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Abstract

The topic of this review is geometric registration in robotics. Registra-

tion algorithms associate sets of data into a common coordinate system.

They have been used extensively in object reconstruction, inspection,

medical application, and localization of mobile robotics. We focus on

mobile robotics applications in which point clouds are to be registered.

While the underlying principle of those algorithms is simple, many

variations have been proposed for many different applications. In this

review, we give a historical perspective of the registration problem and

show that the plethora of solutions can be organized and differentiated

according to a few elements. Accordingly, we present a formalization

of geometric registration and cast algorithms proposed in the litera-

ture into this framework. Finally, we review a few applications of this

framework in mobile robotics that cover different kinds of platforms,

environments, and tasks. These examples allow us to study the specific

requirements of each use case and the necessary configuration choices

leading to the registration implementation. Ultimately, the objective of

this review is to provide guidelines for the choice of geometric registra-

tion configuration.

Keywords Survey; Review; Iterative Closest Point algorithm; Point

set registration; Geometric registration; Mobile robotics; Laser odom-

etry; Search and Rescue; Inspection; Environmental monitoring; Au-

tonomous Driving.
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Twenty years of Iterative Closest Point (ICP):

The Legacy

The scope of this work is to present registration algorithms and their

use in mobile robotics. Registration algorithms associate sets of data

into a common coordinate system by minimizing the alignment error.

This allows to integrate data from different sources into a bigger model.

Although they can be quite an abstract and technical concept,

registration solutions already had an impact on the artistic field and

popular culture. Photographers proficiently use image registration to

build photograph composites achieving different looks-and-feels. The

Brenizer method is an exemplary technique that is applied to achieve

dramatic depth of field using panoramic image stitching (Figure 1.1 -

Top). Another example is High Dynamic Range (HDR) photographs,

where multiple images at different exposure levels need to be precisely

overlaid to retrieve details in shaded and highlighted areas (Figure 1.1

- Bottom). Nowadays, even the latest cellphones have the capacity to

build panoramic images from a series of pictures taken based on a vi-

sual guidelines that direct the user to move the camera viewfinder at

the optimal position for the next picture. As for the specific case of

3D mapping application, cinematographers are depicting possible uses

of registration algorithms in several recent science fiction movies. For

2
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3

instance, in the remake of Total Recall (Colombia Pictures, 2012), an

armed intervention team employed an array of hundreds of tiny cam-

eras in a dangerous room leading to a 3D reconstruction of the area

used to monitor potential threats within couple of seconds. Another

closely related potential application was the used by a geologist of fly-

ing drones carrying laser rangefinders to explore an alien facility in

Prometheus (Twentieth Century Fox, 2012).

Figure 1.1: Example of image registrations used in photography. Top: Brenizer
method using the open source software Hugin to stitch multiple images. Bottom:
HDR composite of the San Francisco harbor using the open source software Lumi-
nance HDR to overlay three images.

Full text available at: http://dx.doi.org/10.1561/2300000035



4 Twenty years of ICP: The Legacy

More at the research level, current applications include: robotic

exploration in harsh environments, organ reconstruction to improve

medical diagnostics and object reconstruction for reverse engineering.

Although registration using 2D images can be part of the same group

of solutions, we focus on systems where depth information is already

available (e.g., from laser rangefinders) and is mainly used for resolving

misalignment error. We refer to the latter type as geometric registra-

tion1. However, some parallels with image registrations will be made

throughout this work when relevant.

A simplified example of geometric registration is illustrated in Fig-

ure 1.2. A scene with a large tree, a lamppost and a bench was scanned

using a laser rangefinder from two different poses. As laser points are

indistinguishable, only their location information is available to resolve

the alignment error. In that example, the point cloud in light green and

with the horizontal ground is used as our fixed reference coordinates.

Figure 1.2-Left shows the starting position of the two scans. The over-

laid point cloud in dark blue has a misalignment error shifting it to

the left with a tilt angle. This initial misalignment is represented with

dark red lines in Figure 1.2-Middle. Although all individual points are

similar, their proximity to other points gives enough information to

automatically align the two point clouds (Figure 1.2-Right).

Figure 1.2: Examples of geometric registration between a reference point cloud
(light green points) and a reading point cloud (dark blue points). Left: Initial position
of the two point clouds. Middle: Alignment error (dark red lines). Right: Final
alignment of the two point clouds.

1In general, image registration often has access to labelled points, which is less
the case for geometric registration, either in 2D or 3D.

Full text available at: http://dx.doi.org/10.1561/2300000035



1.1. Early Solutions 5

1.1 Early Solutions

As an interesting historical note, in an early publication by Hurley and

Cattell [1962], registration is presented as an Orthogonal Procrustes

problem. The name Procrustes refering to a bandit from the Greek

mythology who made his victims fit on his bed by either stretching

their limbs or cutting them off. Theseus eventually defeated Procrustes

using the same violent procedure (Figure 1.3). Nowadays, the reference

to the Orthogonal Procrustes problem is not often used in the scientific

literature, but it illustrates well the idea.

Figure 1.3: Theseus adjusting Procrustes to the size of his bed. Photograph pro-
vided by Marie-Lan Nguyen / Wikimedia Commons.

While working more specifically on 3D-shape primitives, Faugeras

and Hebert [1986] defined closed-form distances to minimize point-to-

point and plane-to-plane alignment error. The proposed method solved

translation and rotation as a two-step procedure. Later, a solution pro-

posed by Walker et al. [1991] resolved together rotation and translation

error using dual quaternions. The registration problem concretizes it-

self further in a survey of geometric matching algorithms and geometric

representations for point sets, curves, surfaces, volumes, and their re-

spective space-time trajectories [Besl, 1988]. At this time, the main ex-

Full text available at: http://dx.doi.org/10.1561/2300000035



6 Twenty years of ICP: The Legacy

perimental validation was using Computer-aided design (CAD) models

with simple shapes. The first mention of the name ICP2 was proposed

by Besl and McKay [1992]. They expressed the problem as follows:

“Given 3-D data in a sensor coordinate system, which de-

scribes a data shape that may correspond to a model shape,

and given a model shape in a model coordinate system in a

different geometric shape representation, estimate the op-

timal rotation and translation that aligns, or registers, the

model shape and the data shape minimizing the distance

between the shapes and thereby allowing determination of

the equivalence of the shapes via a mean-square distance

metric.”

In their work, the proof of the solution convergence is demonstrated

under the assumption that the number of associated points, or their

weight, remains constant. Unless two identical shapes are registered

together, outliers that are not present in both shapes need to be iden-

tified. This problems is observed by Champleboux et al. [1992] while

developing early registration solutions for medical applications. They

report failures when wrong initial transformations are used in com-

bination with scans having low overlap ratio. During the same years,

Chen and Medioni [1991] work with dense laser scans of statues and,

shortly later, scans of tooth mockups [Chen and Medioni, 1992]. They

propose a registration solution based on the minimization of point-to-

plane alignment errors, which is still quite often used nowadays.

Even though a large volume of theoretical works was published on

advanced geometric primitives (e.g., planes, curves, quadrics), Zhang

[1994] states that primitives derived from points are too sensitive to

noise and are not stable in moving systems with current (1994) sens-

ing capabilities. Thus, he concludes that points were more reliable.

Zhang [1994] pioneers the idea of using ICP-based solutions for out-

door robotic applications. He proposes a generic framework for sym-

metric match, but considers only one direction of registration as an

2In the remainder of this review, ICP and geometric registration have the same
generic meaning.

Full text available at: http://dx.doi.org/10.1561/2300000035



1.2. Division and Explosion of the Field 7

approximation to save computation costs. He highly emphasizes the

importance of removing spurious pairs and gives the first character-

ization of fast subsampling solutions. In addition, he highlighted the

fact that outlier rejection is required for robotic applications, and that

the proof of ICP convergence stated by Besl and McKay [1992] can-

not hold for most of the robotics applications. In the outlook section

of his work, he already mentions the use of uncertainty on the initial

alignment, based on Kalman filters and Mahalanobis distance, and the

need to handle dynamic elements.

1.2 Division and Explosion of the Field

Within only two years, four main application types already emerged

from the possibilities to register 3D point clouds: object reconstructions

[Chen and Medioni, 1991], non-contact inspections [Besl and McKay,

1992], medical and surgery support [Champleboux et al., 1992] and au-

tonomous vehicle navigation [Zhang, 1993]. Publications in specialized

journals for computer vision, robotics and medical imaging slowly di-

vided the types of interesting problems to be solved. We can still read

in current literature that the credits for being the first article to provide

a solution differ from authors in different fields.

The field of registration crystalized with its first survey on med-

ical image registration covering the years 1993 to 1998 [Maintz and

Viergever, 1998]. It took 12 years for a specialized survey of 3D regis-

tration in computer vision to appear [Bowyer et al., 2006]. This work

intends to be the first large scale review adapted for Robotics applica-

tion.

ICP is a popular algorithm due to its simplicity: its general idea is

easy to understand and to implement. However, the basic algorithm

only works well in ideal cases. This led to hundreds3 of variations

around the original algorithm that were published on numerous dif-

ferent experimental scenarios (see Figure 1.4). This highlights both the

usefulness of ICP and the difficulty to find a single versatile version.

3Close to 450 papers based on IEEE Xplore and around 1350 based on Scopus,
between 1992 and 2013.
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8 Twenty years of ICP: The Legacy
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Figure 1.4: Evolution of the number of publications over the years. Results were
obtained for the keywords Iterative Closest Point appearing in the abstract or the
title of publications. The dark blue area is computed based on IEEE Xplore database
and the light green area from the Scopus database.

In Figure 1.4, one can observe an increasing number of publications

appearing around the year 2000. In robotics, this coincides with the ad-

vent of a 2D solution for pose estimations demonstrated with a SICK

rangefinder [Lu and Milios, 1997] and of the basis of Simultaneous Lo-

calization and Mapping (SLAM) algorithms [Thrun et al., 1998]. Prior

to the arrival of the SICK LMS-200 in robotics [Pfister et al., 2002],

most of the sensors used were custom-made. This situation renders ex-

periments difficult to replicate by other researchers. In those years, 2D

lasers appeared as a viable solution for navigation over sonars, which

were traditionally used [Thrun et al., 1998]. The 3D real-time applica-

tions were then not accessible due to high computation costs leading

to an increased research focus toward 2D solutions for autonomous

navigation, while other fields continued in 3D. At the same time in

computer vision, the seminal work of Rusinkiewicz and Levoy [2001]

on ICP algorithm comparisons led to significant progress in the scan

Full text available at: http://dx.doi.org/10.1561/2300000035



1.2. Division and Explosion of the Field 9

registration field. The experiments employed simulated 3D scans, high-

lighting different spatial constraints and sensor noises. Results mainly

focused on the rapidity of convergence and the final precision of dif-

ferent solutions helping to select more appropriate solutions in further

applications.

With the arrival of more standard sensors, researchers in robotics

pushed the 2D registration algorithms so they could deal with larger

environments with faster platforms [Bosse et al., 2004] and 3D slowly

came back [Nüchter et al., 2004]. Since no comparison framework ex-

ists, the selection of an appropriate variant for particular experimental

conditions is difficult. This is a major challenge because registration is

at the front-end of the mapping pipeline, and the arbitrary nature of

its selection affects the results of all subsequent steps of more advanced

robotic tasks. Even the early work of Eggert et al. [1998] highlights the

difficulty to compare with other solutions given the lack of metric over

common data sets. In their survey, Maintz and Viergever [1998] point

the fact that proper accuracy studies are just starting; the problem be-

ing that the results provided are too specific. In addition, they highlight

the imprecise use of the terms accuracy, precision and robustness. They

suggest to set up public databases and validation protocols, but foresee

logistic, costs and efforts as incoming problem to those solutions.

Recently, the demand for a stronger experimental methodology in

robotics was also stressed by Amigoni et al. [2009]. The authors sur-

vey different SLAM publications to highlight proper evaluation met-

rics that are applied to SLAM algorithms. Three principles of an

experimental methodology in science (i.e, comparison, reproducibil-

ity/repeatability and justification/explanation) are translated in re-

quirements for stronger SLAM results. As stated in their paper, a

sound methodology should allow researchers to gain an insight about

intrinsic (e.g., computational time, parameters used, parameter behav-

iors) and extrinsic (e.g., accuracy, precision) quantities. The authors

report that, even though comparisons between algorithms are present

in SLAM publications, very few researchers can reuse the same proto-

col and directly compare their results without having to re-implement

other solutions.

Full text available at: http://dx.doi.org/10.1561/2300000035



10 Twenty years of ICP: The Legacy

With the introduction of the Microsoft Kinect in 2010, another wave

of publications is expected, similar to what was observed following the

widespread utilization of SICK rangefinders. The Kinect is a handheld

camera sensor connected via USB to a computer that produces both

depth and color readings. Such RGB-D sensors augment accessibility

to object modeling and indoor mapping research [Henry et al., 2012].

This also opens the door to a mix of hybrid algorithms using features

and descriptors without the need of expertise in sensor calibration.

RGB-D cameras have different characteristics than laser-based sensors,

such as a higher density of points at a higher frequency but covering

a more restricted Field of View (FoV). A smaller FoV means less

time to compute the registration before the sensor trajectory reduce

the overlap to an unusable range. Having access to a higher frame

rate with an optimized ICP solution shows that hand-waved sensor

trajectory was trackable with real-time constraints [Pomerleau et al.,

2011]. The Velodyne HDL-64E, first commercialized for the DARPA

Urban Challenge in 2007, optimized its FoV to cover the expected

trajectory of a ground vehicle. To cope with the high speed of a car, the

sensor delivered a high data rate at 1.3 M points per second, bring the

real-time constraint to another level. Those two sensors were the latest

publication catalysts for the field of registration in mobile robotics,

field often modulated by the development of new hardwares.

1.3 Algorithm Overview

The aim of geometric registration is to be able to represent a shape,

called reading, in the same coordinate frame as another, called

reference. This is equivalent to finding the transformation of reading

that best aligns it to reference.

A shape S is a set of points including both geometric and non-

geometric information. Geometric information is affected by a spatial

transformation; this part of the dimension of a point will be called a

feature. Features are typically coordinates of points, surface normals or

tangent vectors. Non-geometric information is not affected by spatial

Full text available at: http://dx.doi.org/10.1561/2300000035



1.3. Algorithm Overview 11

transformation; this part of the dimension of a point will be called a

descriptor. Descriptors can be color, temperature, identifiers, etc.

Most algorithms actually apply some filters on the shapes in order

to help the registration. There are mainly two uses of such filters. The

first one is to remove some points that do not bring any valuable infor-

mation for the registration. As the complexity of the algorithm is linear

in the number of points, reducing this number can have a significant

impact on the time of registration. The second use of filters can be to

add information to the point. The typical example is the inference of

local structural properties of the shape, such as normal information or

curvature. This information, which is usually not present in the raw

sensor data, can allow for better registration through a more precise

association of the points, or the computation of the error to minimize.

More formally, let PA be the shape representing reading in a coor-

dinate frame A and QB the shape representing reference in its coordi-

nate frame B. The aim of registration is to estimate the transformation

TB
A

by minimizing an error function error(P ′
,Q):

T̂BA = arg min
T

(

error
(

T
(

PA
)

, QB
))

(1.1)

where T (S) is the application of the geometric transformation T to the

shape S.

One specificity of geometric registration is that the error function is

computed on pairs of points that have been associated between the two

shapes. The classical association is done by finding the closest point in

reference of each point in reading. Ideally the association should be

between points that, when the two shapes are aligned, are the closest

in position. This problem is called data association, point matching,

correspondence finding depending on the literature. Association solving

can be done purely on the features but can also be improved by using

the descriptors.

Formally, let M = match(P,Q) = {(p, q) : p ∈ P, q ∈ Q} be the

set of matches between P and Q. The error function is then of the

form:

error(P,Q) =
∑

(p,q)∈M

d(p, q).

Full text available at: http://dx.doi.org/10.1561/2300000035



12 Twenty years of ICP: The Legacy

In order to make this error function more robust, outliers are some-

times identified and removed from the list of matches. In addition,

weights W = outlier(M) = {w(p, q) : ∀(p, q) ∈M} can be associated

to the matches so as to increase or decrease their influence in the error

function:

error(P,Q) =
∑

(p,q)∈M

w(p, q) d(p, q).

It is clear that minimizing this error function with an ideal associ-

ation yields the best estimate for TB
A

(Equation 1.1). However, unless

the descriptors are discriminative enough (as with visual descriptors),

the association can generally not be perfectly solved. The idea of ICP

is that even with an imperfect association, minimizing the error yields

a better estimates that, in turn, allows for better association. Con-

cretely, the idea is to build a sequence of transformations Tii−1 that

are successively applied to P. At a given iteration, a set of matches

Mi is computed from the given relative position of the points. Then,

based of those matches, a new transformation Ti+1
i is computed by

minimizing the error:

Ti+1
i ← arg min

T

(

error
(

T
(

P ′i
)

,Q′
))

. (1.2)

Finally, the estimate of the transformation between the two original

shapes is the composition of all intermediary transformations:

T̂BA =

(

©
i

Tii−1

)

◦ Tinit (1.3)

where ©
i

Tii−1 = · · · ◦ T32 ◦ T21 is the iterative composition of the

transformations, and Tinit an initial transformation.

The generic procedure is summarized in Algorithm 1 and shown as

a chart in Figure 1.5.

1.4 Overview of the Review

ICP is a framework where multiple variations and algorithms can be

used to resolve geometric registration problems. In the light of this

large corpus of work related to ICP and more generally to geometric

Full text available at: http://dx.doi.org/10.1561/2300000035



1.4. Overview of the Review 13

Algorithm 1 Summary of ICP algorithm.

Require: PA ⊲ reading

Require: QB ⊲ reference

Require: Tinit ⊲ initial transformation

P ′A ← datafilter( PA ) ⊲ data filters

Q′B ← datafilter( QB ) ⊲ data filters

Tii−1 ← Tinit

repeat

P ′i ← Tii−1 ( P ′i−1 ) ⊲ move reading

Mi ← match( P ′i
,Q′) ⊲ associate points

Wi ← outlier(Mi) ⊲ filter outliers

Ti+1
i ← arg min

T

(

error
(

T
(

P ′i
)

,Q′
))

until convergence

Ensure: T̂B
A

=

(

©
i

Tii−1

)

◦ Tinit

Initial 

Transformation

Reference

Reading

Data 

Filter(s)

Data 

Filter(s)

Error 

Minimization

AssumptionsFeatures Descriptors

Legend:

Assumptions

Association 

Solver

Outlier 

Filter(s)

Outlier 

Filter(s)

Figure 1.5: Generic scheme proposed for registration algorithms.
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registration, we present a general framework to classify the existing so-

lutions. We believe that after 20 years of new registration algorithms, it

is time to evaluate what works best for which robotic systems. There-

fore, our contributions aim at strengthening the current methodology

and bring deeper analysis of current solutions. The timing is appro-

priate for such study given that computational power is now sufficient

to support registration on embedded systems in real-time [Pomerleau

et al., 2011]. Also, new advancements in electronics have improved the

accuracy and speed of sensors. Improvements in battery technology

have enabled longer autonomous operation time. Most importantly, re-

searchers face a plethora of solutions from which a definition of usable

solutions can be out of reach. This situation impedes the robotic field

to progress on algorithms that rely on registration (e.g., path planning,

autonomous exploration).

This review addresses this problem and is structured in two main

sections:

Section 2 presents a literature review of different solutions with the

aim to express ICP solutions in a common framework and vali-

date our generic scheme proposed in Figure 1.5.

Section 3 describes case studies using five different robotic platforms.

The requirements of each application are explained with some in-

sight on how to tune parameters for specific applications. Those

applications cover Search & Rescue activities, industrial inspec-

tion, shore monitoring and autonomous driving.

All sections close with a discussion in addition to a short summary.

The main observations of those sections are recapitulated in Section 4

along with final remarks.
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