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Inspired by the flashing Brownian ratchet, Parrondo’s games present an apparently para-
doxical situation. The games can be realized as coin tossing events. Game A uses a single
biased coin while game B uses two biased coins and has a state dependent rule based on
the player’s current capital. Playing each of the games individually causes the player to
lose. However, a winning expectation is produced when randomly mixing games A and
B. This phenomenon is investigated and mathematically analyzed to give explanations
on how such a process is possible.

The games are expanded to become dependent on other properties rather than the
capital of the player. Some of the latest developments in Parrondian ratchet or discrete-
time ratchet theory are briefly reviewed.
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1. Introduction

One of the simplest “games of chance” is the tossing of a biased coin to decide
between possible outcomes, usually referred to as ‘heads’ or ‘tails’. Information
theorists have long studied these mechanisms [1], which trace back to the work of
von Neumann [2]. Using rational biased coins it is possible to mimic any n-sided
dice or simulate different biased coins, if n is dyadic only one coin is necessary [3–6].
Furthermore, we can make a fair roulette from biased coins [7], and Durrett et al. [8]
demonstrate the possibility of winning from fair games.

With Parrondo’s games, which can be also played using simple biased coins, we
go one step further to generate a positively biased outcome from a combination of
two negatively biased processes. This type of behavior is not impossible and exists
in other fields. In control theory, the combination of two unstable systems can
cause them to become stable [9]. In the theory of granular flow, drift can occur in
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a counterintuitive direction [10, 11]. Furthermore, Pinsky and Schuetzow [12] show
that switching between two transient diffusion processes in random media can form
a positive recurrent process, which can be thought of as a continuous-time version
of Parrondo’s games.

The inspiration of Parrondo’s games came from the Spanish physicist Juan M. R.
Parrondo. He used the games as a pedagogical illustration of the Brownian ratchet.
In one of his fields of interest, Brownian motors, he was able to see a link between
mathematical games of chance and the Brownian ratchet. Using the equations for
detailed balance, analogous to chemical reaction rates [13], enabled Parrondo to
devise some working probabilities. Parrondo first devised the games in 1996 and
presented them in unpublished form at a workshop in Torino, Italy [14] — then in
1999 the seminal paper appeared [15]. The games were named after their creator
as “Parrondo’s games,” and the results referred to as “Parrondo’s paradox.”

There are a number of closely related phenomena, where physical processes
drift in a counterintuitive direction, e.g. [12, 16–20]. However, Parrondo’s games
have gained particular attention because: (i) they are the first game-theoretic re-
alization of such processes, (ii) in their original form, they can be directly mapped
onto the workings of a flashing Brownian ratchet and (iii) the effect is strikingly
counterintuitive and relatively simple to analyze.

Some workers have criticized the use of the term “paradox” — however we use it
in the sense of an apparent paradox and this is comparable to existing terminology,
such as in “Simpson’s paradox” [21,22], “Braess paradox” [23,24] and “the renewal
paradox” [25].

We first construct Parrondo’s original games and consider aspects of fairness,
capital distribution and mixed sequences. Using these results we offer several ex-
planations and observations. In Sec. 3, we give an intuitive mathematical analysis
using discrete-time Markov-chains. In Sec. 4, we introduce a history-dependent
version of the games and show a similar type of analysis can be applied. Section 5
briefly covers further interesting phenomena relating to Parrondo’s games.

2. Construction and Characteristics

The games about to be described are remarkably simple to construct. They only
involve either a decision, or the result of a random event. In all cases, the random
event can be implemented with biased coins [26].

These games are not typically associated with game theory in the von Neumann
sense [27] — the difference being we do not have a free choice of what happens or
a strategy to play — any choices are dictated by the rules of the game and we are
merely observers of a game of chance. On the other hand, this is game theory in the
Blackwell sense [28]. However, there is no a priori reason why Parrondo’s games
cannot be extended to allow choices in the von Neumann sense — this is an open
area for future research.

The following subsections explain the games and the paradoxical result that
occurs when the games are played in certain sequences. This is followed by a
description of the characteristics of the games to enable comparisons with Brownian
ratchets.
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2.1. Construction of the games

The games can be formed using elementary probability rules, that is, we win with a
probability p or lose with probability 1−p. Such games or processes are well known
and can be likened to going on a biased random walk or tossing a biased coin. Since
each step of the games consists of a win-loss decision they can be formed by using
a set of biased coins.

Game A is straight forward and consists of a single branch element. The prob-
ability of winning and losing is p and 1 − p respectively.

Game B is a little more complex, as a game rule is first required to chose which
of two coins to toss. It is described by the following statement. If the present capital
is a multiple of an integer M , then the chance of winning is p1, if the capital is not a
multiple of M , then the chance of winning is p2. The losing probabilities are 1− p1

and 1− p2, respectively. Thus, game B uses two coins, the rule of which one to use
depends on the value of the current capital. For future reference let the coins B1

and B2 have winning probabilities p1 and p2 respectively.
The two games are represented diagrammatically in Fig. 1, using branching

elements to represent decision conditions or win/loss probabilities. The notation
(x, y) at the top of the branch gives the probability (i.e. biasing of the coin) or
condition for taking the left and right branch respectively.

Game A Game B

(Capital is divisible by M , otherwise)(p, 1− p)

(p1, 1− p1) (p2, 1− p2)

WW

W

LL

L

Fig. 1. Construction of Parrondo’s games. The games are formed using only simple branching
elements. Game A consists of winning (W) or losing (L) with respective probabilities p and 1− p.
Game B involves a decision followed by a coin toss. Both games can be implemented using a total
of three biased coins.

If we require control of the three probabilities p, p1 and p2 via a single variable,
a biasing parameter ε can be used to represent a subset of the parameter space with
the transformation

p = 1/2 − ε,

p1 = 1/10 − ε and
p2 = 3/4 − ε. (1)

This parameterization along with M = 3 gives Parrondo’s original numbers for the
games [15]. For simplicity, most of the simulations and analysis of the games in this
paper use M = 3, although it is not difficult in most cases to generalize for larger
values of M . Where appropriate, details about trends for larger values of M are
given.
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2.2. Playing the games

The games are played between two parties where one wins at the expense of the
other. To eliminate confusion we will consider playing against a common opponent,
the house say. It is also assumed that we can have negative amounts of capital or
even play with zero capital — in practice this can be avoided by providing enough
initial capital to offset the desired maximum amount of loss to play up to.

The games are traditional gambling games where a bet of one unit is made and
we either win a unit (plus our original bet) or lose the unit bet, the net result
being either an increase or decrease in our capital by one unit for each round that
is played.

It can be deduced via a detailed balance calculation (explained later in Sec. 3.1)
and simulations, that both game A and game B lose when ε is greater than zero.
Consider the scenario if we start switching between the two losing games, play
two games of A, two games of B, two of A, and so on for example. The result,
which is quite counterintuitive, is that we start winning! That is, we can play the
two losing games A and B in such a way as to produce a winning expectation.
Furthermore, deciding which game to play next by tossing a fair coin also yields
a winning expectation. Figure 2 shows the average progress when playing games
A and B individually, switching deterministically and stochastically between them.
The switching sequence affects the gain as shown by the different finishing capitals
in Fig. 2.
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Fig. 2. Progress when playing Parrondo’s games deterministically and stochastically. The simula-
tion was performed by playing game A a times, game B b times and so on until 100 games were
played, averaged over one million trials. The values of a and b are shown by the vectors [a, b].

This apparent paradoxical result immediately raises questions. Firstly, the rea-
son for the word apparent is that this is not a paradox in the narrowest sense; as we
shall see later, it is completely explained mathematically. However, the word ‘para-
dox’ is also used to describe seemingly contradictory situation that may nonetheless
be true, and is the case here. We will discuss a few issues regarding the paradox.
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2.3. Fairness

So far, we have been careful not to mention a game as being fair, only winning or
losing. The reason for this is that the behavior of game B differs from game A as
we are likely to win or lose a small amount depending on the starting capital. If
the starting capital is a multiple of M then we will lose a little, or conversely gain a
little when the starting capital is not a multiple of M . The deviations from different
values of starting capital after 30 games are shown in Fig. 3.
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Fig. 3. Transient properties of capital in game B. Depending on the starting capital in game B, a
small amount is either lost or gained. This transient effect quickly dies away after playing a small
number of games.

A brief discussion of fairness follows, and a more detailed mathematical formu-
lation relating to Parrondo’s games is given by [29] and [30]. Consider a gambler
repeatedly playing a game. After the nth game the gambler has capital X(n), or
Xn for short. Classically, a fair game satisfies [31, p. 299]

E[Xn+1|X0, X1, . . . , Xn] = Xn (2)

for n ∈ Z+. That is, the game is a martingale, where the expected value of capital
after playing a game is the same as the present value.

The difficulty with game B, as shown by Fig. 3, is that when X0 is a multi-
ple of M , E[X1|X0] < X0 and correspondingly when X0 is not a multiple of M ,
E[X1|X0] > X0. This makes it troublesome to classify game B as either winning,
losing or fair [29]. Suffice to say it is argued in [29] that fairness can be defined in
terms of drift rates, which were assumed in previous literature [15,32]. Thus, if the
capital tends to drift toward infinity it classifies as winning (ε < 0), or if it drifts
toward negative infinity it is classified as losing (ε > 0). If there is no drift, then
the game is fair (ε = 0).

Therefore, using the above criterion, both games A and B are fair when ε is set
to zero in Eq. (1). This is true of game A because the probabilities of moving up
and down in capital are equal for all n. It is also true of game B even though the
value of starting capital influences the probability of going up and down for small
values of n. As n increases, it is clear from Fig. 3 there is no gain (i.e. drift) in
capital.

Although there is some concern over whether game B is technically fair, it is
not too important in the context of the paradoxical nature of the games as they
definitely lose when ε > 0. This is satisfactory since the only prerequisite we have
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for the paradox is that games A and B lose when ε > 0. In summary, game B (at
ε = 0) is fair in the sense that there is zero drift in capital, even though it does not
satisfy the narrowest martingale definition of fairness.

2.3.1. Game B appears to be winning?

When investigating game B prima facie, it can be mistakenly interpreted as a
winning game, thus invalidating the paradoxical result. This is due to taking the
wrong path of analysis by considering the games statistically. For example, when
M = 3 this approach assumes that the chance Xn mod 3 , which is either 0, 1 or
2, occurs with equal probability — a third each. Hence we conclude that coin B1

is used a third of the time and coin B2 used the remaining two thirds of the time.
Then from the probabilities (1) with ε = 0 the winning probability is

pwin =
1
3
· 1

10
+

2
3
· 3

4
=

16
30

, (3)

which is greater than a half. This implies that the game B is winning, which is
incorrect — it is actually fair.

The correct analysis involves employing discrete-time Markov chains, which re-
veals the probability in each state is not a third, but 5/13, 2/13 and 6/13 respec-
tively. Using the correct probabilities for the coins yields the winning probability
as

pwin =
5
13

· 1
10

+
2
13

· 3
4

+
6
13

· 3
4

=
1
2
, (4)

which correctly dictates the game is fair.

2.3.2. Trivial paradoxical games

There have been some claims made that Parrondo’s games are not paradoxical,
as the Parrondo effect can be easily replicated by simpler games. Such claims
artificially contrive games that usually have two points in common:

(i) They are constructed with M = 2. This is equivalent to deciding what coin to
use in game B based on the capital being odd or even. Thus it is possible to
create a version of game B that does not use one of its branches when playing
alternatively, but used when played individually, which causes the game to
lose.

(ii) They have payoffs that are not simply ±1. This makes it even easier to
construct games when M = 2.

Due to the construction of such games, they usually work with only a few differ-
ent switching combinations. A good test is to play the games randomly or reverse
the order. Typically after a short number of tests a sequence is found that breaks
the Parrondo effect.

Parrondo’s games were physically motivated from the flashing Brownian ratchet
— so we must use a skip free process in order to properly preserve this ratchet action
and hence the constraint of a ±1 payoff structure is necessary. Using only a single
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unit payoff it is impossible to generate Parrondo’s games with M = 2. Physically,
this creates a symmetric ratchet potential and can never support directed motion.
Mathematically, it is possible to show that the constraints for Parrondo’s paradox
to exist cannot be satisfied, for M = 2, and this is shown in Sec. 5.3.

Another erroneous objection against Parrondo’s games is that one could chose
to trivially redefine the mixture of games A and B, as a new winning game C – and
thus there is nothing special about such a winning game. This viewpoint is specious
as it ignores the raison d’etre for the games and the central ratchet dynamics. As we
shall see in Sec. 5.3 games A and B possess interesting dynamics, and the winning
expectation from two losing games is a result of a convex linear combination. To
obscure this interesting behavior by partitioning the problem in a different way,
would be akin to replacing the two Penrose tiles with one larger single tile!

2.3.3. Cashing in at the casino?

An obvious application of the games would be to head to the nearest casino and
get rich. Is this possible? The short answer is no.

When the rules of the games are first read, it needs to be realized that the
games are not mutually exclusive. This may not be apparent at first inspection.
The reason is that the games are linked through the capital. Playing one game
changes the capital, which may, or may not affect the probability that is used for
the next game. This value of capital can be thought of as memory. The problem is
that all the games at the casino are mutually exclusive and definitely do not have
any memory — playing one game does not affect other or subsequent games.

An alternative approach is to find three games that model the three coins needed
for the probabilities of (1). Finding a game that has slightly less that half a chance
of winning is easy, as is finding a game that only wins about 1/10 of the time.
However, there are no casino games to our knowledge that win 3/4 of the time as
required by one of the coins in game B.

On the other hand, biologists and physical scientists are interested in Parrondo’s
games because there are many instances in nature where there can be competition
between processes of opposite drift — coupling between processes, memory, asym-
metry and all the necessary ingredients are available for Parrondian effects to occur.

A full investigation to see if there are subprocesses within existing casino games
that contain the necessary ingredients for Parrondo’s paradox to occur has not
been carried out. For those wishing to carry out such an analysis see Sec. 5.3,
which suggests that this would reduce to searching for any signs of convexity in the
probability parameter spaces of casino games. Until such tests are carried out, we
remain agnostic as to whether there is a Parrondian loophole at the casino.

2.4. Distributions and behavior

This section looks at the distributions of capital after a number of games have been
played. This is to check their behavior does not rapidly diverge or have some other
undesirable effect. The distributions also reinforce the ideas of fairness considered
in Sec. 2.3.

Several probability density functions (PDFs) have been plotted in Fig. 4. Since
we must win or lose at each game, the PDF will consist of only odd or even values
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depending on how many games have been played and where we started. To com-
pensate for this misleading effect a centered average has been applied denoted by
the over-hat and given by

p̂(x, n) =
p(x, n− 1) + 2p(x, n) + p(x, n + 1)

4
, (5)

where x represents the capital and n the number of games played.
The PDFs in Fig. 4 show games A, B and randomized with ε = −0.1, 0 and

0.1 after 100 games have been played. It is clear that the drifts of the distributions
are dependent on the biasing parameter ε. When ε > 0 the drift is to the left (the
game is losing), when ε < 0 the drift is to the right (the game is winning), and when
ε = 0 the PDF is driftless (the game is fair). As expected, the longer the games are
played, the flatter the PDFs become as the standard deviation increases.
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Fig. 4. Probability density functions of the games. The PDFs of the games using the probabilities
in (1) with ε = −0.1, 0 and 0.1. Games A and B are the bars with the smooth and jagged envelopes
respectively, the thick lines are the randomized games.

As game A is well known, we can use its characteristics as a benchmark to judge
the other two games. It can be shown that game A follows a normal distribution [15]
with the following parameters, N (n(p − q), 4npq), where q = 1 − p is the losing
probability. Using the probabilities of (1), gives a mean of −2nε, in agreement with
the PDFs in Fig. 4.

Thus, the standard deviation for game A is 2
√
npq, which is proportional to

√
n.

Using sample paths from Fig. 2, the standard deviations are plotted in Fig. 5 to
show the proportionalities. The linear proportionality with

√
n for all the games is

to be expected since the PDFs resemble normal distributions. The striking result is
the standard distribution of game B and the randomized game are smaller (i.e. the
distributions are tighter) than that of game A even though the distributions appear
more jagged. Thus, one may conclude that game B and the randomized game
are as well behaved, if not more, than game A, which is considered reasonably
well behaved. As will be discussed later in Sec. 2.6, game A serves to break the
“pattern” in the PDF of game B, which explains the proportionalities (i.e. slopes)
of the standard deviation.
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Fig. 5. Standard deviations of the games. Comparing the standard deviations of the games using
100 000 sample paths from Fig. 2. The standard deviations of the games are all proportional to√

n.

2.5. Mixing sequences

This section explores different sequences for mixing games A and B. Firstly, we
consider simple deterministic combinations of games A and B, {AABAAB . . . } for
example. There are more complex deterministic sequences that can reach higher
rates of return, such as {ABBABABBAB . . . } for example, they will not be con-
sidered. Secondly, different stochastic mixes of games A and B are considered.

Figure 6 shows the results when mixing deterministically according to [a, b].
This notation refers to playing game A a times, game B b times and so on. Thus,
for example [2, 3] refers to the sequence {AABBBAABBB . . . }.

0
2

4
6

8
10

0 2 4 6 8 10

0

2

4

6

8

C
ap

it
al

a

b

M = 3

0
2

4
6

8
10

0 2 4 6 8 10

0

2

4

6

8

C
ap

it
al

a

b

M = 5

Fig. 6. Using different deterministic sequences between the games. The value of capital after the
100th game was played using the sequence determined by [a, b]. The probabilities of (1) with ε = 0
were used for M = 3. For M = 5: p = 0.5, p1 = 0.1 and p2 = 0.634.

Clearly from Fig. 6, the larger the switching period the smaller the returns.
This is due to playing large stretches of the same game, which as we have seen is
bad for the capital. Thus, quickly switching between the games produces the best
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result — it is the mixing of the games that produces the gain. This is evident by
the game [1, 2] having the highest rate of return, followed by other fast switching
games.

When a = 0 or b = 0 we expect zero capital, which is true for b = 0 (only playing
game A), but not for a = 0 (only playing game B). Recall that when only playing
game B a small amount is lost or gained. Since we start with zero capital, which is
a multiple of M we lose a little, hence the line a = 0 is slightly below zero.

When mixing the games stochastically we have chosen which game to play next
with fixed probability, namely a half. Let us introduce a mixing parameter γ with
0 ≤ γ ≤ 1, which is defined as the probability of playing game A. The probability
of playing game B is 1− γ. Using this parameter we can vary the proportions that
each game is played; if γ = 0 then only game B is played and if γ = 1 then only
game A is played. From Fig. 2, both games A and B lose individually (γ = 1 and
0), but there is a mix that wins, thus there must be a optimal value of γ that gives
the best rate of return.
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Fig. 7. Varying the mixing parameter of the randomized games. There is an optimal value of γ
that gives the highest capital after playing 100 games. The ‘direct’ curves indicate directly playing
the games and the ‘slope’ curves using the analytically derived slopes. The probabilities of (1)
were used with ε = 0 (top two curves) and ε = 0.005 (bottom two curves).

Figure 7 shows the rate of return (i.e. capital after 100 games) against the mixing
parameter γ. Two methods are used to determine the capital. Firstly, the expected
capital when directly playing the games labeled ‘Direct’, and secondly using the
slopes from Fig. 2 (after transients have died away) to extrapolate to 100 games
labeled ‘Slope’. Methods for finding the slopes are dealt with in Sec. 3.3. The
difference being that the former method takes into account the initial transient
behavior and is therefore affected by how many games are played, while the latter
ignores all the transient effects and is independent of the number of games played.
Thus, the difference between the optimal values vanishes as the number of games
played approaches infinity. The effect of the biasing parameter is to shift the plots
vertically. Note that although the shift is almost linear with ε, there are some higher
order terms that vary the optimal γ by a small amount.
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2.6. Explanation of the games

The games were originally formed as an illustration of the Brownian ratchet, so
it would be expected that the games could be explained in terms of the Brownian
ratchet. This section explains the games intuitively, without the use of mathematics,
simply using the characteristics discussed in the previous section.

2.6.1. Formation of the games

The aim is to convert the physical system of the Brownian ratchet to a mathe-
matical system. One method is to use simple gambling games. The quantities of
the Brownian ratchet must be mapped to analogous mathematical variables. The
capital can be used in lieu of particles in the ratchet and the probabilities in lieu of
energy potentials. Initially this will be adequate to transform the system.

The easy job is to convert the flat potential, which allows diffusion equally in
both directions. This is simply a fair game using a single probability, p say.

The sawtooth potential appears tricky at first, but on closer inspection is not
too difficult. The sawtooth shape shown in Fig. 8 can be considered piece-wise
linear, consisting of a steep positive slope (segment 1) and a gentle negative slope
(segment 2). This suggests that in order to replicate this mathematically two games
are required, one for each of the two segments, remembering that this represents a
potential and particles will fall downwards. Segment 1 requires a game with a strong
losing probability (1− p1, say) and segment 2 requires a game with a weak winning
probability (p2, say). In the Brownian ratchet the particles know what segment to
follow due to their spatial location, i.e. there is spatial dependency. This attribute
can be mapped to the games by use of an if statement. If the capital is within a
certain range play the first coin (coin 1), otherwise play the second coin (coin 2).
This needs to be periodic, which invites the use of a modulo operator. The capital
is an integral amount so the modulo can be formed over a range of capital, say M .
Then within a certain range play coin 1, or if in the remaining part of the range
play coin 2.

p1 p2

1 2

Fig. 8. Sawtooth shape representing the ratchet potential. A piece-wise linear construction con-
sisting of two segments, which can be replicated using probabilities.

To summarize, if the capital is a multiple of M we play coin 1, otherwise we play
coin 2. This forms the basis of the games. All that is required is to find values for
the probabilities to make it work. A quick way is to use a detailed balance, which
is explained later in Sec. 3.1.

2.6.2. Ratchet potential of the games

It should be of no surprise that there exists some type of ratchet potential for game
B. This is evident in Fig. 4 where the sawtooth shape in the PDFs are modulated
by the Gaussian function. The Gaussian shape can be removed by superimposing
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distributions with different starting values. The resulting distribution for games A
and B are shown in Fig. 9. To emphasize the ratchet shape, M = 7 was used with
probabilities to make the games fair, and the central average p̂(x, n) from (5) was
employed.
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Fig. 9. Ratchet potential formed by game B. The bottom plot is the superposition of PDFs for
games A and B, the flat PDF is for game A and the other game B. The top plot shows the
distribution of capital in the ratchet formed by game B. Parameters are p = 0.5, p1 = 0.075,
p2 = 0.6032 and M = 7.

From the distributions in Fig. 9, it is possible to deduce the shape of the ratchet.
Consider an unknown electrostatic potential — electrodes etched onto a substrate
and painted over for example. By placing a solution of charged colloidal particles on
the surface, the forces cause the particles diffuse to a point of maximum attraction.
The density of particles indicates directly the strength of the potential. Similarly
in this system, the distribution of capital indicates directly the ratchet shape of the
games, shown in the top part of Fig. 9.

2.6.3. Distribution localization

An alternative explanation of the two systems can be given in terms of the localiza-
tion of particles or capital at system ‘ceilings’ [33]. Considering game B, the capital
tends to localize between the Mn−1 and Mn states for an integer n that represents
the subsystems. This is due to the chosen probabilities of p1 and p2. At Mn − 1,
there is a high probability (p2) the capital will increase to Mn and at that state
there is an even higher probability (1− p1) the capital will be pushed back down to
Mn−1. Due to the oscillatory behavior between these two states and the tendency
for capital to drift upwards when in states (M(n − 1) + 1) to (Mn − 1), there is
a localization of capital at the Mn ceilings. In the same way, the particles in the
ratchet teeth are localized to the pits, a small movement is met with an opposing
long gentle or short steep edge. Thus, in each subsystem an extra ‘kick’ is required
to move the capital or particles backwards or forwards one period.

Adding game A to the playing sequence improves the chance of moving up to the
next subsystem because most of the capital is localized at these ceilings. Switching
to an approximately fair game allows almost half of the capital at these ceilings to
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move up to the next subsystem (i.e. from Mn to M(n + 1)), while the other half
moves down a few steps only to be brought back to the Mn ceiling when game B
is played again. This is exactly what happens when the ratchet teeth are made to
disappear in the flashing Brownian ratchet — about half of the particles can easily
move over the steep edge into the next pit while the remaining particles fall back
into the same pit via the gentle edge when the ratchet teeth appear again.

2.7. Observations

2.7.1. Breaking the equilibrium distribution

We deduce from the previous discussions that in order for game B to function
properly, it is dependent on the ratchet shape. We will consider the games in terms
of coins. For game B we have a bad coin B1, and a good coin B2. Even though the
state-dependency allows the good coin B1 to be played more often (i.e. when not
in state Mn), the bad coin B2 is sufficiently bad to cause the game as a whole to
be losing [26].

−20 −15 −10 −5 0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

p̂
(x

,1
0
0
)

Capital, x

Fig. 10. The breaking of the individual PDFs by the randomized game. The randomized game
is shown by the thick lines. Adding game A to B causes degradation of the ratchet shape, which
increases the probability of winning.

To make this into a winning game, the distribution needs to be perturbed to
alter the proportions of how many times each coin is played, that is, we want more
of B1 and less of B2. This is accomplished by adding in game A, which creates
the new PDF as shown by the thick lines in Fig. 10. This breaks the distributions
formed by game B alone, and allows coin B1 to be used more often, thus creating
an overall winning game [30]. This new game needs to win sufficiently to offset the
slight hindrance caused by the introduction of game A.

2.7.2. Analogous quantities

Observing that Parrondo’s games and the flashing Brownian ratchet use the same
transport mechanism, we can form analogies between the variables for each of the
systems. A summary of some of the analogies is shown in Table 1.

The source of the potential in Brownian ratchets can be provided by a variety of
means, but typically an electrostatic potential is used. For the games, the potential
source is generated by the game rules, which define the shape of the potential. The
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Table 1. The relationship between quantities in Parrondo’s games and the Brownian ratchet.

Quantity Brownian Ratchet Parrondo’s Paradox

Source of Potential Electrostatic, Gravity Rules of games
Switching Uon and Uoff applied Games A and B played
Switching Durations for τon and τoff a and b
Duration Time Number of games played
Biasing Macroscopic field gradient Parameter ε
Transport Quantity Brownian particles Capital
Measurable Output Displacement x Capital amount Xn

External Energy Switching Uon and Uoff None
Potential Shape Depends on α Probabilities p1, p2 and M
Mode of Analysis Fokker-Planck equation Discrete-time Markov chain

capital can be thought of as the transport quantity analogous to the particles in the
Brownian ratchet.

Further depth between these two analogies is found by considering the dynamics
of the two systems. The Brownian ratchet is continuous in time and space. The
particles can exist at any real displacement along the potential, which is flashed on
and off at any real time. This is in contrast to Parrondo’s games that are discrete
in both the analogous time and space. The capital of the games must be an integral
number of units and each game is an indivisible operation. This is highlighted by
the mode of analysis — the Brownian ratchet is analyzed via continuous variables
in the Fokker-Planck equation, where as Parrondo’s ratchet is via discrete-time
Markov chain analysis.

When we consider the ratchet and pawl machine, directed motion is only
achieved when energy is added to the system, like in a heat engine. Similarly
for a flashing Brownian ratchet, energy is taken up by switching between two states
to produce directed motion of Brownian particles. From the simulations and math-
ematical analysis of Parrondo’s games, the two losing games can yield a winning
expectation, without any apparent cost. This creates a further paradox, “money
for free.” Where is the energy coming from in Parrondo’s games? Of course, the
money itself is conserved since the winnings of the player are at the expense of the
losing opponent.

In stock market models, for example, switching energy could be thought of as
the buying and selling transaction cost. For the flashing ratchet, the work done by
the system is less than the external energy used to flash the potentials (i.e. efficiency
is less than unity). This flashing is costly in the physical system as dictated by the
laws of thermodynamics.

The equivalent ‘law’ for the Parrondian ratchet is that winning rate of the mixed
A and B games can never be greater than the ‘good’ coin B2 played on its own.
This idea shows that the concept of ‘efficiency’ still applies, but the analogy breaks
down in that there is no ‘external energy’ as such. An expanded discussion on this
issue is given in [33].
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3. Analysis of the Games

As has been hinted throughout the previous sections, the mode of analysis for
the games is via discrete-time Markov chains (DTMCs). Each value of capital
is represented by a state, and the transition probabilities between the states are
determined by the rules of the games. Note though, the analysis presented here
is not a rigorous one and uses only basic Markov chain theory. More in depth
mathematical approaches can be found in [25, 34, 35].

For those not familiar with DTMCs an excellent introductory level textbook by
Yates and Goodman [36] is recommended. More in depth information can be found
in [37].

3.1. Modeling the games as DTMCs

The DTMC representing game A is shown in Fig. 11, where the states represent
the value of capital. Since the range of capital can extend to ±∞ it is referred to
as doubly infinite. We move up a state with probability p and down with 1 − p.

ppp

1− p1− p1− p

n − 1 n n+ 1 n+ 2

Fig. 11. Discrete-time Markov chain representing game A.

This has the transition matrix PA, which has zeros everywhere except for the
two diagonals that are offset from the leading diagonal by ±1.

PA =




0 1 − p (p)
p 0 1 − p

. . . . . . . . .
p 0 1 − p

(1 − p) p 0



. (6)

The DTMC in Fig. 11 extends to ±∞, hence so do the dimensions of PA. However,
in practice the size of PA can be restricted to the range of interest. For example, if
we are only playing N games in a row then a 2N + 1 square matrix will suffice as
the capital will not exceed the bounds of the matrix. Hence, the bracketed terms
that cater for the boundary conditions are not required in practice, and are shown
for completeness.

The DTMC shown in Fig. 12 represents game B. This consists of n periodic
subsystems of length M , which is taken as three. This representation clearly shows
the state dependency that is exhibited by game B — the probabilities leaving the
Mith state are p1 and 1− p1, while the probabilities leaving all the other states are
p2 and 1 − p2.
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p2p2p2 p1p1

1− p11− p1 1− p21− p21− p2

3n − 1 3n 3n+ 1 3n+ 2 3n+ 3

Fig. 12. Discrete-time Markov chain representing game B.

This has the transition matrix PB of

PB =




0 1 − p2 (p2)

p1 0
. . .

p2
. . . 1 − p2

. . . 0 1 − p1

p2 0 1 − p2

p1 0
. . .

(1 − p1)
. . . . . .




, (7)

where the losing and winning probabilities in every Mth column are 1 − p1 and p1

respectively. The bracketed terms are included for completeness.
By extracting the periodic subsystem from the DTMC representation in Fig. 12,

the dynamics of the games can be more easily studied. The subsystem is be defined
by

Yn ≡ Xn mod M. (8)

Though this representation does not reveal the absolute value of capital, mean-
ingful trends can be easily calculated. The DTMC defined by Yn has the states
{0, . . . ,M − 1}, and is cyclic. That is, if we win at the highest state M − 1 we go
back to state 0 and vice versa from state 0 to M − 1. The corresponding DTMC to
Yn is shown in Fig. 13.

p2

p2

p1

1− p1

1− p2

1− p2

0

1

2

i

M − 1

Fig. 13. Discrete-time Markov chain corresponding to the modulo game B. The cyclic DTMC
defined by (8) represents one of the subsystems of the DTMC representing game B in Fig. 12.
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Yn can now also be used for game A by letting p1 = p2 = p. Having the games
represented by non-infinite DTMCs allows useful calculations to be performed, as
shown in subsequent sections. For example, from Onsager’s Nobel prize winning
work on reversible chemical reactions, we can use a detailed balance to quickly
determine which direction has the greatest drift: clockwise or counter-clockwise
[13,38,39]. The detailed balance simply entails finding the product of probabilities
in one direction, and comparing this to the product of the probabilities in the
opposite direction. For the DTMC in Fig. 13, clockwise is the winning direction —
thus from the detailed balance game B is winning if

p1p
M−1
2 > (1 − p1)(1 − p2)M−1. (9)

Although mathematicians may feel hesitant about this “back of the envelope” type
of calculation, it does give the same result as a more formal analysis [32, 40] and is
more physically intuitive.

The transition matrix representing the modulo game B in Fig. 13 is

PB =




0 1 − p2 p2

p1 0
. . .

p2
. . . 1 − p2

. . . 0 1 − p2

1 − p1 p2 0



. (10)

This is restricted to M ×M in size and the previously bracketed terms now become
important as they enforce the modulo rule.

3.1.1. The randomized game

Dealing with the randomized game is not as difficult as it first appears. Recall
that the mixing parameter γ (from Sec. 2.5) gives the relative probability of playing
game A, where we have assumed the value of a half. Therefore, when the capital is
a multiple of M the probability of winning is

q1 = γp + (1 − γ)p1. (11a)

This is the chance of playing game A, multiplied by the chance of winning, added to
the chance of playing game B, multiplied by the chance of winning it. Alternatively,
when the capital is not a multiple of M , the probability of winning is

q2 = γp + (1 − γ)p2. (11b)

The respective losing probabilities are 1 − q1 and 1 − q2. Using these probabilities
we can treat the randomized game exactly the same as game B, except replacing
the pis with qis. This does not affect the DTMC analysis as a combination of two
DTMCs simply form another DTMC, which accordingly also obeys Markov chain
theory.
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3.1.2. Playing the games analytically

Having determined the transition matrices representing the games and using the
distribution vector giving the capital in each of the states, playing the games n
times gives

πn = P
nπ0, (12)

where πn is short for π(n), not to be confused with πj .
If we wish to determine the distribution of capital we need to use the transition

matrices that represent the doubly infinite chains. As mentioned earlier, the size
can be reduced to a 2N + 1 square matrix. Starting with zero capital gives π0 =
[. . . , 0, 1, 0, . . . ]T . To play either game A or B, PA or PB is accordingly substituted
into (12). To play a mix of the games, the appropriate transition matrix to be
substituted is dependent on n. Thus, we could have π

[a,b]
n = P

n
Xπ0, using the

notation [a, b] described earlier and where

PX =
{

PA if ((n− 1) mod (a + b)) < a
PB otherwise,

where n = 1, 2, . . . .
For the random mix of games, we have PR = γPA + (1 − γ)PB, which can be

substituted in (12) to easily replicate the randomized games when averaged over an
infinite number of trials. That is, the expected result according to the central limit
theorem.

Using the technique of (12) we can determine statistical properties of the
games, namely the mean µ, and standard deviation σ. We define the vector
x = [−N, . . . , N ], which contains all the values of capital possible (i.e. states)
when playing N games. The mean is then given by µn = xπn, where the matrix
multiplication provides the summing. Similarly, the standard deviation is given by
σn =

√
(x − µn)2πn, where the square is an element-wise operation. These results

agree with the sample paths shown in Fig. 2 and standard deviations in Fig. 5.

3.1.3. Equilibrium distribution

The equilibrium (or stationary) distribution of a DTMC occurs when the distribu-
tion of capital in the states does not change from one game to the next. This means
the distribution is invariant under the action of P, that is, π(n+1) = Pπ(n). Given
that at equilibrium we have limn→∞ π(n) = π, we need to solve (I − P)π = 0.
Although there are many ways to solve this typical eigenvalue problem, a system-
atic method states that the stationary distribution is proportional to the diagonal
cofactors of I − P [34]. That is

π =
1
D

diag(cofac(I − P)), (13)

where D is the normalization constant. The function ‘diag’ returns the main diag-
onal of a matrix and ‘cofac’ gives the cofactors [41, p. 373] of a matrix.
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Alternatively one can use the global balance equations with P [35]. By either
method, the stationary distribution for M = 3 is

πB =
1
D


 1 − p2 + p2

2

1 − p2 + p1p2

1 − p1 + p1p2


 , (14)

where D = 3 − p1 − 2p2 + 2p1p2 + p2
2. If we let p1 = p2 = p to represent game A,

then the stationary distribution simplifies to

πA =
1
3

[1, 1, 1]T (15)

as expected for a three state chain with identical transition probabilities.
Using the probabilities of (1) with ε = 0, the stationary distribution for game B

is found to be

πB =
1
13

[5, 2, 6]T , (16)

which are the quantities used in (4). For the randomized game with γ = 1/2, we
have

πR =
1

709


 245

180
284


 =


 0.346

0.256
0.401


 .

3.2. Constraints of Parrondo’s games

It would be desirable, given a set of parameters, to find constraints to determine
if Parrondo’s paradox would be exhibited. An intuitive approach is finding the
probability of winning using the stationary distribution, given by

pwin =
M−1∑
j=0

πjpj, (17)

where pj is the winning probability in state πj . The games are winning, losing
or fair when pwin is greater, less or equal to a half, which implies that 〈Xn〉 is a
decreasing, increasing or constant with respect to n respectively.

From (17) we require p < 1/2 for game A, or alternatively

1 − p

p
> 1. (18)

For game B, the winning probability of (17) becomes

pB
win = π0p1 + π1p2 + · · · + πM−1p2

= π0p1 + (1 − π0)p2. (19)

Using M = 3 to simplify the algebra and using the stationary distribution (14) with
pB
win < 1/2 yields

(1 − p1)(1 − p2)2

p1p2
2

> 1. (20)

This is the condition that needs to be satisfied for game B to be losing.



July 10, 2002 10:33 WSPC/167-FNL 00070

R90 G. P. Harmer & D. Abbott

For the randomized game we use the expression for game B except replacing the
pis with qis from (11) and setting pR

win > 1/2 we get

(1 − q1)(1 − q2)2

q1q2
2

< 1. (21)

This is the condition for the randomized game to win. Therefore, in order for Par-
rondo’s paradox to be exhibited we require probabilities and parameters to satisfy
(18), (20) (i.e. to make game A and B lose) and (21) (i.e. make the randomized game
win).

This type of analysis becomes tedious as M becomes larger due to the necessity of
finding the equilibrium distribution. A more formal analysis considers the conditions
of recurrence of the corresponding DTMC for the games and is given in [32, 40].

However, also notice that the numerator is the product of all the losing prob-
abilities over one period and the denominator is the product of all the winning
probabilities. This is the reverse drift over the forward drift, as also found using
Onsager’s detailed balance in Sec. 3.1. This approach allows us to generalize the
results by replacing the exponent of 2 with M − 1 in (20) and (21). Thus, for
Parrondo’s paradox to be exhibited in the general modulo M game the following
inequalities need to be satisfied,

1 − p

p
> 1, (22a)

(1 − p1)(1 − p2)M−1

p1p
M−1
2

> 1 and (22b)

(1 − q1)(1 − q2)M−1

q1q
M−1
2

< 1. (22c)

3.2.1.��Range�of�biasing�parameter

In Sec. 2.3, the biasing parameter was shown to control whether a game was winning
or losing. In terms of Parrondo’s paradox, we have shown that randomizing the
games improves the performance. However, if ε is too large then all the games lose,
albeit the randomized game does not lose by as much. Conversely if ε is too small
(negative), then all the games win. Thus, ε needs to be chosen such that it biases
games A and B to lose, but the improvement gained by mixing is greater than the
offset made by ε.

By substituting the probabilities of (1) into the equations (22) we deduce a range
of ε for which Parrondo’s paradox exist. The equations (22) are respectively,

ε > 0, (23a)
ε(80ε2 − 8ε + 49) > 0 and (23b)

320ε3 − 16ε2 + 229ε− 3 < 0. (23c)

For the quadratic part of (23b), � = b2 − 4ac < 0, so the roots are imaginary,
meaning that 80ε2 − 8ε + 49 > 0 for all ε, which leaves ε > 0. For (23c) we can
numerically find the roots or use Cardan’s method for cubic polynomials to deduce
that there is one real and two imaginary roots. Either way the real root is εmax ≈
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0.0131, which gives the possible range of the biasing parameter as 0 < ε < 0.0131.
To approach the upper limit of this range εmax, n needs to be large to offset the
initial transient behavior.

3.2.2. Probability space

The probability space refers to the reachable space in R
3 by the point formed by

(p, p1, p2). Using the constraints of (22), the regions of probability space where
Parrondo’s paradox exists are defined.

Game A only depends on p, the winning and losing regions are separated by the
plane p = 1/2.

Game B depends on p1 and p2 for a given M and the curves constituting fair
games can be derived from the equality (22b). This is shown for various values of
M in Fig. 14. The straight line shows the region of space that is used with the
parameterization given in (1). From the trends related to ε discussed in Sec. 2.3,
we can deduce that the region above the curves is winning, and the region below
losing.
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Fig. 14. Probability space of game B. The curves for various values of M divide the winning and
losing regions of probability space. The straight line is the parameterization given in (1).

The only ‘fair’ version of game B considered so far is the one represented by the
large dot in Fig. 14, but there are a continuous range of probabilities (p1, p2). At
the extreme values of p1 we lose or win by the greatest amount. This is due to the
increasing asymmetry of the teeth in the ratchet potential, the magnitude of the
slope increases at the limits of the probability space.

In Fig. 15 the surface ΠR separating the winning and losing volumes for the
randomized game has been plotted, as well as the surfaces ΠA and ΠB for games
A and B respectively. The arrows indicate the side of the surface where a point is
required to be to satisfy (22). The point needs to be below ΠA and to the right of
ΠB for games A and B to lose, but above ΠR for the randomized games to win.
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Fig. 15. Probability space of all the games showing the paradoxical region. The surfaces ΠA,
ΠB and ΠR represent the boundaries between winning and losing games. The small volume also
bounded by the p1 = 0 plane at the front left of the plot is where Parrondo’s paradoxical games
exist. Parameters are M = 3 and γ = 1/2.

A small volume that satisfies all these constraints exists in the front left side of the
plot — any point in this region will give rise to Parrondo’s paradox being exhibited.

There is also a region at the opposite side of the volume that gives rise to the
opposite of Parrondo’s paradox. Two winning games can combine to form a losing
game — this is the anti-Parrondo case. In a practical sense this is like changing the
observer’s perspective of the games — i.e. whether from the player’s or the bank’s
point of view. The region in probability space that exists for Parrondo’s paradox is
not large, only a mere 0.032% of the whole probability space.

3.3. Rate of winning

From the distributions of the games it is possible to find the rate of winning as a
function of the number of games played, r(n). The method given here simply uses
stationary distributions, whereas a more formal approach is given in [33].

Using the stationary distributions we can find the rate of winning by subtracting
the probability of losing from the probability of winning. Thus, we have

d〈Xn〉
dn

≡ r =
M−1∑
i=0

2πipi − 1. (24)

For game A, πi = 1/M and pi = p for all i and the expression (24) reduces to
rA = 2p− 1, which is the expected result.

For game B the rate of winning is rB = 2p2−1+2π0(p1−p2), which is valid for
all M , though one still needs to find the stationary distribution to obtain π0. For
the probabilities in (1) with the stationary distribution for M = 3 given in (14), the
slope of game B is rB = −1.740ε+ 0.119ε2 +O(ε3), using a Taylor series expansion
with center ε0 = 0. This is negative for small ε > 0, which indicates game B is
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losing. As suspected earlier in Fig. 7, this contains higher order nonlinearities with
respect to ε.

The same calculation holds for the randomized game by appropriately changing
the probabilities to give 0.0254 − 1.937ε + 0.0136ε2 + O(ε3), which is positive for
small ε, but becomes negative for larger ε.

When comparing simulations with this analysis the initial transient game needs
to be ignored by determining the slope from the 100th to 600th game for example.

4. History Dependent Games

It has now been shown that two losing capital dependent games can win, but are
there any other types of games that have this characteristic? Although state de-
pendent games are applicable in some areas, it may be desirable to have a version
of the games independent of capital. It turns out that we can answer the aforemen-
tioned question in the affirmative, in the form of history dependent games. Such
games were also devised by Parrondo in [42], although other implementations are
possible [29].

4.1. Construction

The probability of winning and losing each game depends on the result of the
previous two games, as shown diagrammatically in Fig. 16.

Game A Game B′

(L,W)t−2(p, 1− p)

(L,W)t−1(L,W)t−1

(p1, 1− p1) (p2, 1− p2) (p3, 1− p3) (p4, 1− p4)

WWWW

W

LLLL

L

Fig. 16. Construction of Parrondo’s history dependent games. The decisions are based on previous
results, either winning (W) or losing (L). The games can be implemented as biased coins.

Game A is identical to the state dependent games, hence the same name. Again,
game B′, the counterpart to game B, is a little more complex and the probabilities
depend on the two previous results. The subscript t− 1 refers to the previous game
and t − 2 to the game prior to that. If we had previously lost then won, the next
game would be played with a winning probability of p2 according to Fig. 16.

These probabilities can be parameterized using the following transformation,

p = 1/2 − ε,

p1 = 9/10 − ε,

p2 = p3 = 1/4 − ε and
p4 = 7/10 − ε. (25)
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This parameterization gives Parrondo’s original numbers for the history dependent
games [42], which behave very similarly to the parameterization of the capital de-
pendent games in (1). That is, the games can be considered fair when ε = 0, losing
when ε > 0 and winning when ε < 0. The method of analysis for the games will
follow closely to that of the original capital dependent games.

4.2. Results

The same counterintuitive result occurs when playing games A and B′, that is,
when playing the games individually they lose, but switching between them creates
a winning expectation. The switching can be either stochastic or deterministic as
shown by the selected games plotted in Fig. 17. Similarly, there are some initial
starting transients; the magnitude and shape depend on the initial conditions used,
i.e. LL, LW, WL or WW. The sequences shown in Fig. 17 are averaged from each
of the four possible starting conditions, thus eliminating much of the transient
behavior.
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Fig. 17. Progress when playing Parrondo’s history-dependent games. Simulations were performed
using the probabilities in (25) with ε = 0.003. A total of one million sample paths were averaged
using each of the four initial conditions a quarter of the time.

4.3. Analysis of the games

To analyze the history dependent games we need to manipulate their representation
into a workable DTMC. Upon doing so the same method can be employed as was
used for the capital dependent games. An alternative approach using a quasi-birth-
and-death process to represent the games is given in [29].

The discrete-time chain for game B′ is shown in Fig. 18. The states are periodic,
that is, each column-wise slice is identical. The rows represent the history of the
previous two games, which are {LL,LW,WL,WW}. It is the role of the rows to keep
track of the history for ‘each capital’ so that it knows what probability (i.e. coin) to
use for the next game. The amount of capital we possess is indicated by the column
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1− p4

Fig. 18. Discrete-time chain for game B′. The rows encode the previous results (LL, LW, WL and
WW) and the column indices hold the current value of capital Xn.

index, which simply needs to be summed. Therefore, for every game that is played
we move back or forth one column and move to the appropriate row depending on
the outcome of the game.

However, the chain shown in Fig. 18 is not a standard Markovian process since
the next state depends not only on the previous states (i.e. the columns), but the
rows as well. This is remedied by taking the periodic components of the chain in
Fig. 18. This only records the past histories and not the value of capital. We can
define this using the previous two states, giving the vector notation

Y ′(n) = [X(n− 1) −X(n− 2), X(n) −X(n− 1)] . (26)

This gives four states as [−1,−1], [−1,+1], [+1,−1] and [+1,+1], where +1 repre-
sents a win and −1 a loss. This representation forms a discrete-time Markov chain
as shown in Fig. 19.

LL

LW

WL

WW

p1

p2

p3

p4

1− p1

1− p2

1− p3

1− p4

Fig. 19. Discrete-time Markov chain for game B′ using previous histories. The DTMC is formed
by Y (n) defined in (26).
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The corresponding transition matrix for the chain in Fig. 19 is

PB′ =




1 − p1 0 1 − p3 0
p1 0 p3 0
0 1 − p2 0 1 − p4

0 p2 0 p4


 , (27)

with the rows and columns representing the four states LL, LW, WL and WW,
labeling from the top left corner. This matrix is always 4 × 4 since we only ever
record the results of the previous two games.

When randomly mixing the games, the probabilities are given by

qi = γp + (1 − γ)pi (28)

for i = 1, . . . , 4 and γ is the mixing parameter.

4.3.1. Equilibrium distribution

Having represented the history dependent games as a DTMC and formed the cor-
responding transition matrix, the standard DTMC analysis can be performed.

The equilibrium distribution is found using (13), which gives

πB′
=

1
D′




(1 − p3)(1 − p4)
(1 − p4)p1

(1 − p4)p1

p1p2


 , (29)

where the normalization constant D′ = p1p2+(1+2p1−p3)(1−p4). Using Parrondo’s
original probabilities of (25) with ε = 0 gives πB′

= 1
22 [5, 6, 6, 5].

If one naively assumed that each state was occupied for a quarter of the time,
the probability of winning appears to be

pwin =
1
4

( 9
10

+
1
4

+
1
4

+
7
10

)
=

21
40

>
1
2
,

which is winning — like the similar analysis in the capital dependent games, this is
also incorrect. The correct probability of winning using πB′

is

pwin =
5
22

· 9
10

+ 2
( 3

22
· 1

4

)
+

5
22

· 7
10

=
1
2
,

which is exactly fair.

4.3.2. Paradoxical games test

Since the construction of the games only involves using the past two results, the
calculations remain tractable. Thus, we can simply use the probability of winning
to find constraints for the paradox to exist.

Using

pwin =
4∑

i=1

πipi (30)
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with the stationary probabilities of game B′ in (29) we get

pwin =
p1(1 + p2 − p4)

p1p2 + (1 − p4)(1 + 2p1 − p3)
. (31)

Subjecting this to the constraint pwin > 1/2 for a winning game or pwin < 1/2 for
a losing game, we have the following conditions,

1 − p

p
> 1, (32a)

(1 − p3)(1 − p4)
p1p2

> 1 and (32b)

(1 − q3)(1 − q4)
q1q2

< 1 (32c)

for game A and B′ to lose and the randomized game to win. Using the probabilities
in (25), the range of biasing parameters possible for the paradox to exist are 0 <
ε < 1/168.

4.4. Probability space

Similarly to the capital dependent games there exists a probability space defined
by the inequalities in (32). Unfortunately these relations depend on five variables,
which makes it difficult to visualize. To combat this we fix p2 = p3 and p = 1/2
to leave a visualizable probability space, plotted in Fig. 20. The surfaces ΠB′ and
ΠR′ represent the boundaries between winning and losing for game B′ and the
randomized game respectively. The four bounded volumes that are created by the
surfaces are denoted Qi for i = 1, 2, 3, 4.

In Fig. 20, points below the surfaces are losing, and above are winning. Hence,
the volumes denoted by Q1 and Q3 represent regions where the games are paradox-
ical — two losing games combine to form a winning game. The effect of making
game A losing (rather than fair as shown p = 1/2) is to cause ΠR′ to lift, while ΠB′

is unaffected. This reduces the volumes of Q1 and Q3, as expected. Note, there is
almost always a region in the top right corner of the probability space where the
paradox appears to always exist. This is an exception as it is an extreme case where
the probabilities are very near 0 or 1.

Conversely, in the other regions, Q2 and Q4, the anti-Parrondo case occurs —
two winning games combine to form a losing game. Adjusting game A to win slightly
causes ΠR′ to fall, and the volumes of Q2 and Q4 decrease as expected.

Comparing Fig. 20 with the probability space of the capital dependent games
(Fig. 15 on page 22), a striking difference is its lack of symmetry. Although there
are regions that have opposite properties, they are not geometrically related to
each other. However, there does exist some symmetry along the boundaries of
ΠB′ and ΠR′ . The dashed lines at the bottom of the plot are the projected lines
of interception between ΠB′ and ΠR′ , although this symmetry breaks down when
p �= 1/2.

The other noticeable departure between the two probability spaces is the volume
occupied by the paradoxical regions. Using a numerical approach, approximately
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Fig. 20. Probability space of the history-dependent games. ΠB′ and ΠR′ are the surfaces separat-
ing winning and losing regions for game B′ and the randomized game respectively. The paradox
occurs in the volumes marked Q1 and Q3 and the reverse effect occurs in Q2 and Q4. Parameters
are γ = 1/2 and p = 1/2.

0.032% of the probability space of the original games is occupied by the paradoxical
region. This compares to a much larger 1.76% probability space for the history
dependent games. The volumes are also dependent on other parameters (γ and
M for example) and conditions (setting p2 = p3), but they do indicate about a
50 times difference. Caution must be exercised when using the comparisons as the
entities are not that similar, i.e. R

3 and R
5. The rate of return, is larger for the

original games (approximately 1.25 in Fig. 2 on page 4) than the history dependent
games (approximately 0.8 in Fig. 17). Thus the increased volume of the paradoxical
regions is a trade-off against the smaller rate of return. This is also evident in the
deterministic outcomes. See Fig. 6 for example.

5. Other Phenomena

The following sections briefly cover other selected phenomena inspired by Parrondo’s
games.

5.1. Co-operative Parrondo’s games

We have described games that are state dependent and history dependent. Inspired
by this work, cooperative Parrondo games have been formed by Toral [43]. These
games rely on the state of a player’s neighbors. We refer to this state as whether a
player has either lost or won the previous game.

A group of N players are arranged in a circle so each that player has two neigh-
bors. Game A remains unchanged, thus does not have any dependencies. Game B
depends on the state of the neighbors to the left and right of a player. This gives
the possible states as {LL,LW,WL,WW}, where each pair is the previous state of



July 10, 2002 10:33 WSPC/167-FNL 00070

A Review of Parrondo’s Paradox R99

the left and right neighbor respectively. The games are classified by

Cn =
∑

i

Cn(i),

where Cn(i) is the capital of the ith player after the nth game.
The results shown in [43] demonstrate that these games indeed exhibit the prop-

erties of Parrondo’s paradox. Toral also considers the variance to determine if the
average winning is due to a few players becoming excessively wealthy at the ex-
pense of all the other players. This is not the case as the variance grows with n
as expected. Moreover, the trends in the variance shown by the cooperative games
closely resemble the standard deviation of the capital dependent games in Fig. 5.
Namely, the variance of the mixed games lies between that of the individual games.

5.2. Fractal properties of Parrondo’s games

Recent work by Allison et al. [44] has shown that Parrondo’s games exhibit fractal
patterns in their state space.

Parrondo’s games with M = 3 are considered so the state space is restricted to
R

3. The state space is defined by the equilibrium distribution π. This is visualized
in Cartesian space by letting π0, π1 and π2 represent the three orthogonal axes,
c.f. x, y and z. From the total law of probability we have

π0 + π1 + π2 = 1, (33)

which is the equation of a plane. The portion of the plane that satisfies the other
constraint of 0 ≤ πi ≤ 1 is shown in Fig. 21. This shows all the possible state
vectors that are allowed by the games.

Two sample paths are shown on the state space at the top of Fig. 21. Since
we have used the starting distribution of π = [1, 0, 0] there are only two initial
paths that can be taken as opposed to the usual eight. These are both shown in
Fig. 21. Even after the small sequence of 40 games that were used, both trajectories
reduce to similar paths. The average of these similar paths reduces to a point —
the stationary distribution.

Since the state space shown in Fig. 21 is planar, it is possible to easily transform
it to more appropriate axes. This is desirable to improve the visualization of the
state space.

The transforms are achieved using elementary rotations and translations. The
steps are listed below and shown in Fig. 21.

(i) The aim is to place the state space in the xy plane, that is, to have no z
dependency. Thus, we need to place the centroid of the state space, which is
the foot of the normal in this case, at the origin of the axes. The foot is a
distance of 1/

√
3 from the origin, so we require a translation of −1/3 in each

direction.

(ii) Next, it is rotated about the z-axis so the base of the state space (as shown in
Fig. 21) is perpendicular to the y-axis. To maintain a reference to direction, it
is rotated so the ‘top’ of the state space is in the positive y direction. Simple
geometry reveals a −3π/4 rotation is required.
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S : π0 + π1 + π2 = 1

π0

π1

π2

S ′ = T S S ′′ = R‡S ′ S ′′′ = R§S ′′

Fig. 21. State space and transformation of Parrondo’s games. The shaded area in the top plot is
the valid state space S for the games. Two sample paths of the randomized game are shown by
the lines on S. The three bottom plots are the required transformations to put S in the xy plane.
From left to right they are a translation, a rotation and another rotation.

(iii) The last step flattens the state space into the xy plane via a rotation about
the x-axis. Making a rotation of −(arctan

√
2) leaves the state space oriented

upwards (with respect to the y axis), with its centroid at the origin as desired.

The steps are summarized by the following transformation,

π̃ = RxRzTπ = Rπ

=
1
6




−3
√

2 3
√

2 0 0
−√

6 −√
6 2

√
6 4

√
6/3

2
√

3 2
√

3 2
√

3 2/
√

3
0 0 0 6


π, (34)

using the points π = (π0, π1, π2, 1), which takes into account the translation. Rx

and Rz are rotation matrices about the x and z axes respectively and T is the
translation matrix. π̃ is the transformed state space, which has the property that
π̃2 = 0 for all π. Alternatively, the top left 3 × 3 submatrix can be used, and the
translation carried out separately.

Using the transformation of (34), the fractals for Parrondo’s games can be
viewed, as shown in Fig. 22. The zoomed sections demonstrate the self-similarity
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Fig. 22. Fractals in Parrondo’s games. The left plot shows the transformed triangular state space
with points from the randomized game using (1) with ε = 0.005. The smaller plots to the right
show zoomed sections to demonstrate the self-similarity of the fractal.

property of the fractal. As we magnify the fractal, the resolution diminishes. This
is due to the limited number of games used (i.e. 10 000), and can be improved by
playing more games to increase the number of sample points.

It is interesting to note that changing the biasing parameter ε does not vary
the fractal greatly; only slightly translating and rotating it. Also for much larger
values of ε, so the games are not paradoxical, rotations in the zoomed sections are
clearly noticeable. However, changing the probability values of p1 and p2 produces
completely new fractal patterns.

5.3. Parrondo’s games are ubiquitous

A number of authors have used the fact that the randomized game is a linear com-
bination of the other two games to explain the paradox [29,34,45]. In a generalized
form the games are described by

G(ρ1, ρ2,M).

This describes game A by setting ρ1 = ρ2 = p, game B by setting ρ1 = p1 and
ρ2 = p2 and the randomized game with ρ1 = γp+(1−γ)p1 and ρ2 = γp+(1−γ)p2.
The parameter γ varies the relative strengths of game A and B. Using this notation
we can plot the parameter space as shown in Fig. 23.

Game A only exists on the straight line indicated, whereas game B exists ev-
erywhere in the plot area. The curved line represents the manifold that separates
the winning and losing games for B when M = 3.

If we select game A and B as the points P1 and P2, the randomized game can
exist anywhere along the straight connecting line by varying γ. It is not hard to
see that any randomized game in the highlighted section of the line will produce
Parrondo’s paradox. Furthermore, we can choose any two games of B and as long as
the connecting line crosses the manifold twice, Parrondo’s paradox will be exhibited.
Thus, we can clearly see how two winning games can form a losing game.
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Fig. 23. The probability space of Parrondo’s games in p1 and p2. The manifold shown is with
M = 3 and the line segment joining P1 and P2 are randomized games formed by varying γ. Since
the manifold is convex Parrondo’s paradox exists. The manifold when M = 2 and the possibilities
for game A are also shown.

The reason why this occurs is because the randomized game is formed by a
convex linear combination of two other games. It is also pointed out by [29] that
any game where the manifold is not a hyperplane, which include all but the simplest
games, has the potential to exhibit Parrondo’s paradox.

This is also the reason that games with M = 2, previously discussed in Sec. 2.3.2,
cannot exhibit the paradox. The manifold for M = 2 is shown by the dashed line
in Fig. 23, which is a hyperplane in R

2.

5.4. Related works

There have been brief reviews of Parrondo’s games in the literature, such as [20,46],
as well as some general articles [47–49] — this paper, however, represents the first
extensive review. For a summary of a number of open problems in the area, refer to
Ref. [33]. For a fuller mathematical treatment refer to Refs. [25,30,34]. The fractal
properties of the games have been investigated [44] and also the optimal mixing
sequences for games have been considered [50]. Arena et al. [51] play the games
using chaotic switching sequences and they mix the capital and history dependent
games together. The games have also been considered from an information entropy
viewpoint [35, 52] and in terms of signal-to-noise ratio [53].

After the seminal publication of Parrondo’s games in the literature, a number
of papers appeared that related the games to other disciplines. These are listed as
follows.

Van den Broeck et al. [39] use the games to give an example of a discrete “pulsat-
ing ratchet.” They describe playing the games against Maxwell’s demon to highlight
their apparent paradoxical nature.

The games have be related to lattice gas automata [54], spin models [45],
random walks and diffusions [34], biogenesis [55], molecular transport [56, 57],
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stochastic resonance [58], stochastic control [9,59] and stock market modeling [60].
The switching dynamics of the games has also inspired an extension into the area
of randomly induced spatial patterns [61,62] and new types games that also exhibit
counterintuitive drift [63].

There is now great interest in recasting Parrondo’s games into the domain of
quantum game theory. In the same way that classical games can be used to explore
classical information theory, quantum games are a useful tool for investigating the
relatively new field of quantum information theory. The seminal paper on the
quantum Parrondo game was by Meyer and Blummer [54], where a quantum particle
performs an unbiased random walk within a lattice gas.

Parrondo’s history dependent game has been directly transformed into a quan-
tum game by performing SU(2) operations on qubits, which can be thought of as
‘quantum coins’ [64]. Lee and Johnson [65] perform a quantum Parrondo based on
operations directly on the state-vector within the Bloch sphere. These investigations
may have important implications for the control of decoherence and development
of new quantum algorithms [65].

Finally, there have been many diverse (but equivalent) ways of explaining the
operation of Parrondo’s games. The physicist’s choice is to think in terms of a Brow-
nian ratchet, the mathematician tends to view it either as a convex combination
or a perturbation of equilibrium probabilities, the engineer may prefer to use the
Boston Interpretation that sees noise as breaking up the state-dependence within
the games [66] and the physical chemist sees a noise-induced breaking of detailed
balance in winning rates (a la Onsager).

What is remarkable is how all these valid viewpoints all compress into one simple
toy model — this is one of the reasons why Parrondo’s paradox has has generated
such interest across so many different fields.

6. Summary

We have given a detailed explanation of Parrondo’s games and the circumstances
that surround their apparent paradoxical nature. The mechanism behind the games
was first described heuristically in terms of the Brownian ratchet. In the same
way the ratchet directs the motion of random particles, Parrondo’s games use the
randomized switching of the games to direct flow of capital. This analogy between
the games and the ratchet allows us to compare the respective role of the variables in
each of the systems. The question is, what information can the games provide about
discrete time and space ratchets that cannot be extrapolated from the standard
continuous ratchet? Moreover, can the games infer anything back to the continuous
ratchet?

The ratchet explanation is based on the underlying physical structure. However,
as one may expect, the apparent paradoxical nature of the games can be fully
explained mathematically with the use of discrete-time Markov chains. This requires
no knowledge of the physical origins of the games. The mathematical analysis allows
us to generalize the games and determine trends that can characterize them.

The original capital dependent games were then modified to be history depen-
dent. That is, the rules depend on the results of previous games. This type of rule
maybe more appropriate for gambling games as the results are public information
whereas the capital of a player is not.
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Other aspects of the games were also raised, as well as some physical systems
where the games can be applied. As with any toy model, what is important is the
application of the principles illustrated by the model, rather than the model per
se. One key principle is that noise or randomness can become useful when in the
presence of a nonlinearity or an asymmetry. Furthermore, a random mixture of
game A with game B could be thought of as a noisy process that breaks up the
state dependence in game B causing it to favor the good coin. Too little of game A
in the mixture or too much game A is detrimental. However, there is an optimum
amount of game A that is mixed with B to maximize winnings. This points us
towards the study of stochastic resonance.
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