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Abstract  

Wireless sensors for Structural Health Monitoring (SHM) is an emerging new technology that promises to 

overcome many disadvantages pertinent to conventional, wired sensors. The broad field of SHM has experienced 

significant growth over the past two decades, with several notable developments in the area of sensors such as 

piezoelectric sensors and optical fibre sensors. Although significant improvements have been made on damage 

monitoring techniques using these smart sensors, wiring remains a significant challenge to the practical 

implementation of these technologies. Wireless SHM has recently attracted the attention of researchers towards 

un-powered and more effective passive wireless sensors. This article presents a review of some of the underlying 

technologies in the field of wireless sensors for SHM - with a focus on the research progress towards the 

development of simple, powerless, yet effective and robust wireless damage detection sensors. This review 

examines the development of passive wireless sensors in two different categories: (1) use of oscillating circuits 

with the help of inductors, capacitors and resistors for damage detection; and (2) use of antennas, Radio 

Frequency Identification (RFID) tags and metamaterial resonators as strain sensors for wireless damage 

monitoring. An assessment of these electromagnetic techniques is presented and the key issues involved in their 

respective design configurations are discussed.  

Keywords: structural health monitoring, wireless sensors, damage monitoring, oscillating circuits, metamaterial 

resonators, RFID 

1. Introduction 

Over the past few decades, the field of Structural Health Monitoring (SHM) has attracted considerable research. 

Several effective damage monitoring techniques like strain measurement, electro-mechanical impedance, 

scattering of guided waves, acoustic emissions, dynamic response and optical techniques have been developed. 

Several sensors like strain gauges, piezoelectric sensors and optical fibre sensors have been employed (Housner 

et al., 1997; Chang, 2002; Auweraer & Peeters, 2003; Chang, Flatau, & Liu, 2003; Wang & Rose, 2003; Wang 

& Chang, 2005).  

The above mentioned sensors are extensively used for damage monitoring; however, they do present certain 

limitations. Most of the existing sensors require an input power supply. When the sensors detect any change in 

strain or stress, they need to transfer the information, for signal processing and analysis, to the data acquisition 

system which may be located at the base station far away from the structure being monitored. The necessary 

connection of sensors by wires for power and data transmission often renders the SHM system complex to 

implement and difficult to maintain. The whole structure sometimes needs to be redesigned to accommodate the 

connections among these sensor networks; therefore, increasing the cost of manufacture. The technical 

difficulties of designing sensor systems along with their connections become more pronounced when the 

structure under investigation contains moving parts, such as a helicopter rotor. Furthermore, wiring between 

sensors and base-stations increases the cost of replacing damaged or degraded sensors. 

In order to tackle these challenges, researchers have started investigating options which could result in wireless 

SHM. By making the sensors wireless through the incorporation of energy coupling and communication 

functionalities, it is possible to integrate the data acquisition and signal processing system in the same sensor unit. 
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1 (2 )f LC                                      (1) 

Where f is the natural frequency; L is the inductance; and C is the capacitance. The inductance of the solenoid 

can be calculated by, 

2

0L k N A l                                      (2) 

Where k is the form factor; µ is the permeability; N is the number of turns; A is the cross sectional area; and l0 is 

the solenoid height. 

Thus, 

2

0
(1 2 )f l Ck N A                                  (3) 

By applying strain the cross sectional area of the solenoid changes and from Equation 3 its resonant frequency 

changes accordingly. A high frequency oscillator was used to measure the resonant frequency of the solenoid. 

The dip in the RF power is measured to find the frequency of the sensor and thus the applied strain. The 

experimental setup of this concept is illustrated in Figures 2 and 3. 

 
Figure 2. Schematic of guillotine compressing non-embedded sensor coil (Butler et al., 2002) 

 

 
Figure 3. Illustration of experimental setup (Butler et al., 2002) 

 

Chuang, Thomson, and Bridges (2005) developed an embeddable wireless strain sensor which works with the 

same principle as the previous case. The difference is that instead of a solenoid a coaxial resonant RF cavity was 

used as the sensor (Figure 4). The cavity length changes under the applied load thereby changing its resonant 

frequency. The shift in the resonant frequency with respect to the applied strain is shown in Figure 5. This sensor 

was shown to be linear up to 130 με. The shift in the frequency was about 2.42 kHz per με. The relationship 

between the applied strain and the resonant frequency of the cavity was derived using the following equations. 

1
(1 )

2( ) 2 1
str unstr

C C
f f

l l l



        

                         (4) 

r str unstr unstrf f f f                                      (5) 

 
Figure 4. Electromagnetic coaxial cavity sensor. The dominant TEM001 resonant mode is shown (Chuang et al., 

2005) 
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Figure 10. The biasing and sensing elements of the sensor are separated by a flexible layer to provide proper 

strain for a given compressive force (Tan et al., 2008) 

 

In this section, several wireless strain sensing techniques utilising LC or RC oscillating circuits are discussed. 

The summary of the most important techniques are presented in Table 1. For these circuits to resonate at a 

specific frequency, power has to be supplied to the circuits. Some of these techniques employed external 

frequency oscillators and hand interrogators to provide power to the LC/RC circuits wirelessly. Thus, it is 

important to ensure an efficient energy coupling between the transmitter and the receiver. In SHM in order to 

determine and predict the crack propagation, it is essential to measure the strain in the structural member and to 

determine its spatial distribution. The work reviewed in this section does not refer primarily to the strain spatial 

distribution which is a major concern for researchers. Although these techniques are shown to be linear, it is 

important to ensure an acceptable reliability and repeatability for practical applications. These limitations 

provided the direction for further research, leading to the development of techniques discussed in the next 

section. 

 

Table 1. Various techniques employed using oscillator circuits for wireless strain measurement 

Authors Technique 

Butler et al., 

2002 

The strain changes the dimensions of the inductor and hence the inductance in the LC 

circuit, thus changing the resonant frequency. 

Chuang et al., 

2005 

The strain changes the cavity length of the coaxial RF cavity thereby changing the 

resonant frequency. 

Umbrecht et 

al., 2005 

The strain moves the incompressible liquid through the capillary which is wirelessly 

read using ultrasound imaging technique. 

Matsuzaki & 

Todoroki, 2005 

The strain changes the capacitance of the RC oscillating circuit and hence changes the 

resonant frequency. 

Jia et al., 2006a 
The strain changes the capacitance of the interdigital capacitor coupled with the spiral 

inductor thereby changing the frequency of the LC circuit. 

Tan et al., 2008 
The strain deforms the flexible layer between the magnetically soft material and the 

permanent magnet hence changing the harmonic spectrum. 

 

3. Use of Resonators and Antennas as Strain Sensors 

The works discussed in the previous section are fairly simple and effective; however, researchers started to 

develop sensors which could directly convert strain into frequency shifts that could be read wirelessly. Antennas 

and electromagnetic resonators are passive devices which could be illuminated by incident electromagnetic 

waves and the backscattered signals could be received wirelessly using other antennas. Researchers have further 

tried to determine the direction of the strain induced in the structure. However, at present, it seems the work in 

this field is just starting. This section presents the recent techniques employed for wireless strain and damage 

monitoring which utilise resonators or antennas as strain sensors. 

Das, Khorrami, and Nourbakhsh (1998) designed a novel sensor/actuator system which utilizes a patch antenna 

with a multilayer substrate (Figure 11). The multilayer consists of a dielectric layer and a piezoelectric layer. The 

piezoelectric layer is the sensing unit which converts the measured strain/vibration into voltage. The antenna 

receives wireless EM signal from the base station and generates a voltage which gets added up to the 
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piezoelectric voltage and this modulated signal is transmitted back to the base station. This antenna can also be 

used for actuating the piezoelectric layer by supplying the required voltage to the piezoelectric by receiving 

wireless electromagnetic power. Das et al. (1998) developed a dielectric-piezoelectric grating technique to 

distinguish sensing and actuating activities. Due to this grating technique, the sensing and actuating functions are 

activated separately using orthogonal polarization orientation techniques. It is also feasible to stack such 

microstrip patch antennas with dimensions to operate at different frequencies. This sensor integrates wireless 

power reception, sensing and data communication in one simple unit. However, this sensor could function well 

only when it is interrogated from a very close distance. 

 
Figure 11. Microstrip antenna with Dielectric-Piezoelectric multilayer substrate (Das et al., 1998) 

 

Loh, Lynch, and Kotov (2007) developed a wireless RFID based sensor by incorporating the field of 

nanotechnology. They utilized a layer by layer fabrication technique of Single Walled carbon Nano-Tube 

(SWNT) films. These films could act as a strain or a pH sensor because their capacitance or resistance changes 

accordingly. When these films are integrated with a coil antenna, they could be inductively coupled using a 

RFID reader and thus rendering the sensor completely wireless. Because these sensors act as a RLC oscillating 

circuit, the resonant frequency changes with the change in mechanical behaviour of the structure. Use of 

conducting carbon nanotube-gold nanocomposites as an inductor for wireless coupling was also investigated. 

However, the inductance was shown to be low, thereby limiting its wireless range to a very small distance. The 

size of the film sensor is 2.5 cm × 2.5 cm and is stated to be sensitive and linear. Although this technique might 

be useful, it is believed that the manufacturing of such film nanocomposites could be expensive. 

Matsuzaki, Melnykowycz, and Todoroki (2009) developed a very innovative technique for wireless detection of 

damage in CFRP. The CFRP structure (e.g. the wing structure) can be modeled as a half-wavelength dipole 

antenna (Figures 12 and 13). The resonant frequency of the antenna is dependent on the length of the structure. 

When there is a crack perpendicular to the fibre direction, the dipole length decreases and hence the resonant 

frequency increases. Therefore, by measuring the frequency, the length of the dipole could be back calculated. 

With the length value, the crack location could be precisely identified. This method can only be used in 

structures with a specific geometry and it can only detect the crack when the crack reaches its critical length. 

 
Figure 12. Simulation model of a rectangular dipole antenna (Matsuzaki et al., 2009) 

 

 
Figure 13. Schematic of the wireless crack detection mechanism (Matsuzaki et al., 2009) 
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Bhattacharyya, Floerkemeier, and Sarma (2009) investigated a RFID tag antenna sensor for displacement 

measurement (Figure 14). A simple RFID tag was kept at a very close distance to a metal surface which was 

attached to the structure. As the structure deforms, the metal surface comes closer to the RFID tag which affects 

the antenna’s impedance and hence changes the backscattered power. It also affects the threshold power required 

to turn the RFID tag ‘on’. This RFID tag can be queried wirelessly from a convenient location using an RFID tag 

reader/transmitter. By processing the backscattering from the RFID tag, the displacement of the structure could 

be evaluated. Although this sensor is very cheap and simple to design, there are certain challenges associated 

with this design. Obtaining the displacement data from backscattering becomes difficult if there are other 

metallic elements in the host structure. Due to the randomly moving metallic components, the sensor might give 

false positive results. Moreover, the sensor is sensitive to the displacements of the structure only in one direction. 

However, it is mentioned that this sensing technique could be optimized and utilized for an effective passive 

wireless displacement sensing system.  

 
Figure 14. RFID sensor setup (Bhattacharyya et al., 2009) 

 

Occhiuzzi, Paggi, and Marrocco (2011) proposed a meandered RFID tag sensor. This sensor can measure strain 

based on the change in the impedance and gain of the tag as a result of the deformation in the meandered line. 

This RFID tag requires an IC chip which increases the complexity of the structure. The shift in the power level 

as a result of the applied strain cannot be distinguished from the shift caused by other parameters that may 

influence the power transmitted (i.e. propagation path-loss, reflection, diffraction etc.). Caizzone and Marrocco 

(2012) further studied the application of this sensor in a RFID network grid to monitor the deformation of the 

structure. Their study shows that increasing the number of RFID tags does not further improve the sensitivity of 

the grid when the spacing between the sensors becomes lower than an optimum threshold. 

Mandel, Schussler, and Jakoby (2011) proposed another concept for wireless passive strain measurement based 

on RFID tags principles. The proposed structure is composed of two layers of metal divided by a dielectric layer. 

The two metal layers are connected through the dielectric using an interconnecting via. This “mushroom 

structure” can be considered as a special case of a short-circuited microstrip patch antenna. One sensor structure 

comprised different elements, which were separated by gaps in the top metal layer and the substrate. The 

resonance frequency of each element is determined by the gap capacitance and the via inductance. Different 

fixed resonant frequencies can be used for identification purposes. The performance of this sensor was 

investigated using numerical simulations and experimental measurements. However, the linearity of sensor with 

applied strain is not discussed and further studies are required to quantify its performance. 

Another recent study on RFID tags for passive wireless strain measurement was presented by Yi et al. (2011a). 

The sensor consists of a folded rectangular microstrip patch antenna with an IC chip. This passive wireless strain 

sensor operates based on a change in the impedance of the patch antenna as a result of the applied strain, which 

introduces a mismatch between the antenna and the IC package. When the EM power is sent wirelessly from a 

remote interrogator, the patch antenna receives the power and transfers it to the chip. This transfer from the tag 

to the chip is maxima when the interrogation frequency matches with the resonance frequency of the patch 



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 2; 2013 

65 

 

antenna. The effect of changes in the impedance of the microstrip line between the rectangular patch and the IC 

was not considered in the model. The strain measurement was based on the change in the transmitted power 

which could also be affected by other factors. Due to the lack of sharpness in the transmitted power trace the 

exact resonant frequency of the RFID tag was difficult to ascertain. Hence, the resonant frequency of the tag was 

extracted using curve fitting techniques for the wireless strain measurements. Effect of antenna substrate 

thickness on the interrogation distance and strain transfer rate is further studied by Yi et al. (2011b). 

Further investigations by Yi et al. (2012a) show that the shift in the resonant frequency of this sensor can be 

identified without the need for curve fitting for higher strain values (>4997 με). Also, this sensor can be used for 

monitoring crack growth when the crack propagates in one direction through the sensor. Yi et al. (2012b) 

implemented this sensor in an array to measure strain in different locations wirelessly. It is shown that, using the 

RFID tag protocols, different sensors in the array can be activated individually with minimum interference with 

other neighbouring sensors. 

 
Figure 15. The RFID folded patch antenna strain sensor (Yi et al., 2012a) 

 

Melik, Pergoz, Unal, Puttlitz, and Demir (2008) developed a passive on-chip RF-MEMS strain sensor for bio 

medical applications. As the material is stressed, the area of the sensor (spiral resonator) decreases thus its 

resonant frequency shifts. To make it completely wireless, two antennas of the same configuration were used for 

receiving and transmitting the signals. The micrograph of the fabricated sensor system is shown in Figure 16. 

This system is very small in size and has a very high quality factor. 

 
Figure 16. A plan-view micrograph of 270 μm × 270 μm on-chip sensor along with the on-chip antennas for 

communication (Melik et al., 2008) 

 

Melik, Unal, Perkgoz, Puttlitz, and Demir (2009a) published another paper which demonstrated the use of a 

metamaterial-based wireless strain sensor for bio-medical applications. Metamaterials are artificial materials 

engineered to provide properties which may not be readily available in nature. Since metamaterials are fabricated 

for specific requirements, they could have extremely useful electromagnetic properties. Split Ring Resonator 

(SRR) is one of the geometrical configurations used in the fabrication of metamaterials. Melik et al. (2009a) used 

SRRs instead of the spiral case (Melik et al., 2008) because they have more gaps between the rings. These gaps 

reduce during compression and increase during tension both changing the capacitance and thus shifting the 

resonant frequency. This sensor was designed to be used for monitoring fracture healing and other biomedical 

applications. Figure 17 shows the shift in the resonant frequency of the SRR sensor under compressive strain. 
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terminating impedance of the antenna from open to short circuit. This change in circuit provides a 180° phase 

change and thereby helps in distinguishing the antenna backscattering mode from the structural backscattering 

mode. When the backscattering is measured using a horn antenna, a light beam is also sent to activate the switch 

in order to implement a phase change. 

 
Figure 23. Passive antenna sensor with a light activated RF switch (Deshmukh & Huang, 2010) 

 

Deshmukh and Huang (2010) studied the theoretical wireless interrogation range using the power budget model. 

The interrogation distance is, 

2 2

11

max

( )

4

sd ds t h sD D S PG Gc
R

f NF SNR
 

   
                        (9) 

Where c is the speed of light; f is the frequency; Dsd and Dds are insertion losses due to the switch; |S11|is the 

scattering parameter; Pt is the transmitted power; NF is the noise factor; SNR is the signal to noise ratio; and Gh 

and Gs are gains of the horn and antenna sensor, respectively. This formula gives a good idea about the factors 

that affect the wireless interrogation range. The wireless range could be increased by increasing the transmitted 

power, antennas’ gain, and reducing the SNR. It is mentioned that by increasing the interrogation power to 30 

dBm and gain of the horn antenna to 20 dB, the interrogation distance could be up to 3.5 m. 

Deshmukh et al. (2009), Erdmann, Deshmukh, and Huang (2010) and Mohammad and Huang (2010) tried to 

employ the rectangular patch antenna for sensing of fatigue crack growth. The patch antenna was placed on the 

crack in a lap joint structure and the shift in the resonant frequency with respect to crack growth was investigated 

(Figure 24). The effect of the resonant frequency due to the plate on top of the antenna sensor was also studied.  

 
Figure 24. Shift of |S11| curves with crack growth (Erdmann et al., 2010) 

 

The concept of crack detection using microstrip patch antennas was followed by Mohammad, Gowda, Zhai, and 

Huang (2012). Numerical simulations and experimental measurements were employed to detect the direction of 

the crack in the structure in addition of its presence. It was shown that a normalized frequency ratio (ratio of 
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None of the above work on microstrip patch antenna strain sensors provided the answer for a passive wireless 

strain sensor which does not require additional integrated circuit units for wireless interrogation of the sensor. In 

the work by Deshmukh et al. (2009) and Tata et al. (2009a) the wireless interrogation of the rectangular patch 

antenna was achieved using an additional switch which requires wires or batteries. In the study of Deshmukh 

(2010) this switch was activated using a photo cell which further increases the complexity of the sensor unit and 

also requires a direct light source to activate the switch. In these works the resonant frequency of the patch 

antenna was read wirelessly; however, the strain was not measured. In other works on microstrip patch antennas 

a SMA connector was used to read the resonant frequency of the antenna sensor. 

Daliri et al. (2012b) developed a method for wireless interrogation of CMPA strain sensors without the need for 

additional circuit elements. The CMPA was excited using a linearly polarised double ridged horn antenna to read 

its resonant frequency. This concept was studied using computational simulations and experimental 

measurements. The strain in aluminium and CFRP panels was measured wirelessly using this technique. 

However, the interrogation distance was limited to 5 cm. This technique also enables measuring strain in any 

desired direction because the linear horn antenna excites the CMPA in the direction of its polarization. By 

rotating the horn antenna the strain can be measured in the corresponding direction. Daliri et al. (2012c) further 

increased the interrogation distance of the CMPA sensor up to 20 cm by using a high quality factor CMPA. The 

high quality factor CMPA was developed using a substrate with low loss and high permittivity. 

Regardless of the novelty and promising future of the discussed antenna sensor structures, there are certain key 

issues which have to be addressed to make these aforementioned works suitable for practical applications. 

Metamaterial sensors are very small and sensitive; however, they have not been employed to detect cracks till 

date and have practical limitations for monitoring strain in metallic structures. Moreover, there is not much 

information about the distance up to which these sensors could be wirelessly read. The work of Matsuzaki et al. 

(2009) involves the use of CFRP due to its good electrical conductivity. This technique cannot be extended to 

GFRP and other non-conducting structures. 

Microstrip patch antenna sensors have been very useful in predicting the strain along with its direction. However, 

it is essential to design the antenna to be very sensitive to strain such that the shift in the frequency is more 

detectable. The wireless interrogation distance of these sensors needs to be improved significantly in order to 

make these sensors suitable for practical applications. Once these issues are addressed, these sensors could be 

installed in an array on the host structure for wireless SHM. Table 2 summarizes the important techniques that 

are provided in this section. Table 3 compares the various techniques covered in this article in general and in 

terms of important design parameters based on the authors' understanding of the sensor types. It is clearly 

evident from this table that each sensor type has its own advantages and limitations and no single technique has 

all the desirable properties. 

 

Table 2. Various techniques investigated for use of resonators as strain sensors 

Authors Technique 

Melik et al., 2009 a 

& b, 2010 

Use of split rings, spirals and metamaterial based strain sensors whose resonant 

frequency changes due to the change in their dimensions. 

Matsuzaki et al., 

2009 

Use of carbon fibres in the structure as a dipole antenna. The crack reduces the 

length of the dipole thereby shifting its frequency. 

Tata et al., 2009 a & 

b; Deshmukh & 

Huang, 2010 

Use of rectangular microstrip patch antennas whose resonant frequency changes 

with change in its dimension due to strain. 

Daliri et al., 2010 a 

& b; 2011 a & b; 

2012 a & b 

Use of circular microstrip patch antennas whose resonant frequency changes 

with change in its dimension due to strain. 

Yi et al., 2011 a & b; 

2012 a & b 

Use of rectangular microstrip patch antennas in combination with IC chips to 

form a RFID strain sensor whose resonant frequency changes with change in its 

dimension due to strain. 
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Table 3. Comparison of various types of sensors based on design parameters 

Parameter MEMS sensors LC/RC circuit sensors Antenna sensors 

Power supply 
Need battery for 

wireless monitoring. 

LC circuits could receive power 

wirelessly. RC circuits need 

cables/wires. 

Can receive power 

wirelessly from a transmitter 

antenna. 

Active/Passive 
Could be active and 

passive. 
Could be active and passive Passive. 

Ability to 

detect strain 

direction 

Could be designed 

to detect strain in 

any direction. 

Generally unidirectional. 
Could be designed to detect 

strain in any direction. 

Wireless 

range 

Can transmit signals 

over long distances. 

Can transmit signals and receive 

power effectively only over few 

centimetres. 

Has a small wireless range 

(< 1m). 

Design 

complexity 

Highly complex due 

to integration of 

various 

components. 

Complex due to presence of 

inductor and capacitor integration. 

Simple design due to the 

presence of only the 

antenna. 

Size and 

weight 

Large in size and 

heavy due to 

presence of battery 

and antenna. 

Moderately large in size and less 

heavy compared to MEMS. 

Smaller in size and much 

lighter compared to other 

sensors. 

 

4. Conclusion 

Structural health monitoring has been an important research area for the last few decades. The cumbersome use 

of wires to connect sensors with base stations has prompted researchers to investigate the feasibility of wireless 

SHM by incorporating various electromagnetic theories to overcome the limitations of the wired sensors.  

Significant amount of research has been done in the field of MEMS systems and their application to SHM. 

Several different types of architectures with different specifications of microprocessors have been investigated. 

In order to address the power requirements of these sensing systems, few power harvesting techniques have also 

been investigated for effective functioning of these sensor systems. However, the design of such sensor units are 

relatively more complicated due to the incorporation of the sensing unit, signal conditioning unit, antennas and 

power harvesting devices. Thus, these sensors become expensive and the performance of these sensors has to be 

monitored regularly. In recent years, researchers have started using resonators and antennas as strain sensors 

where the resonant frequency of the resonator shifts due to the change in their dimensions during a structural 

deformation. These devices could be made small and simple which becomes elegant to install and read 

wirelessly. Moreover, the use of metamaterial based resonators could make these sensors very small thereby 

providing the feasibility for an array of sensors for damage monitoring. 

In the use of patch antennas, along with the strain, the spatial orientation of the strain could also be wirelessly 

estimated which becomes crucial in terms of crack direction and growth prediction. However, the work on the 

use of resonators and antennas as sensors in SHM is presently at the embryonic stage. More effort towards these 

sensors could prove fruitful, especially work directed towards effective wireless SHM with good damage 

discrimination, sensitivity and linearity. It is envisaged that once these resonators or antennas can be designed to 

exhibit linear frequency shifts with strain, its utility can be extended to assess damage in structures, irrespective 

of the dielectric properties of the host structure. Given the comparative parameter-based assessment of the 

technologies discussed in this paper (in Table 3), it might be that the way ahead in wireless SHM should consist 

of a combination of the technologies discussed in this paper, since no single technique had all the desirable 

properties. 
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