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ABSTRACT The use of simulators in robotics research is widespread, underpinning the majority of recent
advances in the field. There are now more options available to researchers than ever before, however
navigating through the plethora of choices in search of the right simulator is often non-trivial. Depending
on the field of research and the scenario to be simulated there will often be a range of suitable physics
simulators from which it is difficult to ascertain the most relevant one. We have compiled a broad review of
physics simulators for use within the major fields of robotics research. More specifically, we navigate through
key sub-domains and discuss the features, benefits, applications and use-cases of the different simulators
categorised by the respective research communities. Our review provides an extensive index of the leading
physics simulators applicable to robotics researchers and aims to assist them in choosing the best simulator

for their use case.

INDEX TERMS Simulation, review, robotics, field robotics, soft robotics, aerial robotics, marine robotics,

manipulation, robotic learning, surgical robotics.

I. INTRODUCTION

Physics simulators enable the vast majority of robotics
research. It is commonplace to test and prove theoretical
methods initially or solely in a simulator as robots themselves
are oftentimes expensive, fragile and scarce. Physics simula-
tors overcome these issues as they provide an environment
that is cheap and allows users access to a variety of desired
robots without the potential to degrade or break the physical
platform. Simulation can run faster than real time (which is
especially important for learning-based approaches), is par-
allelisable, and does not need to be physically tended for an
environment to be reset.

The landscape of commercial and open source simulation
options for researchers is in a state of perpetual flux, as new
simulators are added to support the latest research trends,
while others are deprecated. It is naturally difficult, there-
fore, to select an appropriate simulator for a given robotics
project, and the literature to date reports an absence of any
sort of comprehensive guide to help researchers find the
right simulator for their specific purpose. Existing literature
has a number of studies that compare the replication of
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real-world physical accuracy and constraint satisfaction of
physics engines, however, these studies often only compare
a small subset of simulators and are usually focused on
specialised tasks or sub-domains without consideration for
robotics as a whole [1]. Many studies summarise information
which can easily be gathered from simulator websites and
forums without adding significant value from a research per-
spective [2]. The capabilities of these simulators in a variety
of robotics-specific tasks is not explored or compared against
one another.

Through this review we aim to fill the research gaps
highlighted above. We focus on seven sub-domains which
together capture the majority of robotics work involving sim-
ulators. In each sub-domain we discuss current challenges in
the field, highlight the necessary capabilities of robotics sim-
ulators used in the field, and describe existing approaches to
robot simulation in the literature of the sub-domain. Finally,
we provide a summarising table in each section which details
the capability of numerous robotics simulators in features we
have identified to be relevant to robotics simulation in the sub-
domain.

We define a robotics simulator as an end-user software
application that includes at least the following functional-
ity: (i) physics engine for realistic modelling of physical
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FIGURE 1. Diversity of simulation scenes and environments throughout robotics (a) soft robotics in Simulation Open Framework Architecture [3],
(b) medical robotics in Asynchronous Multi-Body Framework [4], (c) manipulation in PyBullet [5], (d) dexterous manipulation in MuloCo [6], (e) legged

locomotion in RaiSim [7] and (f) underwater vehicles in URSim [8].

phenomenon, (ii) collision detection and friction models,
(iii) Graphical User Interface (GUI), (iv) import capability
for scenes and meshes, (v) API especially for programming
language used by the robotics community (c+-+/Python),
and (vi) models for an array of joints, actuators and sen-
sors readily available. This review covers only simulators
which are actively being developed, used, or maintained.
It is our understanding that anything otherwise would be
of limited importance to the research community in the
long-term. Additionally, this review focuses on robotics sim-
ulators and not physics engines. Physics engines are inte-
gral to every robotics simulator, but a physics engine alone
does not constitute a robotics simulator unless it satisfies
all criteria we use to define what a robotics simulator
is.

This review acts as a guide to assist researchers in short-
listing the most relevant simulators for a given application
to aid their decision making. We map out the landscape of
current robotics simulators by categorising simulators that are
actively maintained, and provide exemplar tasks and func-
tionality that makes a simulator useful for a particular field or
sub-domain. For each category we also provide a standardised
summary table for concise communication of simulators and
features. Figure 1 demonstrates the diversity of simulation
environments required within robotics. The popularity of the
robotics simulators discussed in sections II-VIII is portrayed
visually in Figure 2.
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We recommend researchers use this review as a guide for
selecting a simulator for their particular research endeavour.
We suggest first that a user has some idea of the particular
robot platform(s) they wish to simulate (e.g. UR10, Husky,
etc.), the method of actuation of the robotic platform(s),
the sensors they intend to use and the physical operating
environment (e.g. air, underwater, sand, city streets, etc.).
The user then infers the relevant robotics research community
from the denoted platform, so that, e.g., robot arms are found
under manipulation. From here, we identify a subset of simu-
lators that are likely to provide support for the required meth-
ods of actuation, sensors, and operating environment. If the
planned endeavour is a crossover between fields, e.g., under-
water manipulation, we suggest that all relevant sections be
considered.

Il. MOBILE GROUND ROBOTICS

Autonomous ground vehicle research — including legged,
wheeled and tracked robots — is one of the largest stud-
ied domains in robotics. There are many fields which
are incorporated in this sub-domain, including navigation,
locomotion, cognition, control, perception, Simultaneous
Localisation and Mapping (SLAM), and many others [9].
To motivate the use cases for simulators within mobile
robotics we begin by investigating current challenges and
competitions being run that represent some applications of
mobile robotics research. The most prominent challenges are
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FIGURE 2. Citation count from 2016 to 2020 for reviewed simulators. Citations were gathered from Google Scholar using either one or more of a
simulators’ research paper, reference manual or other citation type and then filtered for robotics keyword.

TABLE 1. Feature comparison between popular robotics simulators.

the Defense Advanced Research Projects Agency (DARPA)
organised robotics challenges, starting in 2003 with an
autonomous driving challenge, continuing in 2012 with a
search and rescue challenge and now a subterranean com-
petition running since 2018 [10]-[12]. The most current of
these requires a team of robots to collaboratively navigate and
map underground GPS denied environments to find human
survivors, this event even hosts a virtual competition that is
to be completed in the Gazebo simulation environment.

DIJI has been running a robot competition featuring mobile
robots since 2015. The task is to employ a team of robots in
an arena to battle an opposing team using projectiles [13].
RoboCup is another prominent challenge that sees teams
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RGBD
Simulator Force  Linear + Cable  Multi-Body  Soft-Body DEM Fluid Headless ROS HITL Teleoperation Realistic Inverse
LIDAR Sensor Acutator Import Contacts Simulation ~ Mechanics Mode Support Rendering  Kinematics
i
Airsim v X X X X X X v v v v v/, unreal X
CARLA v X X X X X X v v X v v/, unreal X
CoppeliaSim | v v Linear v X v X v v v v X v
only
Gazebo v v Linear v X Through Through v v v v X v
only Fluidix Fluidix
MuloCo v v v v v v Limited v x  HAPTIX  HAPTIX x x
only only
PyBullet v v Linear v v v x v x x v x v
only
SOFA X X v v v v v v v v v v/, Unity X
UWSim RGBD v X v X X X v v v v v/, custom X
only
Chrono v v v X v v v v X X v v, offline v
Webots v v linear v X X Limited v v X v X X

of mobile robots compete in games of football. Depending
on the league, robots can either be legged or wheeled [14].
Each of these challenges require multiple robots to: coexist
in the same environment and potentially interact with one
another; navigate through and interact with terrain that may
be geometrically uneven; and perceive the state of the robot
in its environment with a suite of onboard sensors such as
LiDAR, stereo-camera, GPS, or IMU.

Gazebo is a popular robotics simulator used in a wide range
of mobile ground robot state-of-the-art (SOTA) research,
for both legged [15], [16] and wheeled [17] robots. The
Robot Operating System (ROS) interface provided by Gazebo
contributes to the simulator’s popularity, and simplifies the
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process of testing control software in simulation and transfer-
ring it onto the physical system. Gazebo also offers a model
library for many commonly used sensors such as camera,
GPS, and IMU. Gazebo provides capability to import envi-
ronments from digital elevation models, SDF meshes, and
OpenStreetMap. It is also possible to import robot models
from the Universal Robot Description Format (URDF) files.
Being a rigid body simulator, the simulator runs quickly and
can simulate multiple robots in real-time. Although Gazebo
itself doesn’t provide motion planning functionality, its tight
integration with ROS allows ROS path planners to be used.

CoppeliaSim (previously V-Rep) is another popular choice
for simulating ground-based mobile robots. SOTA research
uses CoppeliaSim for navigation planning of bipedal
robots [18], differential-drive robots [19], and visual tra-
jectory tracking of differential-drive robots [20]. Similar to
Gazebo, CoppeliaSim is a rigid-body simulator which is
able to simulate multiple robots in real-time. It also supplies
a large model library of common mobile robot platforms
and sensors including 2D/3D laser, accelerometer, stereo-
camera, camera, event camera, GPS, and gyro. CoppeliaSim
offers path planning functionality through the commonly
used OMPL library and supports height-fields for terrain
specification.

Webots is another popular alternative, and is used in
SOTA research to investigate, e.g., the performance of
non-holonomic robot trajectory tracking [21], and to evolve
bipedal robot gaits [22]. Webots has a large model database
of mobile robots, environments and sensors. Sensors include
accelerometer, camera, compass, GPS, inertial measurement
unit, LIDAR, and radar. Webots also supports maps to be
imported using the openDrive file format.

Raisim [7] is a rigid-body physics simulator developed by
ETH Zurich, used in research into learning dynamic policies
for legged platforms [23]. Raisim allows uneven terrain to be
imported using height-map images. Raisim is not as full fea-
tured as other reviewed mobile robot simulators but instead is
developed to provide high fidelity contact dynamics models
which are needed for transferring controllers from simulation
to reality.

SOTA work into transferring locomotion policies for
quadrupeds from simulation to real-world platforms was con-
ducted using the PyBullet simulator [24] along with research
into visual navigation on the turtlebot platform [25]. Pybullet
is applicable to most mobile robotics applications as it sup-
ports rigid-body simulation with the possibility of faster than
real-time simulation of multiple robots. It also supports the
import of height-fields for terrain geometry specification. The
sensors supported by PyBullet are quite minimal compared to
other more specific mobile robot simulators with support for
cameras and several less relevant sensors.

The recent large scale investment into self-driving cars has
yielded a comparably large amount of research into the field
of autonomous cars with the CARLA simulator a by-product.
Several SOTA papers use CARLA for learning driving poli-
cies [26] and transferring policies trained in CARLA to the
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real world [27]. CARLA is a simulator targeted at self-driving
car research and therefore has features aligned with this goal.
It is scaleable to allow for large scenes through a distributed
architecture and includes ROS integration. CARLA provides
support to import environments through the openDRIVE file
format. A large number of sensors are available for use
including GPS, IMU, LIDAR, Radar and Camera. CARLA
uses PhysX to compute the vehicle physics although the
settings available to the user are restricted.

Table 2 provides a comparison between the capabilities of
the discussed robotics simulators in areas that are identified
to be critical to the domain of mobile ground robots. Critical
features identified include the ability to model sensors com-
monly used in the field, as well as common forms of loco-
motion, ability to import various environments, and inbuilt
support for ROS. If the user wishes to realistically model
complex environments, including sand, water, and gravel,
Project Chrono provides this capability through an inbuilt
Discrete Element Method (DEM) model [28].

IlIl. MANIPULATION

The manipulation community within robotics is large and
diverse, exploring everything from physical design of arms
and grippers to algorithms for motion planning and control.
Recent competitions and benchmarks provide insight into the
current research avenues within the field and as an extension,
the use cases for simulators within the manipulation research
community.

One of the most prolific annual competitions is Robocup,
which has a league called Robocup@home [29] for assistive
robotics that compete in a domestic setting. Tasks that must
be completed as part of the challenge rely upon manipulat-
ing rigid and deformable objects. The Tidy Up My Room
Challenge from the International Conference on Robotics
and Automation (ICRA) 2018 [30] and Fetch it! The Mobile
Manipulation Challenge [31] are two additional challenges
that are similar in that they all require multiple mobile manip-
ulation platforms to complete multi-step tasks which include
manipulation, often of rigid objects.

Other relevant challenges include the Amazon picking
challenge, held between 2015 and 2017, which required
robots to complete pick-and-place style tasks of seen and
unseen objects, some of which were deformable and oth-
ers which were transparent [32]. Most recently a challenge
called the Real Robot Challenge looks at the dexterous
manipulation of objects in both simulated and real-world
environments. There are a number of benchmarks proposed
within the manipulation community for benchmarking phys-
ical as well as algorithmic advances, relevant benchmarks to
our review are task-based and include pick-and-place [33],
assembly [34], peg-in-hole [35] and deformable objects [36].

From here we see that the field is at a state of simulating
multi-task or multi-step scenarios, requiring the fine move-
ment and contact modelling of rigid bodies. This, combined
with the self-expletive need for stable physics that robustly
handles contacts, reduces the field of viable simulators. To be
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TABLE 2. Feature comparison between popular robotics simulators used for Mobile Ground Robotics.

Simulator GPS  Tracks Wheels Legs Meczl\r;/t;lgells)mnl H?lnglzgﬁap O;())fnesnt]i')erel:ls/llap Pathplanning Sli)(;))irt RGBD LiDAR RRe izgésrzlncg
Gazebo v v v v v v X v v v v X
CoppeliaSim v v v v v v X v v v v X
Raisim X X v v X v X X X v v v/, Unity
Webots v v v v v v v v v v v X
PyBullet X X v v X v X v X v v X
CARLA v X v X X v v v v v v v/, Unreal
Project Chrono v v v v v v X X X v v v/, POV-Ray

TABLE 3. Feature comparison for popular robotics simulators used for Manipulation.

Simulator Pathplanning  Inverse Dynamics  Inverse Kinematics ~ Suction  Deformable Objects ~ Force/Torque Sensor ~ Realistic Rendering
SimGrasp v v v X X v X
Gazebo v v v X X v X
CoppeliaSim v X v v X v X
Pybullet v v v X v v X
MuJoCo X v X X v v X
NVidia Isaac v X v v v v v

useful for manipulation, research simulators must have actu-
ator models for position control, velocity control, and torque
control, as these are the most commonly used modes of
control for physical arms. The simulator needs to support
torque sensors as well as visual sensors, namely RGB and
RGB-D. Finally, built-in features that are relevant specifi-
cally for manipulators are Inverse and Forward Kinematics
solvers, and path planning. Less common — but becoming
more relevant as computation becomes cheaper — is the need
for modelling deformable objects as the underlying assump-
tion that the robotics world is entirely rigid does not hold
true.

Recent SOTA research has utilised a range of simulators
for producing results. The capabilities of these simulators
in areas relevant to the domain of robotic manipulation is
summarised in Table 3. MuJoCo [37] is a simulator com-
monly employed within research, with notable contact sta-
bility being a reason for its popularity [38]. It was applied
in an in-hand manipulation context for solving a Rubiks cube
with a 24DOF robotic hand actuated with tendons [39]. SOTA
research uses MuJoCO to train policies for robotic manipu-
lators in simulation, whether just for proof of concept [40] or
for later transferring onto real-world systems [41]-[43]. From
the list of features a good manipulation simulation should
have, MuJoCo supports most but lacks support for inverse
kinematics and path planning.

Pybullet is used in studies with object collisions [44], pick
and grasp dynamics [5] and for deformable object manip-
ulation (i.e. cloth) [45]. Pybullet has a strong robotics tar-
get with functionality specifically implemented for those
researching robotics. Functionality that may assist manipula-
tion researchers includes: forward/inverse kinematics; Rein-
forcement Learning (RL) environments; Virtual Reality (VR)
integration (for task demonstration); and deformable object
and cloth simulation (Finite Element Method).

Gazebo [46] is used for robotic manipulation research [47],
[48]. Although neither of these investigations rely on Gazebo
to conduct dexterous manipulation, one of the studies did
explicitly augment the simulation with external algorithms
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to deal with non-rigid bodies. Gazebo provides a simulation
environment with the necessary actuators and sensors for
robotic manipulation. It also provides support for ROS, which
provides packages for forward and inverse kinematics, as well
as path and motion planning.

CoppeliaSim is a robotics simulator with a range of
user-centric features including sensor and actuator models,
as well as motion planning, and forward and inverse kine-
matics support. PyRep was recently introduced as a python
toolkit for robot learning built on CoppeliaSim, and has
been shown to be capable of being used for manipulation,
explicitly picking and placing cubes using a Kinova robot
arm [49].

SimGrasp is used in a study for the design and simulation
of tendon-driven underwater robotic hands [50]. It is a simu-
lation package built on top of the Klampt’t simulator, which
markets itself as having better collision handling than the
previously-mentioned manipulation simulators [51]. Klamp’t
lends itself to fast deployment of dexterous manipulation in
robotics through the simulation of actuators and sensors with
kinematics, dynamics and path planning.

Several works simulate deformable object manipulation
using physics simulators that this review does not clas-
sify as robotics simulators. One such work uses Blender
for cloth simulations [52], however this investigation only
simulates cloth and the displacement of picked cloth co-
ordinates. Another study uses Nvidia Flex to simulate fluids
and deformable objects but abstracts away robot interac-
tions [53]. Additionally, another work with Nvidia Flex sim-
ulates a robot completing a swinging peg-in-hole task with
a 7-DoF Yumi robot. Flex is available through the ISAAC
simulator [54].

IV. MEDICAL ROBOTICS

Medical robotics is a sub-domain of robotics research apply-
ing automation and robotics to e.g., surgery, therapy, reha-
bilitation and hospital automation [55]. Unlike competitions
in other sub-fields of robotics, medical robotics does not
have competitions focused on solving specific tasks, instead
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TABLE 4. Feature comparison of popular robotics simulators used for Medical Robotics.

Simulator Teleop  Haptic Feedback  Tendon Actuator ~ Deformable Objects VR support
SOFA v v v v Unity
Chai3D v v X v v
AMBF v v X v v
FLEX v v v v Unity + Unreal
CoppeliaSim v Chai3D plugin X X v

competitions are often judged based on the innovation of sub-
missions. Examples of medical robotics competitions include
the United Kingdom Robotics and Autonomous System Med-
ical Robotics for Contagious Diseases Challenge [56] and the
Kuka Medical Robotics Challenge [57]. The wide range of
applications for medical robotics limits the number of medi-
cal robotics benchmarks to base the requirements of a medical
robotics simulator on. We therefore base the requirements of
medical robotics simulators on the needs of recent research
being conducted in this field.

Due to the nature of therapeutic and rehabilitation interven-
tions, studies are typically conducted in reality only. Instead,
we focus on simulation for robotic surgery, including training
and practice for real surgeries with a robotic surgical system,
and training autonomous agents to attempt surgery in a safe
environment.

The most prolific robotic surgical system is the da Vinci
by Intuitive Inc., which consists of multiple arms with both
rotational joints and tendon driven joints [58]. There are
research robotic platforms that have been developed with
similar hardware to the da Vinci, including the Raven II [59].
To realistically simulate these platforms, a simulator must be
capable of simulating rotational as well as prismatic joints
and should ideally simulate the tendons in both these robots
for accuracy.

Surgeries performed with a robotic surgical system are
often teleoperated by the surgeon. State of the art teleop-
eration controls have haptic feedback which gives the user
force/torque feedback directly from the robot [60]. Robotics
simulators for research into medical robotics benefit from
having the tools to provide simulated force/torque feedback
for haptic devices. Simulators which take in user input for
teleoperation must run in real-time, otherwise user input
would result in a delayed action in the environment. Robotic
simulators for medical robotics also require deformable
object simulation. As humans consist primarily of non-rigid
tissue, realistic simulations require the ability to simulate
deformable objects.

There are several simulators that offer some or all of
the features required of a simulator in medical robotics.
SOTA research in the domain of medical robotics uses
robotics simulators such as the Simulation Open Frame-
work Architecture (SOFA), CHAI3D [61], Asynchronous
Multi-Body Framework (AMBF), CoppeliaSim, and Uni-
tyFlexML. The capabilities of the identified simulators in
areas relevant to the domain of surgical robotics is sum-
marised in Table 4.
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SOFA is a medical simulator used to study force and ther-
mal feedback methods for minimally invasive surgery [62].
SOFA offers a plugin for teleoperation and haptic control,
supports real-time deformable object simulation and through
arobotics plugin supports tendon driven joints. These features
paired with the strong focus on medical applications makes
SOFA a good candidate for medical robotics research requir-
ing simulation.

CHAI3D is another simulation framework used in medical
robotics research to learn a neural network for autonomous
tissue manipulation in simulation [63]. CHAI3D sup-
ports multi-DOF teleoperation controllers and haptic feed-
back systems, real-time simulation, and deformable object
simulation.

AMBEF is a simulator for medical applications developed
at the Automation and Interventional Medicine Robotics
Research Laboratory at Worcester Polytechnic Institute, built
around CHAI3D and the bullet physics engine [4], [64].
AMBF enables fast-running simulation which uses CHAI3D
for teleoperation support and haptic feedback, and bullet for
soft body simulation and prismatic joints.

UnityFlexML is a simulator developed for use in machine
learning applications [65]. It is based on Unity which has a
large network of supported plugins including Nvidia flex for
deformable object simulation and teleoperation control with
haptics.

The remaining simulators used for research in medical
robotics offer a limited subset of the necessary features iden-
tified. For example CoppeliaSim is used as a deep rein-
forcement learning environment to train both pick and reach
policies on a surgical robot where deformable objects are not
required [66]. CoppeliaSim does however support teleoper-
ation and haptic feedback through a CHAI3D plugin, and
supports prismatic joints for realistic simulation of surgical
robot joints.

Another simulation environment that was used for medical
research was a custom implementation using Open Dynam-
ics Engine (ODE). ODE was used in the presentation of
a framework for training users for robotics surgery [67].
Although ODE is a physics-engine and not a robotics simu-
lator, the users added additional support for teleoperation and
haptic feedback for use with the Raven II surgical robot.

V. MARINE ROBOTICS
Simulators for marine robotics can be divided into two cat-

egories, namely those which are designed for underwater
vehicles (AUVs, ROVs, etc) and those which are suitable
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TABLE 5. Feature comparison of popular simulators used for marine robotics.

Simulator | Hydrodynamics  Hydrostatics ~ Thruster  Fins Psressure GPS DVL Reahspc Conta(':t Wind  Waves Water
ensor Rendering Dynamics Currents
UWSim v X v X v v v v/, 0sgOcean v X v X
Uuuv v v v v v v v X v X X X
Stonefish v v v X v v v v/, custom v v v v
URSim v v v X v X X v/, Unity X X v X
USVSim v v v v v v v X v v v v

for surface vehicles (USVs, Ships, boats, etc). Competi-
tions such as the Singapore AUV Challenge (SAUVC) [68],
RoboSub [69], RobotX [70] and MATE ROV [71] focus
on practical, challenging missions. The interested reader is
directed towards [72] which provides an excellent review
of such competitions in the field of marine robotics and
the summary in Table 5 that summarises the capabilities
of the reviewed simulators. The design of marine robots
is greatly aided by high fidelity simulation in areas such
as navigation, waypoint following, seabed mapping, and
sensor-based control [73]. A good simulator should support
different types of controllable vehicles, manipulators, sen-
sors, and complex environments with accurate representation
of hydrodynamic/hydrostatic forces. UWSim [74] and UUV
Simulator [75] are the two most widely used options for
underwater simulation.

Unmanned Underwater Vehicle (UUV) Simulator [75] is
an extension for Gazebo which supports multiple underwa-
ter vehicles (ROVs and AUVs) and robotic manipulators
with high fidelity representation of hydrostatic and hydro-
dynamic forces. A number of commonly used sensors are
included eg. underwater camera, pressure sensor, IMU, Mag-
netometer, Doppler Velocity Log (DVL), etc. Models for fins
and thrusters are also included for actuation. UUV allows
researchers to create complex underwater environments with
models already included for seabeds, lakes, ship-wrecks, etc.
UUV simulator has been used for applications such as map-
ping [76] and path following [77].

Other notable gazebo extensions/packages include Rock-
Gazebo [78] and freefloating — gazebo [73]. ROCK-Gazebo
is the integration between Gazebo and the Robot Construction
Kit (ROCK) framework to allow for real-time simulation.
This involved extending the ROCK visualisation tool using
OpenSceneGraph(OSG) for rendering underwater environ-
ments while Gazebo was used for physics simulation [75].
Rock-Gazebo has a number of limitations including not sup-
porting multi-robot simulations [75]. freefloating — gazebo
combines the dynamic simulation capabilities of Gazebo
with the realistic underwater rendering of UWSim [74]. This
allows it to model hydrodynamic forces. freefloating—gazebo
lacks in that, due to stability concerns, it does not include the
computation of added-mass forces [75]. Rock-Gazebo and
freefloating — gazebo both have limited sensor support.

UWSim [74] is another open source option, which was
developed at the Interactive and Robotic Systems Lab at
the Jaume-I University. It utilises Bullet and OpenScene-
Graph(OSG) for contact physics and supports a wide range of
simulated sensors such as pressure sensor, force sensor, GPS,
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range camera/sensor, IMU, DVL, and much more. Multiple
vehicles can be loaded and managed simultaneously while
complex environments can be modelled using OSG and other
3rd party tools such as Blender. The underwater rendering is
highly realistic and it already includes a default model for
girona500 and ARMSE manipulator. UWSim has been used
in a number of applications including controller design [79],
path planning [80], 3D mapping [81], etc. It does, however,
lag behind in terms of accuracy of simulation for dynamics
and hydrodynamics of vehicles [82]. It also does not support
simulation of manipulator dynamics (only kinematics) [82].

The most credible alternative to UWSim and UUV Simula-
tor is the newly proposed StoneFish Library [82], a wrapper
for bullet which supports standard sensors such as camera,
pressure, DVL, multi-beam, etc. All hydrodynamic compu-
tations are based on the actual geometry of the body, which
allows for better approximation of hydrodynamic forces. The
simulation effects include added mass, buoyancy and drag.
Underwater thrusters and vehicle manipulator systems are
available for modelling more complex setups. The simulator
supports advanced rendering of underwater scenes, including
scattering and light absorption. The advanced rendering is
computationally expensive though and requires a recent GPU.

Unity ROS Simulator (URSim) [8] uses ROS and the Unity
3D game engine. It has sensor models for camera, IMU
and pressure together with noise models for sensor input.
The simulator is capable of modelling environments used in
competitions such as SAUVC and RoboSub. Unity allows
for the modelling of hydrodyanmic forces such as buoyancy
and drag. ROS provides functionality needed for control,
communication, vision and sensing, with target applications
in sensing, mapping, path planning, localization, obstacle
avoidance and target acquisition. URSim is being actively
developed, with new sensors (DVL, side scan SONAR, etc)
and a robotic manipulator planned.

Surface vehicle simulation is relatively rare [83], primarily
due to the complexity associated with modelling environ-
mental factors such as waves, wind and water currents [83],
[84]. Unmanned Surface Vehicle simulator (USVSim) [83]
is a dedicated simulator for this application, which is an
extension of Gazebo [46]. The freefloating plugin [73] sup-
ports USV simulations by improving the hydrodynamics and
buoyancy effects. The lift-drag plugin was used for calculat-
ing foil dynamics. UWSim [74] offers accurate modelling
of wave and water visual effects. Re-using and improving
elements from the above tools allowed the authors to come
up with a robust simulator, which has been used for path
planning [85].
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TABLE 6. Feature comparison of popular simulators used for aerial robotics.

Simulator li i‘illz:srtilrfg GPS Barometer Sonar Radar PX4  ArduPilot HITL li?gf}; Sllf[g)f)rt Su\[j[ljort
AirSim v/, Unreal + Unity v v X X v v v v v v
Flightmare v, Unity X X X X X X X RGBD only v v
Gazebo X v v v v v v v v v v
Webots X v X v v X v X v v v

VI. AERIAL ROBOTICS

In this section we focus on unmanned aerial vehicles (UAVs)
which are the most popular field of research within aerial
robotics.

Competitions such as the UAV challenge [86] and the
International Aerial Robotics Competition (IARC) [87] are
open competitions in the field. In the UAV challenge, the goal
is to demonstrate the utility of UAVs on real-world mis-
sions such as medical rescue or delivery of essential items.
IARC is the longest running collegiate competition for aerial
robots, focusing on missions relating to human-robot interac-
tions, robot-robot interactions and interactions of robots with
complex environments. The NASA SAND (Safeguard with
Autonomous Navigation Demonstration) [88] competition
aims to address safety-critical risks associated with flying
UAVs in US airspace.

Modern UAV simulators allow researchers to replicate
complex real-world environments by modelling turbulence,
air density, wind shear, clouds, precipitation and other fluid
mechanics constraints [8§9]. They also support various sensors
— eg. Lidars, GPS, camera, etc. Digital elevation models or
height maps are also used to simulate the terrain underneath
the UAV. Aerial robotics simulators include Gazebo, AirSim,
Flightmare, J]MAV Sim, and Webots all of which are included
in Table 6 along with a comparison of important features
required for aerial robotic research.

Gazebo [46] is a popular simulator for both indoor and
outdoor applications [90]. Gazebo relies on the LiftDrag Plu-
gin to simulate aerodynamic properties, and supports many
common sensors such as stereo-cameras and LIDAR. The
Hector plugin [91] adds UAV-specific sensors such as barom-
eters, GPS receivers and sonar rangers. Gazebo supports a
comprehensive list of UAV models [46], and open-source
hardware controllers such as Ardupilot and PX4 which can
be integrated for hardware-in-the-loop simulations. Gazebo,
however, features limited rendering capability compared to
Unity and Unreal Engine [92]. Gazebo has found application
in, e.g., autonomous navigation [93], landing on moving
platforms [94], multi-UAV simulation [95], and visual ser-
voing [96].

Microsoft’s AirSim [92] is based on Unreal engine, and
supports IMU, magnetometer, GPS, barometer, and camera
sensors. AirSim provides a built-in controller called sim-
ple_flight, and also supports open-source controllers such as
PX4. AirSim is resource-intensive and hence requires large
computing power to run when compared with other simula-
tors [89]. It has been used in drone racing [97], wildlife con-
servation [98], and depth perception from visual images [99].
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Flightmare [100] combines a flexible physics engine with
the Unity rendering engine into a powerful simulator. Flight-
mare simulates high-fidelity environments including ware-
houses and forests. Sensor models are available for IMU
and RGB cameras with ground-truth depth and semantic
segmentation. The simulator is well suited for applications
in deep/reinforcement learning.

JMAVSim [101] is another widely used simulator, mainly
due to its tight coupling with the open-source PX4 con-
troller owing to the initial goal of testing PX4 firmware and
devices [92]. jMavSim supports basic sensing and render-
ing [92].

Webots [102] is an open source simulator with an extensive
set of supported sensors, including cameras, LIDARs, GPS,
etc. Users can add custom physics to simulate things such as
wind and integrate data from OpenStreetMap to create more
realistic environments. Integration with the Adrupilot flight
controller is supported. Webots has been used in multi-agent
simulations [103], mitigation of bird strikes [104] and landing
applications [105].

VII. SOFT ROBOTICS

Soft Robotics is generally a harder simulation problem
than other robotics domains which often assume that the
robot and world it operates in are mechanically rigid. Soft
robotics requires simulating deformable objects and support
for unconventional modes of actuation, including tendon or
cable, pneumatic, and heat transference. Simulators must
also support contact dynamics between the soft robot and
soft/solid materials or fluids. As an emerging research field,
competitions are relatively recent in their inception. The
2016 Robosoft Grand Challenge consisted of three team chal-
lenges: manipulation, terrestrial locomotion, and underwater
locomotion [106]. The Annual Soft Robotics Competition
ran annually between 2015 and 2018. It consisted of several
categories, with a panel of judges awarding prizes based on
contribution and design [107]. Table 7 provides a comparison
between the capabilities of different robotics simulators used
to simulate soft robots in areas relevant to the domain.

Soft robotics typically employs Multiphysics packages
such as COMSOL, ANSYS, and Abaqus, which solve
through Finite Element Method (FEM), as well as simulating
aspects including heat transfer, electric conduction, mag-
netism, and fluid flow. They typically lack sensing, however
they are fully capable of modelling soft actuation mechanisms
and are used for more fundamental studies (e.g., not including
environmental modelling). They have a range of modules
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TABLE 7. Feature comparison of popular simulators used for soft robotics.

Simulator | FEA  Spring-Mass  Heat Conduction  Electrical Conduction =~ Magnetism  Pneumatics  Tendon
Evosoro X v X X X v X
SOFA v X v v X v v
COMSOL v X v v v v v
ABAQUS v X v v v v v
ANSYS v X v v v v v

available to support different physics, however tend to be
expensive to purchase.

Abaqus, for example, is used to model laminar jamming
structures [108], 3D locomotion of soft robots with electro-
static actuators [109], deflection of a soft robot produced by
thermal conduction [110] and a soft robotic grippers [111].
Abaqus models non-linear behaviour well, and supports a
large range of material properties with a material model
library. The Abaqus FEM simulation is considered to be the
industry standard. ANSYS is another modelling package used
in soft robotics research, which simulates electrical, thermal
and structural properties in simulation [112]. ANSYS Fluent
is a well-developed package for fluid simulation, which is
popular for e.g., underwater soft robotic modelling [113].
COMSOL has more user-definable material properties than
Abaqus, lending itself to research methods which use mate-
rials with unique properties. It is also considered more
user-friendly than ANSYS. In SOTA research, Comsol is
used to simulate a flexible inchworm with actuation through
magnetic fields [114], a caterpillar-like robot actuated by
light [115].

SOFA is a popular open-source simulator that has been
used to simulate cable driven soft robots [3], and for FEM
simulation of four-legged soft robots [116]. SOFA has several
useful features for robotics, including a ROS bridge and a Soft
Robot plugin for modelling and actuation. Actuators from the
soft robot plugin include tendon-driven and pneumatic actua-
tors. SOFA is supported by an active open source community
that regularly adds new modules and features alongside its
internal development.

Evosoro is a soft robot simulator based on the Voxelyze
physics engine. It uses Spring-Mass modelling for simula-
tion of voxel-based soft robots and includes variable-volume
actuation but no sensing. Evosoro is a comparatively fast soft
robot simulator, which has been coupled with evolutionary
algorithms to design robot morphologies [117], and as a
design tool for real deployments of soft robots [118]. The
simulator was found to have a significant gap when solutions
were transferred to reality however, owing to the (fast, rela-
tively inaccurate) Spring-Mass modelling.

VIIl. LEARNING FOR ROBOTICS

Learning for robotics has been an important topic of research
over the last decade. Due to the sample inefficiency of current
Reinforcement Learning (RL) algorithms as well as the need
to explore the state-action space that may lead to robot failure
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or damage during training, the majority of works on deep
RL are first learned in simulation before being deployed
on hardware. Due to the relative recency of robotic deep
learning, there are relatively few competitions in the domain
of learning for robotics. The Real Robot Challenge [119]
is a notable exception in which participants learn dexterous
manipulation of objects with a parallel manipulator, and their
learned policies are compared both in simulation — in phase
1 of the competition — and hardware in a later phase. Tasks
that must be completed as part of this challenge include
pushing an object to a target location, lifting it to a specified
height, and moving it to a target position and orientation.

Though there are few challenges targeted towards learning
for robotics, learning methods have been applied in a number
of other robotics challenges. A learned locomotion controller
for a quadrupedal robot was recently deployed in the DARPA
Subterranean challenge [123], for example.

Learning for robotics differs from the other sections cov-
ered in this work because it is concerned with implementation
on a robot rather than the type of robot or the environment
that a robot is deployed in. Due to the emerging popularity of
robotic learning, a guide for simulator selection is included
in this work. Learning methods can be applied in a wide
range of robotics fields, and so the features pertinent to those
fields should be considered alongside the features required
for learning itself. For instance, applying learning methods to
soft robotics requires support for soft contacts and materials
as well as the ability to perform rapid iterative policy learning.

OpenAl Gym is a popular toolkit for training and evalu-
ating RL algorithms, and provides environments in MuJoCo
(Fig. 3) that are commonly used as baselines to evaluate new
RL algorithms and methods in the literature [124]-[127].
OpenAl Gym is used in a number of simulators to train and
evaluate learned policies, demonstrating the efficacy of these
simulators for learning methods. Simulators used in con-
junction with OpenAlIGym include: PyBullet (Fig. 3) [128],
Webots [129], Nvidia Flex [130], [131], Nvidia Isaac [132],
CARLA [133], Project Chrono [134], Raisim [7], and Gazebo
(Fig. 3) [135].

One common application of deep learning is to learn
manipulation and grasping policies. For these tasks,
the fidelity of rigid or soft body contact dynamics is impor-
tant, as well as having sensors to support policies for such
tasks. Another application is in path planning or locomotion
over rough terrain with a mobile robot, and so researchers
may require complex terrains to be modelled. Many
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FIGURE 3. Robotics research within reinforcement learning relies heavily upon simulation environments with the ones pictures in A) MuJoCo [120], B)

PyBullet [121], and C) Gazebo [122] being popular choices.

simulators such as Gazebo, Raisim, MuJoco, and PyBul-
let allow non-flat rigid terrains to be imported from
heightmap images or mesh files, but do not model soft or
granular materials at a large enough scale to mimic soils,
gravels, or fluid terrains. Project Chrono is one alternative
with in-built support for deformable terrain, granular ter-
rain, and fluid simulations, as well as being parallelisable.
Locomotion and path-planning policies for aerial robots such
as quad-rotors has been achieved in Raisim [136], Flight-
mare [100], and Gazebo [137], [138].

In each of the described applications, sensor support
is an important consideration for researchers to consider
when selecting a suitable simulator. Force-torque sensors and
vision sensors are common requirements and are supported
in simulators such as Gazebo, PyBullet and CoppeliaSim.
Gazebo provides support for noise models which can be
applied to sensor outputs. Because simulation is an abstrac-
tion of real-world conditions, policies learned in simulation
typically degrade when transferred onto hardware. Overcom-
ing this reality gap is one of the most important consider-
ations for researchers in the learning community to address
when selecting a simulator. It is also important that simula-
tion environments vary between episodes, commonly using
a technique called domain randomisation [42], to diversify
the training data and allow the robot to properly explore
the shared state-action space. Many simulators have in-built
support, e.g., the ability to reset a simulation environment
without shutting down the entire simulator- and to vary initial
positions and orientations of robots, cameras, and objects
within the simulation- is common to many robotic simulators.
The ability to randomise the textures of rendered objects in
simulation and characteristics of the camera used to render
them is built into MuJoCo and demonstrated in [42]. This
functionality is not innately supported in Gazebo, though an
external plugin has been created to do so [139]. Randomis-
ing object mass and inertia, as well as friction coefficients,
is another method of performing domain randomisation com-
mon to many of the simulators considered. Applying small
random forces to robots also aids in overcoming the reality
gap but is not possible in all simulators. Supporting multiple
physics engines is another domain randomisation technique
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that prevents learned policies over-fitting to the simulation
environment [140]. Gazebo, V-Rep, and Pybullet support
multiple back-end physics engines, whereas some other sim-
ulators such as Raisim and MuJoCo do not. The quality of
rendering is also an important factor for learned policies that
rely on visual data.

Due to the large amount of data needed to train neural
network parameters and properly explore the state-action
space it is also important that the chosen simulator facilitates
collecting this data in a timely manner. There are a number of
simulator features that can facilitate deep learning in a timely
fashion, including: supporting parallel simulation — either
through simulating multiple robots in one environment or
running multiple simulations in parallel with multi-threading
or multiprocessing — the ability to run in headless mode,
and rapid dynamics solvers that allow simulations to run
faster than real-time. Due to the GPU-based physics engine
of Nvidia Flex — which is available to use as a physics engine
in the NVidia Isaac robotic simulator — a walking policy
for humanoid robots could be learned in 16 minutes on a
single CPU and GPU. Flex also supports distributed GPU
simulations which can further reduce training times by up to
eight times on some tasks [130]. Flightmare is able to main-
tain 200,000 steps per second while simulating 150 quadro-
tors in parallel, allowing it to train locomotion policies for
the quadrotors much faster than in real-time [100]. Run-
ning similar simulations of a humanoid robot in Gazebo,
V-Rep, and Webots [141] showed that the Gazebo was more
CPU-intensive than the other two simulators and Webots was
the least intensive of the three. Computational load is relevant
to researchers considering simulators for learning because it
is important to perform either as many simulations in parallel
as possible, or to run a simulation as quickly as possible so
that training time can be reduced.

Evolutionary robotics is a subset of learning that is distinct
from the majority of deep RL methods, though many of the
challenges with simulating environments for deep RL are
shared in the field of evolutionary robotics. Improving the
reality gap is just as important for locomotion policies and
part designs developed through evolutionary techniques as
for those developed with deep RL, and evolutionary methods
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TABLE 8. Feature comparison of popular simulators used in learning for robotics.

Simulator Random External Forces RGBD + LiDAR  Force Sensor ~ Multiple Physics Engines ~ Realistic Rendering
Raisim V4 N X X v/, Unity
Gazebo v v v v X
Nvidia Isaac v v X X v/, Unity + Unreal
MuJoCo v v v X X
PyBullet v v v X X
CARLA X v X X V', Unreal
Webots v v v X X
CoppeliaSim v v v v X

(7} o(a,b)

DO 6 0%
@

a ('f%-
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also require a large number of time steps or simulations
to be run. Simulators that have been used for evolution-
ary methods in the literature include ODE [142], Nvidia
Physx [143], Bullet [144], [145], V-Rep [146], Gazebo [147],
and Webots [148], voxcad [117], and Project Chrono [149].

Table 8 compares relevant features of common simulators
used for learning in robotics. Features important to this field
include: those that enable domain randomization, such as
the ability to apply random external forces to the robot and
employ multiple back-end physics engines; common sensors
required by learned policies such as RGBD, LiDAR, and
force sensors; and realistic rendering capabilities for learned
policies that rely on visual data.

IX. FUTURE

Physical simulation is tightly intertwined with continued
advances in robotics research. It is increasingly important,
especially in fields such as robotic deep learning.

In a recent debate style workshop for sim-to-real, debaters
proposed the progression of simulator accuracy as an impor-
tant step in progressing simulator technology (Fig. 4) [150].
Improved accuracy can be attempted in a multitude of
approaches as simulators abstract away real phenomenon,
making a coarser representation of the world. The most
prolific phenomenon to model well is contacts with large
improvements likely to be seen with improved methods for
collision detection and resolution. Collision detection is very
resource intensive and is often a source of instability within
simulators. One option is to replace phenomena that are
difficult to model in simulation with a neural network that
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FIGURE 4. The future of robotic simulators is predicted to see advancements with A) widespread use of differentiable physics [151], B) increased stability
and speed of simulation [155], and C) increased rendering capabilities within simulation [156].

can be trained to replicate the properties of that phenomena
with high accuracy, and integrate into the simulator [151].

Differentiable simulators are a fast growing area of
research which is tightly coupled with robotics. The avail-
ability of automatic differentiation libraries contributes to the
large number of new publications in this domain. The pri-
mary benefit of differentiable simulation — the ability to use
gradient based rather than black-box optimisation approaches
— promises a leap in efficiency and opens up previously
intractable problems to learning-based optimisation. Several
papers have proven examples which show the applicability
of such simulators for system ID [152], policy creation [153]
and embedding physics in neural networks (Fig. 4) [154].

Plugins and tools which are currently supported in some
simulators will likely become even more prolific and ubiqui-
tous. Features that are most likely to be adopted by a wider
range of simulators include support for the ROS middle-
ware, and integration with external renderers such as Unity
or UnrealEngine for more realistic camera streams (Fig. 4).
It is likely we will see more robotic simulators also integrate
baseline tools for domain randomisation, system ID, and
black-box optimisation.

We are also likely to see further integration in bench-
marking and algorithmic frameworks. Examples of this are
RL frameworks like OpenAl Gym [157], spinningup [158],
and robosuite [159]. Benchmarks and algorithmic implemen-
tations will likely become embedded within the simulator
framework much like path planners and kinematic solvers
already are. This will make it easier to benchmark algorithms
against the SOTA.
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Finally, we predict that we will see further research into
estimating and modelling uncertainty of simulators. Having
a metric that encapsulates when a simulator is accurately
projecting the real world is immensely advantageous. It pro-
vides researchers with an estimation of how likely a solution
created in simulation will transfer to the real world, and
where additional modelling is required [160].

X. CONCLUSION

Simulators aid robotics research in a multitude of ways. The
benefits include reduction in cost, better management of time,
and an added level of safety when dealing with complex envi-
ronments. This review article provides a detailed summary on
the type of simulators available for researchers in seven dif-
ferent, prominent, domains of robotics research. Each section
covers a range of aspects including competitions, simulator
support for features needed in each domain — sensors, actua-
tors, environments — and the current SOTA. Section IX also
provides a discussion on developments that we can expect to
see in the not so distant future.

To the best of our knowledge, this is the first review arti-
cle on robotic simulators covering such a diverse range in
domains of robotics research. It is an excellent starting point
for new researchers and a useful reference guide for expe-
rienced researchers. Hence, we hope that more studies like
these are published over the coming years as new simulators
enter the field and as some seasoned ones become obsolete.
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