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Abstract
The quality and safety of medicinal products are related to patients’ lives and health. Therefore, quality inspection takes
a key role in the pharmaceutical industry. Most of the previous solutions are based on machine vision, however, their
performance is limited by the RGB sensor. The pharmaceutical visual inspection robot combined with hyperspectral imaging
technology is becoming a new trend in the high-end medical quality inspection process since the hyperspectral data can
provide spectral information with spatial knowledge. Yet, there is no comprehensive review about hyperspectral imaging-
based medicinal products inspection. This paper focuses on the pivotal pharmaceutical applications, including counterfeit
drugs detection, active component analysis of tables, and quality testing of herbal medicines and other medical materials.
We discuss the technology and hardware of Raman spectroscopy and hyperspectral imaging, firstly. Furthermore, we review
these technologies in pharmaceutical scenarios. Finally, the development tendency and prospect of hyperspectral imaging
technology-based robots in the field of pharmaceutical quality inspection is summarized.
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1 Introduction

Since the COVID-19 pandemic, the great power nation
of pharmacy in the world, such as the United States, the
United Kingdom, Germany, and China, have successively
developed vaccine products against the new coronavirus.
However, the quality and effectiveness of vaccines pro-
duced from various countries are unstable. For example, it
is reported that the AstraZeneca vaccine produced in the
United Kingdom had a certain degree of lethal probability
due to a lack of competent supervision. It casts a shadow
over the epidemic and severely damages people’s confi-
dence in the new vaccine. As a consequence, it hinders
widespread vaccination, which is not conducive to the early
control of the epidemic. [2]. In the production process of
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large quantities of vaccines and other pharmaceutical prod-
ucts, fast, accurate, and comprehensive quality and effec-
tiveness inspection methods will become indispensable and
important for the pharmaceutical industry. Therefore, the
medicine and vaccine inspection techniques have gradually
become active research area in this specific era [1].

The quality and effectiveness inspection of medicine
mainly includes the detection of the counterfeit drug of
biomedical reagents, the quality inspection of medicinal
materials such as herbal medicines, the active component
analysis of tables [3]. Previous pharmaceutical detection
methods are mainly concentrated in the field of machine
vision, in which the image data of the solid-state tablets
and liquid reagent bottles can be obtained by the way of
irradiating or transmission imaging with industrial cameras.
The machine vision-based inspection techniques have
achieved huge success and commercial benefits, however,
there are numerous limitations. The main challenge refers
to the imaging principle of visible light cameras. Because
the standard industrial camera only takes three discrete
spectral band images, i.e., red, green, and blue. Although
the spatial information can be captured well, the different
components cannot be easily classified. For example, the
foreign anomaly or denatured drugs are often not effectively
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detected, especially when the color of target objects or
denatured drugs are consistent with normal patterns [4, 5].

Hyperspectral imaging can offers consistent spectral
band images according to the reflectance and absorbance of
substances under different wavelengths. Recently, this tech-
nology has been rapidly developed and widely applied in
various fields, including ground remote sensing imaging,
agricultural and forestry pest control, food safety inspec-
tion, etc. [6, 7, 9]. However, the application in the field
of pharmaceutical quality testing attracts less attention
from researchers and developers. Although there are some
methods and techniques combining the hyperspectral imag-
ing technology in pharmaceutical quality and effectiveness
inspection [10], the comprehensive review is absent. In this
paper, we firstly introduce the technology and hardware
of Raman spectroscopy and hyperspectral imaging-based
pharmaceutical inspection robot. Furthermore, we review
these technologies in pharmaceutical scenarios, such as the
active component analysis of tables. Finally, the devel-
opment tendency and prospect of hyperspectral imaging
technology-based robots in the field of pharmaceutical qual-
ity inspection is summarized.

2 Hyperspectral Technonlogy

2.1 Technical Principle of Raman Hyperspectrum

The Raman hyperspectral analysis method was originally
discovered by the Indian scientist Chandrasekhara Venkata
Raman to destroy optical molecules. The analysis method
uses the spectra of different incident light frequencies to
analyze [10]. The Raman effect refers to the elastic and
inelastic scattering of light when it irradiates a substance.
Inelastic scattering has components that are longer and
shorter than the excitation wavelength. Among them, the
spectral lines of the inelastically scattered light that are
different from the incident light frequency are called
Raman lines, the Raman lines whose frequency is less
than the incident light frequency are called Stokes lines,
and those with greater frequency are called anti-Stokes
lines.

The number of Raman spectral lines, the magnitude
of the displacement, and the length of the spectral lines
are directly related to the vibration or rotation energy
level of the measured substance molecules, and can
directly correspond to different molecular compositions.
Therefore, Raman hyperspectral analysis technology is
widely used in the identification of substances, such as
the component analysis and authenticity identification of
medicine, the structure research of biological proteins, and
the identification of pesticide residues on the surface of
agricultural products, etc.

During the detection, the Raman hyperspectrometer will
irradiate a beam of monochromatic light on the surface
of the drug to be tested, and the molecules composed of
the substance will scatter the incident light. The frequency
difference between the scattered light and the incident light
is called the Raman shift. The Raman shift has nothing
to do with the frequency of the incident light, but only
with the structure of the scattered molecules themselves.
Specific molecules correspond to specific Raman shifts, so
Raman hyperspectroscopy has extremely high sensitivity in
detecting the composition of substances [11].

2.2 Raman Hyperspectral Hardware System

Raman hyperspectrometer is also called grating dispersion
Raman hyperspectrometer, which is mainly composed
of excitation light source, external optical path, optical
dispersion system and calculation processing system [12,
13]. Figure 1 shows the Raman hyperspectral system
structure.

(1) Excitation light source:
Commonly used excitation light sources are Ar

ion laser, Kr ion laser, He-Ne laser, Nd-YAG laser,
diode laser, and so on. The wavelength of the Raman
excitation light source is usually 325nm (UV), 488nm
(blue-green), 514nm (green), 633nm (red), 785nm
(red), 1064nm (IR).

(2) External optical path:
The external light path is mainly composed of

optical devices such as filters and dichroic mirrors,
which are used to project the Raman scattered light
generated by the excitation light source irradiated on
the surface of the sample to the photodetector. The

Fig. 1 Raman hyperspectral system structure figure. This system
mainly consists of laser, spectrograph, CCD device and other optical
devices
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role of the filter is to filter out the scattered light
of the excitation wavelength that is many orders of
magnitude stronger than the Raman signal. In addition,
it is necessary to prevent the sample from being
irradiated by other radiation sources.

(3) Optical dispersion system:
The optical dispersion system is mainly composed

of the entrance slit, collimator lens, dispersive optical
element, exit slit, etc., and is used to decompose the
polychromatic light in the light source into light with
a single wavelength. The core dispersive elements
are mostly grating devices, and holographic grating
devices are commonly used. Most of the devices
are silicon-plated CaF2 beam splitters, quartz beam
splitters, or KBr beam splitters.

(4) Calculation processing system:
The calculation processing system is mainly

responsible for the control of the instrument and the
collection and analysis of data. At present, advanced
computing and processing systems have significant
advantages in sample databases and sample data anal-
ysis algorithms, and they generally integrate corre-
sponding computing and processing software.

(5) The detector:

The detector is determined according to the wavelength
range detected by the instrument. The general Raman
detection of visible light uses a CCD detector and an
infrared detector made of commonly used InGaAs material
that involves infrared wavelength detection.

2.3 Principle of Hyperspectral Imaging Technology

Hyperspectral imaging technology and Raman hyperspec-
tral technology have something in common. Both are based
on the reaction of material molecules to light and the sensing
detection of light. The difference is that Raman hyperspec-
trum uses The Raman displacement between scattered light
and incident light to identify the molecular composition of
substances, while hyperspectral imaging detects the com-
position of substances by imaging material surface of light
in very many narrow bands [14, 15]. Hyperspectral imag-
ing allows better visualization and enables researchers to
detect some physical and chemical properties of substances
more intuitively. Figure 2 shows a schematic diagram of
hyperspectral imaging.

Technically, hyperspectral imaging is an image process-
ing technology based on very many narrow-band lights.
It combines imaging technology with spectral technology
to detect one-dimensional spectral information of the tar-
get and two-dimensional spatial plane information, so as
to obtain continuous narrow-band spectral image data with
high spectral resolution.

Fig. 2 Schematic diagram of hyperspectral imaging cited by [20].
In this figure, (a)indicates the whiskbroom hyperspectral imaging
principle, (b)indicates the pushbroom hyperspectral imaging principle,
(c)indicates the staring hyperspectral imaging principle, (d)indicates
the snapshot hyperspectral imaging principle

Hyperspectral imaging technology is applied in a wide
range of scenarios, including pharmaceutical detection,
medical diagnosis, aerospace, food safety, and agricultural
and forestry monitoring, covering all levels of social life [7,
8, 16–19]. With the improvement of the spectral resolution
of hyperspectral imaging, the spectral detection ability is
enhanced, and the advantages of hyperspectral imaging are
becoming more and more obvious. In addition, continuous
spectral reflection or transmission images make it possible
for researchers to use the image pattern recognition method
to extract features from objects, thus greatly expanding the
application and promotion of hyperspectral technology in
daily life.

2.4 Hyperspectral Imaging Hardware System

Hyperspectral imaging system is mainly composed of light
source, camera and imaging control system. Figure 3 shows
the hyperspectral imaging system and Table 1 shows Types
and applications of hyperspectral imaging systems.

The light source can be divided into a short arc lamp,
xenon lamp, Bromo-tungsten lamp, and so on. Hyperspec-
tral camera imaging needs to detect all wavelengths of light
within the imaging band range, so the luminous wavelength
range of the light source must cover the wavelength range
of camera imaging, and the illumination intensity of each
wavelength should be relatively uniform so that the imag-
ing system can detect and image light of each wavelength
stably. Among them, the wavelength range of short-arc
lamp roughly covers the range of ultraviolet to visible light,
Bromo-tungsten lamp roughly covers the range of visible
to near-infrared wavelengths, and xenon lamp covers a rel-
atively comprehensive wide wavelength range of ultraviolet
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Fig. 3 Hyperspectral imaging system diagram. This diagram indicates
the common layout of commercial hyperspectral imaging system
which mainly consists of light source, hyperspectral cameras and other
mechanical motion system

to visible and then to near-infrared wavelengths, which is an
excellent all-band light source.

The camera composition of the hyperspectral imaging
system is related to the types of imaging collection. There
are four types of imaging collection, namely whiskbroom,
Pushbroom, Staring, and Snapshot [20].

The whiskbroom hyperspectral imaging system is mostly
used in the field of satellite remote sensing hyperspectral
imaging. It is usually mounted on a satellite or an airborne
platform and performs point-scan imaging of the ground
target area through a rotating mirror. The characteristics of
whiskbroom imaging make the design of the motion control
system of the equipment complicated, and it is difficult
to miniaturize the equipment. In addition, the single-point
imaging mode is time-consuming and is not suitable for fast
imaging applications [21].

Pushbroom hyperspectral imaging systems are also
called line-scan hyperspectral imaging systems, which are
widely used in scientific research and military scenarios
such as agriculture and forestry monitoring, food and drug
testing, satellite remote sensing imaging, etc. Different from
the whiskbroom single-point imaging mode, the pushbroom
imaging mode can obtain a line of pixel spectral data values
at a time. From the device point of view, the photodetector

Table 1 Types and applications of hyperspectral imaging systems

Type Light Imaging Application Wavelength Spectral Time Band Suitable

ranges resolution costs numbers for industry

Whiskbroom sun light point scan satellite remote wide high long hyperspectral No

imaging military use

marine research.

Pushbroom sun light, xenon lamp, halogen lamp

line scan,
imaging

drug,food, wide high long hyperspectral No

agriculture

forestry

remote sensing

marine research

pharmaceutical.

Staring xenon lamp, halogen lamp imaging via drug and food wide high long hyperspectral No

spectral forensic image

spectral industry image

dimension seed breeding.

Snapshot xenon lamp,halogen lamp

fast imaging

drug and food wide low short multispectral yes

medical image,

forensic image,

industry image,

agriculture,

forestry detection

archaeological

AI education

pharmaceutical.
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obtains the photoelectric signal value of a single row of
pixels at a time to achieve linear array imaging when light
passes through the slit. The characteristic of pushbroom
imaging is that the imaging speed is significantly improved
relative to the whiskbroom type. The hyperspectral image
the target area can be quickly obtained in a short time, and it
also maintains a high spectral dimension resolution, so this
imaging system has a high market share, and much scientific
research and civilian equipment platforms use this imaging
method [22].

Staring hyperspectral imaging system, compared to
pushbroom imaging mode, its imaging method is to obtain
a single-wavelength image of the entire target area at a time
and sequentially obtain the spectrum of each wavelength
along with the spectral dimension spatial image, and finally,
synthesize a hyperspectral data cube. The advantage of
this imaging mode is that it can image at any starting
wavelength and any wavelength by setting the filter. It can
not only achieve full-spectrum imaging in a wide range of
wavelengths, but also rapid specific wavelength imaging in
a characteristic wavelength range. So it is widely used in
industry and laboratories [23].

Snapshot hyperspectral imaging system is currently the
most popular research point of hyperspectral imaging.
The system is designed to collect all spatial and spectral
information in a single exposure process, completely
removing restrictions of the spatial or spectral scanning.
The snapshot imaging mode removes the time limitation
of scanning imaging and achieves a breakthrough in fast
hyperspectral imaging. However, the imaging design of
the system also limits the spectral resolution and spatial
imaging range [24–26].

3 Application of Hyperspectrum in
Pharmaceutical Quality Inspection

3.1 Application Scenarios of Robots in
Pharmaceutical Industry

Nowadays, more and more attention has been paid
to the medicine safety, and the pharmaceutical quality
testing has become a key problem to be solved urgently
by many pharmaceutical enterprises. However, there are
many problems in the pharmaceutical process, such as
complex pharmaceutical technology, high requirements
for the control of bactericide, and difficult to detect
the tiny pollutant particles in the pharmaceutical process
[27, 28]. Therefore, it is urgent for pharmaceutical
robots to independently complete the pharmaceutical
and testing workflow, effectively control the degree
of sterilization in the production process, improve the
quality testing accuracy of pharmaceutical products, and

achieve efficient independent pharmaceutical and testing
operations.

At present, the application scenarios of pharmaceutical
robots are mainly sterile flexible filling, sealing, vision
detection, sorting and packaging and independent handling
operations [29–35].

In terms of sterile flexible filling and sealing, Zeng et al.,
[31] proposed a positioning algorithm of filling and sealing
robot based on Gaussian mixture model. Gaussian mixture
model was used to cluster bottle mouth images, and the
Euclidean distance between the clustering center of each
image and the mean value of input data was used to give
the prediction center location. This method can accurately
detect the center position of the bottle mouth, which
provides great convenience for the accurate filling and
sealing of the pharmaceutical robot.

In pharmaceutical robot vision detection, Zhou et al.,
[32] proposed an automatic vision detection algorithm of
glass bottle bottom with significant detection and template
matching. In order to solve the problem of glass bottle
bottom detection, a significance detection method was
proposed to locate and search the bottle bottom defect area,
and the template matching method was adopted to detect
the bottle bottom circular texture area. The accuracy of
defect detection by this method is 88.83%, which meets the
engineering application standard and brings a new solution
to the bottom quality detection of glass bottles. In addition,
Zhou et al., [33] proposes a glass bottle bottom surface
defect detection framework based on visual attention model
and wavelet transform on the basis of [32]. The framework
uses the visual attention model to detect the defect area and
boundary, and uses wavelet transform multi-scale filtering
algorithm to reduce the impact of bottle bottom texture.
The accuracy of positioning error is improved. In terms of
abnormal detection of pharmaceutical products by robots,
Zhang [36] proposes a multi-model cascade method of drug
particle detection depth based on CNN and random forest.
For small foreign particles in liquid medicine, a multi-model
cascade method of single frame combined with multi-frame
images is adopted. It can improve the accuracy of foreign
body detection and reduce the rate of missed detection
under the background of strong noise. In addition, Chen
[37] proposes a multi-scale attention-memory autoencoder
network for abnormal detection. This method combines
the superior performance of the autoencoder network in
abnormal sample data reconstruction and the excellent
feature extraction ability of the multi-scale global spatial
attention module to achieve the high-precision detection
effect of medical abnormal samples.

In the pharmaceutical robot sorting and packaging and
independent handling operations, Patchara [38] proposed
the medicine product unloading robot system, the system
uses vacuum gripper and visual positioning module, to
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achieve the rapid sorting and handling of medical products
in a structured environment, greatly improve the production
efficiency.

In general, the application of pharmaceutical robots in
pharmaceutical industry has gradually become mature, and
the technology application of each station in pharmaceutical
production line has also made new progress. In a typical
practical case [27, 28, 39], the widespread promotion
of pharmaceutical robots even in the line of emergency
medical products such as vaccines also confirms the
development trend of the pharmaceutical industry in the
future.

3.2 Raman Hyperspectral Detection Applications

Raman hyperspectral detection technology has a wide range
of research applications in the field of medicine. It mainly
includes active pharmaceutical ingredients detection, drug
authenticity detection, drug component analysis, drug sur-
face coating detection, etc. In addition, Raman hyperspec-
tral detection technology mainly to solve the detection and
identification problem that the traditional industrial vision
can not fix. And the problem how to extract the spectral
information of the drug from the Raman hyperspectral data
has become the focus of the researchers [40, 41].

3.2.1 Finding the Most Valuable Detection Location

Raman hyperspectral technology can only detect a certain
point on the surface of the sample during the detection
process, so how to find a position with the most abundant
Raman hyperspectral information for detection has become
a key research issue. Zhang et al., [42, 43] introduced a
dynamic sampling supervised learning method (SLADS),
which iteratively finds the best sampling position and
obtains the position with the richest Raman hyperspectral
information, which greatly improves the imaging efficiency.
This method can reduce the number of sampling pixels
of the hyperspectral Raman microscope of pharmaceutical
materials by 7 times, and the image quality loss can be

neglected (about 0.1 % error). The combination of this
method and Raman hyperspectral analysis can achieve the
effect of increasing the imaging speed and strengthening the
detection and analysis capabilities, which will greatly help
the quality detection of drugs in the pharmaceutical process.

3.2.2 Analysis of Drug Components

In view of the analysis of drug components, researchers
have proposed their analysis methods according to
the different characteristics of different drug compo-
nents [44–46]. Gut et al., [47] aimed at the analy-
sis of pharmaceutical composition and combined four
multivariate statistical methods PCA(principal compo-
nent analysis), ICA(independent component analysis),
MCR-ALS(multivariate curve resolution—alternating least
squares), and NMF(Non-negative matrix factorization) to
extract the spatial and spectral information of the compound
from the formulation of solid pharmaceuticals. Among
them, the PCA method can effectively find the source of
component variation in the drug matrix. Figure 4 shows
the pharmaceutical composition analysis using PCA meth-
ods [47]. And the ICA method can extract the chemical
information of the drug from homogeneous and heteroge-
neous data sets, NMF and MCR-ALS method can better
distinguish semi-quantitative information in the heteroge-
neous drug data set MALDI(Matrix assisted laser des-
orption/ionization mass spectrometry imaging). In general,
these statistical methods can extract significant signals of
drug composition and display the statistical distribution of
tablet compounds without prior knowledge. Boiret et al.,
[48] proposed an iterative method to identify ingredients
in medicines. This method uses spectral libraries, spectral
distances, and orthogonal projections to iteratively detect
ingredients in tablets. The biggest advantage of this method
is that it is suitable for the analysis of low-dose components.
And the method itself is based on the iterative decompo-
sition of the signal space, it has a better detection effect
under the condition of low spectral contribution and fewer
pixels. This method is of great significance in detecting

Fig. 4 Pharmaceutical
composition analysis using PCA
methods [47]. The left diagram
indicates the computed score of
PCA in drugs and the right
diagram indicates the computed
signals for PCA algorithm
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counterfeit drugs and drug stability. Porquez et al., [49] used
spectral focusing-CARS(Coherent anti-Stokes Raman scat-
tering) hyperspectral technology to perform drug charac-
terization experiments on ibuprofen, acetaminophen crystal
form, and starch adhesives and showed the experimental
results to distinguish between different drugs. This method
uses broadband hyperspectroscopy and fast single-vibration
frequency imaging with microsecond pixel dwell time to
achieve accurate identification of the chemical crystal form
of acetaminophen samples. However, the disadvantage is
that this Raman microscopy detection technology takes a
long time. It takes 15 minutes to obtain the imaging part of
the spectrum, which affects the efficiency of analysis and is
not conducive to the detection and analysis of preparations
on a rapid production line.

3.2.3 Counterfeit Drugs Detection

The problem of authenticity detection of drug tablets is
directly related to the life and health of patients. Counterfeit
drugs not only worsen the patient’s condition but can
even cause death in extreme cases [50, 51]. Figure 5
shows the detection of the counterfeit drugs using the
Raman Hyperspectral method [52]. Especially in relation
to the detection of antimalarial drugs in poor areas,
Coic et al., [53] adopt a multivariate curve resolution-
alternating least squares (MCR-ALS) method to analyze the
Raman hyperspectral image and Fourier transform infrared
spectrogram of the drug. This method found that Raman
spectroscopy is superior to Fourier transform infrared
spectroscopy in elucidating compounds, analysis time, and
data size, which is beneficial to the rapid authenticity
detection and analysis of antimalarial tablets. Frosch et
al., [54] aim at the drug safety of counterfeit antimalarial
tablets, and proposed a new method of Raman hyperspectral
imaging based on optical fiber array, which can directly and
non-invasively quantitatively evaluate antimalarial original
drugs of flumefenidine and artemether in tablets. It brings
a new analytical approach to the identification and analysis
of active pharmaceutical ingredients in antimalarial tablets.
Coic et al., [52] proposed a pixel based method in identifing

counterfeit drugs. This method identifies the essential
spectral pixels in drugs’ Raman hyperspectral images using
convex hull calculation and it greatly decreases the amount
of image data. In addition, it has a remarkable effect on
the indentification of chemical component with different
percentage in counterfeit drugs, and is able to realize
identification taskes of counterfeit drugs reliablely in a
relatively short time.

3.2.4 Detection of Active Pharmaceutical Ingredients and
Coating Thickness of Tablets

The detection of active pharmaceutical ingredients in
pharmaceuticals products generally refers to the quantitative
determination of active ingredients in drugs. [55–57]. As
for the quantitative measurement of acetylsalicylic acid in
drugs, Szostak et al., [58] detected the Raman hyperspectral
images of powder and tablets using the peak intensity, PCR
and PLS methods which achieves excellent performance.
In addition, Frosch et al., [59] proposed a novel Raman
imaging detecting method which could clearly detects
multiple APIs of drugs in a short time. Those APIs
include acetaminophen and caffeine, and the detecting
precision could reach to 1 microns which is able to obtain
accurate detection results in terms of the content, shape, and
agglomeration of the main active ingredients.

In addition, the concentration detection of active ingre-
dients in liquid medicine is also essential in pharmaceutical
quality. Excessive drug concentration may lead to accidents
that endangers people’s health, such as drug poisoning.
However, low drug concentration greatly affects the efficacy
of the drug, which will not only delay the optimal treat-
ment time for patients but also cause irreversible damage
to the quality of pharmaceutical companies [60, 61]. Nagy
et al., [62] aim at the problem that the non-linearity in the
drug Raman spectrum affects the measurement results of the
concentration of drug composition, innovatively proposed
a variable selection method to obtain more accurate quan-
titative results. This method discards the most disturbed
band and retains the normal band as the spectrum range
to be measured, which not only improves the accuracy of

Fig. 5 Counterfeit drugs
detection using Raman
Hyperspectral method [52]. The
figure indicates the results of the
least squares projection on drugs
image data. A) Initial map. B)
Representation of 3 compounds
elucidated by the strategy. C)
Representation of the different
pure spectra obtained by the
strategy
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concentration measurement but also enhances the linearity
of the model, which provides a new idea for the treatment
of drug concentration measurement.

The thickness of the drug coating plays a decisive role in
the dissolution of drugs in the human body and the release
of effective components. Therefore, the detection of drug
surface coating thickness is an important content that cannot
be ignored in drug detection by Raman hyperspectroscopy
[63–65]. Figure 6 shows the detection of the coating
thickness of tablets with the Raman spectroscopy method
[66]. Song et al., [66] innovatively proposed a line mapping
method based on space-shifted Raman spectroscopy to solve
the problem of thickness detection and analysis of protective
chemical coatings for drug deposition. It has achieved signal
calibration and thickness prediction in terms of coating
thickness of acetaminophen. This method mainly relies on
the analysis of Raman intensity ratio of the light back from
the coating and APIs of tablets. And it has a significant
meaning for the industral fast detection of tablets’ coating
thickness.

3.3 Application of Hyperspectral Imaging
Technology in Detection

Compared with the situation where Raman hyperspectral
detection relies on spectral curves for data analysis, hyper-
spectral imaging technology has realized the leap from one-
dimensional line spectroscopy to two-dimensional imaging
plane.Not only has the amount of hyperspectral data greatly
enriched but also it contains spatial plane information that
cannot be obtained by Raman hyperspectroscopy. In this
way, it could expand the application scenarios of hyper-
spectroscopy and contribute to the extended application of
hyperspectral technology in pharmaceutical inspection and
other agricultural and forestry, as well as forensic crim-
inal investigation fields. Table 2 shows the applications
and methods of hyperspectral imaging in pharmaceutical
detection.

3.3.1 Detection of Active Pharmaceutical Ingredients

In the detection of active pharmaceutical ingredients, the
detection of Raman hyperspectroscopy is limited to the

sampling of surface points, and it is impossible to compre-
hensively and accurately detect and analyze the distribution,
uniformity, and other indicators of active pharmaceutical
ingredients. Hyperspectral imaging technology overcomes
the limitations of Raman hyperspectral point sampling and
detecting, and performs wide-band imaging of drugs within
a certain field of view, and obtains spectral images of
drugs at various wavelengths [67–69]. Figure 7 shows the
results of active pharmaceutical ingredients of pharmaceuti-
cals with hyperspectral imaging detecting methods [70, 71].
Kandpal et al., [70] introduce two multivariate data mod-
eling methods for the detection of APIs in finished phar-
maceutical products. This method which combines Partial
Least Squares Regression (PLSR) and Principal Component
Analysis (PCR) technology and benefits from wide-band
hyperspectral imaging technology can completely extract
the spectral characteristics of the main active ingredients
of the drug in the imaging range of 400-2500nm and con-
trol the prediction error of the active ingredients of the drug
species within 4.45%. Howari et al., [71] focus on the spec-
troscopic phenomenon of two active pharmaceutical ingre-
dients under the contamination of the drug surface, using a
hyperspectral camera to collect qualitative data of the drugs.
The results show that this non-destructive, non-polluting,
and fast method is helpful for the production, packaging,
and quality inspection of drugs. Ktash et al., [72] aimed
at the rapid characterization of active ingredients in phar-
maceutical tablets, combined with a 225-400nm ultraviolet
hyperspectral camera for raw materials such as ibuprofen,
acetylsalicylic acid and paracetamol. And principal compo-
nent analysis method is used to identify the hyperspectral
image data of the drugs. This method combines the hyper-
spectral imaging camera of a specific wavelength band to
better extract the ultraviolet spectrum information of the
drugs and realizes the rapid characterization of the drug
composition with a high accuracy rate, which has great
inspiration for the follow-up drug hyperspectral imaging
research.

In addition, Sanhueza et al., [73] introduced the applica-
tion of a confocal laser scanning microscopy hyperspectral
imaging technique to identify, locate and quantify the APIs
in synthetic tablets. And they used the multivariate curve
resolution alternating least squares method (MCR-ALS) to

Fig. 6 Detecting the coating
thickness of tablets with Raman
spectroscopy method [66]. The
left figure indicates the optical
image of cross-section of the
tablet after cleaving and the right
diagram indicates the prediction
result the drug samples
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Fig. 7 Analysis of active pharmaceutical ingredients of pharmaceuti-
cals with hyperspectral imaging methods.Picture(a) presents the result
of NIR hyperspectral image with PCR method; Picture(b) presents

the result of NIR hyperspectral image with PLSR method; Picture(c)
presents the result of Tetracycline hydrochloride NIR hyperspectral
image

analyze the spectral curve, which could perform qualitative
and quantitative analysis of autofluorescent compounds in
the presence of interference. Kandpal et al., [74] combined
short-wave infrared hyperspectral imaging technology to
quickly estimate the content of APIs in powder mixed
samples, and established a calibration model of APIs con-
centration in powder samples using partial least squares
(PLS) regression and least square support vector machines
(LS-SVM). The results showed that hyperspectral imaging
technology could realize the quantification and visualization
of pharmaceutical ingredients, and could be conveniently
used for non-destructive formulation optimization and prod-
uct quality control in the production process. Alexandrino
et al., [75] aimed at the evaluation of the solid-state sta-
bility of pharmaceutical active ingredients and excipients
in solid dosage forms during pharmaceutical production
and storage, and proposed an evaluation model combined
with near-infrared hyperspectral images. The model used
the MCR-ALS algorithm to analyze the overlapping com-
pounds during the pixel solid-phase conversion process.
The results showed that the inhomogeneity of the drug is
prominent, which is of great help to the evaluation of the
solid-state stability of the drug. Nishii et al., [76] aimed
at the detection of API content and surface coating con-
tent in pharmaceutical tablets, and proposed a multivariate
data analysis method combined with a near-infrared hyper-
spectral imaging system. This method could simultaneously
determine the active pharmaceutical ingredient content and
the coating amount of the tablet with high accuracy. The
results show that hyperspectral imaging technology has
great prospects for the detection and analysis of pharmaceu-
tical processes.

3.3.2 The Uniformity Detection of the Drug Component
Distribution

The uniformity of the drug component distribution in
the intermediate product and the finished product is
an important factor of pharmaceutical process. Among
them, the uneven drug composition will greatly affect the

efficacy of the drug and the quality of the drug. Raman
hyperspectroscopy cannot obtain the hyperspectral image of
the entire tablet at one time during the detection process,
so the component analysis application of hyperspectral
imaging technology has become a research hotspot [77–
81]. Bobiak et al., [82] proposed a Ripley’s K-function
and Herfindahl-Hirschman Index (HHI) to describe the
content of hyperspectral images in response to the problem
of ingredient distribution in intermediate and finished
pharmaceutical products in the pharmaceutical process. The
HHI is calculated by summing the squared scores of the
uniformity of all sub-parts in the field of view(FOV).
The Ripley’s K-function is used to estimate the relative
closeness between events. This method effectively solves
the application problem of medicinal component analysis in
hyperspectral images and provides new ideas for subsequent
researchers. Oliveira et al., [83] proposed a new method
that combines hyperspectral image and variation analysis in
response to the problem of heterogeneity characterization
of drugs and analysis of the mixing process of each
component of the drugs. As for the samples and blending
processes, the new method could provide a qualitative and
quantitative description which is suitable for the detection
of inhomogeneity and makes it easier to trace the origin of
abnormal products. Obisesan et al., [84] proposed principal
component analysis and partial least square regression
statistical analysis methods for the uniformity detection of
chitin lignin nanoparticles (CN-NL). This method combines
near-infrared and shortwave infrared hyperspectral imaging
of the drugs to obtain the uniformity results of CN-NL
on the pullulan substrates. It shows that the hyperspectral
imaging combined with chemometrics is a powerful tool for
drug uniformity detecting. Alexandrino et al., [85] aimed at
evaluating the solid-state stability of APIs and excipients in
solid dosage during pharmaceutical production and storage,
and proposed an evaluation model combined with near-
infrared hyperspectral imaging method. The model uses
the multivariate curve resolution alternating least squares
method (MCR-ALS) to analyze the overlapping compounds
during the pixel solid-phase conversion process. It shows
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that the inhomogeneity detecting of the drug is prominent,
which is of great help to the evaluation of the solid-state
stability of the drugs.

3.3.3 Sorting Detection of Different Types of Tablets

Tablets of the same color but different types often appear
in the drug sorting process of pharmaceutical companies.
At this time, industrial cameras are not able to distinguish
the tablets, and hyperspectral imaging technology is helpful
to classify and sort the tablets with the characteristics of
different light reflectance on the surface of different drug
components [86–89]. Figure 8 shows visualized results
of drugs image segmentation and classification. Mazivila
et al., [90]. Mazivila et al. [91] carried out experimental
research in the process of hyperspectral imaging on the
sorting of multi-form tablets. The experiment obtained key
information of drug tests including the identification of
drugs, the spatial distribution of the APIs of the finished
drug, the change of the tablet shape due to inappropriate
storage conditions, or the moisture of the excipients, and the
change of the solubility of the drug during the crystallization
process. The application of related drug detection provides
a precedent for hyperspectral imaging detection. Kaneko
et al., [88] introduced an infrared hyperspectral detection
method to sort pharmaceutical tablets using the nearest
neighbor algorithm. In addition, it combines genetic
algorithms to select characteristic wavelengths, and finally
realizes the sorting of three experimental tablets. This
method is simple and practical, and can greatly reduce the
cost of hyperspectral detection of drugs, but it may be
difficult to apply to the detection of complex and multiple
types of pharmaceutical tablets. Liu et al., [90] introduced
a convolutional neural network method to analyze near-
infrared hyperspectral data and detect the hyperspectral
image data of Chinese herbal medicine, coffee beans,
and strawberries, achieving 96.72% classification accuracy.
Compared with support vector machine, one-dimensional
CNN uses the learning weight of the two-dimensional
branch in 2BeCNN as an indicator of effective wavelength,
and compares it with the successive projection algorithm.
The robust detection and sorting effect are achieved with

the image characteristics of spectral and spatial dimensions
token into account.

3.3.4 Detection of Counterfeit Drugs with Hyperspectral
Imaging

In the field of pharmaceutical quality inspection, counterfeit
drugs are the focus of government department. Counterfeit
drugs will cause irreversible damage to people’s life and
the healthy development of the pharmaceutical industry.
However, most of the current detection methods are invasive
and destructive detection methods, such as chemical
detection methods and chromatograph detection methods.
Not only are the detection speeds slow to achieve mass
detection, but they also destroy the appearance of drugs
and affect the quality of the products which is harmful
to the second sale [92, 109–111]. For the detection of
counterfeit drugs, Shinde et al., [109] combined visible
and near-infrared hyperspectral imaging equipment and
proposed a multi-layer perceptron method. The author
distinguishes between genuine and counterfeit drugs by
adding calcium carbonate powder to standard drugs
and achieved a classification accuracy of more than
90% in the final experimental results. The method is
simple and fast and is suit able for quality inspection
and authenticity identification of finished pharmaceutical
products. However, this method needs to be improved to
achieve real market applications in the highly rigorous
pharmaceutical market. Wilczyński et al., [112] aimed at
the difficulty of detecting counterfeit drugs, and proposed
a hyperspectral imaging detection and analysis method to
perform gray level co-occurrence matrix analysis (GLCM)
and PCA on drug tablets. The results showed that GLCM
contrast analysis value of counterfeit drugs is 16% higher
than the standard. In addition, the experiment also found
that this method could quantitatively analyze the uniformity
of the tablet composition, which is of great significance for
distinguishing counterfeit drugs from inferior drugs. França
et al., [113] aimed at the problem of drug quality control,
studied the use of near-infrared hyperspectral cameras to
image tablets with different expiration dates, and used the
imaging results to evaluate the degradation of captopril

Fig. 8 Visualized results of
pinellia ternata and arisaema
consanguineum schott images
with different methods
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on the different layers. The author used the multivariable
curve resolution (MCR) model to obtain the concentration
distribution maps of the drug which was extracted from
the hyperspectral image. Then, a standard model was
established to evaluate relationship between the image
features and the degradation date of the product to achieve
the control of the drug quality. The results show that this
method is of great significance for improving safety of drugs
and preventing drug degradation.

3.3.5 Detection of Drug Coating Thickness and Hardness

In terms of the detection of drug coating thickness
and hardness, hyperspectral imaging technology uses the
advantages of wide-band imaging to better detect the
thickness and hardness of drug surface coatings [114–117].
Pavurala et al., [118] aimed at the detection of the thickness
of the coat of transdermal drug delivery systems, combined
with near-infrared hyperspectral imaging technology to
obtain the spectral and spatial image information of the
coating, and established a Partial least squares (PLS) model
to detect coating thickness. The fit of this method reaches
99.33%, and the detection accuracy also reaches 99.33%.
The results show that PLS model could detect changes in
coating thickness and identify abnormalities such as coating
uneven areas and bubbles. Daikos et al., [119] proposed
a PLS method combined with near-infrared hyperspectral
imaging technology for the detection of the thickness of
the acrylic coating on the surface of drugs, and established
a calibration model for the drug coating and measured the
reference value of thickness conversion under the reflection
imaging of infrared spectrum. This method also had an
excellent effect in visualizing the spatial distribution of
the coating surface and the unevenness of the coating.
The results showed that hyperspectral imaging detection
had great application prospects in the pharmaceutical
process and quality control. Kandpal et al., [120] aimed
at the detection of the hardness and the distribution of
active ingredients of pharmaceutical tablets, combined
with hyperspectral imaging and near-infrared spectroscopy
detection technology, and proposed a method combining

PLSR and PCA to estimate tablet hardness and visualize the
component distribution of samples. This method used the
latest spectral imaging technology to solve the problem of
non-invasive detection of the mechanical strength of drugs
and provided new ways for the hardness detection and active
ingredient analysis of pharmaceutical tablets.

3.3.6 Detection of Herbal Medicines

Herbal medicine has received extensive attention from
pharmaceutical workers and patients in recent years. Its
mild therapeutic effects and unique pharmacological effects
have excellent effects in the treatment of many diseases.
However, the quality control of herbal medicines has
always been a difficult problem. On the one hand, the
quality identification of medicinal materials usually relies
on manual experience, which is easily interfered by human
subjective factors, on the other hand, it is difficult to
accurately detect the quality of medicinal materials by
machine vision. Hyperspectral imaging technology has
natural advantages in herbal medicine detection. Wide-
band imaging could accurately detect and analyze herbal
medicines of various varieties, origins, and seasons, which
brings great convenience to the quality detection of herbal
medicines [121–124]. Figure 9 shows herbal medicines
analysis using the hyperspectral imaging method [125].

Djokam et al., [125] proposed a PCA principal compo-
nent analysis method combined with short-wave infrared
hyperspectral imaging technology for the quality inspec-
tion of medicinal materials such as herbal medicine. This
method detected the quality of the 920-2514nm hyperspec-
tral image data of tea raw materials and tea bags, the results
of which show that the characteristic spectra of scented
teas from different origins were significantly different. In
addition, the author also combined the partial least squares
discriminant analysis (PLS-DA) method to accurately pre-
dicts the raw material composition and proportion of each
mixture. This method showed that hyperspectral detection
technology, as a reliable, rapid, and non-invasive method,
could be used for the identification and ratio analysis of
the origin of herbal medicines. Kong et al., [126] aimed

Fig. 9 Herbal medicines
analysis using hyperspectral
imaging method. And the right
diagram illustrate two distinct
pixel clusters colored according
to score values corresponding to
the two teas
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at the problem of detecting the content of propylene gly-
col (MDA) in herbal medicines. They studied a competitive
adaptive reweighted sampling (CARS) method based on the
extreme learning machine (ELM) model. The experiment
combined with PLS method had achieved 92.9% results
in the prediction of herbal propylene glycol content. The
results showed that hyperspectral imaging technology had
huge advantages in the detection of propylene glycol con-
tent in herbal medicines, and its non-invasive and rapid
detection process was suitable for the qualitative detec-
tion of industrial drugs. Badaró et al., [127] aimed at the
analysis of pectin content in citrus peels, and used multivari-
ate statistical analysis combined with short-wave infrared
hyperspectral images in the 900-2500nm band to analyze
the pectin content of different types of citrus peels. In terms
of detection accuracy, PLSR method based on the full spec-
trum has high accuracy (92%-94%). Results. In addition, the
surface shortwave infrared hyperspectral imaging technol-
ogy had considerable potential in the quantitative analysis
of the content of pectin in the peel. As a fast, non-invasive
new detection method, hyperspectral detection and analy-
sis technology has the incomparable advantages of chemical
detection methods.

3.4 Machine Vision Applications for Hyperspectral
Images

As a kind of digital image, hyperspectral image data is
characterized by more spatial data of spectral dimension
in data dimension. Therefore, in the face of hyperspectral
image data with surging data volume, general method
with strong selection feature extraction ability and good
generalization performance is a hot topic in current research
[128–131]. Deep learning is recognized as a powerful
feature extraction method and a method to deal with
nonlinear problems. Its research in image processing covers
all levels of natural science, so it also has rich reference
significance in the processing of medical hyperspectral data
[132, 133].

In the early study of hyperspectral image processing,
there are many pixel level methods, such as neural
network [134], support vector machine [135], polynomial
logistic regression [136, 137] and so on. These methods
are mainly applied to the classification and detection of
hyperspectral images, such as drug sorting, counterfeit
drug detection and so on. With the deepening of relevant
studies, the feature extraction capability of network
has attracted the attention of researchers. Therefore, in
terms of the design of convolution kernel, For example,
composite kernel [138] and moldova kernel [139, 140]
and other designs focusing on image feature extraction
ability are gradually popular in this field. However, the
prominent feature of hyperspectral images lies in the

strong correlation between spectral images. Therefore, Liu
[141] et al.,proposed a method based on active learning,
which has a strong ability to extract spectral features of
hyperspectral images. In addition, Zhong [142] et al., also
proposed an improved method. The precision of image
classification is improved by fine-tuning the pre-training
model. In the aspect of network design of spectral feature
extraction, there are 1-d CNN [143–146], 1-d GAN [147,
148] and RNN [146, 149, 150], etc. These researches
bring new ideas to the processing of medical hyperspectral
images.

4 Challenge and Perspective

Immunologists typically use the number of fluorescent
immune cell footprints or spot-forming cells to assess the
immune response and the protection the vaccine provides
when evaluating indicators such as the effectiveness of a
vaccine product. In addition, the imaging and counting of T
cells and other immune cells can not be separated from the
support of hyperspectral technology. [151–154]. At present,
due to the limitation of spectral imaging technology,
imaging detection and analysis of immunoglobulin and
other immunoactive molecules cannot be applied and
promoted at the industrial level for the time being. However,
it is believed that hyperspectral technology will play a
unique role in the detection and application of vaccine
products with the breakthrough of technology in the near
future.

At present, the application of hyperspectral technology
in the pharmaceutical field is still limited to the fields
of active drug component detection, drug authenticity
identification, drug component analysis, and drug coating
thickness detection. Drug detection methods are mostly
concentrated in principal component analysis (PCA), with
partial minimum In terms of statistical analysis methods
such as quadratic regression (PLSR), the application
scenario is generally to do sample testing in the laboratory,
and it has not been extended to industrial pharmaceutical
production lines and other places. Therefore, the current
application prospects of hyperspectral technology in the
field of pharmaceutical testing are broad, but the challenges
are huge. How to implement the application of hyperspectral
technology in pharmaceutical detection in the industrial
pharmacy scene with high precision and low cost is the
biggest challenge at present. The lack of pharmaceutical
hyperspectral data sets and insufficient research enthusiasm
are important factors restricting the further development of
this technology. Therefore, researchers not only need to
expand from detection methods to commonly used methods
of machine vision but more importantly, they need to
continuously introduce common pharmaceutical detection
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data sets to support the continuous progress of hyperspectral
technology in this field.
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100. Sacré, P.-Y., Lebrun, P., Chavez, P.-F., Bleye, C.D., Netcha-
covitch, L., Rozet, E., Klinkenberg, R., Streel, B., Hubert,
P., Ziemons, E.: A new criterion to assess distributional
homogeneity in hyperspectral images of solid pharmaceu-
tical dosage forms. Analytica Chimica Acta. 818, 7–14
(2014)

101. Firkala, T., Farkas, A., Vajna, B., Farkas, I., Marosi, G.:
Investigation of drug distribution in tablets using surface
enhanced Raman chemical imaging. J. Pharm. Biomed. Anal. 76,
145–151 (2013)

102. Wahl, P.R., Pucher, I., Scheibelhofer, O., Kerschhaggl, M.,
Sacher, S., Khinast, J.G.: Continuous monitoring of API content,
API distribution and crushing strength after tableting via near-
infrared chemical imaging. Int. J. Pharm. 518(1-2), 130–137
(2017)

103. Piqueras, S., Duponchel, L., Tauler, R., De Juan, A.: Monitoring
polymorphic transformations by using in situ Raman hyperspec-
tral imaging and image multiset analysis. Analytica Chimica
Acta 819, 15–25 (2014)

104. Farias, M.A.d.os.S., Carneiro, R.L.: Simultaneous quantification
of three polymorphic forms of carbamazepine using raman
spectroscopy and multivariate calibration. Anal. Lett. 47(6),
1043–1051 (2014)
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