transportation

by ship. The authors demonstrate how system param-

eters such as stockyard capacity, ship capacity, and

arrival and service rates hypothetically influence the

performance of the stockyard and its configuration.

Emerging Areas and Conclusions

As hardware, software, and solution techniques

improve, we can expect to see models that are

more realistic and include more detail. For example,

stochastic mine planning is relevant given the long

time horizons involved, the large initial investments

and operational budget required, and the historical

fluctuations of metal prices. In addition, the per-

centage of ore contained in each block of a deposit

is uncertain, and significant costs are involved in

determining ore content with accuracy. Brennan and

Schwartz (1985) use real options theory to evaluate

natural resource investment. To date, the heavy com-

putational burden has precluded using this method-

ology in mathematical programming models with a

large search space; however, the concepts are highly
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relevant to stochastic planning scenarios. Cortazar

et al. (1998) develop a model that determines the opti-

mum output price level for a firm to invest in envi-

ronmental technologies and the main parameters that

affect this decision.

With respect to mine planning (as we discuss

specifically in this paper), Lemelin et al. (2007) con-

sider the collection of geologic block data, the com-

pletion of mine design and production planning, and

the performance of financial analysis based on the

outcome from the mine design and planned pro-

duction. The authors criticize approaches that accept

subjective, if uncertain, parameter values and that

ignore the relationship between production schedules

and information availability. The authors propose

modeling prices according to well-regarded stochas-

tic models in which operational plans are updated as

prices become available. They present a case study

in which a mine’s value is substantially different

using their approach when compared with a conven-

tional approach, primarily because the authors con-

sider shutdown options for unprofitable portions of

the mine. Carvallo et al. (2009) consider production

planning for an underground mine in Chile. They

maximize NPV subject to sequencing and mining-rate

constraints and reduce the problem size by aggre-

gating mineable areas; however, because the authors

introduce price uncertainty, which they characterize

in various scenarios, the problem is large. They use

Lagrangian relaxation to dualize the nonanticipativity

constraints so that each scenario can be solved inde-

pendently as a deterministic problem. Although the

algorithm produces more robust results when it con-

siders price uncertainly than when it does not, it does

so at the expense of computer time.

Ramazan and Dimitrakopoulos (2004) and

Gholamnejad and Osanloo (2007) consider ore-grade

uncertainty in open-pit mines. Ramazan and

Dimitrakopoulos (2004) mention the traditional

block-sequencing problem and illustrate a schedule

obtained from such a formulation for a case study

involving a nickel laterite deposit. They then intro-

duce a model with a modified objective in which,

in addition to the NPV obtained from the extraction

of a block, a penalty is incurred for production

capacity-constraint violations. The authors use var-

ious simulated data sets to show that the modified

model produces a schedule with a more imple-

mentable mine sequence, i.e., one in which equipment

movement is reduced substantially. The modified

model also accounts for geological uncertainty, which

(the authors claim) helps to produce a schedule

that can more readily meet production constraints.

Gholamnejad and Osanloo (2007) present a problem

in which they determine which blocks to extract in an

open-pit mine; they consider block-grade uncertainty

in which each block has a probability distribution

function obtained using geostatistical simulation.

They transform the probabilistic problem (i.e., the

problem that has probabilities of satisfying the con-

straints) into a nonlinear integer program. Because of

the resulting model’s complexity, the authors propose

using a genetic algorithm; however, they do not give

details or examples. Askari-Nasab et al. (2007) use a

stochastic simulation model to develop an open-pit

schedule based on a geometric elliptical frustum

model. They use a simulator to evaluate a variety of

open-pit expansions associated with a schedule or

volume of ore removed (i.e., processed, sent to waste,

or stockpiled) in each period. A case study from an

iron ore mine with 114,000 blocks and over 20 periods

demonstrates an improvement in NPV using their

elliptical frustrum model with stochasticity compared

with the NPV obtained from a parametric analysis

using commercial software (Whittle 2009). Finally,

Boland et al. (2010) extend Boland et al. (2009) to

incorporate ore-grade uncertainty (note that the

online version of Boland et al. 2010 was available

as of December 2008); the authors update ore-grade

data in their model instances as information becomes

available.

The following article addresses geological uncer-

tainty in sublevel stoping mines. Grieco and Dimi-

trakopoulos (2007) present a strategic model for deter-

mining the design of a sublevel stoping mine under

ore-grade uncertainty. The design parameters of inter-

est are the location, size, and number of stopes. Their

model seeks to determine if a given ring should

be included in a panel for extraction to maximize

a probability-weighted metal content across all rings

and panels subject to constraints on the minimum

and maximum number of rings allowed in a panel,

a minimum acceptable risk level (as defined by the

probability of a ring in a panel meeting a specified
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cutoff grade), and stope-size constraints in terms of an

acceptable number of rings mined in adjacent panels.

The authors apply their model to a case study of a

polymetallic mine in Ontario, Canada.

Other emerging areas include a more holistic view

of the mine planning process, e.g., the entire supply

chain, including the decisions of investing, mining,

and processing (Caro et al. 2007). The authors argue

that although these decisions are often made inde-

pendently, they should be made simultaneously. They

describe in detail the various resources necessary to

extract ore from a deposit and the processes involved

in obtaining saleable metal from the extracted ore;

they mention the transportation issues associated

with processing facilities (e.g., leaching plants versus

refineries) and the nature of the markets in which

the metal is sold. Other recent models address deci-

sions involving distinct stages in mine life. In other

words, these models address multiple different deci-

sions that must be made over the life of the mine

rather than decisions that are made throughout the

geographical space of the production supply chain. To

date, the most prominent of these temporal decisions

is the transition from open-pit to underground mining

(Chen et al. 2003, Newman et al. 2009). These models

take a long-term view of the mine planning process,

anticipating that a deposit will be mined both via sur-

face and subsequently via underground methods; the

authors seek to optimize the timing of the transition.

Bley et al. (2009) address an open-pit block-

sequencing model in which ore grade is variable and

an option to stockpile ore before sending it to a pro-

cessing plant exists. To preserve ore grade in a stock-

pile, the authors use (nonconvex) blending constraints.

They examine the performance of a variety of off-

the-shelf commercial solvers (i.e., BARON (University

of Illinois Urbana-Champaign), Couenne (Lehigh Uni-

versity), SBB (ARKI Consulting and Development),

and SCIP (TU Braunschweig, TU Darmstadt, and

Siemens AG)) to solve this problem and show that

such solvers can obtain very good solutions, thus pre-

cluding the need for specialized solution algorithms.

This work exhibits the important point that commer-

cial solvers are becoming more powerful; thus, they

can be used more easily and effectively on complex

problems.

We have presented a review of OR mining lit-

erature. Researchers propose different techniques to

handle various strategic-, tactical-, and operational-

level decisions. Many authors use case studies

to demonstrate the advantages of OR, which has

played a particularly important industry role in long-

range planning. Industry has begun to incorporate

the ideas mentioned here in software. For example,

MineMax (2006) and Maptek (2009) use CPLEX to

provide underlying optimization algorithms to deter-

mine block-sequencing schedules to maximize NPV

subject to sequencing and operational constraints.

Such software, which can account for blending and

cutoff grade, also contains underground schedulers.

Whittle (2009) and Gemcom (2009) address many

of these elements; the former includes an opti-

mization model that considers uncertainty. Datamine

(2009) focuses on pushback design and production-

scheduling optimization in open-pit mines. Unfor-

tunately, because the details of these models are

proprietary, stating the types of decision variables,

objectives, and constraints the underlying optimiza-

tion models have or how they perform optimization

is impossible. However, academics are increasingly

seeking ties with companies in the mining industry;

to some extent, they are also openly incorporating the

state of the art into real mining operations at the level

of detail that individual companies seek.

The direction of research in the mining industry

is toward solving larger and more complicated (i.e.,

more detailed and realistic) models faster. Specifi-

cally, we see a trend in the open-pit block-sequencing

literature that abandons the traditional approach in

which models are solved in stages and adopts one

in which researchers successfully solve large-scale

life-of-mine models in their monolithic form. With

advances in hardware and software, researchers are

exploring methods to exploit problem structures to

tackle more detailed (e.g., stochastic), more complex

(e.g., nonlinear), and larger problems. These methods

include limiting the size of very large problems and

subsequently demonstrating that these limits do not

significantly compromise the solution quality. Some

researchers are using heuristics based on aggrega-

tion, including optimization-based heuristics; others

are using exact decomposition techniques such as

Lagrangian relaxation. This trend is also being fol-

lowed in the underground arena; however, the more

complex sequencing constraints currently preclude
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fast, exact solutions for large models. We anticipate a

trend in both open-pit and underground mine plan-

ning toward models that are more realistic and faster

to solve and that the industry will implement to an

ever-increasing extent.
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