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Abstract

Physiological, behavioral, and psychological changes associated with neuropsychiatric illness are 

reflected in several related signals, including actigraphy, location, word sentiment, voice tone, 

social activity, heart rate, and responses to standardized questionnaires. These signals can be 

passively monitored using sensors in smartphones, wearable accelerometers, Holter monitors, and 

multimodal sensing approaches that fuse multiple data types. Connection of these devices to the 

internet has made large scale studies feasible and is enabling a revolution in neuropsychiatric 

monitoring. Currently, evaluation and diagnosis of neuropsychiatric disorders relies on clinical 

visits, which are infrequent and out of the context of a patient’s home environment. Moreover, the 

demand for clinical care far exceeds the supply of providers. The growing prevalence of context-

aware and physiologically relevant digital sensors in consumer technology could help address 

these challenges, enable objective indexing of patient severity, and inform rapid adjustment of 

treatment in real-time. Here we review recent studies utilizing such sensors in the context of 

neuropsychiatric illnesses including stress and depression, bipolar disorder, schizophrenia, post 

traumatic stress disorder, Alzheimer’s disease, and Parkinson’s disease.

1. Introduction

Neuropsychiatric illness comprises 13-16% of the total global burden of disease measured in 

disability life-adjusted years (DALYs) for all ages, which exceeds the burden of 

cardiovascular disease or cancer (Vigo et al. 2016). One in four people in the world will be 

affected by mental or neurological disorders at some point in their lives, yet only a small 

fraction of the 450 million people affected will receive treatment due to pervasive 

underdiagnosis, a lack of trained healthcare professionals, stigma, and other reasons (Sayers 

2001). These illnesses are more prevalent among older people and will contribute even more 

to overall global disease as life expectancy improves. The burden of mental and substance 

use disorders increased by 37% between 1990 and 2010, which for most disorders was 

driven by population growth and aging (Whiteford et al. 2013). The prevalence of dementia 

continues to rise, and by 2050 an estimated 13.8 million Americans will have Alzheimer’s 

disease (AD; see Table A1 for definitions of abbreviations and acronyms used in this review) 

or another dementia. In 2016 in the United States, total payments for healthcare, long-term 

care, and hospice services for people 65 years or older with dementia were estimated to be 

$230.1 billion, and caregivers provided 18.2 billion hours of unpaid assistance (Alzheimer’s 

Association 2016). The lack of effective interventions for neuropsychiatric illness is partially 
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due to limited understanding of underlying mechanisms, but also due to under-distribution of 

medications and human resources in low- and middle-income countries, in which disease 

burden measured in DALYs is disproportionately high (Collins et al. 2011).

Autonomic nervous system (ANS) dysfunction occurs in neuropsychiatric illness, resulting 

in altered heart rate (HR), heart rate variability (HRV), galvanic skin response, skin 

conductance and temperature, and respiratory rate (Draghici et al. 2016; Karemaker 2017). 

Due to the prevalence of HR sensors in wearable devices, and a substantial amount of 

literature exploring HRV measurements as markers of ANS modulation, we review studies 

that utilize HR and HRV measurements. Note HRV is not one metric; rather, it encompasses 

several types of metrics such as time domain (Stein et al. 1994; Kleiger et al. 2005; Bauer et 

al. 2017), frequency domain (Akselrod et al. 1981; Montano et al. 2009), and complexity 

measures such as entropy (Costa et al. 2002). Changes in these metrics have been reported in 

patients with stress (Thayer et al. 2012), major depressive disorder (MDD; Kemp et al. 

2010), bipolar disorder (BD; Henry et al. 2010), schizophrenia (Chang et al. 2009), post 

traumatic stress disorder (PTSD; Liddell et al. 2016), Alzheimer’s disease (Femminella et al. 

2014) and Parkinson’s disease (PD; Maetzler et al. 2013).

Neuropsychiatric illness is also associated with alterations in behavior, especially physical 

movements and social routine. Patients with MDD, BD, or schizophrenia can be 

significantly more sedentary than age- and gender-matched healthy controls (Vancampfort et 

al. 2017). Diminished motor function, the presence of tremor, and coordination issues also 

occur in movement disorders such as Parkinson’s disease. On the other hand, locomotor 

agitation can be a sign of mania or psychosis which may be part of the presentation of 

schizophrenia or BD. These abnormalities are detectable by smartphones and wearable 

devices with accelerometers or global positioning system (GPS) sensors. Because modern 

smartphones and most wearables marketed to consumers for fitness purposes (which are 

often used in academic studies for healthcare applications, including many referenced here) 

have accelerometers, we also review studies that analyze locomotor activity. Behavior can 

also be inferred from social activity data, such as phone calls, text messages, social media 

use, and web browser history. Importantly, passive monitoring via digital sensors can yield 

information about a patient’s physiology and behavior in the 99% of the time they are not 

seeing a clinician, during which they take actions and are influenced by their environment in 

ways that profoundly impact their health (Asch et al. 2012). Together these data could give 

us a richer understanding of the day-to-day variability of neuropsychiatric illness, enable the 

monitoring of patient status before (rather than after) symptoms reach a level warranting 

intervention, and reduce biases and inaccuracy intrinsic in subjective questionnaires (Karow 

et al. 2008; Copeland et al. 2017).

Monitoring is distinct from diagnosis. The latter is performed by clinicians who take a 

comprehensive history, perform a physical exam, utilize questionnaires and surveys, order 

and interpret laboratory tests and imaging, and exclude alternate diagnoses. Clinical 

diagnoses often form the ground truth for subsequent monitoring efforts. For example, a 

machine learning algorithm can associate patterns in digital sensor data – such as alterations 

in heart rate variability or locomotor activity – with questionnaire results indicating severity, 

or a clinical diagnosis. Passive monitoring could augment diagnosis by providing clinicians 
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with additional information, capture behavioral and biological variation not accounted for by 

current diagnostic categories, and enable the discovery of novel illness phenotypes.

Digital sensors in smartphones and wearables generate a vast amount of high-frequency 

high-dimensional time series data that require new methods of analysis. In contrast, data 

used by clinicians – self-reported symptoms, lab tests, and vital signs – are subjective, 

infrequently sampled, and small-scale. Univariate significance testing and regression models 

are commonly used to perform hypothesis testing on these traditional data, but such methods 

are poorly suited for the analysis of data from digital sensors. Rather, approaches from 

signal processing, information theory, and complexity science are needed. Features of 

interest in digital sensor data include statistical moments, e.g. the mean or the variance of a 

signal, time-domain characteristics, frequency-domain characteristics such as power spectral 

density attributes or wavelet coefficients, and complexity measures such as entropy (Johnson 

et al. 2016). These features are used to train machine learning algorithms that perform 

regression, continuous parameter prediction, and classification of outputs such as disease 

phenotype or questionnaire score (Obermeyer et al. 2016). Excellent machine learning 

algorithms generalize in the sense that they accurately classify inputs from data used to train 

the algorithm as well as novel input from an external set of data not used for training. Of 

note, univariate statistical significance does not guarantee predictivity or clinical utility of a 

biomarker (Lo et al. 2015). Methods focusing on p-values can miss useful “weak features” – 

those that do not significantly differ by output class when assessed via univariate statistical 

tests, yet can be used as input to train a multivariate machine learning algorithm that 

achieves high accuracy.

In this review we summarize recent studies utilizing smartphones, wrist-worn wearables, and 

physiological patches for passive monitoring of some prevalent and debilitating 

neuropsychiatric illness: stress, MDD, BD, schizophrenia, PTSD, AD, and PD (Table A3). 

Sensors used in these studies measure accelerometry, HR, GPS, phone calls, SMS, and 

more. Examples of aberrations in physiology and behavior detectable by these sensors and 

associated with the above illnesses are provided in (Table 1). Particular emphasis is placed 

on studies that classify illness status, or estimate scores from neurological and psychiatric 

surveys, scales, and questionnaires (summarized in Table A2). We discuss the challenges, 

limitations, and potential of using these technologies for neuropsychiatric care. Related 

works and ongoing studies that have yet to yield results but are promising in terms of scope 

and scale are referenced in these latter sections (Table A4). We do not review smartphone 

applications (“apps”) designed to deliver interventions such as cognitive behavioral therapy, 

provide general information to patients about their illness, or accompany existing care 

delivery paradigms (i.e. a mobile version of a patient portal). Furthermore, a thorough 

technical review of signal processing, information theory, and machine learning used in 

these studies is beyond the scope of this review. We also do not cover the topic of sleep, a 

key aspect of neuropsychiatric conditions that has been extensively reviewed elsewhere 

(Krystal 2012; Behar et al. 2013; Roebuck et al. 2014; Zinkhan et al. 2016).
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2. Smartphones

Smartphones are globally ubiquitous, owned by 72% of Americans and 3 billion people 

worldwide, and are projected to reach a global total of over 5 billion people by 2030 

(Poushter 2016). Importantly, studies in the USA, United Kingdom, Canada, and India have 

found smartphone ownership to not be significantly lower among people with serious mental 

health conditions compared to the average owner, and ownership by these individuals is 

projected to increase, mirroring the trend seen in the general population (Torous et al. 2014; 

Firth et al. 2016). Additionally, people tend to keep their phones with them and check them 

between 46 to 85 times per day (Andrews et al. 2015; Eadicicco 2016). These data thus 

reflect social and behavioral manifestations of neuropsychiatric illnesses in the context of 

daily life rather than in an artificial clinical setting (Insel 2017). For example, GPS location 

data measured on smartphones can be used to estimate behavioral attributes such as 

percentage of time a subject spends in certain locations (fig. 1). By evaluating the time of 

day, day of week, and amount of time spent in each location, the purpose of each location 

datum can be inferred, e.g. work versus home. Additionally, social interactions in the form 

of calls and text messages can be monitored and quantified (fig. 2). Geolocation, social 

network activity, and other attributes reflect behavior and may differ in subjects with 

neuropsychiatric illness compared to healthy controls. Several investigators have built 

smartphone apps for collecting sensor and usage data, including Automated Monitoring of 

Symptom Severity (AMoSS; Palmius et al. 2014), Purple Robot (Schueller et al. 2014), and 

Beiwe (Torous et al. 2016).

Smartphones can also be used to administer validated questionnaires for evaluating quality 

of life and mental well-being (Palmius et al. 2017). Although self-reported questionnaires 

are prone to recall, social desirability, and confirmation biases, they provide a pragmatic best 

estimate of an individual’s mental status and can achieve results comparable to clinician-

administered surveys (Spitzer et al. 2012; Ebner-Priemer et al. 2006; Martel 2008; Solhan et 

al. 2009). The inference of mental health questionnaire results from digital sensor data is a 

common approach in the literature and could be useful for monitoring the status of subjects 

who struggle with adherence or have impaired cognition and executive decision-making 

capacity (Table A2; Mohr et al. 2016; Tsanas et al. 2016; Barrett et al. 2017; Aung et al. 

2017). In this section we review recent studies using smartphones to monitor 

neuropsychiatric illnesses; work that may be related but also involves analysis of heart rate 

data is reviewed in later sections.

2.1. Stress and depression

MDD is a debilitating disease that is characterized by depressed mood, diminished interests, 

impaired cognitive function, vegetative symptoms, disturbed sleep, and altered appetite (Otte 

et al. 2016). The lifetime incidence of MDD in the United States of 12% in men and 20% in 

women (Belmaker et al. 2008). Affecting up to 300 million people in the world, MDD is the 

leading cause of disease burden in middle- and high-income countries worldwide. 

Individuals with MDD have higher medical costs, exacerbated medical conditions, and 

significantly increased rates of mortality. Compounding this severity, MDD is a 

heterogeneous disorder with a highly variable course, an inconsistent response to 
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pharmacological treatment, and no established mechanism. Passively monitoring movement, 

location, social activity, and voice of patients with MDD could enable continuous 

assessment of mental well-being and inform context-appropriate clinical responses.

In a study of depression in 48 college undergraduates, Wang et al. used Android 

smartphones to monitor accelerometry, audio, ambient light, location, and device use over 

ten weeks (Wang et al. 2014). Depression was simultaneously measured using the PHQ-9 

survey, a standardized nine question survey which has been shown to correlate with 

depression (Kroenke et al. 2001). In addition to making criteria-based diagnoses of 

depressive disorders, the PHQ-9 has also been shown to be a reliable and valid measure of 

depression severity (Martin et al. 2006). A PHQ-9 score ≥10 resulted in a sensitivity of 0.88 

and a specificity of 0.88 for major depression in primary care and obstetrics-gynecology 

populations, and a sensitivity of 0.77 (0.71-0.84) and a specificity of 0.94 (0.90-0.97) in a 

meta-analysis, although the positive predictive value in an unselected primary care 

population was only 0.59 (Wittkampf et al. 2007). Students who slept less, held fewer 

conversations, self-reported higher stress responses, or interacted less during the day were 

more likely to be depressed (p < 0.05). Students started with high positive affect and 

conversation levels, low stress, and healthy sleep and daily activity patterns. As the term 

progressed, self-reported stress significantly rose, while positive affect, sleep, conversation 

and activity decreased. However, this study did not train a classifier, nor was cross-fold 

validation used. Study results may thus not generalize to out-of-sample data. Furthermore, p-

values do not guarantee diagnostic accuracy or clinical utility (Wasserstein et al. 2016).

Burns et al. developed the “Mobilyze!” app to collect GPS, ambient light, recent calls, and 

other data (Burns et al. 2011). A companion website included feedback graphs illustrating 

correlations between patients’ self-reported states, as well as didactics and tools teaching 

patients behavioral activation concepts. Mobilyze! was tested for eight weeks in a cohort of 

seven adult patients with MDD who completed treatment. The Mini-International 

Neuropsychiatric Interview was used to characterize co-morbid anxiety disorders at 

baseline, the PHQ-9 was used to evaluate self-reported MDD symptom severity, and the 

GAD-7 was used to evaluate general anxiety symptom severity. In the Mobilyze! study, 

record-wise ten-fold cross validation was performed, although we note record-wise cross-

validation overestimates predictive accuracy compared to subject-wise (Saeb et al. 2016b). 

Decision trees were used to estimate location, activity, social environment, and internal 

states. Generalized estimating equations logistic regression was used to estimate the binary 

outcome of either presence or absence of MDD diagnosis in the held-out set of sensor 

values. Categorical states such as location, isolation, and conversational status were 

estimated with mean accuracies ranging from 60-90%. However, the decision tree models 

estimated out-of-sample scale-based states such as mood no better than chance, and the 

results of the binary classification of MDD status were not reported.

Canzian et al. developed the MoodTraces app for the Android operating system to collect 

GPS data and answers to eight daily questions from the PHQ-8 depression test (Canzian et 

al. 2015). This study evaluated 28 subjects from the general population rather than a cohort 

of people diagnosed with depression. Mobility features were extracted from GPS data 

recorded over a period of 14 days and used to train a support vector machine (SVM) to 

Reinertsen and Clifford Page 5

Physiol Meas. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



predict PHQ score changes from an individual’s own past data, i.e. using individualized 

models. A positive label was defined as a change in PHQ score greater than one standard 

deviation of that subject’s normal PHQ score, and a negative label was defined as a change 

in PHQ score less than or equal to one standard deviation of a subject’s normal PHQ score. 

Leave-one-out cross validation was performed. Using a horizon window – the number of 

days between the last day of data collection and the day of the subsequently predicted PHQ 

score change – of 0 days resulted in a sensitivity of 0.71 and a specificity of 0.87. 

Interestingly, increasing the horizon window did not dramatically reduce the sensitivity and 

specificity. This study suggests that personalized models, instead of general ones, should be 

used to monitor the depressive state of an individual using his/her mobility traces. However, 

this study did not survey subjects diagnosed with MDD, nor were other digital sensor data 

from the smartphone utilized.

Ben-Zeev et al. evaluated behavior and mental health in 47 adolescent subjects using 

Android smartphones and an app developed in-house. GPS, accelerometry, ambient light and 

sound, and microphone data were recorded (Ben-Zeev et al. 2015). Geospatial activity, sleep 

duration, and variability in geospatial activity were associated with daily stress levels 

assessed via the 10-item Perceived Stress Scale (p < 0.05 for all). Sensor-derived speech 

duration, geospatial activity, and sleep duration were associated with changes in depression 

assessed via the PHQ-9, and sensor-derived kinesthetic activity was associated with 

loneliness. However, cross-validation was not performed, and features were assessed on the 

basis of statistical significance rather than classifier predictivity.

Saeb et al. used Android smartphones and an app developed in-house to evaluate 40 adult 

subjects for depressive symptoms over two weeks (Saeb et al. 2015). 28 of the subjects had 

sufficient sensor data to analyze. Several features extracted from GPS and phone usage data 

were related to depressive symptom severity. The lower the location entropy, e.g. more time 

spent in fewer locations, or the lower the regularity of circadian rhythm, the more likely a 

subject was to be depressed. Other predictive features included phone usage duration, and 

phone usage frequency. Elastic net regularization was performed to reduce overfitting, 1000 

bootstrapped sets of features and their corresponding PHQ-9 scores were created, and leave-

one-out cross validation was performed. A classifier trained on these data to distinguish 

subjects with PHQ-9 scores greater than or equal to from those with PHQ-9 scores less than 

5 achieved an accuracy of 86.5%. Similar findings were reported in a subsequent study; 

location features from weekend data better predicted depression compared to location 

features from weekday data – even weeks in advance (Saeb et al. 2016a). These results 

suggest the relationship between depression and movement is stronger on non-workdays 

versus workdays when behavior is driven by social expectations. This finding highlights the 

importance of social context, time scale, and routine in the study of behavioral 

manifestations of mental illness.

2.2. Bipolar disorder

BD is a mental illness that can present with mania, hypomania, and major depression; manic 

episodes are characterized by significant changes in activity, energy, mood, behavior, sleep, 

and cognition (Belmaker et al. 2008). Patients with BD commonly manifest co-morbid 
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psychiatric disorders, such as anxiety disorders and substance use disorders. Psychotic 

features such as delusions, hallucinations, and disorganized thinking and behavior can also 

occur during manic, major depressive, and mixed episodes.

Effective mood forecasting – the prediction of future mood states using current and past data 

– could support management of BD and provide early warning signs of relapse. Currently, 

symptoms are monitored using paper diaries or asking patients to recall mood during a 

clinical visit. Thus, data potentially usable to model mood in BD is sparse and may suffer 

from recall bias. Moore et al. used time series regression to forecast the next week’s 

depression ratings using self-rated mood data obtained via SMS (Moore et al. 2012). One 

method used was Gaussian process regression, a Bayesian nonparametric model in which a 

Gaussian prior distribution over the regression function is assumed. Forecasting by Gaussian 

process regression requires centering the time series because the prior process is assumed to 

have a zero mean. The algorithm then finds the optimal value for the hyperparameters θ and 

the noise variance σn
2 by maximizing the marginal likelihood p(y |x, θ). The predictive 

equation is used to find the forecast mean, and the original signal bias is added, thus 

estimating the mood rating. Other types of simple exponential smoothing forecasting were 

also used for comparison. 153 patients with BD participated in the study; at least 23 

responses were obtained from 100 patients whose data was used in the final analysis. 

Depression was measured via QIDS-SR16 and severity of mania was quantified using the 

ASRM. Questionnaires were administered every week for up to four years. Mood time series 

data varied widely in length, response interval, and stationarity. Out-of-sample forecasting 

was performed to estimate expected prediction error. Gaussian process regression did not 

outperform simpler exponential smoothing approaches. This is not surprising because noisy 

or undersampled time series will train a smoothing coefficient of zero, and most of the time 

series from these patients were noisy or lacked serial correlation. The authors concluded 

effective depression forecasts using this method cannot be made over the period of a week.

Faurholt-Jepsen et al. conducted the “MONitoring, treAtment and pRediCtion of bipolAr 

disorder episodes” (MONARCA) study, in which software for Android smartphones was 

used to monitor subjective and objective manifestations of BD alongside with treatment 

adherence in a bidirectional feedback loop between patients and providers (Maria et al. 

2013). Subjective data included mood/irritability, sleep, and alcohol use. Objective data 

included speech, social, and physical activity. Data were recorded from 17 patients with BD 

for 3 consecutive months (Maria et al. 2014). Patients were rated every two weeks using the 

HDRS-17 and YMRS. Depressive symptoms correlated with less movement and fewer 

outgoing calls.

The MONARCA study was continued by Faurholt-Jepsen et al. in a larger cohort of 61 

patients with BD. A linear mixed-effects regression model was used to estimate relationships 

between independent and dependent variables while accounting for within individual 

variation and between individual variations over time (Faurholt-Jepsen et al. 2015). The 

regression analysis was also adjusted for age and sex as possible confounders. Since the goal 

of the study was to estimate model coefficients rather than accurately classify subjects and 

estimate model generalizability, regression rather than a cross-validation or bootstrap 
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approach was used. The duration of incoming and outgoing calls/day correlated with 

depressive symptoms. Additionally, the number and duration of incoming calls/day 

correlated with manic symptoms. Self-reported mood and activity data correlated negatively 

with HDRS-17 scores and positively with YMRS scores. Self-reported sleep quantity 

negatively correlated with both HDRS-17 and YMRS scores, whereas self-reported stress 

positively correlated with both. In other words, less sleep or more stress correlated with 

more depressive and manic symptomatology.

Recently, MONARCA was updated to collect and extract voice features from phone calls 

using the open-source “Media Interpretation by Large feature-space Extraction” 

(openSMILE) toolkit (Eyben et al. 2010; Maria et al. 2016). Class imbalance was addressed 

via random oversampling of the minority class, and a random forest algorithm trained on 

features derived from voice, objective, and self-reported data achieved an AUC of 0.78 in 

classifying a depressive state versus a euthymic state, and an AUC of 0.89 in classifying a 

manic or mixed state versus a euthymic state – although the number of folds used for k-fold 

cross-validation were not specified.

The group that created MONARCA recently began enrolling patients in the first-ever 

randomized controlled trial (RCT) to to investigate whether using a smartphone-based 

monitoring and treatment system, including an integrated clinical feedback loop, reduces the 

rate and duration of re-admissions more than standard treatment in unipolar disorder and 

bipolar disorder (Maria et al. 2017).

Grunerbl et al. passively recorded data from ten patients with BD over ten months using 

Android phones and a monitoring application developed in-house (Grünerbl et al. 2015). 

Bipolar symptoms were determined via HAMD or YMRS scale tests conducted every three 

weeks. Social activity features included number of phone calls, length, and unique numbers 

contacted. Speech and voice features included average speaking length, turn duration, 

utterances, and frequency-domain features. Four of the ten patients refused to use the study 

phone to make phone calls, so speech and voice features were determined for the remaining 

six patients. A naive Bayes algorithm classified records into one of seven states, including 

depressive, normal, and manic with different degrees. 66% of the data was randomly 

allocated to serve as training data, and the remaining 33% was allocated to the test set. This 

cross-validation was repeated 500 times, and resulted in an average 69% classification 

accuracy using a fusion of features extracted from accelerometer and GPS data. Next, the 

classifier was revised to weigh class estimates by data quantity; however, we note a quantity-

based weighing introduces its own form of bias and does not guarantee improvement of 

classifier accuracy. On days with data from multiple modalities (phone, sound, acceleration, 

and location), class estimates were calculated for each modality and weighed by the amount 

of data as to favor modalities with more data and penalize modalities with fewer data. The 

class with the highest estimated probability was selected. Weighing estimates by data 

quantity dramatically improved classification accuracy to 76%, with both sensitivity and 

positive predictive value of 97%. However, the authors did not report the timing between 

feature collection and symptom assessment via questionnaire. Additionally, the variance 

across different folds was not reported.
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Beiwinkel et al. developed “Social Information Monitoring for Patients with Bipolar 

Affective Disorder” (SIMBA), a smartphone app to track daily mood, physical activity, and 

social communication (Beiwinkel et al. 2016). SIMBA was tested with a cohort of 13 

patients diagnosed with BD. Random-coefficient multilevel models were computed to 

analyze the relationship between smartphone data and externally rated manic and depressive 

symptoms. Lower self-reported mood in the monitoring period prior to a clinical visit 

predicted higher overall levels of clinical depressive symptoms (p < 0.05). A decline in 

social communication and physical activity predicted an increase in clinical depressive 

symptoms (p < 0.05). Lower physical activity but higher social communication predicted 

higher overall levels of clinical manic symptoms (p < 0.05). Lastly, a decrease in physical 

activity predicted an increase in clinical manic symptoms (p < 0.05). This study evaluated 

prediction rather than classification, as the outcome of interest was temporally later 

compared to the time at which smartphone data was assessed. However, no cross-validation 

or external validation cohort data set was utilized to assess generalizability of the model.

BD is characterized by disturbances in rhythmicity of sleep and social routine. Abdullah et 

al. used passive smartphone sensor data gathered via a customized Android app called 

“MoodRhythm” to measure rhythmicity in seven BD patients over four weeks (Abdullah et 

al. 2016). Measured data included accelerometry, ambient light, microphone audio, calls and 

SMS, and phone usage such as screen unlocks and recharging. Patients were administered 

the Social Rhythm Metric (SRM) questionnaire, although the frequency was unclear. The 

most predictive features were derived from these data via recursive feature elimination, and 

included: number of location clusters, distance traveled, frequency of conversation, and 

duration of non-sedentary activity. A support vector regression model was trained on data 

over a rolling window of seven days, and ten-fold cross-validation was performed. The 

average square root of average of squared errors between predicted and actual SRM scores 

was 1.40; the SRM ranges from zero to seven. To classify subjects as either “normal social 

rhythm” or “unstable”, a cutoff SRM score of 3.5 was selected due to the population SRM 

score being ≈3.5. A person with an SRM score < 3.5 was considered unstable, whereas a 

person with an SRM score ≥ 3.5 was considered stable. An SVM using the same features as 

before achieved a PPV of 0.85 and a sensitivity of 0.86.

Palmius et al. designed the Automated Monitoring of Symptom Severity app, or “AMoSS” 

((Palmius et al. 2014)). This app collected location, activity, battery usage, daily self-

reported mood (through a six-axis seven-point Likert scale mood survey, ‘Mood Zoom’) and 

social networking behavior via de-identified lists of recipients and senders of text messages 

and phone calls, including length/duration and time of day (fig. 3). Collecting data up to 

several samples per second, AMoSS is a comprehensive mHealth monitoring system for 

mental health. Physiological monitoring devices recorded HR and blood pressure from a 

total of 100 participants, including patients with BD and matched controls. Early results 

demonstrated correlations between diagnoses of BD and borderline personality disorder with 

mood reports (Tsanas et al. 2016).

Subsequent work by the AMoSS team on a subset of these data demonstrated that clinically 

significant depression could be detected using features extracted from GPS location data 

(Palmius et al. 2017). Anonymized geographic locations were collected from 22 subjects 
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with BD and 14 controls over three months, using location data from Samsung Galaxy S III 

or S4 smartphones running the Android 4.1 operating system. This version of Android 

featured a geospatial resolution of approximately 100 meters. Depressive symptomatology 

was self-reported by subjects via the QIDS-SR16 survey. Features were extracted to assess 

the level and regularity of geographic movements of the subjects, including normalized 

entropy, location variance, and number of distinct location clusters. For subjects with BD, a 

linear regression model trained on these features estimated questionnaire scores with a mean 

absolute error rate of 3.73 points. A quadratic discriminant analysis algorithm was trained to 

classify depression, and achieved an F1 score of 0.86 ± 0.02, classification accuracy of 0.85 

± 0.02; sensitivity of 0.84 ± 0.01, and specificity of 0.87 ± 0.05 (median ± IQR). Results 

were robust to leave-one-out, 10-fold, 5-fold, and 3-fold cross-validation.

2.3. Schizophrenia

Schizophrenia is a complex and heterogeneous illness characterized by several criteria, 

including at least two of the following symptoms for one month or longer: delusions, 

hallucinations, disorganized speech, grossly disorganized or catatonic behavior, or negative 

symptoms such as diminished emotional expression; furthermore, there must be impairment 

in work, interpersonal relations, or self-care, as well as continuous signs of the disorder for 

at least 6 months (Kahn et al. 2015). The lifetime global prevalence of schizophrenia is 

about 1%. Outcomes vary widely, ranging from total recovery to totally debilitating illness 

requiring chronic care. Life expectancy for people with schizophrenia is reduced by 20 years 

compared to people without the illness. Pharmacological treatments for schizophrenia can 

relieve psychotic symptoms but usually fail to meaningfully improve social, cognitive and 

professional functioning. Psychosocial interventions can be useful but are resource-intensive 

and inconsistently delivered. Finally, schizophrenia tends to be diagnosed years after 

symptoms begin. Compared to depression and BD, relatively little work on mobile health 

has focused on schizophrenia.

Wang et al. collected passive smartphone sensor data from 21 outpatients diagnosed with 

schizophrenia and recently discharged from hospital over a period ranging from 2 - 8.5 

months (Wang et al. 2016). Samsung Galaxy S5 phones running the Android operating 

system were equipped with the “CrossCheck” app developed in-house that monitors type 

and duration of physical activity, sleep duration, number and durations of phone 

conversations, number of SMS, geolocation, phone and app usage, and ambient light and 

noise. Every three days, Ecological Momentary Assessment (EMA) questions were 

administered and sensor data were aggregated. Generalized estimating equations were used 

to map associations between features and EMA responses. Higher scores in attributes related 

to positive perception of mental well-being – including calm, hopeful, sleeping well, social, 

and ability to think clearly – were associated with waking up earlier, having fewer 

conversations, fewer phone calls, and fewer SMS. Higher scores in questions related to 

negative perception were associated with staying stationary more in the morning but less in 

the evening, visiting fewer new places, having fewer conversations but making more phone 

calls and SMS, and using the phone less. Gradient boosted regression trees were used to 

predict EMA scores from these features. Models trained on an individual’s data could 

estimate EMA scores for that individual with a correlation between prediction and outcome 
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of r = 0.77 and p < 0.001. However, outcomes predicted via leave-one-out cross validation 

did not correlate with actual outcomes, suggesting high variance of feature phenotypes 

between individuals.

Staples et al. recently reported a three-month observational study of both self-reported and 

objective measures of sleep in schizophrenia (Staples et al. 2017). Using the Beiwe app 

(available for both iPhones and Android phones), 13 subjects diagnosed with chizophrenia 

were given tri-weekly EMAs. Passive data were continuously collected, including 

accelerometry, GPS, screen use, and anonymized call and SMS activity. Sleep quality was 

assessed in a clinical setting using the PSQI, which was compared to both EMAs and sleep 

estimates based on passively collected accelerometer data. A cross-validated linear 

regression model with mean phone-based EMA scores as the outcome and mean paper-

based PSQI scores as the predictor classified 85% (11/13) of subjects as exhibiting high or 

low sleep quality. Accelerometry moderately correlated with subject self-assessments of 

sleep duration (r = 0.69, 95% CI 0.23 – 0.90). Active and passive phone data predicted 

concurrent PSQI scores with a mean average error of 0.75, and future PSQI scores with a 

mean average error of 1.9, with scores ranging from 0-14.

Among individuals who are diagnosed, hospitalized, and treated for schizophrenia, up to 

40% of those who are discharged will relapse within one year. Barnett et al. evaluated a 

smartphone platform for monitoring seventeen patients with schizophrenia undergoing 

active treatment in order to identify warning signs of relapse, defined as psychiatric 

hospitalization or an increase in the level of psychiatric care, such as increase in the 

frequency of clinic visits or referral to a partial or outpatient hospital program (Barnett et al. 

2018). Patients were monitored for three months using the Beiwe app, and mobility patterns 

and social behavior were gathered and analyzed. Features were extracted from the data, 

including daily distance traveled, time spent at home, number of significant locations visited, 

total duration of calls, number of missed calls, and number of text messages sent. The app 

also administered surveys twice per week to assess anxiety, depression, sleep quality, 

psychosis, the warning symptoms scale, and medication adherence. The rate of behavioral 

anomalies detected in the 2 weeks prior to relapse was 71% higher than the rate of 

anomalies during other time periods. Although anomalies were calculated using each 

patient’s own data to account for differences in baseline features, the number of anomalies 

greatly varied between subjects. Additionally, many subjects did not relapse, as the cohort 

enrolled only seventeen patients and for only three months. The features captured in patients 

that did relapse may not have reflected the “potential trajectories and mechanisms that can 

lead to relapse”. The anomaly detection approach demonstrated in this paper could be useful 

for measuring other outcomes that were not reported but could be clinically useful, such as 

changes in positive or negative symptoms of schizophrenia.

2.4. Post traumatic stress disorder

PTSD is a psychopathological response to a traumatic event such as violence, a natural 

disaster, or combat. Symptoms include nightmares of the trauma, hypervigilance, difficulty 

sleeping, poor concentration, and avoidance of places, activities, or persons that remind the 

affected individual of the causal incident (Shalev et al. 2017). The lifetime prevalence of 
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PTSD ranges between 6-30%, is much higher in veterans exposed to combat, and varies by 

gender and country of origin.

Smartphone apps for PTSD have focused on education about the disorder, delivery of 

cognitive behavioral therapy, self-assessment of symptoms via questionnaires, and access to 

crisis support and other relevant resources (Kuhn et al. 2014). Few papers describe the use of 

digital sensors to passively monitor clinical symptoms of PTSD. However, many 

smartphone- and wearables-based sensing approaches have focused on anxiety and 

depression which are common co-morbidities.

Place et al. conducted a 12-week trial with 73 patients who reported at least one symptom of 

PTSD or depression (Place et al. 2017). Clinical symptoms were assessed by licensed social 

workers who administered the depression and PTSD modules of the Structured Clinical 

Interview for Mental Disorders (SCID). An Android app was developed to gather 

accelerometry, SMS and call, location, device use, and audio data. Extracted features 

included sum of outgoing calls, count of unique numbers texted, absolute distance traveled, 

dynamic variation of the voice, speaking rate, and voice quality. Feature reduction was 

performed to reduce over-fitting and interfeature correlation, and a logistic regression was 

trained using 10-fold cross validation. Fatigue, interest in activities, and social 

connectedness were predicted using data from the prior week with AUCs of 0.56, 0.75, and 

0.83 respectively. Depressed mood was predicted from audio data with an AUC of 0.74. 

Finally, subjects reported comfort with sharing personal data with clinicians and medical 

researchers. However, it was unclear if the predictive model outperformed sample-and-hold 

estimations of mood from the previous week. This can be viewed using a Bayesian 

framework, in which the mood state from the previous week informs the prior, and data from 

the smartphone app is used to update the model and estimate the posterior. Evaluating 

subjects at several time points affords an opportunity to quantify the additional contribution 

of passive sensor data to predictive models that use questionnaires or surveys as ground 

truth.

University of North Carolina, Harvard University, and Verily Life Sciences LLC (South San 

Francisco, CA) are leading the AURORA study, a 19-institution five-year effort to perform 

the most comprehensive observational study of mental disorders that occur in the wake of 

trauma to date (National Institute of Mental Health 2016). Investigators will screen 5,000 

people arriving in emergency rooms after trauma. After an initial evaluation and a baseline 

collection of biological data from blood samples, subjects will be monitored for the next 

several months through the use of mobile technology, such as wrist wearables and smart 

phones, to track factors like activity, sleep, and mood. Other assessments will include 

additional blood samples, functional brain imaging, and psychological tests. Participant 

involvement will continue over a year, generating a wide variety of detailed information on, 

for example, health history (including that of earlier trauma), genetics, stress responses 

(physical and psychological), behavior, and cognition. This collaboration presents a unique 

opportunity to learn more about the factors that mediate the development of mental illness 

after trauma, and potentially contribute to new diagnostic and therapeutic approaches. The 

Aurora study represents a new trend in public-private partnerships, involving multiple 
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research institutions and and technology companies such as Verily and Mindstrong Health 

(Palo Alto, CA).

2.5. Dementia and Alzheimer’s disease

AD is a progressive, chronic neurodegenerative disorder that primarily affects older adults 

and is the most common cause of dementia. Selective memory impairment is the most 

common initial symptom (Wolk et al. 2017). Executive dysfunction and visuospatial 

impairment also present early, while deficits in language and behavioral symptoms typically 

manifest later in the disease course. The average life expectancy after a diagnosis of AD 

ranges from three to eight years; patients generally succumb to complications related to 

advanced debilitation such as dehydration, malnutrition, and infection. AD has an estimated 

prevalence of 10–30% in the population > 65 years of age with an incidence of 1–3% 

(Masters et al. 2015). According to The Alzheimer’s Association over 5 million Americans 

have AD and it is the sixth leading cause of death (Alzheimer’s Association 2016). In 2016 

more than 15 million caregivers provided 18 billion hours of unpaid care at a value of 

approximately $221B. Given the devastating cost and prevalence of AD, relatively low cost 

smartphone and wearable technologies could potentially aid cognitive assessment and 

improvement, monitor daily activities, and prolong independence and/or improve lives of 

caregivers.

Tung et al. attempted to distinguish AD from controls using GPS features from smartphones 

(Tung et al. 2014). A cohort of 19 older adults with mild-to-moderate AD and 33 controls 

were monitored via wearing GPS-enabled mobile phones for three days. The make and 

model of the phones were not described. Measures of geographical territory (area, perimeter, 

mean distance from home, and time away from home) were calculated from GPS data and 

group differences were tested using two-sample t-tests. Area, perimeter, and mean distance 

from home were significantly smaller in the AD group compared to controls. Furthermore, 

area and perimeter were significantly associated with steps per day, Disability Assessment 

for Dementia questionnaire scores, gait velocity, symptoms of apathy, and depression.

Aguilera et al. demonstrated self-reported daily mood ratings assessed via SMS are proxies 

for PHQ-9 scores (Aguilera et al. 2015). A cohort of 33 people with a diagnosis of 

depression who were undergoing group cognitive behavioral therapy received a daily SMS 

asking them to report mood on an ordinal scale of 1-9. They were also asked questions about 

thoughts and activities. The subjects further received a PHQ-9 to complete each week that 

they attended the therapy group. Daily and one-week average SMS mood scores were 

significantly associated with PHQ-9 scores. The authors noted “SMS-based mobile mood 

ratings, when assessed daily, may provide a more accurate indicator of longitudinal 

symptom levels than the PHQ-9, as the PHQ-9 may be subject to a recency bias”. While 

short SMS-based surveys can provide a more nimble and higher-resolution picture of how a 

patient feels in the moment, they are not intended to replace more thorough survey 

instruments such as the PHQ-9, which focuses on the diagnostic criteria of the DSM-IV for 

MDD (Kroenke et al. 2001).

Batista et al. developed an Android app to monitor people with mild cognitive impairment 

(MCI) (Batista et al. 2015). Specifically, the app raises alarms under certain conditions, such 
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as an AD patient leaving a defined geographic zone (e.g. home), not moving after a certain 

amount of time, moving at too high a speed (suggesting they are utilizing transportation), or 

the phone battery level reaching too low a level. 16 subjects with varying stages of AD 

participated in a pilot study in which user perception of the app was assessed. The authors 

selected the most inexpensive Android smartphones available via Amazon to make the 

platform affordable for more patients and caregivers.

2.6. Parkinson’s disease

PD is a neurodegenerative movement disorder that affects 1-3% of the population ≥65 years 

old (Poewe et al. 2017). PD is caused by a marked reduction of dopaminergic neurons in the 

substantia nigra, and subsequent disruption of dopaminergic neurotransmission in the basal 

ganglia. The diagnosis of PD is clinical as it classically presents with asymmetric resting 

tremor, rigidity, and bradykinesia (Nutt et al. 2005). The economic burden of PD is 

estimated to be $23B in the USA and projected to increase to $50B by the year 2040 (Dodel 

et al. 1998). Current dopamine replacement therapy with Carbidopa and Levodopa treats 

symptoms of the disease and is not curative; PD continues to progress resulting in significant 

disability, worsening quality of life, and eventual need for advanced care and nursing home 

placement (Huse et al. 2005).

Neurologists can adjust medication selection and dosage to manage symptoms. However, 

clinical visits merely provide a snapshot of a patient’s condition, which fluctuates within and 

across days. Furthermore, recall of symptoms can be inaccurate or incomplete. During the 

exam, some motor aspects of the disease such as nighttime akinesia can be absent. 

Continuous and passive measurements of physiology and behavior could provide 

complementary information to clinicians, and potentially reduce the recall bias associated 

with retrospective surveys and diaries.

Several groups have used the accelerometers and processing power of smartphones to assess 

walking and hand movement, especially during maneuvers. Some studies evaluated 

univariate correlations between clinical scales versus features such as tremor, amplitude of 

leg movements, and frequency of finger tapping. More recently, machine learning 

approaches have been utilized to classify activities, estimate PD severity, distinguish PD 

from controls, or quantify movement of PD patients. We direct the interested reader to an 

article by Kubota, Chen, and Little that provides a review of relevant machine-learning 

algorithms applied to large-scale wearable sensor data in Parkinson’s disease (Kubota et al. 

2016).

Woods et al. developed a smartphone app that uses discrete wavelet transforms and support 

vector machines to discriminate between Parkinson’s and essential postural tremors (ET) 

with over 96% accuracy (Woods et al. 2014). 14 subjects with PD and 18 subjects with ET 

were evaluated via the motor portion of the UPDRS. Subjects performed several motor tasks 

while holding a smartphone to record tremor: holding phone with eyes open and closed, 

attending to active tremor hand, attending to a laser target, and counting backwards by 3. 

DB8 wavelet decomposition was performed to produce five frequency bins; the energy in the 

bands 3.5–7.0 Hz and 7.0–14.0 Hz were of particular interest as they are the dominant 

tremor frequencies of PD, ET and physiological tremor. Analysis of variance between PD 
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and ET for the six tasks showed a significant main effect of task F (3.4, 104.8) = 6.93, p < 

0.05 and a significant interaction of Group × Task F (3.494, 104.831) = 4.709, p < 0.05. The 

mean tremor amplitude at 3.5–7.0 Hz was significantly lower in PD than in ET for all tasks 

(p < 0.05). Resultant wavelet data were used to train an SVM to classify the type of tremor. 

Using five-fold cross validation, the classifier achieved an accuracy of 96.4%.

Ellis et al. developed the “SmartMOVE” app to quantify gait variability (Ellis et al. 2015). 

The accuracy of using a smartphone gyroscope to calculate successive step times and step 

lengths) was validated against two heel contact-based measurement devices: heel-mounted 

foot switch sensors to capture step times, and an instrumented pressure sensor mat to capture 

step length). 12 subjects with PD and 12 age-matched controls walked along a 26-m path 

during self-paced and metronome-cued conditions, with all three devices recording 

simultaneously. Four attributes of gait were calculated. Mixed factorial analysis of variance 

revealed several instances in which between-group differences (e.g., increased gait 

variability in PD patients relative to controls) yielded medium-to-large effect sizes. Cueing-

mediated changes (e.g., decreased gait variability when PD patients walked with auditory 

cues) yielded small-to-medium effect sizes, whereas device-related measurement error 

yielded small-to-negligible effect sizes. Despite a small sample size, between-group effect 

sizes were greater than within-group or device-related effect sizes. However, factors that 

contribute to variance in outcomes are less intuitive and interpretable compared to factors 

that contribute to direction and magnitude of outcomes.

Kassavetis et al. recorded accelerometry using a smartphone on 14 subjects with PD who 

performed various tasks, e.g. holding the phone in their palm with outstretched arms, 

performing pronation-supination, and tapping the screen (Kassavetis et al. 2016). Metrics 

such as amplitude and frequency were calculated for each maneuver. Clinical severity of 

motor symptoms was assessed with the MDS-UPDRS. Five subscores – rest tremor, postural 

tremor, pronation-supination, leg agility, and finger tapping – significantly correlated with 

eight parameters of the data collected with the smartphone.

Albert et al. recorded accelerometry via smartphone from eight subjects with PD and 18 

controls, who performed a number of different activities for at least one minute (Albert et al. 

2017). These activities included walking, standing, sitting, holding, or not wearing the 

phone. Features extracted from these accelerometry data included statistical moments, root 

mean square, extremes, Fourier components, and cross product means between different 

accelerometry axes. Automatic feature selection was performed, although the particular 

method was not specified. Ten-fold record-wise cross validation was performed, and an 

SVM classified activities from these features with an accuracy of 96.1% for controls and 

92.2% for PD patients. Regularized logistic regression achieved slightly inferior results. 

Next, the SVM was trained on data from healthy subjects and but applied to test set data 

from PD patients. This lowered classification accuracy to 60.3%. Subject-wise cross-

validation on PD patients resulted in an accuracy of 75.1%, whereas the same approach but 

for controls resulted in an accuracy of 86.0%.

Pan et al. developed an Android app called “PD Dr” to monitor accelerometry from 40 

subjects with PD (Pan et al. 2015). Subjects performed three motor performance tasks: hand 
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resting tremor, walking, and turning. The phone was attached to the back of the hand, ankle, 

and pivot leg for evaluating hand tremor, walking, and turning respectively. Hand tremor 

features included power of motion data between 4–6 Hz, total power of motion data from 0–

20 Hz, average acceleration of motion, etc. Gait features included average gait cycle time, 

stride length, and acceleration, and turning features included the number of steps used to 

turn 360°. SVMs were trained to classify hand resting tremor from no tremor, achieving a 

sensitivity of 0.77 and accuracy of 0.82. Gait difficulty was distinguished from normal 

walking with a sensitivity of 0.89 and an accuracy of 0.81. Three Lasso-regularized logistic 

regression models were trained to estimate disease stage (Hoehn & Yahr score from 1-5), 

hand resting tremor UPDRS score, and gait difficulty UPDRS score. The correlation 

coefficients for PD stage, hand resting tremor, and gait difficult were r = 0.81, r = 0.74, and r 
= 0.79 respectively. However, the complexity of the measurement protocol limits the 

translatability of this study into real-world home and clinical environments. Asking a 

participant to wear a smartphone in various specific locations to assess particular activities 

may reduce adherence and introduce variance, whereas passive monitoring of motor 

function without disrupting typical behaviors or requiring specific body locations for wear 

may be easier for patients.

Capecci et al. identified freezing of gait (FOG) in 20 subjects with PD using smartphone-

based accelerometry (Capecci et al. 2016). Subjects were asked to perform the Timed Up 

and Go (TUG) test while being video-recorded. Clinicians assessed the videos to identify 

FOG events. Power in the “freeze” band (3–8 Hz) and the “locomotor” band (0.5–3 Hz) of 

accelerometry data were calculated. The sum of these powers was the freeze index “FI”, and 

the ratio of freeze to locomotor power was coined “EI” (acronym not definde in paper). The 

Moore-Bächlin Algorithm defined a freezing of gait event when FI and EI both exceeded 

one standard deviation above the mean. This approach achieved a sensitivity of 70.1% and a 

specificity of 84.1%. A second approach that also utilized information about step cadence 

achieved a sensitivity of 87.6% and a specificity of 95.0%. Of note, in this work the 

smartphone provided both sensing and computational function, whereas much previous work 

only used the smartphone for sensing. However, the performance of this approach has yet to 

be studied on a larger cohort with several PD types and stages.

Kostikis et al. evaluated hand tremor in 25 subjects with PD and 20 age-matched controls 

using an iPhone app developed in-house (Kostikis et al. 2014). A physician evaluated each 

participant to determine their UPDRS score. Next, subjects wore a custom-built glove case 

to attach an iPhone to their right hand. The app assessed four metrics of hand tremor via 

accelerometry, including the magnitude of acceleration and rotation rate vector. A random 

forest was trained via bagging to classify PD from healthy subjects, and out-of-bag results 

were reported. The classifier achieved a maximum AUC of 0.94, a sensitivity of 0.82, and a 

specificity of 0.90.

Lee et al. performed a similar but larger-scale study on 103 subjects with PD (Lee et al. 

2016). Using a smartphone monitoring approach, the investigators sought to (i) validate their 

app against MDS-UPDRS motor assessment and the two-target tapping test; (ii) generate a 

prediction model for UPDRS scores; (iii) assess repeatability of the app, and (iv) examine 

compliance and user-satisfaction. Subjects used the app at home over three days. Features 
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significantly correlated with MDS-UPDRS-III (r = 0.28 – −0.61, p < 0.05), and a prediction 

model based on these parameters accounted for 52.3% of variation in UPDRS (R2 = 0.523, F 
(4, 93) = 25.48, p < 0.05). 48 subjects underwent repeat assessment under identical 

conditions, and repeatability of features and predicted UPDRS scores was moderate with 

intraclass correlation coefficient of 0.584 – −0.763 (p < 0.05). A follow-up survey identified 

that subjects were comfortable with the app.

Speech degrades as PD progresses, with voice amplitude decreasing and breathiness 

increasing. Clinical speech scientists have used speech signal processing algorithms to 

characterize dysphonias such as those that occur in PD. Smartphones can record voice, 

either via standalone app or passively during phone calls or merely ambient background 

monitoring, which suggests the possibility for remote evaluation of PD. Tsanas et al. used 

statistical machine-learning techniques to map features from speech signal processing 

algorithms – such as spectral energy or amplitude – to UPDRS scores (Tsanas et al. 2011). 

Specifically, 42 subjects with PD performed self-administered speech tests that did not 

require their physical presence in the clinic, and clinicians evaluated PD symptomatology 

using UPDRS. 6,000 recordings were generated, and robust feature selection algorithms 

(LASSO and elastic net regression) were used to select the optimal subset of the speech 

features. These features were used to train a random forest learner, which estimated both 

motor and total UPDRS scores within about two points (p < 0.001 via the Wilcoxon rank 

sum test). Interestingly, linear best fit models between dysphonia features and UPDRS 

scores achieved low correlations in a univariate sense, but fusing multiple weak features 

using a machine learning approach enabled accurate UPDRS score estimation. This same 

group also utilized a similar approach but for dichotomizing PD subjects from healthy 

controls rather than estimating UPDRS scores (Tsanas et al. 2012). 132 dysophnia features 

were calculated from 263 samples recorded from 43 subjects. Feature selection was 

performed and features were used to train random forests and SVMs, which achieved almost 

99% overall classification accuracy. Estimating UPDRS scores using passive and remote 

sensing could enable tracking patient status outside of the clinic, whereas dichotomizing (or 

estimating the probability of dysphonia features being close to those from a subject with PD) 

could be utilized for screening high-risk individuals for further evaluation by a neurologist.

3. Wearable accelerometers

Locomotor activity is altered in neuropsychiatric illnesses, due to impaired motor function, 

weakness, volitional and behavioral changes, or abnormal sleep patterns and circadian 

rhythms (Teicher 1995). Non-invasive body-worn accelerometers can measure these 

changes, and were first explored for assessing circadian rhythms (Witting et al. 1990; Sadeh 

et al. 2002). However, continual monitoring of locomotor activity was not feasible until 

recently due to poor battery life, the inability to wirelessly transmit data, and low patient 

adherence with research-grade instrumentation. Only recently have these technological 

constraints been overcome. Today, personal activity monitoring devices such as fitness 

bracelets or patches – also known as “wearables” – are affordable and widely available to 

public consumers. This is partly due to the global saturation of the smartphone market, 

which consequently reduced the cost of manufacturing and distributing similar component 

parts. Today, wearables house sensors that detect heart rate, activity, ambient light, and 
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sleep. These devices have been used in the studies revealing disturbances in 24-hour routine 

and circadian rhythm associated with neuropsychiatric illnesses such as BD and 

schizophrenia (fig. 4). While only 2-4% of individuals in the United States have a wearable 

device, the market is estimated to increase to 115 million units in 2018 and generate %50 

billion of revenue (Gandhi et al. 2014; Statista 2017). Here we review recent studies using 

wearable accelerometers to monitor neuropsychiatric illnesses.

3.1. Stress and depression

Winkler et al. used actigraphy to demonstrate bright light therapy (BLT) normalizes 

disturbances in the circadian rest-activity cycle associated with seasonal affective disorder 

(SAD) (Winkler et al. 2005). 17 SAD patients and 17 age-matched controls were treated 

with BLT for four weeks and monitored via wrist actigraphy. SAD patients had 33% lower 

total and 43% lower daylight activity in the first week compared with control subjects. 

Furthermore, SAD patients demonstrated altered relative amplitude and phase of the sleep-

wake cycle, as well as lower sleep efficiency. BLT treatment restored these alterations, and 

increased both total and daylight activity of SAD patients. Interdaily stability (IS) of activity 

– a measure of regularity of the circadian rhythm between days, which reflects the strength 

of coupling of the rhythm to external cues such as light – increased by 9% in both patients 

and controls.

Nakamura et al. measured activity in 14 patients with MDD and 11 age-matched controls 

using wrist-worn accelerometers (Nakamura et al. 2007). Data from resting and active 

periods were fit to cumulative power law distributions with the form P (x ≥ a) ∼ a−γ. A 

period of activity was considered resting or active if the counts were cumulatively below or 

above a threshold value, respectively. The average scaling exponent γ = 0.74 ± 0.12 among 

depressed patients and γ = 0.92 ± 0.08 among controls. This difference was associated with a 

significantly longer mean resting period duration in depressed patients (15.64 ± 6.19 

minutes) than in controls (7.72 ± 1.44 minutes).

Vallance et al. studied the associations between accelerometer-derived physical activity and 

sedentary time with depression in 2,862 adults from the 2005–2006 US National Health and 

Nutrition Examination Survey (NHANES) (Vallance et al. 2011). Depression occurred in 

6.8% of the sample and was assessed via the PHQ-9 questionnaire. Depressed and non-

depressed subjects significantly differed across several demographic, medical, and 

behavioral characteristics. Subjects wore accelerometers (ActiGraph, Ft. Walton Beach, FL) 

for seven days on their right hip, attached by a belt. Subjects in the highest quartile of 

moderate-to-vigorous intensity physical activity had 2.7-fold lower odds of depression 

compared to subjects in the lowest quartile. Sedentary time was associated with significantly 

increased odds of depression in overweight/obese adults, but not normal weight adults. 

However, only simple measures of activity were computed. More sophisticated metrics 

reflecting structure of routine, complexity, and disturbances in circadian rhythms may better 

distinguish depressed from healthy people.

Sano et al. searched for physiological or behavioral markers for stress by collecting 5 days 

of data from 18 subjects (Sano et al. 2013). A wrist sensor monitored accelerometry and skin 

conductance, and a custom app tracked call, SMS, location, and screen on/off time. The app 
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also administered surveys to assess stress, mood, sleep, tiredness, general health, alcohol or 

caffeinated beverage intake, and electronics usage. Using features screen on, mobility, and 

call or activity levels, an SVM classified subjects into high or low perceived stress groups 

with 75% accuracy. Higher reported stress level was related to activity level, SMS and 

screen on/off patterns.

Sano et al. repeated this approach in a subsequent study, but also included academic 

performance among the outcomes (Sano et al. 2015). Subjective and objective data was 

gathered using mobile phones, surveys, and wearable sensors worn by 66 subjects for 30 

days. Sequential forward feature selection was performed to find the best combinations of 

features derived from data including survey scores (from surveys that were not the outcome 

being estimated), accelerometry, skin temperature, calls and SMS, and internet and email 

use. An SVM achieved a classification accuracy of 90% in distinguishing individuals in the 

upper 20th percentile from the lower 20th percentile in three different scores: Pittsburg Sleep 

Quality Index, perceived stress scale, and mental health composite. Features from wearable 

devices resulted in higher classification accuracy than when using features from 

smartphones, with the exception of classifying high versus low GPA.

O’Brien et al. monitored activity in 29 older adults with MDD for seven days. Subjects 

underwent neuropsychological assessment and quality of life (QoL) (36-item Short-Form 

Health Survey) and activities of daily living (ADL) scales (Instrumental Activities of Daily 

Living Scale) (O’Brien et al. 2016). A wrist-mounted actigraph used in this study was 

developed as part of the OpenMovement initiative, a collection of open-source hardware 

sensors and software tools for research use (https://openlab.ncl.ac.uk/things/open-

movement/). Physical activity, jerk, and entropy were all significantly lower in depressed 

subjects, and reductions in locomotor activity were associated with reduced ADL, lower 

quality of life, lower associated learning, and a higher depression rating scale score.

Burton et al. performed the first systematic review of activity monitoring in patients with 

depression and highlighted several limitations of the studies (Burton et al. 2013). 19 eligible 

studies were identified, and case control studies showed less daytime activity in patients 

with depression compared to controls (standardized mean difference −0.76, 95% confidence 

intervals −1.05 to −0.47). However, most studies in the literature contained a source of 

potential confounding by comparing inpatient subjects with depression to controls in the 

community. Large differences between groups could have been due to living environment 

and routine rather than depression. Outpatients have milder forms of depression and less co-

morbidity than those admitted to hospital, so results from studies that do not account for 

treatment setting may not generalize to broader patient populations. Furthermore, not all 

studies mentioned the make and model of the wrist-worn actigraph used, and the duration of 

sampling varied considerably from study to study, ranging from 12 hours to > 2 weeks.

3.2. Bipolar disorder

Palmius et al. reported preliminary results from the AMoSS study involving 16 subjects with 

BD, nine subjects with borderline personality disorder, and 25 controls (Palmius et al. 2014). 

Subjects were provided with a Samsung Galaxy SIII phone running the Android operating 

system, a Fitbit One wireless activity and sleep tracker, and a GENEActiv Original wrist-
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worn accelerometer. Subjects also took their own temperature and blood pressure at specific 

times in the study. Furthermore, an ECG was worn for a limited period of time by each 

participant and selected subjects wore a pulse oximeter overnight. The AMoSS app recorded 

actigraphy, ambient light, phone call time and duration, SMS time and length, self-reported 

mood surveys, and blood pressure and temperature recorded from Bluetooth-connected 

devices. Clinically validated psychiatric questionnaires – including the quick inventory of 

depressive symptomatology (QIDS), Altman self-rating mania scale, generalized anxiety 

disorder (GAD-7), and EuroQol EQ-5D – were administered weekly. Although data 

collection was still ongoing, gross differences in the regularity of actigraphy between 

borderline personality disorder and controls were evident.

Bullock et al. measured locomotor activity over seven days in 36 subjects with high trait 

vulnerability and 36 subjects with low trait vulnerability for BD (Bullock et al. 2014). 

Patients wore wrist actigraphs (Mini-Mitter Actiwatch-L; Respironics, Inc., Bend, OR). 

Vulnerability to BD was determined via a self-reported General Behavior Inventory (GBI), 

taken by 358 potential subjects. The top and bottom 10% of the GBI distribution formed the 

high- and low-vulnerability groups. Relative amplitude (RA) is defined as:

RA = M10 − L5
M10 + L5

where M10 is the mean activity level during the most active ten hours, and L5 is the mean 

activity level during the least active five hours. RA was lower in the high-vulnerability group 

than in the low-vulnerability group, while IV and IS did not significantly differ.

Krane-Gartiser et al. evaluated actigraphy recordings from 18 hospitalized patients with 

mania, 12 hospitalized patient with bipolar depression, and 28 controls (Krane-gartiser et al. 

2014). Actiwatch Spectrum actigraphs were used. From each participant, the first period of 

64 minutes containing ≤ two consecutive minutes of zero activity counts were selected for 

subsequent feature extraction. Features included the standard deviation (SD), Root Mean 

Square of the Successive Differences (RMSSD), autocorrelation (with lag of one), sample 

entropy, “symbolic dynamics” (a simplified version of sample entropy; Guzzetti et al. 2005), 

and “Fourier analysis” (ratio between variance in high and low frequencies of the spectrum). 

Mean activity of both manic and depressed patients was lower than in controls. SD/min in % 

of mean was higher in depressed patients than in both manic patients and controls. Although 

no difference was found in sample entropy of activity by patient group, symbolic dynamics 

were lower in depressed patients compared to manic patients and controls. Finally, the ratio 

between variance of high frequency (HF) power and variance of low frequency (LF) power 

was higher, and the autocorrelation was lower, in manic patients compared to other groups.

Hyperactivity is seen in both pediatric BD and attention-deficit hyperactivity disorder 

(ADHD). Faedda et al. accurately distinguished youth with BD (N=48) from those with 

ADHD (n=65) and typically developing controls (n=42) using features derived from five 

minutes of belt actigraphy data (Faedda et al. 2016). Features were selected on the basis of 

significance rather than predictivity, and included diurnal skew, L5, RA, and bipolar 

vulnerability index (VI). VI is the integrated area of shape coefficients of the gamma 
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function fit to the distribution of Morlet wavelet coefficients at scales from 0.2–2 hr. 

Bagging was performed whereby 75% of the data was used as the training set and model 

performance was assessed using the remaining 25% of the data as the test set. This was 

repeated 500 times. Although the cohort included three classes of subjects, a binary 

classification task was performed to distinguish BD from non-subjects with BD. Several 

classifiers were used, including random forest, artificial neural networks, SVM, multinomial 

regression, and partial least squares, achieving area under the ROC curves ranging from 0.75 

to 0.78.

3.3. Schizophrenia

Martin et al. found older schizophrenia patients have more disrupted sleep and circadian 

rhythms (Martin et al. 2005). 28 older schizophrenia patients (mean age=58.3 years) and 28 

age- and gender-matched controls were monitored for three days using Actillume wrist 

actigraphs (Ambulatory Monitoring, Inc., Ardsley, New York). Minute-by-minute activity 

and light exposure were recorded. Patients spent longer in bed, had more disrupted nighttime 

sleep, slept more during the day, and had less robust circadian rhythms of activity and light 

exposure compared to controls.

Apiquian et al. evaluated rest-activity characteristics in 20 unmedicated and non-hospitalized 

schizophrenia patients and 20 controls for five days using a wrist-worn actigraph 

(Actiwatch-16) (Apiquian et al. 2017). Compared to controls, untreated patients showed 

significantly lower levels of motor activity and more sleep time.

Walther et al. investigated the relationship between objective measures of motor activity and 

PANSS scores (Walther et al. 2009b). 55 schizophrenia patients were monitored for 24 hours 

via wrist actigraphy. Low activity levels were correlated with high PANSS negative 

syndrome subscale scores. Interestingly, actigraphic parameters did not correlate with motor-

specific questions of the PANSS, challenging the validity of the questionnaire.

This same research group subsequently used 24-hour actigraphy to differentiate 

schizophrenia subtypes in a cohort of 60 hospitalized patients (35 paranoid, 12 catatonic, 13 

disorganized) (Walther et al. 2009a). Activity level and movement index (proportion of 2-

second periods with nonzero activity) was highest in paranoid schizophrenics, whereas the 

mean duration of uninterrupted mobility was highest in catatonic schizophrenics.

Berle et al. used actigraphy to evaluate patterns of motor activity in 23 schizophrenia 

patients, 23 depressed patients, and 32 control subjects who did not have a history of mood 

or psychotic systems (Berle et al. 2017). Total motor activity was lower in patients 

diagnosed with schizophrenia or depression than in controls. However, IS was 18% higher in 

schizophrenia patients compared to controls, whereas IS did not differ between depressed 

patients and controls. IV was 18% lower in schizophrenia patients and 8% lower in 

depressed patients compared to controls.

Hauge et al. revisited this same cohort of patients, but analyzed activity data using Fourier 

analysis and entropy measurements (Hauge et al. 2011). For each patient, these features 

were derived from the first 300-minute segment of activity data that contained ≤ 4 
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consecutive minutes of zero activity. RMSSD/SD was significantly lower in schizophrenia 

patients compared to either depressed patients or controls. Sample entropy of activity was 

significantly lower in depressed patents compared to either schizophrenia patients or 

controls. Finally, the ratio between variance of HF power and variance of LF power was 

significantly higher in depressed patients compared to controls.

Wichniak et al. recorded seven days of actigraphy using Actiwatch AW4 devices 

(Cambridge Neurotechnology Inc., UK) in 73 patients with schizophrenia and 36 age-and 

sex-matched controls (Wichniak et al. 2011). Mental status was measured via the PANSS 

and CDSS questionnaires. Schizophrenia patients had lower mean 24-hour activity and mean 

10-hour daytime activity levels, and spent more time in bed. Lower activity was associated 

with higher PANSS and CDSS scores.

Sano et al. recorded seven days of actigraphy (Actigraph Mini-Motionlogger; Ambulatory 

Monitors Inc., Ardsley, NY, USA) in 19 schizophrenia patients and 11 controls (Sano et al. 

2012). Resting periods obeyed a power-law cumulative distribution whereas active periods 

obeyed a stretched exponential distribution. Distribution parameters differed among 

schizophrenia patients and controls. For resting periods, the average scaling exponent values 

(mean ± standard deviation) were γ = 0.86 ± 0.03 for schizophrenia patients and 

γ = 0.99 ± 0.03 for controls. For active periods, the average stretching parameters were 

β = 0.57 ± 0.02 for schizophrenia patients and β = 0.64 ± 0.02 for controls.

Evaluating the distribution of rest-activity periods was also previously described by 

Nakamura et al. 2007 and Sano et al. 2012. Fasmer et al. 2015 used this approach in a cohort 

of 24 patients with schizophrenia, 23 with depression, and 29 controls. 12 days of actigraphy 

data were recorded per patient using Actiwatches (Cambridge Neurotechnology Ltd., 

England, UK). For active periods, average scaling exponent values (mean ± standard 

deviation) were γ = 0.77 ± 0.13 for schizophrenia patients, γ = 0.88 ± 0.13 for depressed 

patients, and γ = 0.82 ± 0.01 for controls. For inactive periods, average scaling exponent 

values (mean standard deviation) were γ = 0.81 ± 0.17 for schizophrenia patients, 

γ = 0.93 ± 0.18 for depressed patients, and γ = 0.71 ± 0.11 for controls. Length of active and 

inactive periods and scaling exponents for both active and inactive periods correlated with 

IS, whereas only length of active periods and scaling exponents for inactive periods 

correlated with IV. The authors concluded the distribution of active and inactive periods 

differed in depressed compared to schizophrenic patients.

Shin et al. assessed correlations between locomotor activity and symptom severity of 61 

subjects with schizophrenia (Shin et al. 2016). Subjects wore a Fitbit Flex device for a week 

to assess their activity, and completed the PANSS questionnaire to assess schizophrenia 

symptoms. Subjects with a high total PANSS score or high positive subscale scores had 

significantly lower levels of physical activity than the other groups.

3.4. Dementia and Alzheimer’s disease

Kuhlmei et al. evaluated the relationship between actigraphy features and measures of 

apathy in two groups of patients with mild cognitive impairment (MCI) and dementia 

(Kuhlmei et al. 2013). The cohort consisted of 32 patients with dementia, 21 patients with 
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MCI, and 23 elderly controls. Apathy and depression were evaluated via the Apathy 

Evaluation Scale (AES) and the Beck Depression Inventory (BDI), respectively. Apathy 

(indicated by a higher AES score) was associated with reduced daytime activity regardless 

of diagnosis (r = −0.50, p < 0.01). This effect was greater in patients with dementia than in 

patients with MCI.

3.5. Parkinson’s disease

Several studies have evaluated locomotor activity in patients with (Parkinson’s disease) PD 

using non-phone based accelerometers, and have focused on the identification of specific 

motor behaviors such as gait alterations, freezing of gait, and balance deficits (Maetzler et al. 

2013). Here we review papers specifically describing the use of wrist- or finger-worn 

sensors for monitoring PD.

Patel et al. used wearable accelerometry to estimate the severity of motor dysfunction in PD 

patients (Patel et al. 2009). 12 patients with mild to moderate PD were recruited for the 

study. Accelerometers were placed on two locations per extremity (upper and lower). 

Subjects performed several motor tasks including finger to nose movements, finger tapping, 

and sitting. Features extracted from accelerometer data included range of amplitude, root 

mean square value, cross-correlation metrics, frequency-based metrics, and entropy. Video 

of study subjects was annotated by clinical experts. These annotations served as multi-class 

labels for an SVM, which was trained on features derived from an optimal window length of 

at least 5 seconds of accelerometer data. The classifier achieved 5-7% estimation error.

Stamatakis et al. estimated Unified Parkinson’s Disease Rating Scale (UPDRS) scores using 

features derived from a finger-tapping test recorded via finger-worn accelerometer from 36 

PD patients and ten age-matched controls (Stamatakis et al. 2013). Features included mean 

movement frequency, number of halts and hesitations, acceleration, and angle. Leave-one-

out cross-validation and greedy backwards feature selection was performed, and a logistic 

regression model was trained to estimate UPDRS scores (ranging from 0 to 4 where 0 

indicates no problems with the motor task and 4 indicates inability to perform the task due to 

slowing or interruptions) with AUCs ranging from 0.92 to 0.97.

Roy et al. measured unscripted activity in 11 PD patients using tri-axial accelerometry and 

surface electromyography (sEMG) (Roy et al. 2011). Sensor and video data were recorded 

for four hours; the video data was annotated by individuals trained to identify PD motor 

signs. Accelerometry features included lowpass and highpass energy, lag of first peak of 

autocorrelation, and ratio of height of first peak to peak at origin in autocorrelation. sEMG 

features included the root mean square energy, as well as the lag and peak ratio (as described 

for accelerometry). These features were used to train a dynamic neural network to detect 

tremor and dyskinesia, as well as severity. The classifier was tested on a validation set of 

four controls and eight patients not used to train the model. The neural network achieved 

sensitivities of 95.2% - 97.2% for detecting tremor and 91.9% - 95.0% for detecting 

dyskinesia. These results demonstrate accurate classification of PD motor activities, 

particularly using training data from different patients than test data. However, it is unclear if 

similar performance is achievable using commercial wrist-worn fitness trackers, or without 

sEMG data.
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Griffiths et al. recorded activity continuously for ten days in 34 PD subjects with idiopathic 

Levodopa-responsive PD, and from 10 age-matched controls (Griffiths et al. 2012). 

Parkinson’s Kinetigraphs (PKG; Global Kinetics Corporation) were used to record activity. 

Unified Parkinson Disease Rating Scale (UPDRS) scores were obtained for each subject. A 

bradykinesia score (BKS) was produced by establishing the maximum acceleration in each 

2-minute epoch of acceleration recordings and calculating the mean spectral power (0.2 and 

4 Hz) surrounding this peak. A dyskinesia score (DKS) was calculated similarly except 

using the mean acceleration rather than the maximum. BKS and DKS values significantly 

differed in PD patients versus controls. Activity-based estimates of clinical dyskinesia were 

quantitatively comparable to those from three neurologists. Finally, improvement in scores 

in response to changes in medication could be assessed in individual patients.

Niwa et al. investigated rest activity and autonomic function by evaluating actigraphy and 

ECG data in a cohort of 27 PD patients and 30 age-matched controls (Niwa et al. 2011). 

Actigraphy was recorded for seven days using Mini-Motionlogger Actigraphs (Ambulatory 

Monitoring, Ardsley, NY, USA). Ambulatory ECG was also recorded for 24 hours. Nine PD 

patients classified as Hoehn-Yahr (HY) stage 1 or 2 and were considered early stage, and 18 

PD patients classified as HY stage 3 or 4 and were considered late stage. Disease duration, 

medication status, score on the Unified Parkinson’s Disease Rating Scale (UPDRS), and 

score on the Mini Mental State Examination (MMSE) were determined. Sleep episodes out 

of bed and wake episodes in bed were higher in the PD patients than in the control subjects. 

Several rest activity features including activity of duration, mean activity, and ratio of out-of-

bed versus in-bed activity significantly differed by PD status. HRV analysis revealed a 

decline in total power and HF with increasing stage of PD. In summary, these results show 

alterations in circadian rhythm, locomotor activity, and autonomic nervous system function 

associated with PD.

Because PD is a movement disorder, the relationship between accelerometer data and 

intensity of physical activity may differ in healthy people versus those with PD. Nero et al. 

2015 defined accelerometer cut points for different walking speeds in 30 older adults with 

mild-to-moderate PD (mean age=73 years). Subjects wore a waist accelerometer and walked 

at self-defined brisk, normal, and slow speeds. Walking speed was also measured. Through 

receiver operating characteristic analysis, cut points were generated for different levels of 

walking speed in counts per 15 seconds. Sensitivity and specificity were 61-100%.

Kheirkhahan et al. estimated a clinically meaningful mobility phenotype of walking speed 

using waist-worn accelerometers in a cohort of 1,135 older adults with impaired mobility 

(Kheirkhahan et al. 2016). Although this study was not specific to PD, it is relevant given 

how mobility is impaired in PD and is a major predictor of overall health in older adults. 

Regularized linear regression was performed to estimate walk speed from features; the best 

model achieved a sensitivity of 0.70, a specificity of 0.80 and a classification rate of 76%. 

The most predictive features were average counts per min during active periods, average 

length of bout of activity, average activity count where half of the total activity is 

accumulated, standard deviation of activity counts, and number of steps per day. 

Interestingly, these features were not universally correlated with walking speed in univariate 
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analyses, which suggests that the combination of features may result in better classification 

performance compared to using single features.

4. Holter monitoring

Much literature has established a bidirectional relationship between changes in HRV and 

neuropsychiatric illness. People with severe mental illness have worse cardiovascular 

outcomes than healthy controls, and people with serious cardiovascular illness are more 

likely to develop certain neuropsychiatric illnesses (Newcomer et al. 2007; Sowden et al. 

2009). The interplay between mental and cardiovascular health is believed to be mediated by 

alterations in the ANS, endocrine effectors such as cortisol and catecholamines, activation of 

pro-inflammatory cytokines, and lifestyle and environmental exposures such as diet, 

exercise, and social support (Grippo et al. 2009). In particular, HR and HRV measures can 

be measured noninvasively, and reflect the state of the ANS. Alterations in HR and HRV 

may thus provide an objective and passively measurable marker of clinical status in 

neuropsychiatric illnesses ranging from MDD to BD to schizophrenia (Henry et al. 2010; 

Cohen et al. 2000).

Cardiac monitoring from body-worn instrumentation is known as Holter monitoring and was 

originally performed via large stationary ECG devices. Recently, body-worn patches 

adhering to the skin have been developed to measure HR via ECG, actigraphy, and even 

metabolites in sweat (Rodgers et al. 2015). Adhesive patches have the potential to improve 

adherence with study protocols and device use because they are unobtrusive and always 

attached to the patient. Most studies using physiological patches have focused on heart 

disease, although a few groups have used this technology to evaluate patients with 

depression, stress, and schizophrenia. Photoplethysmography (PPG) is another approach for 

assessing HR via optical measurements of changes in blood volume, and has become a 

popular sensing technique in wearable devices such as fitness bracelets (Allen 2017). Here 

we summarize several studies that exclusively focus on the analysis of heart rate data, 

measured via both traditional ECG as well as patch-based sensing modalities. Devices 

utilizing PPG are reported in the next section on multi-modal sensing.

4.1. Stress and depression

Previous studies of the neural correlates of vagal tone – as measured by HF components of 

the power spectral density of HR – involved mental stress tasks that affect both cognitive and 

emotional states. Lane et al. 2009 studied the contributions of emotion to vagal tone by 

correlating HF power with measures of regional cerebral blood flow (rCBF) derived from 

positron emission tomography (PET) in 12 healthy women during different emotional states. 

Happiness, sadness, disgust and three neutral conditions were each induced by film clips and 

recall of personal experiences. ECG was recorded during each 60-second PET scan, and HF 

HRV was calculated. HF HRV correlated with rCBF in regions of the brain involved in 

emotion: medial prefrontal cortex, caudate nucleus, periacqueductal gray, and left mid-

insula. These data support the hypothesis that emotion – an important component of the 

psyche that is affected in neuropsychiatric illness – mediates vagal tone which manifests as 

altered HRV.
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Short-term psychological stress has been shown to modulate sympathovagal activity, which 

is measurable via Holter monitoring. Delaney et al. 2000 assigned 30 healthy subjects into 

two age- and sex-matched groups. A psychological stress test was administered in a 

competitive setting and included a financial incentive to produce psychological strain. 

Psychological stress decreased the standard deviation of interbeat intervals, increased heart 

rate, reduced HF power, and increased LF power.

Lee et al. developed a three-electrode ECG patch with built-in R-peak detection, and 

demonstrated comparable noise quantity and signal-to-noise ratios between their device and 

a commercial ECG system (Lee et al. 2016). HRV measures calculated from data acquired 

via the ECG patch was also used to evaluate stress responses in 17 subjects who were 

administered a color–word interference test and a mental arithmetic test. Both the patch and 

commercial ECG showed elevated LF/HF ratios in subjects undergoing stressful conditions.

Weenk et al. evaluated stress in twenty surgeons and residents using a smart patch. Subjects 

filled out the State Trait Anxiety Inventory (STAI) before and immediately after each 

surgical procedure (Weenk et al. 2017). The patch (Vital Connect, Campbell, CA, USA) was 

worn for 48 hours, and measured single-lead ECG, respiratory rate, skin temperature, body 

posture, activity, and steps. Calculated HRV measures included the standard deviation of the 

average normal-to-normal intervals (SDNN), root mean square of the successive differences 

(RMSSD), very low frequency power (VLF), LF, and HF power. Stress (%) was estimated 

using a simple, empirical linear model: HR+a SDNN. Performing surgery decreased SDNN 

and RMSSD by 40% each, increased the∗LF/HF ratio by 64%, and increased the stress 

percentage by 300%. Estimated stress was higher in less experienced surgeons.

Nahshoni et al. compared HRV measures from ten subjects with MDD to those in ten 

mentally healthy heart transplant recipients, as well as ten healthy control subjects 

(Nahshoni et al. 2004). ECG was used to record 2,000 interbeat intervals from each subject 

after 10 minutes of lying supine. No significant differences were noted between MDD and 

transplant subjects, but both of those groups had lower interbeat intervals, standard deviation 

of RR intervals, and pointwise correlation dimension (a nonlinear measure of information 

content of a dynamical system) compared to healthy controls.

Roh et al. developed a soft flexible patch to obtain HRV measures to evaluate patients with 

depression (Roh et al. 2014). The patch features a rechargeable battery and an integrated 

reduced instruction set computer which can perform ECG acquisition, signal filtering, R 

peak extraction, and feature extraction including time- and frequency domain and nonlinear 

features such as entropy. ECG recordings from 41 volunteers were annotated by experienced 

researchers; the integrated patch software detected R peaks with a sensitivity of 99.3%, PPV 

of 100.0%, and error of 0.71%. The patch was also compared to a conventional Holter 

system by recording ECG data from 12 adult volunteers performing various activities; 

signal-to-noise levels were comparable, and actually higher in measurements from the patch 

during walking speeds > 1 km/h. Finally, HRV analysis was performed in 17 adult 

volunteers using ECG data measured via the patch and a Holter monitor for comparison. 

Subjects were recorded in three states: 1) rest, 2) while performing the Stroop test – a color-

word interference task meant to stimulate cognitive stress – and 3) while performing a 
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mental arithmetic challenge. HRV parameters differed with mental task, but results from the 

patch and the Holter monitor were equivalent.

4.2. Bipolar disorder

Changes in HRV that are measurable via Holter monitoring have also been observed in 

bipolar disorder (BD). Henry et al. recorded cardiac activity via ECG and assessed HRV in 

23 acutely hospitalized subjects with manic BD, 14 subjects with schizophrenia, and 23 

healthy age- and gender-matched controls (Henry et al. 2010). Time domain, frequency 

domain, and nonlinear HRV measures were calculated. Psychiatric symptoms were assessed 

by administration of the BPRS and the YMRS. Compared to controls, subjects with BD had 

significantly higher mean resting HR, lower root mean square of the successive differences 

(RMSSD) of RR intervals, lower HF power, and lower entropy. Reduction in 

parasympathetic tone significantly correlated with higher YMRS scores and the unusual 

thought content subscale on the BPRS, whereas decreased entropy was associated with 

increased aggression and diminished personal hygiene on the YMRS scale. In summary, 

autonomic dysfunction is associated with more severe psychiatric symptoms and may 

depend on the phase of the illness.

4.3. Schizophrenia

Cardiovascular mortality is elevated in patients with schizophrenia, which may be due to 

increased prevalence of obesity, smoking, and diabetes, adverse pro-arrhythmic effects of 

antipsychotic medication, and altered autonomic function. Bär et al. 2017 calculated 

complexity measures of HRV using short-term ECG recordings from 20 unmedicated 

subjects with schizophrenia and 20 age- and gender-matched healthy controls. Features 

included joint symbolic dynamics, compression entropy, fractal dimension and approximate 

entropy. Complexity of HR time series was significantly reduced in acute schizophrenia. 

However, when using HR as a covariate, only fractal dimension remained significantly 

altered.

4.4. Post traumatic stress disorder

Cohen et al. evaluated frequency-domain HRV measures via power spectral density analysis 

using ECG recordings from 14 subjects with post traumatic stress disorder (PTSD), 11 

subjects with panic disorder, and 25 matched controls (Cohen et al. 2000). ECG recordings 

were made while subjects were resting while recalling the trauma implicated in the 

development of their PTSD, or the circumstances of a severe panic attack, as appropriate, 

and again while resting. Controls were asked to recall a stressful life event during recall. 

Both PTSD and panic disorder groups had elevated HR and low frequency LF power at 

baseline, suggesting increased sympathetic activity. However, PTSD patients did not respond 

to recall stress with increases in HR and LF.

Reinertsen et al. used a machine learning approach to dichotomize subjects with PTSD from 

healthy controls using features such as LF power, statistical moments, and acceleration and 

deceleration capacity (Reinertsen et al. 2017a). 24-hour single-channel ECG recordings 

were obtained from 23 subjects with current PTSD, and 25 control subjects with no history 

of PTSD. RR intervals derived from these data were cleaned and used to calculate HR and 
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HRV features – including statistical moments, power spectral density components, entropy, 

and acceleration / deceleration capacity – which were used to train a logistic regression 

classifier. Performance was assessed via repeated random sub-sampling validation. To 

reduce noise and activity-related effects, features were calculated from five non-overlapping 

ten-minute quiescent segments of RR intervals defined by lowest HR, as well as random ten-

minute segments as a control method. Feature selection was performed and a median AUC 

of 0.86 was achieved out-of-sample test set data. This was significantly higher than the AUC 

using 24 h of data (0.72) or random segments (0.67), demonstrating the utility of a novel HR 

segmentation approach for improving the classification of PTSD from HR and HRV 

measures. Further work should prospectively evaluate if classifier output changes 

significantly with worsening symptomatology or effective treatment of PTSD.

4.5. Alzheimer’s disease

Zulli et al. evaluated HRV and other cardiovascular measures via Holter ECG monitor in a 

cohort of 33 subjects with AD, 39 subjects with mild cognitive impairment (MCI), and 29 

cognitively healthy controls (Zulli et al. 2005). QT interval dispersion values were 

significantly higher in patients with AD than in patients with MCI or controls. Furthermore, 

HRV time and domain parameters were lower in patients with AD than in patients with MCI 

and controls, and these differences varied with levels of cognitive impairment. This 

autonomic cardiac dysfunction may be related to a cholinergic deficit. However, Allan et al. 

2005 did not find differences in HRV measures in AD patients. ECG recordings were 

obtained from 14 AD patients, 20 vascular dementia patients, and 80 healthy controls resting 

in the supine position for five minutes. Power spectral analysis was performed to calculate 

VLF, LF, HF, and total power, but no measures differed in AD or vascular dementia 

compared to controls. Further research is needed to elucidate the interplay between 

cholinergic and cognitive defects in AD and changes in ANS function, and to evaluate if 

noninvasive sensing of these alterations can be clinically useful.

4.6. Parkinson’s disease

Because dysautonomia is a known characteristic of PD, alterations in complexity and 

frequency-domain HRV measures may be detectable using Holter monitoring approaches 

and could reflect clinical status of patients (Poewe et al. 2017). Kallio et al. obtained ECG 

recordings from 50 patients with PD and 55 healthy controls during normal breathing, paced 

breathing, Valsalva maneuver, upright tilting, and isometric handgrip (Kallio et al. 2000). 

Sub-measures of RMSSD, and systolic blood pressure after tilt test, significantly differed in 

PD patients versus controls. Patients with hypokinesia or rigidity as the initial symptom of 

PD had a more pronounced HRV deficit than those with tremor onset. This difference might 

be due to more advanced neuronal damage in hypokinesia or rigidity onset PD, and/or 

preferential involvement of regions of the central or peripheral ANS that mediate autonomic 

function.

Previous studies of autonomic responses in PD measured HR over relatively short time 

periods, which provides a limited view of the autonomic cardiac control mechanisms and do 

not represent tonic autonomic regulation. Furthermore, PD patients exhibit alterations in 

various circadian autonomic patterns, such as body temperature and heart rate variation, 

Reinertsen and Clifford Page 28

Physiol Meas. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which would require longer monitoring times to assess (Brown et al. 2012). Haapaniemi et 

al. sought to evaluate tonic autonomic regulation by recording ECG via Holter monitor over 

24 hours in 54 untreated patients with PD and 47 age-matched healthy controls (Haapaniemi 

et al. 2001). Power spectral features, instantaneous beat to beat variability, long term 

continuous variability derived from Poincaré plots, and the slope of the power law fit of the 

RR intervals were analyzed. All spectral components and the slope of the power law curve 

were lower in the patients with PD than in controls. UPDRS and motor scores negatively 

correlated with VLF and LF power and the slope of the power law. Patients with mild 

hypokinesia had higher HF values than patients with more severe hypokinesia, whereas 

tremor and rigidity were not associated with HRV measures.

A later study by Oh et al. also evaluated 24-hour Holter ECG and BP recordings of 139 

patients with PD and 55 age-matched controls (Oh et al. 2014). There were significant 

differences in the distribution of non-dipping, the percent of nocturnal BP decrease, 

nighttime BP level, the standard deviation of heart rate, and nocturnal decrease of heart rate 

between patients with PD and controls. However, these abnormal diurnal HRV and BP 

measures were not associated with motor symptom severity, age, gender, or disease duration.

5. Multimodal sensing

Here we review studies that utilize heart rate in addition to other sensor types, including 

accelerometry, ambient light, and GPS. A patient with milder severity of an illness such as 

schizophrenia may not demonstrate significant alterations in accelerometry or heart rate-

derived features in a univariate sense, but multiple weak features can be aggregated together 

to train a classifier that accurately infers symptomatology or clinical status. However, 

commercially available devices with physiologically and behaviorally relevant sensing 

technologies of high accuracy have only recently reached the market. Furthermore, 

awareness of the utility of conglomerating several weaker signals is more prevalent amongst 

machine learning practitioners than statisticians and clinical investigators. Relatively few 

studies employ multi-sensor fusion approaches, and even fewer focus on neuropsychiatric 

illness.

Kamdar et al. explored the prediction of emotional state from accelerometry, ambient light, 

and heart rate data measured via Samsung Gear S smartwatches (Kamdar et al. 2016). Data 

was collected from 13 healthy subjects in a pilot test. A web app was also developed for 

users to self-report moods via a Likert scale rating of happiness, energy, and relaxation. The 

app also capture user keystrokes and mouse patterns. Each subject wore the Gear S watch 

for at least 6 hours and entered at least three insights over a single day. Several machine 

learning algorithms were trained using these features: random forest, gradient boosted 

regressor trees, regularized logistic regression, SVM, and k nearest neighbors. A random 

forest model explained 51% of the variance of emotional state from device-captured data. 

However, top features were derived primarily from user interactions rather than passively 

monitored physiology. Furthermore, no classifier accuracy metrics – such as AUC of 

classification of mood status – were reported, and the authors also reported high levels of 

variance in HR measured with the watch compared to a direct pulse measurement, although 

the latter method was not specified.
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AlHanai et al. used a combination of auditory, text, and physiological signals to predict the 

mood (happy or sad) of 31 narrations from ten subjects as they told either happy or sad 

stories (AlHanai et al. 2017). Subjects wore wrist-mounted Samsung Simband devices 

which recorded PPG, ECG, accelerometry, skin impedance, galvanic skin response, and skin 

temperature. Audio was recorded using Apple iPhones. 386 audio and 222 physiological 

features were calculated from the data. A subset of 4 audio, 1 text, and 5 physiologic 

features were identified using sequential forward feature selection: subject movement, 

cardiovascular activity, energy in speech, probability of voicing, and linguistic sentiment 

(i.e. negative or positive). A deep neural network was trained using these features to classify 

if the story was happy or sad. To ensure the real-time utility of the model, classification was 

performed over 5 second intervals. Model performance was assessed via leave-one-subject-

out cross-validation, and the classifier achieved a mean AUC of 0.92.

Osipov et al. measured HR and accelerometry in 16 subjects with schizophrenia and 19 

controls using an adhesive monitoring patch (Protues Digital Health, Redwood City, CA) 

(Osipov et al. 2015). Features calculated on both types of data included basic summary 

statistics – mean, median, mode, and variance – as well rest-activity characteristics (Van 

Someren et al. 2009), multiscale sample entropy (Costa et al. 2002), and multiscale transfer 

entropy (Schreiber 2000). An SVM learned to dichotomize subjects as either having a 

diagnosis of schizophrenia or being a control. Two-fold cross-validation with repeated 

random sub-sampling was performed 1000 times. Using HR features resulted in an AUC of 

0.85, whereas using activity features resulted in AUC of 0.90. Using both HR and activity 

features resulted in an AUC of 0.99.

Reinertsen et al. measured HR and locomotor activity in 12 medicated subjects with 

schizophrenia and 12 healthy controls, and classified contiguous days of data as belonging to 

a schizophrenia patient or a healthy control (Reinertsen et al. 2017b). Subjects were 

monitored for 3–4 weeks using a disposable adhesive patch sensor worn on the chest and 

manufactured by Proteus Biomedical (Redwood City, CA). Features derived from time 

series data included classical statistical characteristics, rest-activity metrics, transfer entropy, 

and multiscale fuzzy entropy. The analysis window length, or number of days of data 

considered per record, was varied from two to eight days. An SVM was trained with these 

features to classify records as belonging to either a schizophrenia or control subject. Model 

performance was assessed via subject-wise leave-one-out-crossfold-validation. An analysis 

window length of eight days resulted in a high AUC of 0.96. Reducing the analysis window 

length to two days only lowered the AUC to 0.91. The type of most predictive features 

varied with analysis window length. Classifier output may have represented illness severity 

or level of ANS dysfunction, although verifying this in future work will require gathering 

information about symptoms on a daily basis.

Cella et al. monitored 30 subjects with schizophrenia and 25 controls using wrist-worn 

Empatica E4 devices which measured skin conductance, PPG (from which RR intervals 

were derived), and accelerometry (Cella et al. 2017). Symptom severity in subjects with 

schizophrenia was assessed via the PANSS questionnaire. Subjects were monitored for six 

days, and recordings < 60 minutes were excluded. At least two 8-hour recordings were 

obtained for each subject, with an average of 3-4 8-hour recordings obtained per subject. 
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Skin conductance did not vary by patient group, but subjects with schizophrenia had 

significantly lower SDNN and RMSSD values, as well as lower locomotor activity and 

fewer hours of structured activity, compared to controls. Chlorpromazine levels were not 

found to significantly affect any physiological measures.

6. Challenges and Limitations

Extracting clinical insights from sensor data is complicated by many challenges such as 

noise, insufficient sampling frequency, a lack of standardization and calibration of sensors, 

signal from phenomena unrelated to illness, the need to integrate with the electronic medical 

record, and the limited role of regulatory agencies governing the deployment of these 

technologies.

Noise in ECG data is due to poor contact between the electrode and the skin, patient 

movement, muscle activity, or power line interference (Clifford 2002). Accelerometer 

recordings can be noisy due to thermal energy, mechanical vibrations, and the location and 

manner in which the device is worn (Cemer 2011). Estimation of signal quality indices and 

data fusion approaches can be used to detect poor quality ECG data, and these methods may 

also be applicable to other types of digital sensor data (Clifford et al. 2011; Clifford et al. 

2012a).

Digital sensors allow for measuring physiology at or above the Nyquist frequency, avoiding 

the common issue of aliasing, which occurs when data is recorded at a rate less than twice 

the highest frequency in the signal (Clifford et al. 2012b). A sampling rate of 3-6 Hz for 

heart rate and 10 Hz for movement is usually sufficient for satisfying the Nyquist criterion 

(Winter et al. 1972; Clifford 2002). However, manufacturers of consumer devices may 

prioritize battery life over sampling frequency, and the latter attribute is often not reported in 

product documentation.

Lack of standardization and calibration hinders comparisons across studies, and more 

importantly may limit generalizability of approaches to populations that use different 

technologies. Hundreds of different smartphones and wearable devices house different 

combinations of sensors, CPU, GPU, and operating systems.

Physiological and behavioral signals can be generated from causes unrelated to 

neuropsychiatric illness, e.g. heart rate and locomotor activity patterns appear abnormal due 

to a temporary change in a patient’s work schedule rather than a change in depressive 

symptomatology. Technological advances in battery life, sensor design, GPS, and integration 

with social media to capture context related to mood could address some of these issues.

Finally, integration between data captured via smartphones and wearables with the electronic 

medical record (EMR) may be important for providing researchers with a more 

comprehensive picture of patient health, but this not yet a ubiquitous capability. Some EMR 

systems can import data from devices used at home – such as blood pressure cuffs and 

glucose monitors – but few can seamlessly sync with smartphones and wearable devices, 

and attention has been focused on non-neuropsychiatric chronic conditions (Peeples et al. 

2013; Kumar et al. 2016; Validic 2017). These data would not be clinically useful in its raw 
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form; rather, algorithms and visualizations are needed to transform information into insight 

that aids clinicians as they make decisions about patient management. To ensure healthcare 

providers can make use of passively monitored sensor data, smartphone and wearables-

based sensing approaches should be technically and culturally inter-operable with the 

electronic medical record.

Large-scale aggregation of patient data could potentially benefit individuals and society, but 

raise issues around privacy and protection. Concerns over the ethical and societal impact of 

this field have grown as research funding agencies strongly encourage researchers to share 

collected data, and as the role of ubiquitous internet-connected mobile technology in our 

lives continues to expand. Patients face unique and dire ramifications of having their clinical 

information exposed due to the stigma of neuropsychiatric illness. For example, although 

methods used to identify patients with depression could be used for positive applications 

such as monitoring the status of patients in a rural area or enabling cohort discovery for 

therapeutic trials, similar methods could also be used less moral purposes, such as 

discrimination to reduce the risk of insurance payouts or future employer costs. 

Anonymizing health data before analysis has been proposed as one method to better ensure 

privacy and compliance with regulations (Emam et al. 2015).

Elhai and Frueh 2015 summarizes practical solutions for clinicians and researchers to secure 

electronic patient communication and records (Elhai et al. 2015). Furthermore, they review 

encrypted wireless networks, secure e-mail, encrypted messaging and videoconferencing, 

and privacy on social networks. Finally, we direct the interested reader to Horvitz and 

Mulligan 2015, which provides a thoughtful overview of these concerns in today’s era of 

machine learning and large data; they note that informed discussions between technical 

experts, policy-makers, and the public will enable the design of programs and policies that 

balance privacy, fairness, and progress (Horvitz et al. 2015).

The US Food and Drug Administration (FDA) and the Federal Trade Commission (FTC) are 

the major governing agencies that evaluate safety and marketing claims of mobile health 

technologies, although neither currently provide comprehensive oversight of all apps and 

wearables. The approval of new devices and software requires evidence of safety and 

effectiveness, or the establishment of “substantial equivalence” to an already approved 

technology via the “510(k) pathway”. Because thousands of new smartphone apps and 

several wearable devices with monitoring functionality are released every month, the FDA 

has chosen a tailored and risk-based approach. Specifically, “for many mobile apps that meet 

the regulatory definition of a device but pose minimal risk to patients and consumers, the 

FDA will exercise enforcement discretions and will not expect manufacturers to submit 

premarket review applications or to register and list their apps with the FDA” (U.S. 

Department of Health and Human Services Food and Drug Administration 2005). Notably, 

the FDA does not regulate the sale or general consumer use of smartphones or tablets, nor 

does their policy apply to mobile apps that function as an electronic health record or 

personal health record system (U.S. Department of Health and Human Services Food and 

Drug Administration 2015). Given the FDA’s nascent yet rapidly evolving understanding of 

how smartphone, wearable devices, and software will be used for healthcare, it is important 

for clinicians, researchers, and software developers to consider potentially adverse outcomes 
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and subsequent liability risks that may occur downstream from their novel technologies 

(Armontrout et al. 2016). Such concerns are particularly important for technologies that can 

be used to inform and alter treatment recommendations such as pharmacotherapy dosage 

and clinical encounter scheduling.

7. Future potential

Currently, clinical trials have several limitations. Strict inclusion and exclusion criteria are 

employed to test interventions against a clean background, rather than a real-world scenario 

in which adherence to the intervention or data collection protocol can be more challenging. 

Data are collected from patients using long, paper-based questionnaires, journals, or web-

based surveys. These tools are inconvenient and time-consuming to patients and do not 

reflect the context of their daily lives. Only 2% of the eligible population in the U.S. 

participate in clinical trials (U.S. Food & Drug Administration 2017). Those who do 

participate attend an average of 11 trial site visits over six months which can require 

traveling a significant distance. Finally, conducting trials for patients with serious 

neuropsychiatric illness can be especially challenging due to limited ability to adhere to 

study protocols.

Mobile and internet-connected technologies can help address some of these issues by 

enabling trials to be carried out at a participant’s home or local physician’s office – a 

“virtual” or “remote” trial – rather than at a central trial site (Seyfert-Margolis 2018). Virtual 

trials could also increase the rate of enrollment in exploratory or clinical studies (Savage 

2015). For example, over eight months the MyHeart Counts app attracted over 48,000 

people who consented to participate in a study of cardiovascular health; 40,000 people 

uploaded data including surveys on diet, well-being, risk perception, work-related and 

leisure-time physical activity, sleep, and cardiovascular health (McConnell et al. 2016). 

During the initial seven-day monitoring period, participants’ motion was recorded via phone 

accelerometry. After one week, 4,990 people completed a six-minute walk test. Similarly, 

the mPower app, built using Apple’s ResearchKit framework in a collaboration with the 

University of Rochester and Sage Bionetworks, aims to quantitatively assess symptoms of 

Parkinson’s disease, and has been downloaded by 48,000 people with 9,520 subjects 

consenting to sharing their data (Bot et al. 2016). Novartis has worked with Science 37, a 

technology company that develops decentralized clinical trial technology and design, on 

virtual trials for cluster headache, acne and nonalcoholic steatohepatitis (NASH) (Novartis 

2018). Recently, these two entities announced a strategic alliance to initiate up to 10 new 

decentralized and technology-driven remote clinical trials over the next three years. In 

addition to bolstering trial enrollment and retention, digital sensors could detect more subtle 

or nuanced effects of an intervention that could be missed by traditional outcome measures. 

The quantity and intrinsic speed of data gathering and processing afforded by sensors and 

software could also better enable adaptive trials, whereby investigators use accumulated data 

and modify or redesign the trial while the study is still ongoing (Chow 2014).

Digital sensor data is likely to complement rather than replace data obtained in current 

research trials such as blood biomarkers and imaging. The Emory Healthy Aging Study is an 

example of this multifaceted approach and will be the largest clinical research study ever 
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conducted in Atlanta, GA (Emory University 2016). The goal is to develop a midlife 

biomarker of Alzheimer’s disease, since it is now well established that the disease begins 

about two decades prior to the onset of symptoms. Developing new ways to detect the 

disease in the asymptomatic phase is key for developing preventative treatments. To 

accomplish this goal, the Emory Healthy Aging Study first aims to recruit 100,000 

individuals to participate in an online study to assess risk factors identified via health 

questionnaires, smartphones, and wearable devices. The second aim is to deeply phenotype a 

subpopulation of 3000 of these subjects every few years to assess risk factors by profiling 

genetics, cardiovascular physiology, blood and spinal fluid biomarkers, and brain and retinal 

imaging. Analyses of subjects’ profiles, including their amyloid status, will facilitate 

discovery of new biomarkers with diagnostic and prognostic utility.

Mobile and wearable technologies have become dramatically cheaper over the past few 

decades and could help address the under-distribution of medications and personnel related 

to neuropsychiatric care in low-resource settings (Collins et al. 2011). Young males, ethnic 

minorities and people living in socioeconomically disadvantaged areas are more likely to 

experience “severe mental disorders including schizophrenia, bipolar affective disorder, and 

depression with psychotic symptoms such as hallucinations, delusions and cognitive 

disorganization” (Jongsma et al. 2018). Furthermore, even in a wealthy country such as the 

USA, ethnic minorities have significantly less access to care than do European Americans 

(Mcguire et al. 2008). Compounding this issue, the poorest countries spend the lowest 

percentages of their overall health budgets on mental health and have less relative 

availability of diagnostic encounters and interventions (Saxena et al. 2007). Telepsychiatry 

and teleneurology can extend the geographic reach of clinicians in regions with limited 

health resources, but this approach is still bottlenecked by the supply of trained 

professionals. To deliver interventions in a more scalable manner, smartphone and internet-

based methods have been explored, including prerecorded video tutorials, self-help 

interventions, online communities or support groups, and guides to help patients navigate 

their healthcare system (Kazdin et al. 2013). Digital sensors could complement these 

approaches by enabling detection of early signs of illness relapse, medication adherence, or 

treatment efficacy. Although technology-based care delivery methods such as telemedicine 

are becoming increasingly available in health systems, passive monitoring has yet to become 

an established component of clinical workflow, especially in resource-poor regions. Many 

attempts at delivering affordable healthcare technologies into such environments have not 

achieved the intended levels of impact due to a focus only on cost or simplicity. Attention to 

sustainable business practices, local cultural dynamics, and integration with existing 

resource and workflow may enable the potential of these technologies to educate and assist 

patients and providers; Clifford 2016 provides a thorough review of these considerations and 

proposes structural ecosystem changes to help achieve empowerment.

Although much work has focused on demonstrating feasibility of passive sensing, the gap 

between data capture and meaningful improvements in patient outcomes has yet to be closed 

(Patel et al. 2015). A growing body of literature has shown that smartphones not only can 

monitor patients but can also send information to patients in a way that affects clinical 

outcomes. SMS can increase adherence to antiretroviral therapy and smoking cessation (Free 

et al. 2013), and smartphone delivery of cognitive behavioral therapy can reduce anxiety, 
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depression, stress, and substance use (Ehrenreich et al. 2017). Recently, Freeman et al. 

conducted the largest RCT of a psychological intervention for a mental health problem 

(Freeman et al. 2017). 3,755 students with insomnia from 26 UK universities were enrolled 

in the trial, with 1,891 receiving digital CBT for insomnia (“Sleepio”), and 1,864 receiving 

standard practice treatment. Digital CBT was accessible via web browser, and sleep diaries 

and relaxation audio was accessible via smartphone. At ten weeks, Sleepio significantly 

reduced insomnia, paranoia, and hallucinations compared to the usual practice. However, no 

large RCT focused on neuropsychiatric illness has reported a positive impact of passive 

monitoring on outcomes. A recent difference-in-differences random effects meta-analysis of 

RCTs of remote patient monitoring did not find statistically significant impacts on any of six 

outcomes including body mass index, weight, waist circumference, body fat percentage, 

systolic blood pressure, and diastolic blood pressure (Noah et al. 2017). Interventions based 

on health behavior models and personalized coaching – relevant to neuropsychiatric care – 

were most successful.

Remote sensing of patients is an important but early step in the iterative process by which 

data is used to improve patient management, e.g. revise parameters of CBT or other 

psychotherapy, adjust doses or selection of pharmacological agents, or modify recommended 

lifestyle and behavior changes. In turn, the effect of these interventions can be measured in 

near real-time. Thus, digital sensors could be an integral component of how neuropsychiatric 

care is delivered in the future: a feedback loop starting with data-driven insight about 

pathophysiology and/or treatment, that in turn optimizes therapy, and ultimately improves 

patient outcomes.

8. Conclusion

In closing, many studies have explored the use of smartphones, wearable accelerometers, 

Holter devices, and multimodal sensors for monitoring of patient physiology, psychology, 

and behavior. These technologies continue to decrease in cost and permeate other facets of 

daily life. Future work in this field must address numerous technical, cultural, and ethical 

considerations of data collection and analysis. Notably, digital sensor data needs to 

seamlessly integrate with existing clinical workflow, electronic medical record systems, and 

relevant personal information such as employment, social support systems, and financial 

access to healthcare. Together these data can paint a richer and more cohesive picture of a 

patient’s health and enable more personalized, efficacious, and contextually appropriate 

care. Furthermore, the abundance of small-scale feasibility studies lack the sample size or 

properly randomized control groups to generate evidence necessary to translate technology-

driven monitoring approaches into standard practice of care. More than a sufficient number 

of these exploratory studies have been published, and proof-of-concept is now well-

established. It is time for the field to adopt a new standard of large, prospective, and multi-

site RCTs that utilize machine learning and more sophisticated methods than univariate 

statistical significance testing to determine if monitoring with digital sensors can 

complement or even replace existing methods of diagnosing, monitoring, and treating 

patients with serious neuropsychiatric illness. Finally, digital sensor technologies will 

continue to rapidly advance due to tremendous non-healthcare enterprise and consumer 

impact, creating new opportunities to non-invasively measure other signals with clinical 
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relevance such as blood pressure, electroencephalography, skin conductance, and perhaps 

even biomolecular markers. The devices we carry in our pockets and wear on our wrists or 

elsewhere will transform how clinical trials are conducted, improve our understanding of 

day-to-day variability of neurological and mental illness, and most importantly facilitate 

tailored, dynamically responsive, and time-sensitive interventions.
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Appendix A1

Table A1

Abbreviations used throughout review

Abbreviation Definition

AD Alzheimer’s disease

ADHD Attention deficit hyperactivity disorder

ADL Activities of daily living

ANS Autonomic nervous system

AUC Area under the receiver operating characteristic curve

BD Bipolar disorder

BLT Bright light therapy

CDC Centers for Disease Control and Prevention

DALY Daily adjusted life year

ECG Electrocardiogram

EMA Ecological momentary assessment

GPS Global positioning system

GSR Galvanic skin response

HF High frequency

HRV Heart rate variability

IS Interdaily stability

IV Intradaily variability

L5 Mean activity level during the least active five hours

LF Low frequency

M10 Mean activity level during the most active ten hours

MCI Mild cognitive impairment

MDD Major depressive disorder

PPG Photoplethysmography

PTSD Post traumatic stress disorder

RA Relative amplitude

RMSSD Root mean square of the successive differences

rCBF Regional cerebral blood flow
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Abbreviation Definition

SAD Seasonal affective disorder

SCID Structured clinical interview for the DSM-IV

SDNN Standard deviation of average normal-to-normal intervals

SMS Short message service

VLF Very low frequency power

Appendix A2

Relevant questionnaires, surveys, and scales

The self-reporting of symptoms is an extremely useful gauge of patient progress or acuity. 

Although such surveys have been traditionally administered via paper, or more recently via 

web pages, it is increasingly common to capture such data through an approach called 

Ecological Momentary Assessment (EMA), whereby questions can be delivered to the 

subject via smartphone in response to triggers, a certain time, or a pattern of interest in 

gathered data. The questions can be repeatedly administered if the user does not answer. 

While there is little evidence so far as to the effect this has on such scales, the flexibility this 

offers provides a new avenue for research into such systems, whereby timing of the 

response, and even corrections during the process could be analyzed to extract further 

information about the state of a patient. In this section we review a variety of the most 

relevant surveys for neuropsychiatric EMA and provide the evidence base for their 

traditional use.

The Perceived Stress Scale (PSS) was developed to measure psychological stress, defined as 

“the extent to which persons perceive that their life demands exceed their ability to cope” 

(Cohen et al. 1983). The PSS predicts both objective biological markers of aging (Epel et al. 

2004), cortisol levels (Malarkey et al. 1995), immune markers (Maes et al. 1999), depression 

(Carpenter et al. 2004), and increased risk for disease among persons with higher perceived 

stress levels.

The Hamilton Rating Scale for Depression (HRSD, HAMD, or HAM-D) is a multiple item 

questionnaire used to quantify the results of an interview assessment of symptoms in an 

adult patient diagnosed with depression (Hamilton 1960). Severity of depression is assessed 

by probing mood, feelings of guilt, suicide ideation, insomnia, agitation or retardation, 

anxiety, weight loss, and somatic symptoms among 17 to 29 dimensions (depending on 

version; often referred to as the HAMD-17 or HAMD-29 respectively) with a score on a 3 or 

5 point scale. A score of 0-7 is considered to be normal. Scores of 20 or higher indicate 

moderate, severe, or very severe depression, and are usually required for entry into a clinical 

trial. However, the HRSD has been criticized as a test because it places more emphasis on 

insomnia than on suicide ideas and gestures (Bagby et al. 2017). An antidepressant may 

show statistical efficacy even when thoughts of suicide increase but sleep is improved. 

Alternatively, even if a medication effectively reduces depressive symptoms, if sexual and 

gastrointestinal symptoms worsen as a side effect, efficacy can be underestimated. Results of 

a large meta-analysis suggest that HRSD achieves good overall levels of internal 
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consistency, inter-rater and test–retest reliability, but some HRSD items (e.g., “loss of 

insight”) are not sufficiently reliable (Trajković et al. 2011).

The Quick Inventory of Depressive Symptomatology (QIDS-SR16) is a shortened 16-item 

version of the 30-item Inventory of Depressive Symptomatology (IDS), a structured 

interview that was constructed by selecting only items that assessed DSM-IV diagnostic 

criterion items for MDD (Rush et al. 2000). The research group that developed the IDS 

obtained feedback/critique from more than a dozen, largely US, clinical researchers who 

were experts in depression. The nine domains of the QIDS-SR16 comprise sad mood, 

concentration, self-criticism, suicidal ideation, interest, energy/fatigue, sleep disturbance 

(initial, middle, and late insomnia or hypersomnia), decrease/increase in appetite/weight, 

and psychomotor agitation/retardation. The total score ranges from 0 to 27. QIDS-SR16 has 

high internal consistency, as well as high correlation with the IDS and the HAMD (Rush et 

al. 2003).

The Primary Care Evaluation of Mental Disorders (PRIME-MD) Patient Health 

Questionnaire (PHQ) was designed by the PHQ Primary Care Study Group to be a fully self-

administered survey; the original survey it was based upon was clinician-administered 

(Spitzer et al. 2012). There is an optional fourth page that includes questions about 

menstruation, pregnancy and child-birth, and recent psychosocial stressors. The original 

PHQ assessed 18 current mental disorders. By grouping several mood, anxiety, and 

somatoform categories together, the PHQ greatly simplifies the differential diagnosis by 

assessing only eight disorders: MDD, panic disorder, other anxiety disorder, bulimia 

nervosa, other depressive disorder, probable alcohol abuse or dependence, and somatoform 

and binge eating disorders. Patients indicate for each of the 9 depressive symptoms whether, 

during the previous 2 weeks, the symptom has bothered them “not at all,” “several days,” 

“more than half the days,” or “nearly every day.”. Patients also indicate for each of the 13 

physical symptoms whether, during the previous month, they have been “not bothered,” 

“bothered a little,” or “bothered a lot” by the symptom. The PHQ Primary Care Study Group 

found agreement between PHQ diagnoses and those of independent mental health 

professionals; for the diagnosis of any 1 or more PHQ disorder, κ = 0.65; overall accuracy, 

85%; sensitivity, 75%; specificity, 90%, similar to the original PRIME-MD questionnaire. 

Furthermore, in addition to making criteria-based diagnoses of depressive disorders, the 

PHQ-9 has also been show to be a reliable and valid measure of depression severity 

(Kroenke et al. 2001). A slightly shorter eight-question version of this survey, the PHQ-8, is 

also sometimes used.

The Center for Epidemiological Studies Depression (CESD) scale is a short self-report scale 

comprised of 20 questions that ask how often over the past week a person experienced 

symptoms associated with depression, such as restless sleep, poor appetite, or feeling lonely 

(Radloff 1977). Each item is scored 0 to 3: 0 = Rarely or None of the Time, 1 = Some or 

Little of the Time, 2 = Moderately or Much of the time, 3 = Most or Almost All the Time. 

Total scores range from 0 to 60, with higher scores indicating greater depressive symptoms. 

Cutoff scores identify individuals at risk for clinical depression with good sensitivity and 

specificity, and high internal consistency (Lewinsohn et al. 1997).
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The Beck Depression Inventory (BDI) consists of 21 multiple-choice questions that ask how 

the subject has been feeling in the last week, and is a proxy for a structured clinical 

interview (Beck et al. 1961). Questions inquire about symptoms of depression such as 

hopelessness and irritability, cognitions such as guilt or feelings of being punished, physical 

symptoms such as fatigue, weight loss, and lack of interest in sex. Each question has a set of 

at least four possible responses, ranging in intensity. A value of 0 to 3 is assigned for each 

answer, and the values are summed to calculate a total sum up to 63. A higher total score 

indicates more severe depressive symptoms. The BDI is one of the most widely used 

psychometric tests for measuring the severity of depression; its successor is the BDI-II 

which is now more common. The BDI was revised 1996 to the BDI-II in response to the 

American Psychiatric Association’s publication of the Diagnostic and Statistical Manual of 

Mental Disorders, Fourth Edition, which changed many of the diagnostic criteria for MDD 

(Beck et al. 1996). The BDI-II is used to evaluate how the subject has been feeling over the 

past two weeks instead of one week, in order to be consistent with the DSM-IV time period 

for the assessment of MDD.

The Young Mania Rating Scale (YMRS) is an eleven-item clinician-administered scale to 

rate manic symptoms. This score correlated with the number of days of subsequent stay in 

hospital, and significantly differed in patients before versus after two weeks of treatment 

(Young et al. 1978). A parent report version of the YMRS (P-YMRS) was assessed in a 

cohort of 117 youths age 5-17 (Gracious et al. 2002). The P-YMRS demonstrated acceptable 

internal consistency. Logistic regressions discriminated bipolar mood disorder versus 

unipolar disorder, versus disruptive behavior disorder, and versus any other diagnosis. 

Classification rates exceeded 78%, and receiver operating characteristics analyses showed 

areas under the curve greater than 0.82.

The Altman Self-Rating Mania scale (ASRM) is a self-administered survey that was 

originally evaluated on a cohort of 22 schizophrenic, 13 schizoaffective, 36 depressed, and 

34 manic patients (Altman et al. 1997). The Clinician Administered Rating Scale for Mania 

(CARS-M) and Mania Rating Scale (MRS) were completed at the same time to measure 

concurrent validity. Principal component analysis of ASRM items revealed three factors: 

mania, psychotic symptoms, and irritability. Baseline mania subscale scores were 

significantly higher for manic patients compared to all other diagnostic groups. 

Posttreatment scores were significantly decreased in manic patients for all three subscales. 

ASRM mania subscale scores significantly correlated with MRS total scores (r = 0.72) and 

CARS-M mania subscale scores (r = 0.77). Test-retest reliability for the ASRM was 

significant for all three subscales. Mania subscale scores of greater than 5 on the ASRM 

resulted in sensitivity of 85.5% and a specificity of 87.3%.

The General Behavior Inventory (GBI) is a 73-question self-administered survey that 

evaluates various aspects of mood and is designed to identify the presence and severity of 

manic and depressive moods in adults (Depue et al. 1981). It consists of two scales to assess 

depressive symptoms (46 items) and hypomanic / biphasic (mixed) symptoms (28 items) 

(Youngstrom et al. 2008). GBI items use a Likert scale from 0-3: 0 (never or hardly ever 

present), 1 (sometimes present), 2 (often present), and 3 (very often or almost constantly 

present). The GBI has high internal consistency and retest reliability because of its large 
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number of items. Retest reliability also is good over a week or two week period, although 

the required reading level and length make it challenging for some people to complete.

The Social Rhythm Metric (SRM) quantifies an individual’s social zeitgebers (time givers, 

or circadian rhythm entrainment cues) (Monk et al. 1990). Social life may provide important 

social cues that entrain circadian rhythms, including sleep habits, eating times, and 

occupational routines. Disturbance of these social cues could result in dis-entrainment of 

circadian rhythms, which may increase the risk of developing mood disorders or other 

mental illnesses. The SRM score is determined from the timing of 15 specific and 2 built-in 

activities that constitute an individual’s social rhythm. If the timing of an activity that occurs 

at least three times a week is within 45 minutes of the typical time, it is considered part of 

one’s daily routine. The total number of these activities is divided by the total number of 

activities occurring at least three times a week. The result is the SRM score. A higher SRM 

score was found to relate to subjective better sleep, higher morning alertness and a deeper 

nocturnal temperature trough, whereas lower SRM-scores correlated with higher reports of 

depressive symptoms (Monk et al. 1994).

The Pittsburgh Sleep Quality Index (PSQI) is a self-administered survey which assesses 

sleep quality and disturbances over a one month time interval (Buysse et al. 1989). Nineteen 

individual items generate seven component scores: subjective sleep quality, sleep latency, 

sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and 

daytime dysfunction. The sum of scores for these seven components yields one global score.

The Positive and Negative Syndrome Scale (PANSS) is a 30-question clinician-administered 

survey that measures symptom severity of schizophrenia and has been widely used in the 

study of antipsychotic therapy (Kay et al. 1987). Seven questions assess positive symptoms, 

which refer to an excess or distortion of normal functions, e.g., hallucinations and delusions. 

Seven questions assess negative symptoms, which represent a decrease or loss of normal 

function, e.g. blunted affect and social withdrawal. 16 questions assess general 

psychopathology, e.g. feelings of guilt and poor attention. Each answer is rated 1 to 7 based 

on the interview as well as reports of family members or healthcare providers. The overall 

PANSS score thus ranges from 30 to 210. Kay’s original publication reported a mean score 

of 77 for patients with schizophrenia.

The Calgary Depression Scale for Schizophrenia (CDSS) is a nine-item clinician-

administered survey, in which each item has a four-point Likert scale measure (Addington et 

al. 1990). It was designed to assess depression specifically in psychotic populations, for 

whom previous depression instruments were not designed. Internal consistency is high, and 

significant and strong correlations have been found between scores on the CDSS, BDI, and 

HRSD (Addington et al. 1992; Addington et al. 1993). The CDSS depression score is 

obtained by adding each of the item scores. A score above 6 has an 82% specificity and 85% 

sensitivity for detecting a major depressive episode.

The Unified Parkinson’s Disease Rating Scale (UPDRS) is a clinician-administered 

interview and exam that is used to describe the severity of Parkinson’s Disease (Fahn et al. 

1987). It is made up of the 1) Mentation, Behavior, and Mood, 2) ADL, and 3) Motor 
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sections. Some sections require multiple grades assigned to each extremity. The score ranges 

from 0 to 199; 0 represents no disability, and 199 represents total disability. Strengths of the 

UPDRS include its wide utilization, its application across the clinical spectrum of PD, its 

nearly comprehensive coverage of motor symptoms, and its clinimetric properties, including 

reliability and validity. Weaknesses include several ambiguities in the written text, 

inadequate instructions for raters, some metric flaws, and the absence of screening questions 

on several important non-motor aspects of PD (Goetz 2003). The motor section of the 

UPDRS (UPDRS-III) is often used in lieu of the entire UPDRS for patients with PD, and the 

exam is ideally performed by a movement disorder specialist. In 2007 the Movement 

Disorder Society (MDS) revised the UPDRS which originally placed nonmotor elements in 

PD throughout the subscales, with mental features captured in Part I, pain in Part II, and 

sleep disorders and dysautonomia in Part IV (Goetz et al. 2007). The scale was reorganized 

so that Part I of the MDS-UPDRS is now titled “Nonmotor Experiences of Daily Living” 

and encompasses questions requiring medical expertise to answer (cognitive impairment, 

hallucinations, depressed mood, anxious mood, apathy, and dopamine dysregulation) as well 

as simpler questions that were considered better suited for a patient or caregiver 

questionnaire (sleep, staying awake, pain and abnormal sensory sensations, urinary function, 

constipation, lightheadedness on standing, and fatigue). Part II was retitled to “Motor 

Experiences of Daily Living”, Part III remains “Motor Examination” to be completed by the 

rater, and Part IV was restricted to “Motor Complications” which include dyskinesias and 

motor fluctuations. This revised MDS-UPDRS is now commonly used in PD research.

The Hoehn and Yahr (HY) scale was originally designed to be a descriptive, clinician-

administered structured interview and staging scale that estimates clinical function in PD, 

combining functional disability and objective signs of impairment (Hoehn et al. 1967). 

Strengths of the HY scale include its wide utilization and acceptance. Higher stages 

correlate with dopaminergic loss as confirmed via neuroimaging studies, and the HY scale 

has been shown to highly correlate with some standardized scales of motor impairment, 

disability, and quality of life (Goetz et al. 2004). Weaknesses include the scale’s mixing of 

impairment and disability. Because the HY scale is weighted heavily toward postural 

instability in determining disease severity, it does not capture impairments or disability from 

other motor features of PD, and gives no information on nonmotor problems which are also 

features of the illness that contribute to decreased quality of life. The UPDRS has largely 

supplanted the HY scale in clinical and research use.

The Short Form-36 (SF-36) is the most widely used health-related quality-of-life measure in 

research to date, and can be either self-administered or administered by a trained interviewer 

over the phone or in person (Ware Jr et al. 1992). The SF-36 yields eight scale scores and 

two summary scores: a physical component summary (PCS), and mental component 

summary (MCS). The physical and mental components were designed to be uncorrelated. 

The eight scale scores represent physical functioning, bodily pain, role limitations due to 

physical health problems, role limitations due to personal or emotional problems, general 

mental health, social functioning, energy/fatigue or vitality, and general health perceptions. 

A higher score represents better health. The PCS and MCS scores are calculated by z-

scoring each of the eight scores across the general U.S. population, then multiplying by the 

corresponding factor scoring coefficient for each scale (Taft et al. 2001).
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The Instrumental Activities of Daily Living (IADL) scale assesses independent living skills, 

identifies how a person is functioning at the present time, and determines improvement or 

deterioration over time (Lawton et al. 1969). In the original study, the survey was 

administered by a social worker who gathered information from the subjects, family 

members, employees, etc. Eight domains of function are measured: ability to use the 

telephone, shopping, food preparation, housekeeping, laundry, mode of transportation, 

responsibility for own medications, and ability to handle finances. The IADL Scale is 

intended to be used among older adults, and may be used in community, clinic, or hospital 

settings, but is not useful for institutionalized older adults. Although the IADL Scale is easy 

to administer and focuses on practical functionality related to daily living, it relies on self-

report or surrogate report rather than a demonstration of the functional task.

The State Trait Anxiety Inventory (STAI) is a 40-item self-administered survey designed to 

measure anxiety at two ends of the “affect curve”, e.g. feelings of anxiety due to a stressful 

state or situation, versus enduring personality traits (Spielberger et al. 1983). Each item has a 

four-point Likert scale measure. Overall scores thus range from 20 to 80, with higher scores 

suggesting more severe anxiety.

The Generalized Anxiety Disorder (GAD-7) is a 7-item self-administered survey used to 

identify GAD (Spitzer et al. 2006). It was constructed from 965 adult primary care patients 

who completed a questionnaire and telephone interview with a mental health professional 

within a week, and achieved a sensitivity of 89% and specificity of 82% in assessing 

generalized anxiety disorder, with good agreement between self-report and interviewer-

administered versions of the scale.

The Apathy Evaluation Scale (AES) is used to evaluate apathy – the lack of will to act and 

the inability to care about the consequences – in a patient based on interview of a person 

familiar with the patient (Marin 1996). The scale consists of 18 questions that each use a 

four point Likert scale measure ranging from 0 to 3. Overall scores thus range from 0 to 54; 

the higher the score the greater the level of apathy.

The Brief Psychiatric Rating Scale (BPRS) is used for measuring general psychiatric 

symptoms such as depression, anxiety, hallucinations and unusual behavior (Overall et al. 

1962). During a structured clinical interview, 18-24 symptoms are scored, and each 

symptom is rated 1-7 where 1 indicates absence of symptomatology or concern, and 7 

indicates extreme severity. The BPRS is one of the oldest and most widely used scales to 

measure psychotic symptoms.

Table A2

Questionnaires, surveys, and scales

Reference Survey (acronym) Indication

Cohen et al. 1983 Perceived Stress Scale (PSS) Stress

Hamilton 1960 Hamilton Rating Scale for Depression (HRSD or 
HAMD)

Depression
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Reference Survey (acronym) Indication

Rush et al. 2000 16-item Quick Inventory of Depressive Symptomatology 
(QIDS-SR16)

Depression

Spitzer et al. 1999 Patient Health Questionnaire (PHQ) Depressive disorders

Radloff 1977 Center for Epidemiological Studies Depression (CESD) Depression

Beck et al. 1961 Beck Depression Inventory (BDI) Depression

Young et al. 1978 Young Mania Rating Scale (YMRS) Mania

Altman et al. 1997 Altman Self-Rating Mania scale (ASRM) Mania

Depue et al. 1981 General Behavior Inventory (GBI) Mania and depression

Monk et al. 1990 Social Rhythm Metric (SRM) Circadian entrainment

Buysse et al. 1989 Pittsburgh Sleep Quality Index (PSQI) Sleep

Kay et al. 1987 Positive and Negative Syndrome Scale (PANSS) Schizophrenia

Addington et al. 1990 Calgary Depression Scale for Schizophrenia (CDSS) Depression in schizophrenia

Fahn & Elton 1987 Unified Parkinson’s Disease Rating Scale (UPDRS) Parkinson’s disease

Hoehn & Yahr 1967 Hoehn and Yahr (HY) scale Parkinson’s disease

Ware & Sherbourne 1992 Short Form-36 (SF-36) Quality of life

Lawton & Brody 1969 Lawton Instrumental Activities of Daily Living (IADL) –

Spielberger et al. 1983 State Trait Anxiety Inventory (STAI) Anxiety

Spitzer et al. 2006 7-item Generalized Anxiety Disorder (GAD-7) scale Anxiety

Marin et al. 1996 Apathy Evaluation Scale (AES) Apathy

Overall & Gorham 1962 Brief Psychiatric Rating Scale (BPRS) General psychiatric symptoms

Table A3

Studies of smartphones and wearables for monitoring neuropsychiatric illness

Reference Key aim Population Sensors Design

Abdullah et 
al. 2016

Estimate social 
rhythms (assessed 
via SRM 
questionnaires) 
using smartphone 
data

Seven subjects with 
BD

Smartphones recorded GPS 
data, accelerometry, 
microphone audio, and social 
communication

Offline retrospective

Aguilera et al. 
2015

Assess relationship 
between daily / 
weekly mood 
scores and PHQ-9 
scores

33 subjects Smartphone administered 
PHQ-9 surveys

Offline retrospective

Albert et al. 
2017

Distinguish 
subjects with PD 
from controls 
using 
accelerometry of 
hand tremor

Eight subjects with 
PD and 18 controls

Smartphones recorded 
accelerometry of hand tremor 
during motor tasks

Offline retrospective

AlHanai et al. 
2017

Classify subject 
mood while 
reading happy or 
sad stories using 
wearable data

Ten healthy subjects Audio was recorded using 
Apple iPhones. Samsung 
Simband smartwatches 
recorded PPG, ECG, 
accelerometry, skin 
impedance, galvanic skin 
response, and skin 
temperature

Online real-time
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Reference Key aim Population Sensors Design

Apiquian et 
al. 2017

Assess motor 
activity and sleep 
time before and 
after antipsychotic 
treatment

20 subjects with 
schizophrenia and 20 
controls

Wrist-worn devices recorded 
accelerometry

Offline retrospective

Barnett et al. 
2018

Predict clinical 
relapse from 
behavioral 
anomalies in two-
week window prior 
to event

17 subjects with 
schizophrenia

Smartphones recorded 
mobility, social activity, and 
questionnaires

Offline prospective

Beiwinkel et 
al. 2016

Depressive and 
manic symptoms 
(assessed via 
HAMD and 
YMRS 
questionnaires 
administered every 
three weeks) were 
classified using 
smartphone data

13 subjects with BD Smartphones recorded GPS, 
accelerometery, and cell tower 
data; mood states were 
assessed via a self-reported 
two-item questionnaire

Offline retrospective

Ben-Zeev et 
al. 2015

Correlate 
smartphone 
features with daily 
stress ratings, 
PHQ-9, PSS, and 
Revised UCLA 
Loneliness Scale 
scores

47 healthy subjects Smartphones recorded GPS, 
accelerometry, sleep duration, 
and time proximal to human 
speech

Offline retrospective

Berle et al. 
2017

Assess motor 
activity and rest-
activity 
characteristics

46 subjects with 
schizophrenia and 32 
controls

Wrist-worn devices recorded 
actigraphy

Offline retrospective

Bullock et al. 
2014

Assess rest-activity 
metrics in BD 
patients with low 
and high trait 
vulnerability 
(assessed via the 
GBI questionnaire)

72 subjects with BD Wrist-worn devices recorded 
accelerometry

Offline retrospective

Burns et al. 
2011

Correlate EMA 
survey scores with 
smartphone 
features

Eight subjects with 
MDD

Smartphones recorded GPS, 
accelerometry, ambient light, 
and recent calls

Offline retrospective

Canzian et al. 
2015

Correlate and 
predict PHQ score 
deviations with 
smartphone 
features

28 healthy subjects Smartphones recorded GPS 
and accelerometry

Offline prospective

Capecci et al. 
2016

Identify freezing of 
gait events using 
accelerometry

20 subjects with PD Smartphones recorded 
accelerometry while subjects 
walked and were video 
recorded

Offline retrospective

Cella et al. 
2017

Assess autonomic 
dysfunction in 
schizophrenia 
using wearable 
device data

30 subjects with 
schizophrenia and 25 
controls

Empatica E4 devices recorded 
skin conductance, HRV, and 
accelerometry

Offline retrospective

Ellis et al. 
2015

Compare outcome 
measures of gait 
and gait variability 
in subjects with 
PD versus controls

12 subjects with PD 
and 12 controls

Steps were captured via a 
smartphone, heel-mounted 
sensors, and a sensor mat

Offline retrospective

Kamdar et al. 
2016

Estimate variance 
of emotional state 

13 healthy subjects Samsung Gear S smartwatches 
recorded accelerometry, 

Offline retrospective
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Reference Key aim Population Sensors Design

from wearable data 
via random forest

ambient light, heart rate; web 
app administered mood 
surveys

Moore et al. 
2012

Forecast mood 
time series using 
previous week’s 
self-rated mood 
data via 
exponential 
smoothing and 
Gaussian process 
regression

100 subjects with BD Mood surveys recorded via 
SMS

Offline prospective

Faedda et al. 
2016

Distinguish BD 
from ADHD using 
wearables data

48 subjects with BD, 
65 subjects with 
ADHD, and 42 
controls

Belt-worn devices recorded 
accelerometry for five minutes

Offline retrospective

Faurholt-
Jepsen et al. 
2015

Correlate 
smartphone data 
with depressive 
and manic 
symptoms via 
HDRS-17 and 
YMRS scores 
assessed monthly

61 subjects with BD Smartphones recorded speech 
duration, social activity, and 
accelerometry

Offline retrospective

Maria et al. 
2016

Classify depressive 
and manic states 
(via HDRS-17 and 
YMRS scores) 
using smartphone 
data and voice 
features

28 subjects with BD Smartphones recorded voice 
features (pitch, duration, etc.), 
speech duration, social 
activity, and accelerometry

Offline retrospective

Fasmer et al. 
2015

Fit resting and 
active periods to 
power law 
distributions and 
assess differences 
in MDD

47 subjects with 
MDD and 29 controls

Wrist-worn devices recorded 
accelerometry

Offline retrospective

Griffiths et al. 
2012

Assess features of 
dyskinesia and 
akinesia from 
wearable data, and 
identify 
improvements in 
UPDRS scores 
after medication

34 subjects with PD 
and 10 controls

Wrist-worn devices recorded 
accelerometry

Offline retrospective

Grünerbl et 
al. 2015

Depressive and 
manic symptoms 
(assessed via 
HAMD and 
YMRS 
questionnaires 
administered every 
three weeks) were 
classified using 
smartphone data

Ten subjects with BD Smartphones recorded GPS, 
accelerometry, number and 
length of phone calls, and 
speech and voice features

Offline retrospective

Hauge et al. 
2011

Assess motor 
activity and rest-
activity 
characteristics

24 subjects with 
schizophrenia, 25 
subjects with 
depression, and 32 
controls

Wrist-worn devices recorded 
actigraphy

Offline retrospective

Kassavetis et 
al. 2016

Correlate UPDRS 
scores with 
smartphone data

14 subjects with PD Smartphones recorded 
accelerometry while subjects 
performed motor tasks

Offline retrospective

Kheirkhahan 
et al. 2016

Correlate impaired 
mobility from 
wearable data

1,135 subjects Hip-worn devices recorded 
accelometry

Offline retrospective
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Reference Key aim Population Sensors Design

Kim et al. 
2015

Classify freezing 
episodes from 
normal walking 
using 
accelerometry

15 subjects with PD Smartphones recorded 
accelerometry while subjects 
walked and were video 
recorded

Offline retrospective

Kostikis et al. 
2014

Correlate 
accelerometry 
features with 
UPDRS hand 
tremor scores

23 subjects with PD Smartphones recorded 
accelerometry of hand tremor 
during motor tasks

Offline retrospective

Kostikis et al. 
2015

Distinguish 
subjects with PD 
from controls 
using 
accelerometry of 
hand tremor

25 subjects and 20 
controls

Smartphones recorded 
accelerometry of hand tremor 
during motor tasks

Offline retrospective

Krane-
gartiser et al. 
2014

Assess mean 
activity, variance, 
symbolic 
dynamics, and 
power spectral 
features

18 subjects with 
mania and 12 
subjects with BD

Wrist-worn devices recorded 
accelerometry

Offline retrospective

Kuhlmei et al. 
2013

Associate activity 
with apathy and 
depression 
(assessed via AES 
and BDI 
questionnaires)

32 subjects with 
dementia, 21 subjects 
with MCI, and 23 
controls

Wrist-worn devices recorded 
accelerometry during motor 
tasks

Offline retrospective

Lee et al. 
2015

Compare RR peak 
detection, HRV 
measures, and 
stress detection 
from wearable 
versus Holter 
monitor

17 subjects Custom ECG patch was 
developed to record cardiac 
activity

Offline retrospective

Lee et al. 
2016

Correlate UPDRS 
scores with 
smartphone data

103 subjects with PD Smartphones recorded hand 
dexterity via timed tapping 
test, rapid alternating 
movements, tremor tracker via 
tracing between two parallel 
lines, and a cognitive 
interference test

Offline retrospective

Martin et al. 
2006

Assess time in bed, 
sleep consistency, 
daytime sleeping, 
and circadian 
rhythm regularity

28 subjects with 
schizophrenia and 28 
controls

Wrist-worn devices recorded 
accelerometry and light 
exposure

Offline retrospective

Nakamura et 
al. 2007

Fit resting and 
active periods to 
power law 
distributions and 
assess differences 
in MDD

14 subjects with 
MDD and 11 controls

Wrist-worn devices recorded 
accelerometry

Offline retrospective

Nero et al. 
2015

Define 
accelerometer cut 
points for different 
walking speeds in 
adults with PD

30 subjects with PD Waist-worn devices recorded 
accelerometry

Offline retrospective

Niwa et al. 
2011

Assess if 
medication status, 
MMSE scores, 
activity, and HRV 
features differed 
by disease severity 
(assessed via 

27 subjects with PD 
and 30 controls

Wrist-worn devices recorded 
accelerometry and Holter 
monitors recorded ambulatory 
ECG

Offline retrospective
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Reference Key aim Population Sensors Design

UPDRS scores) or 
disease duration

O’Brien et al. 
2016

Assess relationship 
between quality of 
life, ADLs, 
learning, and 
depression 
(assessed via 
SF-36 and IADLS 
questionnaires) 
and smartphone 
data

29 subjects with 
MDD and 30 controls

Wrist-worn devices recorded 
accelerometry. Quality of life, 
ADLs, learning, and 
depression were assessed via 
SF-36 and IADLS 
questionnaires

Offline retrospective

Osipov et al. 
2015

Classify 
schizophrenic 
subjects from 
controls using rest-
activity 
characteristics and 
HRV features

16 subjects with 
schizophrenia and 19 
controls

Adhesive patches recorded 
locomotor activity and ECG

Offline retrospective

Palmius et al. 
2017

Estimate 
depressive 
symptoms 
(assessed via 
QIDS-SR16 
questionnaires 
administered 
weekly) and detect 
depression using 
smartphone data

22 subjects with BD 
and 14 controls

Smartphones recorded GPS 
data

Offline retrospective

Pan et al. 
2015

Correlate 
accelerometry 
features with 
UPDRS scores, 
and use features to 
detect hand resting 
tremor and gait 
difficulty

40 subjects with PD Smartphones recorded 
accelerometry of hand tremor 
and gait during motor and 
walking tasks

Offline retrospective

Patel et al. 
2009

Estimate UPDRS 
scores using 
wearable data

12 subjects with PD Arm and leg-worn devices 
recorded accelerometry

Offline retrospective

Place et al. 
2017

Estimate 
depression and 
PTSD symptoms 
(assessed via SCID 
questionnaires) 
using smartphone 
data

73 subjects with at 
least one symptom of 
PTSD or depression

Smartphones recorded GPS, 
accelerometry, calls and SMS 
activity, device use, and voice 
audio

Offline retrospective

Reinertsen et 
al. 2017a

Classify patients 
with PTSD using 
time-domain, 
frequency-domain, 
and complexity 
features from RR 
interval time series

23 subjects with 
PTSD and 25 
controls

A Holter monitor recorded RR 
intervals for 24 hours

Offline retrospective

Reinertsen et 
al. 2017b

Classify 
schizophrenic 
subjects from 
controls using rest-
activity 
characteristics and 
HRV features, and 
evaluate 
relationship 
between number of 
days of data and 
classifier accuracy

16 subjects with 
schizophrenia and 19 
controls

Adhesive patches recorded 
locomotor activity and ECG

Offline retrospective
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Reference Key aim Population Sensors Design

Roh et al. 
2014

Compare RR peak 
detection, signal-
to-noise, and HRV 
measures from 
wearable versus 
Holter monitor

12-41 subjects 
(varied by test)

Custom ECG patch was 
developed to record cardiac 
activity

Offline retrospective

Roy et al. 
2011

Classify tremor 
and dyskinesia 
from wearable data

11 subjects with PD Arm and leg-worn devices 
recorded accelerometry

Offline retrospective

Saeb et al. 
2015

Classify low from 
high PHQ-9 scores 
using smartphone 
features

28 healthy subjects Smartphones recorded GPS 
and phone usage

Offline retrospective

Saeb et al. 
2016a

Correlate PHQ-9 
scores with 
smartphone 
features from 
weekend vs. 
weekday data

48 healthy subjects Smartphones recorded GPS 
and phone usage

Offline retrospective

Sano et al. 
2012

Fit resting and 
active periods to 
power law 
distributions and 
assess differences 
in schizophrenia

19 subjects with 
schizophrenia and 11 
controls

Wrist-worn devices recorded 
accelerometry

Offline retrospective

Sano et al. 
2013

Distinguish 
stressed from non-
stressed states 
using wearable 
data

18 subjects Wrist-worn devices recorded 
accelerometry and skin 
conductance. Smartphones 
recorded call and SMS 
activity. Surveys assessed 
stress, mood, sleep, tiredness, 
general health, alcohol or 
caffeine intake, and 
electronics usage.

Offline retrospective

Sano et al. 
2015

Estimate PSQI, 
PSS, and MCS 
questionnaire 
scores from 
wearable data

66 subjects Wrist-worn devices recorded 
accelerometry and skin 
conductance. Smartphones 
recorded call and SMS 
activity. Sleep, stress, and 
mental health were assessed 
via PSQI, PSS, and MCS 
questionnaires respectively

Offline retrospective

Shin et al. 
2016

Correlate symptom 
severity (assessed 
via the PANSS 
questionnaire) with 
activity levels

61 subjects with 
schizophrenia

Wrist-worn devices recorded 
accelerometry

Offline retrospective

Stamatakis et 
al. 2013

Classify UPDRS 
score categories 
from wearable data

36 subjects with PD 
and 10 controls

Finger-worn sensors recorded 
accelerometry during a 
tapping test

Offline retrospective

Tung et al. 
2014

Compare area, 
perimeter, and 
mean distance 
from home in 
subjects with AD 
versus controls 
using smartphone 
data

19 subjects with AD 
and 33 controls

Smartphones recorded GPS Offline retrospective

Walther et al. 
2009b

Assess if motor 
symptoms 
(assessed via 
PANSS 
questionnaires) 
correlate with 
wearables data

55 subjects with 
schizophrenia

Wrist-worn devices recorded 
actigraphy

Offline retrospective
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Reference Key aim Population Sensors Design

Walther et al. 
2009a

Assess if activity 
differs by 
schizophrenia 
subtype

60 subjects with 
schizophrenia

Wrist-worn devices recorded 
actigraphy

Offline retrospective

Wang et al. 
2014

Correlate 
smartphone data 
with PHQ-9, PSS, 
flourishing scale, 
and UCLA 
loneliness scale 
scores

48 healthy subjects Smartphones recorded 
accelerometry, conversations, 
sleep, and location

Offline retrospective

Wang et al. 
2016

Determine 
associations 
between EMA 
survey scores and 
smartphone data 
via generalized 
estimating 
equations

21 subjects with 
schizophrenia

Smartphones recorded 
accelerometry, voice audio, 
light sensor readings, GPS 
data, and application usage

Offline retrospective

Weenk et al. 
2017

Evaluate 
association 
between changes 
in HRV measures 
and stress in 
surgeons

20 subjects Adhesive patch measured 
single-lead ECG, respiratory 
rate, skin temperature, body 
posture, activity, and steps

Offline retrospective

Wichniak et 
al. 2011

Measure 
association 
between activity 
levels and mental 
status (measured 
via PANSS and 
CDSS 
questionnaires)

73 subjects with 
schizophrenia and 36 
controls

Wrist-worn devices recorded 
accelerometry

Offline retrospective

Winkler et al. 
2005

Assess if light 
therapy can 
improve sleep 
efficiency and 
stability in people 
with seasonal 
affective disorder 
(SAD)

17 subjects with SAD 
and 17 controls

Wrist actigraphy was recorded 
from which sleep-wake 
amplitude, phase, and sleep 
efficiency was estimated

Offline retrospective

Woods et al. 
2014

Distinguish PD 
from essential 
tremor using 
accelerometry

14 subjects with PD 
and 18 subjects with 
essential tremor

Smartphones recorded 
accelerometry of hand tremor 
during motor tasks

Offline retrospective

Vallance et al. 
2011

Assess relationship 
between 
depression 
(assessed via 
PHQ-9 
questionnaires) 
and activity

2,862 subjects Wrist-worn devices recorded 
accelerometry

Offline retrospective

Table A4

Platforms, pilots, and ongoing studies.

Reference or study Sample size Methods

Faurholt-Jepsen, M. et 
al. 2017

400 subjects with 
BD

Patients will be randomized to either 1) a smartphone-based 
monitoring system including a feedback loop between patients and 
clinicians, and cognitive behavioral therapy, or 2) standard 
treaatment. The outcomes are number and duration of re-admissions, 
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Reference or study Sample size Methods

2) severity of depressive and manic symptoms, and 3) perceived 
stress, quality of life, symptomatology, etc.

AURORA 5,000 subjects with 
trauma

Verily, University of North Carolina, and Harvard University are 
leading a 19-institution five-year endeavor to perform the most 
comprehensive observational study of trauma to date. Investigators 
will examine passive data collection methods using smartphone apps, 
as well as in-person visits, genomic measurements, neurocognitive 
tests, patient surveys, and medical record reviews. This collaboration 
presents a unique opportunity to discover new insights that could 
translate into fundamental advances in our understanding of post-
traumatic conditions. See https://www.nimh.nih.gov/news/science-
news/2016/nimh-funded-study-to-track-the-effects-of-trauma.shtml.

Healthy Aging Study 100,000 subjects The overarching goal is to develop a midlife biomarker of 
Alzheimer’s disease, since it is now well established that the disease 
begins about 2 decades prior to the onset of clinical symptoms. It is 
critical to develop new ways to detect the disease in the silent 
asymptomatic phase in order to develop preventative treatments. To 
accomplish this goal, the Emory Healthy Aging Study first aims to 
recruit 100,000 individuals to participate in an online study to assess 
risk factors identified in health questionnaires and by apps to 
measure cognition. The second aim is to deeply phenotype a 
subpopulation of about 3000 or more of these subjects every few 
years to assess a variety of risk factors by profiling genetics, 
cardiovascular physiology, blood and spinal fluid biomarkers, brain 
and retinal imaging. Multi-level longitudinal analyses of subjects 
profiles, including their amyloid status, will facilitate discovery of 
new biomarkers. See https://healthyaging.emory.edu/about-the-
study/.

Batista, E. et al. 2015 16 subjects Study of AD and MCI. The System for the Private and Autonomous 
Surveillance based on Information and Communication Technologies 
(SIMPATIC) project is a smartphone app-based system for 
monitoring people with MCI. The smartphone app raises alarms 
under certain conditions, such as an AD patient leaving a defined 
geographic zone (e.g. home), not moving after a certain amount of 
time, moving at too high a speed (suggesting they are utilizing 
transportation), or the phone battery level reaching too low a level.

Faurholt-Jepsen, M. et 
al. 2013.

78 subjects Six month study of BD. The “MONARCA” smartphone app 
administered subjective questionnaires assessing mood, sleep, 
medicine intake, etc., and monitored speech duration, social activity, 
and accelerometry.

RADAR-CNS: Remote 
Assessment of Disease 
and Relapse - Central 
Nervous System

Unknown A collaborative research program exploring the potential of wearable 
devices to help prevent and treat depression, multiple sclerosis and 
epilepsy. Jointly led by King’s College London and Janssen 
Pharmaceutica NV, funded by the Innovative Medicines Initiative, 
and includes 23 organizations from across Europe and the US.

UCLA Depression 
Grand Challenge

Study aims to 
enroll 100,000 
people

10-year study with aim of identifying will screen for depression, 
analyze participants’ genetics, measure early adversity and life stress 
and assess symptoms through remote monitoring using cell phones 
and wearable devices.

mPower: Mobile 
Parkinson Disease 
Study

48,000 people 
downloaded the 
app; 9,520 people 
consented to share 
data

This study will monitor individual’s health and symptoms of PD 
progression like dexterity, balance and gait using questionnaires and 
sensors via the Parkinson mPower mobile phone application and 
wearable devices if available.
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Figure 1. 
Geolocation data measured via smartphone can track time spent at modal locations. The x- 

and y-axes are distance from the most commonly visited location. The z-axis is the 

percentage of total time spent in a given location, with darker orange encoding a higher 

percentage and a lighter yellow encoding a lower percentage. The dark orange peak at the 

origin where the individual spends the most time is assumed to be home, and the second-

largest peak (z-axis value) where the individual spends the next most time is assumed to be 

work, or vice-versa if the individual spends more time at work than home.
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Figure 2. 
Social network activity measured via smartphone can identify mood and illness. The y-axis 

encodes unique pairings of sender and recipient IDs. The x-axis encodes time. The radius of 

each colored dot is proportional to the number of calls and text messages in one day. 

Interactions from a sender-recipient pairing have the same color over time, i.e. all red dots 

with the same height on the y-axis represent interactions between the same two unique 

individuals. Qualitatively, (a) healthy controls demonstrate more regular amounts of 

interaction over time with their social contacts compared to (b) subjects with bipolar 

disorder who alternate bouts of high and low levels of interaction.

Reinertsen and Clifford Page 63

Physiol Meas. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Screenshots of the AMoSS app for the Android operating system: (a) PHQ-9 questionnaire, 

(b) Simple mood assessment tool, and (c) “MoodZoom” survey to assess emotional status 

and mood.
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Figure 4. 
A “double-plot” of wearable accelerometry or actigraphy data demonstrates night-to-night 

patterns. The x-axis is the date, and the y-axis is time of day. Each day is repeated adjacent 

to and below the previous day. This aligns the nights of data and can be particularly useful in 

depicting circadian rhythm sleep disorders. (a) Actigraphy levels in a healthy control. (b) 

Actigraphy levels in a patient with borderline personality disorder.
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Table 1

Aberrations in physiology and behavior associated with neuropsychiatric illness that are detectable by sensors 

in smartphones and wearables

Sensor type

Illness Accelerometry HR GPS Calls & SMS

Stress & depression Disruptions in circadian 
rhythm and sleep

Emotion mediates vagal 
tone which manifests as 
altered HRV

Irregular travel routine Decreased social interactions

Bipolar disorder Disruptions in circadian 
rhythm and sleep, 
locomotor agitation during 
manic episode

ANS dysfunction via HRV 
measures

Irregular travel routine Decreased or increased social 
interactions

Schizophrenia Disruptions in circadian 
rhythm and sleep, 
locomotor agitation or 
catatonia, diminished 
overall activity

ANS dysfunction via HRV 
measures

Irregular travel routine Decreased social interactions

PTSD Inconclusive evidence ANS dysfunction via HRV 
measures

Inconclusive evidence Decreased social interactions

Dementia Dementia Disruptions in 
circadian rhythm, 
diminished locomotor 
activity

Inconclusive evidence Wandering away from 
home

Decreased social interaction

Parkinson’s disease Gait impairment, ataxia, 
dyskinesia

ANS dysfunction via HRV 
measures

Inconclusive evidence Voice features can indicate 
vocal impairment
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