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Various optimization problems in engineering and management are formulated as nonlinear programming problems. Because of
the nonconvexity nature of this kind of problems, no ecient approach is available to derive the global optimum of the problems.
How to locate a global optimal solution of a nonlinear programming problem is an important issue in optimization theory. In
the last few decades, piecewise linearization methods have been widely applied to convert a nonlinear programming problem into
a linear programming problem or a mixed-integer convex programming problem for obtaining an approximated global optimal
solution. In the transformation process, extra binary variables, continuous variables, and constraints are introduced to reformulate
the original problem.�ese extra variables and constraints mainly determine the solution eciency of the converted problem.�is
study therefore provides a review of piecewise linearizationmethods and analyzes the computational eciency of various piecewise
linearization methods.

1. Introduction

Piecewise linear functions are frequently used in various
applications to approximate nonlinear programs with non-
convex functions in the objective or constraints by adding
extra binary variables, continuous variables, and constraints.
�ey naturally appear as cost functions of supply chain prob-
lems to model quantity discount functions for bulk procure-
ment and �xed charges. For example, the transportation cost,
inventory cost, and production cost in a supply chain network
are o
en constructed as a sum of nonconvex piecewise linear
functions due to economies of scale [1]. Optimization prob-
lems with piecewise linear costs arise in many application
domains, including transportation, telecommunications, and
production planning. Speci�c applications include variants
of the minimum cost network �ow problem with nonconvex
piecewise linear costs [2–7], the network loading problem [8–
11], the facility location problem with staircase costs [12, 13],
the merge-in-transit problem [14], and the packing problem

[15–17]. Other applications also include production plan-
ning [18], optimization of electronic circuits [19], operation
planning of gas networks [20], process engineering [21, 22],
engineering design [23, 24], appointment scheduling [25],
and other network �ow problems with nonconvex piecewise
linear objective functions [7].

Various methods of piecewisely linearizing a nonlinear
function have been proposed in the literature [26–39]. Two
well-known mixed-integer formulations for piecewise linear
functions are the incremental cost [40] and the convex
combination [41] formulations. Padberg [35] compared the
linear programming relaxations of the two mixed-integer
programming models for piecewise linear functions in the
simplest case when no constraint exists. He showed that
the feasible set of the linear programming relaxation of the
incremental cost formulation is integral; that is, the binary
variables are integers at every vertex of the set. He called
such formulations locally ideal. On the other hand, the
convex combination formulation is not locally ideal, and it
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strictly contains the feasible set of the linear programming
relaxation of the incremental cost formulation. �en, Sherali
[42] proposed a modi�ed convex combination formulation
that is locally ideal. Alternatively, Beale and Tomlin [43]
suggested a formulation for the piecewise linear function
similar to convex combination, except that no binary variable
is included in the model and the nonlinearities are enforced
algorithmically, directly in the branch-and-bound algorithm,
by branching on sets of variables, which they called special
ordered sets of type 2 (SOS2). It is also possible to formulate
piecewise linear functions similar to incremental cost but
without binary variables and enforcing the nonlinearities
directly in the branch-and-bound algorithm. Two advantages
of eliminating binary variables are the substantial reduction
in the size of themodel and the use of the polyhedral structure
of the problem [44, 45]. Keha et al. [46] studied formulations
of linear programs with piecewise linear objective functions
with andwithout additional binary variables and showed that
adding binary variables does not improve the bound of the
linear programming relaxation.Keha et al. [47] also presented
a branch-and-cut algorithm for solving linear programs
with continuous separable piecewise-linear cost functions.
Instead of introducing auxiliary binary variables and other
linear constraints to represent SOS2 constraints used in
the traditional approach, they enforced SOS2 constraints by
branching on them without auxiliary binary variables.

Due to the broad applications of piecewise linear func-
tions, many studies have conducted related research on this
topic. �e main purpose of these studies is to �nd a better
way to represent a piecewise linear function or to tighten the
linear programming relaxation. A superior representation of
piecewise linear functions can e�ectively reduce the problem
size and enhance the computational eciency. However, for
expressing a piecewise linear function of a single variable �
with�+1 break points, most of themethods in the textbooks
and literature require adding extra � binary variables and
4m constraints, which may cause a heavy computational
burden when � is large. Recently, Li et al. [48] developed
a representation method for piecewise linear functions with
fewer binary variables compared to the traditional methods.
Although their method needs only ⌈log2�⌉ extra binary
variables to piecewisely linearize a nonlinear function with� + 1 break points, the approximation process still requires8 + 8⌈log2�⌉ extra constraints, 2� nonnegative continuous
variables, and 2⌈log2�⌉ free-signed continuous variables.
Vielma et al. [39] presented a note on Li et al.’s paper
and showed that two representations for piecewise linear
functions introduced by Li et al. [48] are both theoretically
and computationally inferior to standard formulations for
piecewise linear functions. Tsai and Lin [49] applied the
Vielma et al. [39] techniques to express a piecewise linear
function for solving a posynomial optimization problem.
Croxton et al. [31] indicated that most models of expressing
piecewise linear functions are equivalent to each other.
Additionally, it is well known that the numbers of extra
variables and constraints required in the linearization process
for a nonlinear function obviously impact the computational

performance of the converted problem.�erefore, this paper
focuses on discussing and reviewing the recent advances
in piecewise linearization methods. Section 2 reviews the
piecewise linearization methods. Section 3 compares the
formulations of various methods with the numbers of extra
binary/continuous variables and constraints. Section 4 dis-
cusses error evaluation in piecewise linear approximation.
Conclusions are made in Section 5.

2. Formulations of Piecewise
Linearization Functions

Consider a general nonlinear function �(�) of a single
variable �; �(�) is a continuous function, and � is within
the interval [�0, ��]. Most commonly used textbooks of
nonlinear programming [26–28] approximate the nonlinear
function by a piecewise linear function as follows.

Firstly, denote �� (� = 0, 2, . . . , �) as the break points of�(�), �0 < �1 < ⋅ ⋅ ⋅ < ��, and Figure 1 indicates the piecewise
linearization of �(�).�(�) can then be approximately linearized over the
interval [�0, ��] as


 (� (�)) = �∑
�=0

� (��) ��, (1)

where � = ∑��=0 ����, ∑��=0 �� = 1, �� ≥ 0, in which only two
adjacent ��’s are allowed to be nonzero. A nonlinear function
is then converted into the following expressions.

Method 1. Consider


 (� (�)) = �∑
�=1

� (��) ��,

� = �∑
�=1

����,
�0 ≤ �0,

�� ≤ ��−1 + ��, for � = 1, 2, . . . , � − 1, �� ≤ ��−1,
�−1∑
�=0

�� = 1, �∑
�=0

�� = 1,

(2)

where �� ∈ {0, 1}, �� ≥ 0, � = 0, 1, . . . , � − 1.
�e above expressions involve � new binary variables�0, �1, . . . , ��−1. �e number of newly added 0-1 variables for

piecewisely linearizing a function �(�) equals the number of
breaking intervals (i.e.,�). If� is large, it may cause a heavy
computational burden.

Li and Yu [33] proposed another global optimization
method for nonlinear programming problems where the
objective function and the constraints might be nonconvex.
A univariate function is initially expressed by a piecewise
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Figure 1: Piecewise linearization of �(�).

linear function with a summation of absolute terms. Denote�� (� = 0, 1, . . . , �− 1) as the slopes of line segments between�� and ��+1, expressed as �� = [�(��+1) − �(��)]/[��+1 − ��].�(�) can then be written as follows:


 (� (�)) = � (�0) + �0 (� − �0)
+ �−1∑
�=1

�� − ��−12 (����� − ������ + � − ��) . (3)

�(�) is convex in the interval [��−1, ��] if �� − ��−1 ≥ 0,
and otherwise �(�) is a non-convex function which needs to
be linearized by adding extra binary variables. By linearizing
the absolute terms, Li and Yu [33] converted the nonlinear
function into a piecewise linear function as shown below.

Method 2. Consider


 (� (�)) = � (�0) + �0 (� − �0)
+ ∑
�:��>��−1

(�� − ��−1)(� − �� + �−1∑
�=0

��)

+ 12 ∑
�: ��<��−1

(�� − ��−1) (� − 2�� + 2���� − ��) ,

� + �−2∑
�=0

�� ≥ ��−1, 0 ≤ �� ≤ ��+1 − ��,
where �� > ��−1,

� + � (�� − 1) ≤ ��, �� ≥ 0, where �� < ��−1,
(4)

where � ≥ 0, �� ≥ 0, �� ≥ 0, �� ∈ {0, 1}, � are upper bounds
of � and �� are extra binary variables used to linearize a non-
convex function �(�) for the interval [��−1, ��].

Comparing Method 2 with Method 1, Method 1 uses
binary variables to linearize �(�) for whole � interval. But
the binary variables used in Method 2 are only applied to
linearize the non-convex parts of �(�). Method 2 therefore
uses fewer 0-1 variables than Method 1. However, for �(�)
with � intervals of the non-convex parts, Method 2 still
requires � binary variables to linearize �(�).

Another general form of representing a piecewise linear
function is proposed in the articles of Croxton et al. [31], Li
[32], Padberg [35], Topaloglu and Powell [36], and Li and Tsai
[38]. �e expressions are formulated as shown below.

Method 3. Consider

�� − (�� − �0) (1 − ��)
≤ � ≤ ��+1 − (�� − �0) (1 − ��) , � = 0, 1, . . . , � − 1,

(5)

where ∑�−1�=0 �� = 1, �� ∈ {0, 1}, and
� (��) + �� (� − ��) − �(1 − ��)

≤ � (�)
≤ � (��) + �� (� − ��)

+ �(1 − ��) , � = 0, 1, . . . , � − 1,

(6)

where� is a large constant and �� = (�(��+1)−�(��))/(��+1−��).
�e above expressions require extra � binary variables

and 4� constraints, where � + 1 break points are used to
represent a piecewise linear function.

Form the above discussions, we can know that Methods
1, 2, and 3 require a number of extra binary variables and
extra constraints linear in � to express a piecewise linear
function. To approximate a nonlinear function by using a
piecewise linear function, the numbers of extra binary vari-
able and constraints signi�cantly in�uence the computational
eciency. If fewer binary variables and constraints are used
to represent a piecewise linear function, then less CPU time
is needed to solve the transformed problem. For decreasing
the extra binary variables involved in the approximation
process, Li et al. [48] developed a representation method
for piecewise linear functions with the number of binary
variables logarithmic in �. Consider the same piecewise
linear function �(�) discussed above, where � is within the
interval [�0, ��] and�+ 1 break points exist within [�0, ��].
Let � be an integer, 0 ≤ � ≤ � − 1, expressed as

� = ℎ∑
�=1

2�−1��, ℎ = ⌈log2�⌉ , �� ∈ {0, 1} . (7)

Let "(�) ⊆ {1, 2, . . . , ℎ} be a set composed of all indices
such that ∑�∈	(
) 2�−1 = �. For instance, "(0) = $, "(3) ={1, 2}.

Denote ‖"(�)‖ to be the number of elements in "(�). For
instance, ‖"(0)‖ = 0, ‖"(3)‖ = 2.

To approximate a univariate nonlinear function by using
a piecewise linear function, the following expressions are
deduced by the Li et al. [48] method.
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Method 4. Consider

�−1∑

=0

&
�
 ≤ � ≤ �−1∑

=0

&
�
+1,

� (�) = �−1∑

=0

(� (�
) − �
 (�
 − �0)) &


+ �−1∑

=0

�
'
, �
 = � (�
+1) − � (�
)�
+1 − �
 ,
�−1∑

=0

&
 = 1, &
 ≥ 0,
�−1∑

=0

&
 ‖" (�)‖ + ℎ∑
�=1

�� = 0,
−��� ≤ �� ≤ ���, * = 1, 2, . . . , ℎ,

�−1∑

=0

&
-
,� − (1 − ���) ≤ �� ≤ �−1∑

=0

&
-
,� + (1 − ���) ,
* = 1, 2, . . . , ℎ,

�−1∑

=0

'
 = � − �0,
�−1∑

=0

'
 ‖" (�)‖ + ℎ∑
�=1

7� = 0,
− (�� − �0) ��� ≤ 7� ≤ (�� − �0) ���, * = 1, 2, . . . , ℎ,

�−1∑

=0

'
-
,� − (�� − �0) (1 − ���)

≤ 7� ≤ �−1∑

=0

'
-
,� + (�� − �0) (1 − ���) , * = 1, 2, . . . , ℎ,
ℎ∑
�=1

2�−1��� ≤ �,
(8)

where ��� ∈ {0, 1}, -
,�, ��, and 7� are free continuous variables,&
 and '
 are nonnegative continuous, and all the variables
are the same as de�ned before.

�e expressions of Method 4 for representing a piecewise
linear function �(�) with � + 1 break points use ⌈log2�⌉
binary variables, 8 + 8⌈log2�⌉ constraints, 2� non-negative
variables, and 2⌈log2�⌉ free-signed continuous variables.
Comparing with Methods 1, 2, and 3, Method 4 indeed
reduces the number of binary variables used such that the
computational eciency is improved. Although Li et al. [48]
developed a superior way of expressing a piecewise linear
function by using fewer binary variables, Vielma et al. [39]

investigated that this representation for piecewise linear func-
tions is theoretically and computationally inferior to standard
formulations for piecewise linear functions. Vielma and
Nemhauser [50] recently developed a novel piecewise linear
expression requiring fewer variables and constraints than the
current piecewise linearization techniques to approximate
the univariate nonlinear functions. �eir method needs
a logarithmic number of binary variables and constraints
to express a piecewise linear function. �e formulation is
described as shown below.

Let 9 = {0, 1, 2, . . . , �} and : ∈ 9. An injective function; : {1, 2, . . . , �} → {0, 1}
, � = ⌈log2�⌉, where the vectors;(:) and ;(: + 1) di�er in at most one component for all: ∈ {1, 2,. . . , � − 1}.
Let ;(:) = (�1, �2, . . . , �
), for all �� ∈ {0, 1}, � =1, 2, . . . , �, and ;(0) = ;(1). Some notations are introduced

below.A+(�): a set composed of all :, where �� = 1 of ;(:) and;(: + 1) for : = 1, 2, . . . , � − 1 or �� = 1 of ;(:) for : ∈{0,�}; that is, A+(�) = {: | ∀ ;(:) and;(: + 1), �� = 1, : =1, 2, . . . , � − 1} ∪ {: | ∀ ;(:), �� = 1, : ∈ {0,�}}.A−(�): a set composed of all :, where �� = 0 of ;(:) and;(: + 1) for : = 1, 2,. . . , � − 1 or �� = 0 of ;(:) for : ∈{0,�}; that is, A−(�) = {: | ∀ ;(:) and;(: + 1), �� = 0, : =1, 2, . . . , � − 1} ∪ {: | ∀ ;(:), �� = 0, : ∈ {0,�}}.
�e linear approximation of a univariate �(�), �0 ≤� ≤ ��, by the technique of Vielma and Nemhauser [50] is

formulated as follows.

Method 5. Denote 
(�(�)) as the piecewise linear function of�(�), where �0 < �1 < �2 < ⋅ ⋅ ⋅ < �� be the�+1 break points
of 
(�(�)). 
(�(�)) can be expressed as


 (� (�)) = �∑
�=0

� (��) ��,
� = �∑
�=0

����,
�∑
�=0

�� = 1,
∑
�∈+(�)

�� ≤ ��,
∑
�∈−(�)

�� ≤ 1 − ��, ∀�� ∈ R+, ∀�� ∈ {0, 1} .

(9)

Method 5 uses ⌈log2�⌉ binary variables,�+1 continuous
variables, and 3+2⌈log2�⌉ constraints to express a piecewise
linearization function with� line segments.

3. Formulation Comparisons

�e comparison results of the above �ve methods in terms
of the numbers of binary variables, continuous variables, and
constraints are listed in Table 1. �e number of extra binary
variables of Methods 1 and 3 is linear in the number of line
segments. Methods 4 and 5 have the logarithmic number of
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extra binary variables with� line segments, and the number
of extra binary variables of Method 2 is equal to the number
of concave piecewise line segments. In the deterministic
global optimization for a minimization problem, inverse,
power, and exponential transformations generate nonconvex
expressions that require to be linearly approximated in the
reformulated problem. �at means Methods 4 and 5 are
superior to Methods 1, 2, and 3 in terms of the numbers of
extra binary variables and constraints as shown in Table 1.
Moreover, Method 5 has fewer extra continuous variables
and constraints than Method 4 in linearizing a nonlinear
function.

Till et al. [51] reviewed the literature on the complexity
of mixed-integer linear programming (MILP) problems and
summarized that the computational complexity varies fromD(�⋅E2) toD(2� ⋅E3), where E is the number of constraints and� is the number of binaries. �erefore, reducing constraints
and binary variables makes a greater impact than reducing
continuous variables on computational eciency of solving
MILP problems. For �nding a global solution of a nonlinear
programming problem by a piecewise linearization method,
if the linearization method generates a large number of
additional constraints and binaries, the computational e-
ciency will decrease and cause heavy computational burdens.
According to the above discussions, Method 5 is more
computationally ecient than the other fourmethods. Exper-
iment results from the literature [39, 48, 49] also support the
statement.

Beale and Tomlin [43] suggested a formulation for
piecewise linear functions by using continuous variables
in special ordered sets of type 2 (SOS2). Although no
binary variables are included in the SOS2 formulation, the
nonlinearities are enforced algorithmically and directly in
the branch-and-bound algorithm by branching on sets of
variables. Since the traditional SOS2 branching schemes have
too many dichotomies, the piecewise linearization technique
in Method 5 induces an independent branching scheme of
logarithm depth and provides a signi�cant computational
advantage [50]. �e computational results in Vielma and
Nemhauser [50] show that Method 5 outperforms the SOS2
model without binary variables.

�e factors a�ecting the computational eciency in solv-
ing nonlinear programming problems include the tightness
of the constructed convex underestimator, the eciency of
the piecewise linearization technique, and the number of the
transformed variables. An appropriate variable transforma-
tion constructs a tighter convex underestimator and makes
fewer break points required in the linearization process to
satisfy the same optimality tolerance and feasibility tolerance.
Vielma andNemhauser [50] indicated that the formulation of
Method 5 is sharp and locally ideal andhas favorable tightness
properties.�ey presented experimental results showing that
Method 5 signi�cantly outperforms othermethods, especially
when the number of break points becomes large. Vielma et al.
[39] explained that the formulation of Method 4 is not sharp
and is theoretically and computationally inferior to standard
MILP formulations (convex combinationmodel, logarithmic
convex combination model) for piecewise linear functions.

4. Error Evaluation

For evaluating the error of piecewise linear approximation,
Tsai and Lin [49, 52] and Lin and Tsai [53] utilized the
expression |�(�) − 
(�(�))| to estimate the error indicated
in Figure 2. If �(�) is the objective function, F�(�) < 0
is the Gth constraint, and �∗ is the solution derived from
the transformed program, then the linearization does not
require to be re�ned until |�(�∗) − 
(�(�∗))| ≤ H1 and
Max�(F�(�∗)) ≤ H2, where |�(�∗) − 
(�(�∗))| is the evaluated
error in objective, H1 is the optimality tolerance, F�(�∗) is the
error in the Gth constraint, and H2 is the feasibility tolerance.

�e accuracy of the linear approximation signi�cantly
depends on the selection of break points and more break
points can increase the accuracy of the linear approximation.
Since adding numerous break points leads to a signi�cant
increase in the computational burden, the break point selec-
tion strategies can be applied to improve the computational
eciency in solving optimization problems by the determin-
istic approaches. Existing break point selection strategies are
classi�ed into three categories as follows [54]:

(i) add a new break point at themidpoint of each interval
of existing break points;

(ii) add a new break point at the point with largest
approximation error of each interval;

(iii) add a new break point at the previously obtained
solution point.

According to the deterministic optimization methods
for solving nonconvex nonlinear problems [29, 33, 38, 39,
48, 49, 53–56], the inverse or logarithmic transformation is
required to be approximated by the piecewise linearization

function. For example, the function � = ln� or � = �−1 is
required to be piecewisely linearized by using an appropriate
breakpoint selection strategy, if a new break point is added
at the midpoint of each interval of existing break points or
at the point with largest approximation error, the number
of line segments becomes double in each iteration. If a
new breakpoint is added at the previously obtained solution
point, only one breakpoint is added in each iteration. How
to improve the computational eciency by a better break
point selection strategy still needs more investigations or
experiments to get concrete results.

5. Conclusions

�is study provides an overview on some of the most
commonly used piecewise linearization methods in deter-
ministic optimization. From the formulation point of view,
the numbers of extra binaries, continuous variables, and
constraints are decreasing in the latest development methods
especially for the number of extra binaries which may cause
heavy computational burdens. Additionally, a good piecewise
linearization method must consider the tightness properties
such as sharp and locally ideal. Since e�ective break points
selection strategy is important to enhance the computational
eciency in linear approximation, more work should be
done to study the optimal positioning of the break points.
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Table 1: Comparison results of �ve methods in expressing a piecewise linearization function with� line segments (i.e.,�+ 1 break points).
Items Method 1 Method 2 Method 3 Method 4 Method 5

No. of binary variables � � (no. of concave piecewise segments) � ⌈log2�)⌉ ⌈log2�⌉
No. of continuous variables � + 1 � + 1 0 2� + 2 ⌈log2�⌉ � + 1
No. of constraints � + 5 � + 1 4� 8 + 8 ⌈log2�⌉ 3 + 2 ⌈log2�⌉

a0 a1
x

Error

f(x∗)

x∗

L(f(x∗))

f(x)

f(x)

(a)

a1 a2
x

Error

x∗a0

f(x∗)

L(f(x∗))

f(x)

(b)

Figure 2: Error evaluation of the linear approximation.

Although a logarithmic piecewise linearization method with
good tightness properties has been proposed, it is still
too time consuming for �nding an approximately global
optimum of a large scale nonconvex problem. Developing an
ecient polynomial time algorithm for solving nonconvex
problems by piecewise linearization techniques is still a
challenging question. Obviously, this contribution gives only
a few preliminary insights and might point toward issues
deserving additional research.
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